1
|
Zhang N, Gao S, Peng H, Wu J, Li H, Gibson C, Wu S, Zhu J, Zheng Q. Chemical Proteomic Profiling of Protein Dopaminylation in Colorectal Cancer Cells. J Proteome Res 2024; 23:2651-2660. [PMID: 38838187 DOI: 10.1021/acs.jproteome.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Histone dopaminylation is a newly identified epigenetic mark that plays a role in the regulation of gene transcription, where an isopeptide bond is formed between the fifth amino acid of H3 (i.e., glutamine) and dopamine. Recently, we developed a chemical probe to specifically label and enrich histone dopaminylation via bioorthogonal chemistry. Given this powerful tool, we found that histone H3 glutamine 5 dopaminylation (H3Q5dop) was highly enriched in colorectal tumors, which could be attributed to the high expression level of its regulator, transglutaminase 2 (TGM2), in colon cancer cells. Due to the enzyme promiscuity of TGM2, nonhistone proteins have also been identified as dopaminylation targets; however, the dopaminylated proteome in cancer cells still remains elusive. Here, we utilized our chemical probe to enrich dopaminylated proteins from colorectal cancer cells in a bioorthogonal manner and performed the chemical proteomics analysis. Therefore, 425 dopaminylated proteins were identified, many of which are involved in nucleic acid metabolism and transcription pathways. More importantly, a number of dopaminylation sites were identified and attributed to the successful application of our chemical probe. Overall, these findings shed light on the significant association between cellular protein dopaminylation and cancer development, further suggesting that targeting these pathways may become a promising anticancer strategy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shuaixin Gao
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Haidong Peng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Connor Gibson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sophia Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Columbus Academy, Gahanna, Ohio 43230, United States
| | - Jiangjiang Zhu
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Zeine F, Jafari N, Baron D, Bowirrat A, Pinhasov A, Norling B, Martinez KC, Nami M, Manavi N, Sunder K, Rabin DM, Bagchi D, Khalsa J, Gold MS, Sipple D, Barzegar M, Bodhanapati J, Khader W, Carney P, Dennen CA, Gupta A, Elman I, Badgaiyan RD, Modestino EJ, Thanos PK, Hanna C, McLaughlin T, Cadet JL, Soni D, Braverman ER, Barh D, Giordano J, Edwards D, Ashford JW, Gondre-Lewis MC, Gilley E, Murphy KT, Lewandrowski KU, Sharafshah A, Makale M, Fuehrlein B, Blum K. Solving the Global Opioid Crisis: Incorporating Genetic Addiction Risk Assessment with Personalized Dopaminergic Homeostatic Therapy and Awareness Integration Therapy. JOURNAL OF ADDICTION PSYCHIATRY 2024; 8:50-95. [PMID: 39635461 PMCID: PMC11615735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Objectives The opioid crisis in the last few decades has mounted to a global level, impacting all areas of socioeconomic, demographic, geographic, and cultural boundaries. Traditional treatments have not been deemed to show the degree of efficacy necessary to address the crisis. The authors of this review paper have set forth an unprecedented and in-depth look into multi-factorial determinants that have contributed to the opioid crisis becoming global and multi-faceted. Methods For this narrative review/opinion article, we searched PsychINFO, PubMed, Google Scholar, and Web of Science databases to identify relevant articles on topics including the "opioid crisis," "opioid mechanisms," "genetics and epigenetics," "neuropharmacology," and "clinical aspects of opioid treatment and prevention." Since this was not a systematic review the articles selected could represent unitential bias. Results Despite some success achieved through Opioid Substitution Therapy (OST) in harm reduction, the annual mortality toll in the US alone surpasses 106,699 individuals, a figure expected to climb to 165,000 by 2025. Data from the Substance Abuse and Mental Health Services Administration's (SAMHSA) National Survey on Drug Abuse and Health (NSDUH) reveals that approximately 21.4% of individuals in the US engaged in illicit drug use in 2020, with 40.3 million individuals aged 12 or older experiencing a Substance Use Disorder (SUD). Provisional figures from the Centers for Disease Control and Prevention (CDC) indicate a troubling 15% increase in overdose deaths in 2021, rising from 93,655 in 2020 to 107,622, with opioids accounting for roughly 80,816 of these deaths. Conclusions We advocate reevaluating the "standard of care" and shifting towards inducing dopamine homeostasis by manipulating key neurotransmitter systems within the brain's reward cascade. We propose a paradigm shift towards a novel "standard of care" that begins with incorporating Genetic Addiction Risk Severity (GARS) testing to assess pre-addiction risk and vulnerability to opioid-induced addiction; emphasis should be placed on inducing dopamine homeostasis through safe and non-addictive alternatives like KB220, and comprehensive treatment approaches that address psychological, spiritual, and societal aspects of addiction through Awareness Integration Therapy (AIT).
Collapse
Affiliation(s)
- Foojan Zeine
- Awareness Integration Institute, San Clemente, USA
- Department of Health Science, California State University, Long Beach, USA
| | - Nicole Jafari
- Department of Applied Clinical Psychology, The Chicago School of Professional Psychology, Los Angeles, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, USA
| | - David Baron
- Center for Exercise and Sport Mental Health, Western University Health Sciences, Pomona, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Brian Norling
- MEMS Precision Technology, Inc., Santa Barbara, USA
- Acies Biomedical, Inc. Santa Barbara, USA
| | - Kathleen Carter Martinez
- Division of General Education-Berkeley College, Paramus Campus, New Jersey, USA
- Chey-Wind Center for Trauma and Healing, Peru, USA
| | - Mohammad Nami
- Brain, Cognition, and Behavior Unit, Brain Hub Academy, Dubai, UAE
| | - Nima Manavi
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, USA
| | - Keerthy Sunder
- Department of Psychiatry, University of California, UC Riverside School of Medicine, Riverside, USA
- Division of Neuromodulation Research, Karma Doctors and Karma TMS, Palm Springs, USA
| | | | - Debasis Bagchi
- Division of Nutrigenomics, Victory Nutrition International, LLC, Bonita Springs, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, USA
| | - Jag Khalsa
- Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University, School of Medicine, St. Louis, USA
| | - Daniel Sipple
- Minnesota Institute for Pain Management, Minnesota, USA
| | - Mojtaba Barzegar
- Hamad Medical Corporation, National Center for Cancer Care and Research (NCCCR), Doha, Qatar
| | - Jothsna Bodhanapati
- Division of Neuromodulation Research, Karma Doctors and Karma TMS, Palm Springs, USA
| | - Waseem Khader
- Karma Doctors, Palm Springs, USA
- Global Medical Detox Center, Menifee, CA, USA
| | - Paul Carney
- Division of Pediatric Neurology, University of Missouri, School of Medicine, Columbia, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, USA
| | | | - Igor Elman
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Department of Psychiatry, Harvard School of Medicine, Cambridge, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Case Western University School of Medicine, The Metro Health System, Cleveland, USA
- Department of Psychiatry, Mt. Sinai University, Ichan School of Medicine, New York, USA
| | | | - Panayotis K. Thanos
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, USA
| | - Thomas McLaughlin
- Division of Primary Care Research, Reward Deficiency Syndrome Clinics of America, Inc. Austin, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Baltimore, USA
| | - Diwanshu Soni
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, USA
| | - Eric R. Braverman
- Division of Clinical Neurological Research, The Kenneth Blum Neurogenetic and Behavioral Institute, LLC., Austin, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
| | | | | | - J. Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, USA
| | | | | | - Kevin T. Murphy
- Department of Radiation Oncology, University of California, San Diego, La Jolla, USA
| | - Kai-Uwe Lewandrowski
- Division of Personalized Pain Therapy Research, Center for Advanced Spine Care of Southern Arizona, Tucson, USA
- Department of Orthopaedics, Fundación Universitaria Sanitas, Bogotá, D.C., Colombia
- Department of Orthopedics, Hospital Universitário Gaffrée Guinle Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Milan Makale
- Department of Radiation Oncology, University of California, San Diego, La Jolla, USA
| | - Brian Fuehrlein
- Department of Psychiatry, School of Medicine, Yale University, New Haven, USA
| | - Kenneth Blum
- Center for Exercise and Sport Mental Health, Western University Health Sciences, Pomona, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Primary Care Research, Reward Deficiency Syndrome Clinics of America, Inc. Austin, USA
- Division of Clinical Neurological Research, The Kenneth Blum Neurogenetic and Behavioral Institute, LLC., Austin, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- JC’s Recovery and Counseling Center, Hollywood, USA
- Department of Psychiatry, University of Vermont, Burlington, USA
- Department of Psychiatry, Wright University Boonshoft School of Medicine, Dayton, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Center for Advanced Spine Care of Southern Arizona, Tucson, USA
| |
Collapse
|
3
|
Powell A, Hanna C, Sajjad M, Yao R, Blum K, Gold MS, Quattrin T, Thanos PK. Exercise Influences the Brain's Metabolic Response to Chronic Cocaine Exposure in Male Rats. J Pers Med 2024; 14:500. [PMID: 38793082 PMCID: PMC11122626 DOI: 10.3390/jpm14050500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cocaine use is associated with negative health outcomes: cocaine use disorders, speedballing, and overdose deaths. Currently, treatments for cocaine use disorders and overdose are non-existent when compared to opioid use disorders, and current standard cocaine use disorder treatments have high dropout and recidivism rates. Physical exercise has been shown to attenuate addiction behavior as well as modulate brain activity. This study examined the differential effects of chronic cocaine use between exercised and sedentary rats. The effects of exercise on brain glucose metabolism (BGluM) following chronic cocaine exposure were assessed using Positron Emission Tomography (PET) and [18F]-Fluorodeoxyglucose (FDG). Compared to sedentary animals, exercise decreased metabolism in the SIBF primary somatosensory cortex. Activation occurred in the amygdalopiriform and piriform cortex, trigeminothalamic tract, rhinal and perirhinal cortex, and visual cortex. BGluM changes may help ameliorate various aspects of cocaine abuse and reinstatement. Further investigation is needed into the underlying neuronal circuits involved in BGluM changes and their association with addiction behaviors.
Collapse
Affiliation(s)
- Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Rutao Yao
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Kenneth Blum
- Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Teresa Quattrin
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
4
|
Zhang N, Gao S, Peng H, Wu J, Li H, Gibson C, Wu S, Zhu J, Zheng Q. Chemical proteomic profiling of protein dopaminylation in colorectal cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591460. [PMID: 38712070 PMCID: PMC11071480 DOI: 10.1101/2024.04.27.591460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Histone dopaminylation is a newly identified epigenetic mark that plays a role in the regulation of gene transcription, where an isopeptide bond is formed between the fifth amino acid residue of H3 ( i.e. , glutamine) and dopamine. In our previous studies, we discovered that the dynamics of this post-translational modification (including installation, removal, and replacement) were regulated by a single enzyme, transglutaminase 2 (TGM2), through reversible transamination. Recently, we developed a chemical probe to specifically label and enrich histone dopaminylation via bioorthogonal chemistry. Given this powerful tool, we found that histone H3 glutamine 5 dopaminylation (H3Q5dop) was highly enriched in colorectal tumors, which could be attributed to the high expression level of TGM2 in colon cancer cells. Due to the enzyme promiscuity of TGM2, non-histone proteins have also been identified as targets of dopaminylation on glutamine residues, however, the dopaminylated proteome in cancer cells still remains elusive. Here, we utilized our chemical probe to enrich dopaminylated proteins from colorectal cancer cells in a bioorthogonal manner and performed the chemical proteomics analysis. Therefore, 425 dopaminylated proteins were identified, many of which are involved in nucleic acid metabolism and transcription pathways. More importantly, a number of modification sites of these dopaminylated proteins were identified, attributed to the successful application of our chemical probe. Overall, these findings shed light on the significant association between cellular protein dopaminylation and cancer development, further suggesting that to block the installation of protein dopaminylation may become a promising anti-cancer strategy. TOC
Collapse
|
5
|
Blum K, Bowirrat A, Baron D, Elman I, Makale MT, Cadet JL, Thanos PK, Hanna C, Ahmed R, Gondre-Lewis MC, Dennen CA, Braverman ER, Soni D, Carney P, Khalsa J, Modestino EJ, Barh D, Bagchi D, Badgaiyan RD, McLaughlin T, Cortese R, Ceccanti M, Murphy KT, Gupta A, Makale MT, Sunder K, Gold MS. Identification of stress-induced epigenetic methylation onto dopamine D2 gene and neurological and behavioral consequences. GENE & PROTEIN IN DISEASE 2024; 3:10.36922/gpd.1966. [PMID: 38766604 PMCID: PMC11100097 DOI: 10.36922/gpd.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The D2 dopamine receptor (DRD2) gene has garnered substantial attention as one of the most extensively studied genes across various neuropsychiatric disorders. Since its initial association with severe alcoholism in 1990, particularly through the identification of the DRD2 Taq A1 allele, numerous international investigations have been conducted to elucidate its role in different conditions. As of February 22, 2024, there are 5485 articles focusing on the DRD2 gene listed in PUBMED. There have been 120 meta-analyses with mixed results. In our opinion, the primary cause of negative reports regarding the association of various DRD2 gene polymorphisms is the inadequate screening of controls, not adequately eliminating many hidden reward deficiency syndrome behaviors. Moreover, pleiotropic effects of DRD2 variants have been identified in neuropsychologic, neurophysiologic, stress response, social stress defeat, maternal deprivation, and gambling disorder, with epigenetic DNA methylation and histone post-translational negative methylation identified as discussed in this article. There are 70 articles listed in PUBMED for DNA methylation and 20 articles listed for histone methylation as of October 19, 2022. For this commentary, we did not denote DNA and/or histone methylation; instead, we provided a brief summary based on behavioral effects. Based on the fact that Blum and Noble characterized the DRD2 Taq A1 allele as a generalized reward gene and not necessarily specific alcoholism, it now behooves the field to find ways to either use effector moieties to edit the neuroepigenetic insults or possibly harness the idea of potentially removing negative mRNA-reduced expression by inducing "dopamine homeostasis."
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, United States of America
- Department of Psychiatry, Wright University Boonshoft School of Medicine, Dayton, OH, United States of America
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, FL, United States of America
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Igor Elman
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, United States of America
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD., United States of America
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Rania Ahmed
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Marjorie C. Gondre-Lewis
- Department of Anatomy, Howard University College of Medicine, and Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington D.C., United States of America
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, United States of America
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Diwanshu Soni
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Paul Carney
- Division Pediatric Neurology, University of Missouri, School of Medicine, Columbia, MO., United States of America
| | - Jag Khalsa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Edward J. Modestino
- Department of Psychology, Curry College, Milton, MA., United States of America
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, United States of America
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland OH., 44106, USA and Department of Psychiatry, Mt. Sinai School of Medicine, New York, NY, United States of America
| | - Thomas McLaughlin
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Rene Cortese
- Department of Child Health – Child Health Research Institute, & Department of Obstetrics, Gynecology and Women’s Health School of Medicine, University of Missouri, MO, United States of America
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, Roma, Italy
| | - Kevin T. Murphy
- Division of Personalized Neuromodulation and Patient Care, PeakLogic, LLC, Del Mar, CA, United States of America
| | - Ashim Gupta
- Future Biologics, Lawrenceville, Georgia, 30043, United States of America
| | - Miles T. Makale
- Department of Psychology, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Keerthy Sunder
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Department of Psychiatry, UC Riverside School of Medicine, Riverside, CA, United States of America
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
6
|
Koijam AS, Singh KD, Nameirakpam BS, Haobam R, Rajashekar Y. Drug addiction and treatment: An epigenetic perspective. Biomed Pharmacother 2024; 170:115951. [PMID: 38043446 DOI: 10.1016/j.biopha.2023.115951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Kabrambam Dasanta Singh
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Bunindro Singh Nameirakpam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
7
|
Blum K, Gold MS, Cadet JL, Gondre-Lewis MC, McLaughlin T, Braverman ER, Elman I, Paul Carney B, Cortese R, Abijo T, Bagchi D, Giordano J, Dennen CA, Baron D, Thanos PK, Soni D, Makale MT, Makale M, Murphy KT, Jafari N, Sunder K, Zeine F, Ceccanti M, Bowirrat A, Badgaiyan RD. Invited Expert Opinion- Bioinformatic and Limitation Directives to Help Adopt Genetic Addiction Risk Screening and Identify Preaddictive Reward Dysregulation: Required Analytic Evidence to Induce Dopamine Homeostatsis. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i8.4211. [PMID: 37885438 PMCID: PMC10601302 DOI: 10.18103/mra.v11i8.4211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Addiction, albeit some disbelievers like Mark Lewis [1], is a chronic, relapsing brain disease, resulting in unwanted loss of control over both substance and non- substance behavioral addictions leading to serious adverse consequences [2]. Addiction scientists and clinicians face an incredible challenge in combatting the current opioid and alcohol use disorder (AUD) pandemic throughout the world. Provisional data from the Centers for Disease Control and Prevention (CDC) shows that from July 2021-2022, over 100,000 individuals living in the United States (US) died from a drug overdose, and 77,237 of those deaths were related to opioid use [3]. This number is expected to rise, and according to the US Surgeon General it is highly conceivable that by 2025 approximately 165,000 Americans will die from an opioid overdose. Alcohol abuse, according to data from the World Health Organization (WHO), results in 3 million deaths worldwide every year, which represents 5.3% of all deaths globally [4].
Collapse
Affiliation(s)
- Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX., USA
- Division of Addiction Research & Education, Center for Sports, Exercise & Psychiatry, Western University Health Sciences, Pomona, CA., USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT.,USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH, USA
- Division of Nutrigenomics Research, TranspliceGen Therapeutics, Inc., Austin, Tx., 78701, USA
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, FL, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA., USA
- Sunder Foundation, Palm Springs, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO., USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD., USA
| | - Marjorie C. Gondre-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC., USA
| | - Thomas McLaughlin
- Division of Nutrigenomics Research, TranspliceGen Therapeutics, Inc., Austin, Tx., 78701, USA
| | - Eric R Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX., USA
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA., USA
| | - B. Paul Carney
- Division Pediatric Neurology, University of Missouri, School of Medicine, Columbia, MO., USA
| | - Rene Cortese
- Department of Child Health – Child Health Research Institute, & Department of Obstetrics, Gynecology and Women’s Health School of Medicine, University of Missouri, MO., USA
| | - Tomilowo Abijo
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC., USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, USA
| | - John Giordano
- Division of Personalized Mental Illness Treatment & Research, Ketamine Infusion Clinics of South Florida, Pompano Beach, Fl., USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Diwanshu Soni
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA., USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA
| | - Miles Makale
- Department of Psychology, UC San Diego, Health Sciences Drive, La Jolla, CA, 92093, USA
| | | | - Nicole Jafari
- Department of Human Development, California State University at long Beach, Long Beach, CA., USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA., USA
| | - Keerthy Sunder
- Department of Psychiatry, Menifee Global Medical Center, Palm Desert, CA., USA
- Sunder Foundation, Palm Springs, CA, USA
| | - Foojan Zeine
- Awareness Integration Institute, San Clemente, CA., USA
- Department of Health Science, California State University at Long Beach, Long Beach, CA., USA
| | - Mauro Ceccanti
- Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze (SITAC), ASL Roma1, Sapienza University of Rome, Rome, Italy
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX., USA
- Department of Psychiatry, Mt Sinai University School of Medicine, New York, NY., USA
| |
Collapse
|
8
|
Rajan KE, Karen C, Dhivakar S. Early-life stressful social experience (SSE) alters ultrasound vocalizations and impairs novel odor preference: Influence of histone dopaminylation. Neurosci Lett 2023; 809:137304. [PMID: 37225119 DOI: 10.1016/j.neulet.2023.137304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIM Rat pups emit ultrasound vocalizations (USVs) in response to negative/positive stimuli, the acoustic features of USVs are altered during the stressful and threatening situation. We hypothesize that maternal separation (MS) and/or stranger (St) exposure would alter acoustic features of USVs, neurotransmitter transmission, epigenetic status and impaired odor recognition later in life. METHOD Rat pups were left undisturbed in the home cage (a) control, (b) pups were separated from mother MS [postnatal day (PND) 5-10], (c) intrusion of stranger (St; social experience: SE) to the pups either in the presence of mother (M + P + St) or (d) absence of mother (MSP + St). USVs was recorded on PND10 in two context i) five minutes after MS, MS and St, mother with their pups and St, ii) five minutes after the pups reunited with their pups and/or removal of stranger. Novel odor preference test was conducted during their mid-adolescence on PND34, 35. RESULTS Rat pups produced two complex USVs (frequency step-down: 38-48 kHz; and two syllable: 42-52 kHz) especially when the mother was absent and the stranger was present. Further, pups failed to recognize novel odor, which can be linked to an increased dopamine transmission, decreased transglutaminase (TGM)-2, increased histone trimethylation (H3K4me3) and dopaminylation (H3Q5dop) in the amygdala. CONCLUSIONS This result suggest that USVs act as acoustic code of different early-life stressful social experience, which appears to have long-term effect on odor recognition, dopaminergic activity and dopamine dependent epigenetic status.
Collapse
Affiliation(s)
- Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India.
| | - Christopher Karen
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; Section on Behavioural Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Selvavinayagam Dhivakar
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
9
|
Al-Kachak A, Maze I. Post-translational modifications of histone proteins by monoamine neurotransmitters. Curr Opin Chem Biol 2023; 74:102302. [PMID: 37054563 PMCID: PMC10225327 DOI: 10.1016/j.cbpa.2023.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Protein monoaminylation is a biochemical process through which biogenic monoamines (e.g., serotonin, dopamine, histamine, etc.) are covalently bonded to certain protein substrates via Transglutaminase 2, an enzyme that catalyzes the transamidation of primary amines to the γ-carboxamides of glutamine residues. Since their initial discovery, these unusual post-translational modifications have been implicated in a wide variety of biological processes, ranging from protein coagulation to platelet activation and G-protein signaling. More recently, histone proteins - specifically histone H3 at glutamine 5 (H3Q5) - have been added to the growing list of monoaminyl substrates in vivo, with H3Q5 monoaminylation demonstrated to regulate permissive gene expression in cells. Such phenomena have further been shown to contribute critically to various aspects of (mal)adaptive neuronal plasticity and behavior. In this short review, we examine the evolution of our understanding of protein monoaminylation events, highlighting recent advances in the elucidation of their roles as important chromatin regulators.
Collapse
Affiliation(s)
- Amni Al-Kachak
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
10
|
Cheng J, He Z, Chen Q, Lin J, Peng Y, Zhang J, Yan X, Yan J, Niu S. Histone modifications in cocaine, methamphetamine and opioids. Heliyon 2023; 9:e16407. [PMID: 37265630 PMCID: PMC10230207 DOI: 10.1016/j.heliyon.2023.e16407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Cocaine, methamphetamine and opioids are leading causes of drug abuse-related deaths worldwide. In recent decades, several studies revealed the connection between and epigenetics. Neural cells acquire epigenetic alterations that drive the onset and progress of the SUD by modifying the histone residues in brain reward circuitry. Histone modifications, especially acetylation and methylation, participate in the regulation of gene expression. These alterations, as well as other host and microenvironment factors, are associated with a serious of negative neurocognitive disfunctions in various patient populations. In this review, we highlight the evidence that substantially increase the field's ability to understand the molecular actions underlying SUD and summarize the potential approaches for SUD pharmacotherapy.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ziping He
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei Province, 430074, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| |
Collapse
|
11
|
Blum K, Dennen CA, Braverman ER, Gupta A, Baron D, Downs BW, Bagchi D, Thanos P, Pollock M, Khalsa J, Elman I, Bowirrat A, Badgaiyan RA. Hypothesizing That Pediatric Autoimmune Neuropsychiatric Associated Streptococcal (PANDAS) Causes Rapid Onset of Reward Deficiency Syndrome (RDS) Behaviors and May Require Induction of "Dopamine Homeostasis". OPEN JOURNAL OF IMMUNOLOGY 2022; 12:65-75. [PMID: 36407790 PMCID: PMC9670240 DOI: 10.4236/oji.2022.123004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pediatric autoimmune neuropsychiatric disorders associated with group A streptococcal infections (PANDAS) is a concept that is used to characterize a subset of children with neuropsychiatric symptoms, tic disorders, or obsessive-compulsive disorder (OCD), whose symptoms are exacerbated by group A streptococcal (GAS) infection. PANDAS has been known to cause a sudden onset of reward deficiency syndrome (RDS). RDS includes multiple disorders that are characterized by dopaminergic signaling dysfunction in the brain reward cascade (BRC), which may result in addiction, depression, avoidant behaviors, anxiety, tic disorders, and/or OCD. According to research by Blum et al., the dopamine receptor D2 (DRD2) gene polymorphisms are important prevalent genetic determinants of RDS. The literature demonstrates that infections like Borrelia and Lyme, as well as other infections like group A beta-hemolytic streptococcal (GABHS), can cause an autoimmune reaction and associated antibodies target dopaminergic loci in the mesolimbic region of the brain, which interferes with brain function and potentially causes RDS-like symptoms/behaviors. The treatment of PANDAS remains controversial, especially since there have been limited efficacy studies to date. We propose an innovative potential treatment for PANDAS based on previous clinical trials using a pro-dopamine regulator known as KB220 variants. Our ongoing research suggests that achieving "dopamine homeostasis" by precision-guided DNA testing and pro-dopamine modulation could result in improved therapeutic outcomes.
Collapse
Affiliation(s)
- Kenneth Blum
- Center for Mental Health and Sports, Psychiatry, Western University Health Sciences, Pomona, USA
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, USA
- Department Psychiatry, Boonshoff School of Medicine, Wright University, Dayton, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, USA
- Division of Nutrigenomics, Victory Nutrition International Inc., Bonita Springs, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, USA
| | | | | | - David Baron
- Center for Mental Health and Sports, Psychiatry, Western University Health Sciences, Pomona, USA
| | - Bernard William Downs
- Division of Nutrigenomics, Victory Nutrition International Inc., Bonita Springs, USA
| | - Debasis Bagchi
- Division of Nutrigenomics, Victory Nutrition International Inc., Bonita Springs, USA
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, USA
| | - Panayotis Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, University at Buffalo, Buffalo, USA
| | - Maureen Pollock
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, USA
| | - Jag Khalsa
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine, George Washington University, Washington DC, USA
| | - Igor Elman
- Cambridge Health Alliance, Harvard Medical School, Cambridge, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Rajendra A. Badgaiyan
- Department of Psychiatry, Ichan School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, USA
| |
Collapse
|