1
|
Bhagyalalitha M, Handattu Shankaranarayana A, Arun Kumar S, Singh M, Pujar KG, Bidye D, Veeranna Pujar G. Advances in HER2-Targeted Therapies: From monoclonal antibodies to dual inhibitors developments in cancer treatment. Bioorg Chem 2024; 151:107695. [PMID: 39137598 DOI: 10.1016/j.bioorg.2024.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
HER2 receptors, overexpressed in certain human cancers, have drawn significant attention in cancer research due to their correlation with poor survival rates. Researchers have developed monoclonal antibodies like Trastuzumab and Pertuzumab against HER2 receptors, which have proven highly beneficial in cancer therapy. Bispecific antibodies like Zanidatamab and antibody-drug conjugates like T-DM1 have been developed to overcome the resistance associated with monotherapy. Small molecules such as Lapatinib, Neratinib, and Pyrotinib were initially developed for treating breast cancer. However, ongoing research is investigating their potential use in other types of cancer, often in combination with other medications. EGFR/HER2 dual-targeted drugs have overcome drug resistance associated with HER2-targeted monotherapy. This comprehensive review covers the structural characteristics of HER2, the HER family signaling pathway mechanism, recent findings regarding HER2 receptor involvement in various cancers, and diverse HER2-targeted therapies. This information provides a comprehensive understanding of HER2-targeted strategies in the evolving field of cancer treatment.
Collapse
Affiliation(s)
- Meduri Bhagyalalitha
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Akshatha Handattu Shankaranarayana
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Sethu Arun Kumar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Manisha Singh
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Karthik G Pujar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Durgesh Bidye
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Gurubasavaraj Veeranna Pujar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India.
| |
Collapse
|
2
|
N Hegde V, J S S, B S C, Benedict Leoma M, N K L. Structural, computational and in silico studies of 4-bromo-3-flurobenzonitrile as anti-Alzheimer and anti-Parkinson agents. J Biomol Struct Dyn 2024; 42:4619-4643. [PMID: 37418246 DOI: 10.1080/07391102.2023.2226755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/29/2023] [Indexed: 07/08/2023]
Abstract
A novel dimer of the 4-bromo-3-fluorobenzonitrile was crystallized and studied using a spectroscopic method such as the scanning electron microscope method. The computational simulations substantiated the structural analysis findings. The Hirshfeld surface analysis has been performed for visualizing, exploring and quantifying the intra and inter-molecular interactions that stabilize the crystal packing of the compound. The NBO and QTAIM analyses were applied to study the nature and origin of the attractive forces involved in the crystal structure. Further, the pharmacokinetic properties of the compound were evaluated, indicating good brain-blood barrier and central nervous system penetration capability. Hence, in silico studies was carried out to explore the binding pattern of the titled compound against acetylcholinesterase and butyrylcholinesterase, and tumor necrosis factor-alpha converting enzyme proteins using molecular docking and molecular dynamics simulations approach. Further, the titled compound is compared with standard drugs through molecular docking studies. The in silico studies finally predicts that the compound under investigation may act as a good inhibitor for treating Alzheimer's disease and further in vitro and in vivo studies may provide its therapeutic potential.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Shyambhargav J S
- Department of Studies in Physics, University of Mysore, Mysuru, India
| | - Chethan B S
- Department of Studies in Physics, University of Mysore, Mysuru, India
| | | | - Lokanath N K
- Department of Studies in Physics, University of Mysore, Mysuru, India
| |
Collapse
|
3
|
Abouelenein MG, Mohamed MBI, Elsenety MM, El-Rashedy AA, Ghalib SH, Mohamed FAE, El-Ebiary NMA, Ageeli AA. Facile and Novel Synthetic Approach, Molecular Docking, Molecular Dynamics, and Drug-Likeness Evaluation of 9-Substituted Acridine Derivatives as Dual Anticancer and Antimicrobial Agents. Chem Biodivers 2024; 21:e202301986. [PMID: 38478727 DOI: 10.1002/cbdv.202301986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
In the present study, numerous acridine derivatives A1-A20 were synthesized via aromatic nucleophilic substitution (SNAr) reaction of 9-chloroacridine with carbonyl hydrazides, amines, or phenolic derivatives depending upon facile, novel, and eco-friendly approaches (Microwave and ultrasonication assisted synthesis). The structures of the new compounds were elucidated using spectroscopic methods. The title products were assessed for their antimicrobial, antioxidant, and antiproliferative activities using numerous assays. Promisingly, the investigated compounds mainstream revealed promising antibacterial and anticancer activities. Thereafter, the investigated compounds' expected mode of action was debated by using an array of in silico studies. Compounds A2 and A3 were the most promising antimicrobial agents, while compounds A2, A5, and A7 revealed the most cytotoxic activities. Accordingly, RMSD, RMSF, Rg, and SASA analyses of compounds A2 and A3 were performed, and MMPBSA was calculated. Lastly, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyses of the novel acridine derivatives were investigated. The tested compounds' existing screening results afford an inspiring basis leading to developing new compelling antimicrobial and anticancer agents based on the acridine scaffold.
Collapse
Affiliation(s)
- Mohamed G Abouelenein
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Koam, Menofia, Egypt
| | | | - Mohamed M Elsenety
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt, P.O., 11884
| | - Ahmed A El-Rashedy
- Natural and Microbial Products Department, National Research Center (NRC), Egypt
| | - Samirah H Ghalib
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| | | | - Nora M A El-Ebiary
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| | - Abeer A Ageeli
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| |
Collapse
|
4
|
Gupta A, Haldhar R, Agarwal V, Rajput DS, Chun KS, Han SB, Raj V, Lee S. Exploring the Potential of Natural Products as FoxO1 Inhibitors: an In Silico Approach. Biomol Ther (Seoul) 2024; 32:390-398. [PMID: 38586882 PMCID: PMC11063485 DOI: 10.4062/biomolther.2023.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/14/2023] [Accepted: 10/21/2023] [Indexed: 04/09/2024] Open
Abstract
FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1's roles in multiple diseases have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID- 3CO6) using the Glide module of the Schrödinger suite. In silico ADMET profiling was conducted using SwissADME and pkCSM web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynamics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles.
Collapse
Affiliation(s)
- Anugya Gupta
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal 462044, Madhya Pradesh, India
| | - Rajesh Haldhar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Dharmendra Singh Rajput
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal 462044, Madhya Pradesh, India
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sang Beom Han
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Zhou C, Yan L, Xu J, Hamezah HS, Wang T, Du F, Tong X, Han R. Phillyrin: an adipose triglyceride lipase inhibitor supported by molecular docking, dynamics simulation, and pharmacological validation. J Mol Model 2024; 30:68. [PMID: 38347278 DOI: 10.1007/s00894-024-05875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
CONTEXT Adipose triglyceride lipase (ATGL), a key enzyme responsible for lipolysis, catalyzes the first step of lipolysis and converts triglycerides to diacylglycerols and free fatty acids (FFA). Our previous work suggested that phillyrin treatment improves insulin resistance in HFD-fed mice, which was associated with ATGL inhibition. In this study, using docking simulation, we explored the binding pose of phillyrin and atglistatin (a mouse ATGL inhibitor) to ATGL in mouse. From the docking results, the interactions with Ser47 and Asp166 were speculated to have caused phillyrin to inhibit ATGL in mice. Further, molecular dynamics simulation of 100 ns and MM-GBSA were conducted for the protein-ligand complex, which indicated that the system was stable and that phillyrin displayed a better affinity to ATGL than did atglistatin throughout the simulation period. Moreover, the results of pharmacological validation were consistent with those of the in silico simulations. In summary, our study illustrates the potential of molecular docking to accurately predict the binding protein produced by AlphaFold and suggests that phillyrin is a potential small molecule that targets and inhibits ATGL enzymatic activity. METHODS The ATGL-predicted protein structure, verified by PROCHECK, was determined using AlphaFold. Molecular docking, molecular dynamics simulation, and prime molecular mechanic-generalized born surface area were performed using LigPrep, Desmond, and prime MM-GBSA modules of Schrödinger software release 2021-2, respectively. For pharmacological validation, immunoblotting was performed to assess ATGL protein expression. The fluorescence intensity and glycerol concentration were quantified to evaluate the efficiency of phillyrin in inhibiting ATGL.
Collapse
Affiliation(s)
- Chenyu Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China
| | - Lanmeng Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China
| | - Jing Xu
- School of Life Sciences, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China
| | | | - Tongsheng Wang
- School of Life Sciences, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China
| | - Fangping Du
- Jinzhai County Jinshanzhai Edible and Pharmaceutical Fungi Plantation Co. Ltd., Lu'an, 237300, Jinzhai, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China.
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Lu'an, 237300, China.
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China.
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Xinzhan District, Hefei, 230012, China.
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Xinzhan District, Hefei, 230012, China.
| |
Collapse
|
6
|
Jangid K, Devi B, Sahoo A, Kumar V, Dwivedi AR, Thareja S, Kumar R, Kumar V. Virtual screening and molecular dynamics simulation approach for the identification of potential multi-target directed ligands for the treatment of Alzheimer's disease. J Biomol Struct Dyn 2024; 42:509-527. [PMID: 37114423 DOI: 10.1080/07391102.2023.2201838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurological disorder characterized by memory loss and cognitive impairment. The currently available single-targeting drugs have miserably failed in the treatment of AD, and multi-target directed ligands (MTDLs) are being explored as an alternative treatment strategy. Cholinesterase and monoamine oxidase enzymes are reported to play a crucial role in the pathology of AD, and multipotent ligands targeting these two enzymes simultaneously are under various phases of design and development. Recent studies have revealed that computational approaches are robust and trusted tools for identifying novel therapeutics. The current research work is focused on the development of potential multi-target directed ligands that simultaneously inhibit acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B) enzymes employing a structure-based virtual screening (SBVS) approach. The ASINEX database was screened after applying pan assay interference and drug-likeness filter to identify novel molecules using three docking precision criteria; High Throughput Virtual Screening (HTVS), Standard Precision (SP), and Extra Precision (XP). Additionally, binding free energy calculations, ADME, and molecular dynamic simulations were employed to get structural insights into the mechanism of protein-ligand binding and pharmacokinetic properties. Three lead molecules viz. AOP19078710, BAS00314308 and BDD26909696 were successfully identified with binding scores of -10.565, -10.543 & -8.066 kcal/mol against AChE and -11.019, -12.357 & -10.068 kcal/mol against MAO-B, better score as compared to the standard inhibitors. In the near future, these molecules will be synthesized and evaluated through in vitro and in vivo assays for their inhibition potential against AChE and MAO-B enzymes.
Collapse
Affiliation(s)
- Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Bharti Devi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, Uttar Pradesh, India
| | - Ashrulochan Sahoo
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, Gitam School of Pharmacy Hyderabad, Hyderabad, Telangana, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, Uttar Pradesh, India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
7
|
Krishna Swaroop A, Krishnan Namboori PK, Esakkimuthukumar M, Praveen TK, Nagarjuna P, Patnaik SK, Selvaraj J. Leveraging decagonal in-silico strategies for uncovering IL-6 inhibitors with precision. Comput Biol Med 2023; 163:107231. [PMID: 37421735 DOI: 10.1016/j.compbiomed.2023.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Interleukin-6 upregulation leads to various acute phase reactions such as local inflammation and systemic inflammation in many diseases like cancer, multiple sclerosis, rheumatoid arthritis, anemia, and Alzheimer's disease stimulating JAK/STAT3, Ras/MAPK, PI3K-PKB/Akt pathogenic pathways. Since no small molecules are available in the market against IL-6 till now, we have designed a class of small bioactive 1,3 - indanedione (IDC) molecules for inhibiting IL-6 using a decagonal approach computational studies. The IL-6 mutations were mapped in the IL-6 protein (PDB ID: 1ALU) from thorough pharmacogenomic and proteomics studies. The protein-drug interaction networking analysis for 2637 FFDA-approved drugs with IL-6 protein using Cytoscape software showed that 14 drugs have prominent interactions with IL-6. Molecular docking studies showed that the designed compound IDC-24 (-11.8 kcal/mol) and methotrexate (-5.20) bound most strongly to the 1ALU south asian population mutated protein. MMGBSA results indicated that IDC-24 (-41.78 kcal/mol) and methotrexate (-36.81 kcal/mol) had the highest binding energy when compared to the standard molecules LMT-28 (-35.87 kcal/mol) and MDL-A (-26.18 kcal/mol). These results we substantiated by the molecular dynamic studies in which the compound IDC-24 and the methotrexate had the highest stability. Further, the MMPBSA computations produced energies of -28 kcal/mol and -14.69 kcal/mol for IDC-24 and LMT-28. KDeep absolute binding affinity computations revealed energies of -5.81 kcal/mol and -4.74 kcal/mol for IDC-24 and LMT-28 respectively. Finally, our decagonal approach established the compound IDC-24 from the designed 1,3-indanedione library and methotrexate from protein drug interaction networking as suitable HITs against IL-6.
Collapse
Affiliation(s)
- Akey Krishna Swaroop
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - P K Krishnan Namboori
- Amrita Molecular Modeling and Synthesis (AMMAS) Research Lab, Amrita Vishwavidyapeetham, Amrita Nagar, Ettimadai, Coimbatore, Tamilnadu, India
| | - M Esakkimuthukumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - T K Praveen
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - Palathoti Nagarjuna
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - Sunil Kumar Patnaik
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India.
| |
Collapse
|
8
|
Jupudi S, Rajagopal K, Murugesan S, Kumar BK, Raman K, Byran G, Chennaiah J, Muthiah VP, Dasan P B, Sankaran S. Identification of Papain-Like Protease inhibitors of SARS CoV-2 through HTVS, Molecular docking, MMGBSA and Molecular dynamics approach. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 151:82-91. [PMID: 34876768 PMCID: PMC8639443 DOI: 10.1016/j.sajb.2021.11.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 05/28/2023]
Abstract
Coronaviruses (CoVs) are a large group of enveloped positive sense single-stranded RNA viruses that can cause disease to humans. These are zoonotic having potential to cause large-scale outbreaks of infections widely causing morbidity and mortality. Papain-Like Protease (PLpro) is a cysteine protease, essential for viral replication and proliferation, as a highly conserved enzyme it cleaves peptide linkage between Nsp1, Nsp2, Nsp3, and Nsp4. As a valid therapeutic target, it stops viral reproduction and boosts host immune response thereby halting further spread of infection. In the purpose of identifying inhibitors targeting Papain-Like Proteases (PLpro) we initiated a high throughput virtual screening (HTVS) protocol using a SuperNatural Database. The XP docking results revealed that two compounds SN00334175 and SN00162745 exhibited docking scores of -10.58 kcal/mol and -9.93 kcal/mol respectively. The Further PRIME MMGB-SA studies revealed Van der Waal energy and hydrophobic energy terms as major contributors for total binding free energy. The 100 ns molecular dynamics simulation of SN00334175/7JN2 and SN00162745/7JN2 revealed that these complexes were stabilized with ligand binding forming interactions with Gly266, Asn267, Tyr268, Tyr273, Thr301 and Asp302, Lys157, Leu162, Asp164, Arg166, Glu167, Pro248 and Tyr264.
Collapse
Affiliation(s)
- Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, (A Constituent college of JSS Academy of higher education & Research- deemed University), Ooty 643001, The Nilgiris, Tamilnadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, (A Constituent college of JSS Academy of higher education & Research- deemed University), Ooty 643001, The Nilgiris, Tamilnadu, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031 Rajasthan India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031 Rajasthan India
| | - Kannan Raman
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, (A Constituent college of JSS Academy of higher education & Research- deemed University), Ooty 643001, The Nilgiris, Tamilnadu, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, (A Constituent college of JSS Academy of higher education & Research- deemed University), Ooty 643001, The Nilgiris, Tamilnadu, India
| | - Jayakuamar Chennaiah
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, (A Constituent college of JSS Academy of higher education & Research- deemed University), Ooty 643001, The Nilgiris, Tamilnadu, India
| | - Velayutham Pillai Muthiah
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankovil 626 126, Tamil Nadu, India
| | - Bharathi Dasan P
- Bio Pharma Laboratories Pvt. Limited., Hyderabad 502 325, Telangana, India
| | - Sathianarayanan Sankaran
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Karpagam University Pollachi Main Road, Eachanari Post, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
9
|
Maldonado J, Acevedo W, Molinari A, Oliva A, Knox M, San Feliciano A. Synthesis, in vitro evaluation and molecular docking studies of novel naphthoisoxazolequinone carboxamide hybrids as potential antitumor agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2095410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Javier Maldonado
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Aurora Molinari
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alfonso Oliva
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcela Knox
- Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas-Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Universidad de Salamanca, Salamanca, Spain
- Programa de Pós-Graduaçao em Ciências Farmacêuticas, Universidade Do Vale Do Itajaí, UNIVALI, Itajaí, SC, Brazil
| |
Collapse
|
10
|
Sunder Raj D, Kesavan DK, Kottaisamy CPD, Kumar VP, Hopper W, Sankaran U. Atomic level and structural understanding of natural ligands inhibiting Helicobacter pylori peptide deformylase through ligand and receptor based screening, SIFT, molecular dynamics and DFT - a structural computational approach. J Biomol Struct Dyn 2022; 41:3440-3461. [PMID: 35293845 DOI: 10.1080/07391102.2022.2050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Helicobacter pylori is a Gram-negative microaerophilic gastric pathogen, responsible for the cause of peptic ulcer around half of the global population. Although several antibiotics and combination therapies have been employed for H. pylori-related gastric ulcer and cancer regiments, identifying potent inhibitors for specific targets of this bacterium will help assessing better treatment periodicity and methods to eradicate H. pylori. Herein, 1,000,000 natural compounds were virtually screened against Helicobacter pylori Peptide deformylase (HpPDF). Pharmacophore hypotheses were created using ligand and receptor-based pharmacophore modeling of GLIDE. Stringent HTVS and IFD docking protocol of GLIDE predicted leads with stable intermolecular bonds and scores. Molecular dynamics simulation of HpPDF was carried out for 100 ns using GROMACS. Hits ZINC00225109 and ZINC44896875 came up with a glide score of -9.967 kcal/mol and -12.114 kcal/mol whereas; reference compound actinonin produced a glide score of -9.730 kcal/mol. Binding energy values of these hits revealed the involvement of significant Van der Waals and Coulomb forces and the deduction of lipophilic forces that portray the deep hydrophobic residues in the S1pocket of H. pylori. The DFT analysis established the electron density-based features of the molecules and observed that the results correlate with intermolecular docking interactions. Analysis of the MD trajectories revealed the crucial residues involved in HpPDF - ligand binding and the conformational changes in the receptor. We have identified and deciphered the crucial features necessary for the potent ligand binding at catalytic site of HpPDF. The resulting ZINC natural compound hits from the study could be further employed for potent drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Divya Sunder Raj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, India
| | | | | | - V Prasanth Kumar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Waheetha Hopper
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM University, Kattankulathur Campus, Chennai, India
| | | |
Collapse
|
11
|
Celik I, Ayhan‐Kılcıgil G, Karayel A, Guven B, Onay‐Besikci A. Synthesis, molecular docking, in silico
ADME,
and
EGFR
kinase inhibitor activity studies of some new benzimidazole derivatives bearing thiosemicarbazide, triazole, and thiadiazole. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ismail Celik
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry Ankara University Ankara Turkey
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry Erciyes University Kayseri Turkey
| | - Gülgün Ayhan‐Kılcıgil
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry Ankara University Ankara Turkey
| | - Arzu Karayel
- Faculty of Arts and Science, Department of Physics Hitit University Çorum Turkey
| | - Berna Guven
- Faculty of Pharmacy, Department of Pharmacology Ankara University Ankara Turkey
| | - Arzu Onay‐Besikci
- Faculty of Pharmacy, Department of Pharmacology Ankara University Ankara Turkey
| |
Collapse
|
12
|
Shridhar Deshpande N, Mahendra GS, Aggarwal NN, Gatphoh BFD, Revanasiddappa BC. Insilico design, ADMET screening, MM-GBSA binding free energy of novel 1,3,4 oxadiazoles linked Schiff bases as PARP-1 inhibitors targeting breast cancer. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00321-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Background
Poly(ADP-ribose) polymerases (PARPs), a nuclear protein belongs to a new class of drugs, which mainly target tumours with DNA repair defects. They are mainly involved in the multiple cellular processes in addition to the DNA repair process. They act directly on the base excision repair, which is considered as one of the important pathway for cell survival in breast cancer. These belong to the active members of DNA repair assembly and evolved as a key target in the anti-cancer drug discovery. 1,3,4-Oxadiazoles are also well known anticancer agents.
Results
A novel series of 1,3,4-oxadiazoles linked to Schiff bases (T1-21) were designed and subjected to In-silico analysis against PARP-1 (PDB ID:5DS3) enzyme targeting against breast cancer. Molecular docking study for the designed compounds (T1-21) was performed by In-silico ADMET screening by QikProp module, Glide module and MM-GBSA binding free energy calculations by using Schrodinger suit 2019–2. The PARP-1 enzyme shows the binding affinity against the newly designed molecules (T1-21) based on the glide scores. Compounds T21, T12 showed very good glide score by the molecular docking studies and compared with the standard Tamoxifen. The binding free energies by the MM-GBSA assay were found to be consistent. The pharmacokinetic (ADMET) parameters of all the newly designed compounds were found to be in the acceptable range.
Conclusion
The selected 1,3,4-oxadiazole-schiff base conjugates seems to be one of the potential source for the further development of anticancer agents against PARP-1 enzyme. The results revealed that some of the compounds T21, T17, T14, T13, T12, T8 with good glide scores showed very significant activity against breast cancer
Collapse
|
13
|
Pandey K, Lokhande KB, Swamy KV, Nagar S, Dake M. In Silico Exploration of Phytoconstituents From Phyllanthus emblica and Aegle marmelos as Potential Therapeutics Against SARS-CoV-2 RdRp. Bioinform Biol Insights 2021; 15:11779322211027403. [PMID: 34248355 PMCID: PMC8236766 DOI: 10.1177/11779322211027403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has increased the importance of computational tools to design a drug or vaccine in reduced time with minimum risk. Earlier studies have emphasized the important role of RNA-dependent RNA polymerase (RdRp) in SARS-CoV-2 replication as a potential drug target. In our study, comprehensive computational approaches were applied to identify potential compounds targeting RdRp of SARS-CoV-2. To study the binding affinity and stability of the phytocompounds from Phyllanthus emblica and Aegel marmelos within the defined binding site of SARS-CoV-2 RdRp, they were subjected to molecular docking, 100 ns molecular dynamics (MD) simulation followed by post-simulation analysis. Furthermore, to assess the importance of features involved in the strong binding affinity, molecular field-based similarity analysis was performed. Based on comparative molecular docking and simulation studies of the selected phytocompounds with SARS-CoV-2 RdRp revealed that EBDGp possesses a stronger binding affinity (-23.32 kcal/mol) and stability than other phytocompounds and reference compound, Remdesivir (-19.36 kcal/mol). Molecular field-based similarity profiling has supported our study in the validation of the importance of the presence of hydroxyl groups in EBDGp, involved in increasing its binding affinity toward SARS-CoV-2 RdRp. Molecular docking and dynamic simulation results confirmed that EBDGp has better inhibitory potential than Remdesivir and can be an effective novel drug for SARS-CoV-2 RdRp. Furthermore, binding free energy calculations confirmed the higher stability of the SARS-CoV-2 RdRp-EBDGp complex. These results suggest that the EBDGp compound may emerge as a promising drug against SARS-CoV-2 and hence requires further experimental validation.
Collapse
Affiliation(s)
- Khushboo Pandey
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
- Bioinformatics and Drug Discovery Group, MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Shuchi Nagar
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Manjusha Dake
- Protein Biochemistry Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
14
|
Rajagopal K, Sri VB, Byran G, Gomathi S. Pyrazole Substituted 9-Anilinoacridines as HER2 Inhibitors Targeting Breast Cancer - An In-Silico Approach. Curr Drug Res Rev 2021; 14:61-72. [PMID: 34139975 DOI: 10.2174/2589977513666210617160302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is one of the malignant tumours which mainly affect the female population. Total 20% of the cases of breast cancer are due to overexpression of Human epidermal growth factor receptor-2 (HER2), which is the dominant tyrosine kinase receptor. In general, 9-anilinoacridine derivatives play an important role as antitumor agents due to their DNA-intercalating properties. OBJECTIVE Some novel 9-anilinoacridines substituted with pyrazole moiety(1a-z) were designed, and their HER2enzyme (PDB id-3PP0) inhibition activity was evaluated by molecular docking studies using the Glide module of Schrodinger suite 2019-4. METHODS Glide module of the Schrodinger suite was used to perform docking studies, qikprop module was used for in-silico ADMET screening, and the Prime-MM-GBSA module was used for free binding energy calculations. Using GLIDE scoring functions, we can determine the binding affinity of ligands (1a-z) towards HER2. RESULTS The inhibitory activity of ligands against HER2 was mainly due to the strong hydrophobic and hydrogen bonding interactions. Almost all the compounds 1a-z have a good binding affinity with Glide scores in the range of -4.9 to -9.75 compared to the standard drugs CK0403(-4.105) and Tamoxifen (-3.78). From the results of in-silico ADMET properties, most of the compounds fall within the recommended values. MM-GBSA binding calculations of the most potent inhibitors are more favourable. CONCLUSION The results of in-silico studies provide strong evidence for the consideration of valuable ligands in pyrazole substituted 9-anilinoacridines as potential HER2 inhibitors, and the compounds, 1v,s,r,d, a,o with significant Glide scores may produce significant anti-breast cancer activity for further development.
Collapse
Affiliation(s)
- Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| | - Vulsi Bodhya Sri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| | - Swaminathan Gomathi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| |
Collapse
|
15
|
Arya GC, Kaur K, Jaitak V. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem 2021; 221:113511. [PMID: 34000484 DOI: 10.1016/j.ejmech.2021.113511] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the second most leading cause of death among women. Multiple drugs have been approved by FDA for the treatment of BC. The major drawbacks of existing drugs are the development of resistance, toxicity, selectivity problem. The other therapies like hormonal therapy, surgery, radiotherapy, and immune therapy are in use but showed many side effects like bioavailability issues, non-selectivity, pharmacokinetic-pharmacodynamic problems. Therefore, there is an urgent need to develop new moieties that are nonviolent and more effective in the treatment of cancer. Isoxazole derivatives have gain popularity in recent years due to anticancer potential with the least side effects. These derivatives act as an anticancer agent with different mechanisms like inducing apoptosis, aromatase inhibition, disturbing tubulin congregation, topoisomerase inhibition, HDAC inhibition, and ERα inhibition. In this article, we have explored the synthetic strategies, anticancer mechanism of action along with SAR studies of isoxazole derivatives.
Collapse
Affiliation(s)
- Girish Chandra Arya
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India.
| |
Collapse
|
16
|
Identification of immucillin analogue natural compounds to inhibit Helicobacter pylori MTAN through high throughput virtual screening and molecular dynamics simulation. In Silico Pharmacol 2021; 9:22. [PMID: 33786292 DOI: 10.1007/s40203-021-00081-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/10/2021] [Indexed: 01/29/2023] Open
Abstract
Abstract One in every two humans is having Helicobacter pylori (H. pylori) in stomach causing gastric ulcer. Emergence of several drugs in eliminating H. pylori has paved way for emergence of multidrug resistance in them. This resistance is thriving and thereby necessitating the need of a potent drug. Identifying a potential target for medication is crucial. Bacterial 5'-methylthioadenosine/S-enosyl homocysteine nucleosidase (MTAN) is a multifunctional enzyme that controls seven essential metabolic pathways. It functions as a catalyst in the hydrolysis of the N-ribosidic bond of adenosine-based metabolites: S-adenosylhomocysteine (SAH), 5'-methylthioadenosine (MTA), 5'-deoxyadenosine (5'-DOA), and 6-amino-6-deoxyfutalosine. H. pylori unlike other bacteria and humans utilises an alternative pathway for menaquinone synthesis. It utilises Futosiline pathway for menaquinone synthesis which are obligatory component in electron transport pathway. Therefore, the enzymes functioning in this pathway represent them-self as a point of attack for new medications. We targeted MTAN protein of H. pylori to find out a potent natural hit to inhibit its growth. A comparative analysis was made with potent H. pylori MTAN (HpMTAN) known inhibitor, 5'-butylthio-DADMe-Immucillin-A (BuT-DADMe-ImmA) and ZINC natural subset database. Optimized ligands from the ZINC natural database were virtually screened using ligand based pharmacophore hypothesis to obtain the most efficient and potent inhibitors for HpMTAN. The screened leads were evaluated for their therapeutic likeness. Furthermore, the ligands that passed the test were subjected for MM-GBSA with MTAN to reveal the essential features that contributes selectivity. The results showed that Van der Waals contributions play a central role in determining the selectivity of MTAN. Molecular dynamics (MD) studies were carried out for 100 ns to assess the stability of ligands in the active site. MD analysis showed that binding of ZINC00490333 with MTAN is stable compared to reference inhibitor molecule BuT-DADMe-ImmA. Among the natural inhibitors screened after various docking procedures ZINC00490333 has highest binding score for HpMTAN (- 13.987). The ZINC inhibitor was successful in reproducing the BuT-DADMe-ImmA interactions with HpMTAN. Hence we suggest that ZINC00490333 compound may represent as a good lead in designing novel potent inhibitors of HpMTAN. This in silico approach indicates the potential of this molecule for advancing a further step in gastric ulcer treatment. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00081-2.
Collapse
|
17
|
Emirik M. Potential therapeutic effect of turmeric contents against SARS-CoV-2 compared with experimental COVID-19 therapies: in silico study. J Biomol Struct Dyn 2020; 40:2024-2037. [PMID: 33078675 DOI: 10.1080/07391102.2020.1835719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Inspired by the 'There is no scientific evidence that turmeric prevents COVID-19' statement made by WHO, the protective or therapeutic potential of the compounds in turmeric contents was investigated against COVID-19 with in silico methodology. The drugs used for experimental COVID-19 therapies were included in this study using the same method for comparison with turmeric components. The 30 turmeric compounds and nine drugs were performed in the docking procedure for vital proteins of COVID-19. With evaluations based on docking scores, the Prime MMGBSA binding free energy and protein-ligand interactions were identified in detail. The 100 ns MD simulations were also performed to assess the stability of the ligands at the binding site of the target proteins. The Root Mean Square Deviation (RMSD) is used to obtain the average displacement for a particular frame concerning a reference frame. The results of this study are suggesting that turmeric spice have a potential to inhibit the SARS-CoV-2 vital proteins and can be use a therapeutic or protective agent against SARS-CoV-2 via inhibiting key protein of the SARS-CoV-2 virus. The compound 4, 23 and 6 are the most prominent inhibitor for the main protease, the spike glycoprotein and RNA polymerase of virus, respectively. The MD simulation validated the stability of ligand-protein interactions. The compactness of the complexes was shown using a radius of gyration. ADME properties of featured compounds are in range of 95% drug molecules. It is hoped that the outputs of this study will contribute to the struggle of humanity with COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Emirik
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
18
|
Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020; 6:104. [PMID: 33215042 PMCID: PMC7562761 DOI: 10.1186/s43094-020-00126-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background In early 2020, many scientists are rushing to discover novel drugs and vaccines against the coronavirus, and treatments for COVID-19, because coronavirus disease 2019 (COVID-19), a life-threatening viral disease, affected first in China and quickly spread throughout the world. In this article, in silico studies have been performed to explore the binding modes of chemical constituents for natural remedies like Curcuma longa (turmeric) and Andrographis paniculata against COVID-19 (PDB ID 5R82) targeting coronavirus using Schrodinger suit 2019-4. The molecular docking studies are performed by the Glide module, in silico ADMET screening was performed by the QikProp module, and binding energy of ligands was calculated using the Prime MM-GB/SA module. Results The chemical constituents from turmeric like cyclocurcumin and curcumin and from Andrographis paniculata like andrographolide and dihydroxy dimethoxy flavone are significantly binding with the active site of SARS CoV-2 main protease with Glide score more than − 6 when compared to the currently used drugs hydroxychloroquine (− 5.47) and nelfinavir (− 5.93). When compared to remdesivir (− 6.38), cyclocurcumin from turmeric is significantly more active. The docking results of the compounds exhibited similar mode of interactions with SARS CoV-2. Main protease and the residues THR24, THR25, THR26, LEU27, SER46, MET49, HIE41, GLN189, ARG188, ASP187, MET165, HIE164, PHE181, and THR54 play a crucial role in binding with ligands. Conclusion Based on in silico investigations, the chemical constituents from turmeric like cyclocurcumin and curcumin and from Andrographis paniculata like andrographolide and dihydroxy dimethoxy flavone, significantly binding with the active site of SARS CoV-2 main protease, may produce significant activity and be useful for further development.
Collapse
|
19
|
Rajagopal K, Varakumar P, Aparna B, Byran G, Jupudi S. Identification of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors for COVID-19 by molecular docking, free energy calculation and molecular dynamics studies. J Biomol Struct Dyn 2020; 39:5551-5562. [PMID: 32720578 PMCID: PMC7441781 DOI: 10.1080/07391102.2020.1798285] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coronavirus disease (COVID-19), a life-threatening disease, is caused by SARS-CoV-2. The targeted therapeutics of small molecules helps the scientific community to fight against SARS-CoV-2. In this article, some oxazine substituted 9-anilinoacridines (A1-A48) was designed by docking, MM-GBSA and molecular dynamics (MD) simulation studies for their COVID-19 inhibitory activity. The docking of ligands A1-A48 against SARS-CoV-2 (PDB ID: 5R82) are performed by using Glide module, in silico ADMET screening by QikProp module, binding energy using Prime MM-GB/SA module, MD simulation by Desmond module and atomic charges were derived by Jaguar module of Schrodinger suit 2019-4. Compound A38 has the highest G-score (-7.83) when compared to all the standard compounds which are proposed for COVID-19 treatment such as ritonavir (-7.48), lopinavir (-6.94), nelfinavir (-5.93), hydroxychloroquine (-5.47) and mataquine (-5.37). Compounds A13, A23, A18, A7, A48, A46, A32, A20, A1 and A47 are significantly active against SARS-CoV-2 main protease when compared with hydroxychloroquine and mataquine. The residues GLN19, THR24, THR25, THR26, LEU27, HIE41, SER46, MET49, ASN119, ASN142, HIE164, MET165, ASP187, ARG188 and GLN189 of SARS-CoV-2 main protease play a crucial role in binding with ligands. The in silico ADMET properties of the molecules are within the recommended values. The binding free energy was calculated using PRIME MM-GB/SA studies. From the ligands A38, A13, A23, A18, A7, A48 and A46 with significant Glide scores may produce significant COVID-19 activity for further development. Compound A38 was subjected to MD simulation at 100 ns to study the dynamic behaviour of protein-ligand complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy [A Constituent College of JSS Academy of Higher Education & Research-(Deemed to be University)], Ooty, Tamilnadu, India
| | - Potlapati Varakumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy [A Constituent College of JSS Academy of Higher Education & Research-(Deemed to be University)], Ooty, Tamilnadu, India
| | - Baliwada Aparna
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy [A Constituent College of JSS Academy of Higher Education & Research-(Deemed to be University)], Ooty, Tamilnadu, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy [A Constituent College of JSS Academy of Higher Education & Research-(Deemed to be University)], Ooty, Tamilnadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy [A Constituent College of JSS Academy of Higher Education & Research-(Deemed to be University)], Ooty, Tamilnadu, India
| |
Collapse
|
20
|
Gupta S, Singh AK, Kushwaha PP, Prajapati KS, Shuaib M, Senapati S, Kumar S. Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. J Biomol Struct Dyn 2020; 39:4334-4345. [PMID: 32476576 PMCID: PMC7312383 DOI: 10.1080/07391102.2020.1776157] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Coronaviruses are contagious pathogens primarily responsible for respiratory and intestinal infections. Research efforts to develop antiviral agents against coronavirus demonstrated the main protease (Mpro) protein may represent effective drug target. X-ray crystallographic structure of the SARS-CoV2 Mpro protein demonstrated the significance of Glu166, Cys141, and His41 residues involved in protein dimerization and its catalytic function. We performed in silico screening of compounds from Curcuma longa L. (Zingiberaceae family) against Mpro protein inhibition. Employing a combination of molecular docking, scoring functions, and molecular dynamics simulations, 267 compounds were screened by docking on Mpro crystallographic structure. Docking score and interaction profile analysis exhibited strong binding on the Mpro catalytic domain with compounds C1 (1E,6E)-1,2,6,7-tetrahydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) and C2 (4Z,6E)‐1,5‐dihydroxy‐1,7‐bis(4‐hydroxyphenyl)hepta‐4,6‐dien‐3‐one as lead agents. Compound C1 and C2 showed minimum binding score (–9.08 and –8.07 kcal/mole) against Mpro protein in comparison to shikonin and lopinavir (≈ −5.4 kcal/mole) a standard Mpro inhibitor. Furthermore, principal component analysis, free energy landscape and protein-ligand energy calculation studies revealed that these two compounds strongly bind to the catalytic core of the Mpro protein with higher efficacy than lopinavir, a standard antiretroviral of the protease inhibitor class. Taken together, this structure based optimization has provided lead on two natural Mpro inhibitors for further testing and development as therapeutics against human coronavirus. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH, USA.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, USA.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Atul Kumar Singh
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Prem Prakash Kushwaha
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Kumari Sunita Prajapati
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Mohd Shuaib
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
21
|
Kumar D, Kumari K, Jayaraj A, Kumar V, Kumar RV, Dass SK, Chandra R, Singh P. Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. J Biomol Struct Dyn 2020; 39:2659-2672. [PMID: 32362235 PMCID: PMC7212547 DOI: 10.1080/07391102.2020.1752310] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The current outbreak of a novel coronavirus, named as SARS-CoV-2 causing COVID-19
occurred in 2019, is in dire need of finding potential therapeutic agents. Recently,
ongoing viral epidemic due to coronavirus (SARS-CoV-2) primarily affected mainland China
that now threatened to spread to populations in most countries of the world. In spite of
this, there is currently no antiviral drug/ vaccine available against coronavirus
infection, COVID-19. In the present study, computer-aided drug design-based screening to
find out promising inhibitors against the coronavirus (SARS-CoV-2) leads to infection,
COVID-19. The lead therapeutic molecule was investigated through docking and molecular
dynamics simulations. In this, binding affinity of noscapines(23B)-protease of SARS-CoV-2
complex was evaluated through MD simulations at different temperatures. Our research group
has established that noscapine is a chemotherapeutic agent for the treatment of drug
resistant cancers; however, noscapine was also being used as anti-malarial, anti-stroke
and cough-suppressant. This study suggests for the first time that noscapine exerts its
antiviral effects by inhibiting viral protein synthesis.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India.,Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, D.D.U. College, University of Delhi, New Delhi, India
| | | | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi, India
| | | | - Sujata K Dass
- Department of Neurology, BLK Super Speciality Hospital, New Delhi, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India
| |
Collapse
|