1
|
Zhao Q, Samuels C, Timmins P, Massri N, Chemerinski A, Wu T, Loia R, Cheung EK, Zhang X, Arora R, Babwah AV, Douglas NC. Signaling via retinoic acid receptors mediates decidual angiogenesis in mice and human stromal cell decidualization. FASEB J 2025; 39:e70291. [PMID: 39777800 PMCID: PMC11706222 DOI: 10.1096/fj.202400766r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
At the maternal-fetal interface, tightly regulated levels of retinoic acid (RA), the physiologically active metabolite of vitamin A, are required for embryo implantation and pregnancy success. Herein, we utilize mouse models, primary human cells, and pharmacological tools to demonstrate how depletion of RA signaling via RA receptor (RAR) disrupts implantation and progression of early pregnancy. To inhibit RAR signaling during early pregnancy, BMS493, an inverse pan-RAR agonist that prevents RA-induced differentiation, was administered to pregnant mice during the peri-implantation period. Attenuation of RA/RAR signaling prior to embryo implantation results in implantation failure, whereas attenuation of RA/RAR signaling after embryo implantation disrupts the post-implantation decidual vasculature and results in pregnancy failure by mid-gestation. To inhibit RAR signaling during human endometrial stromal cell (HESC) decidualization, primary HESCs and decidualized primary HESCs were transfected with silencing RNA specific for human RARA. Inhibition of RA/RARA signaling prevents initiation of HESC decidualization, but not maintenance of the decidualized HESC phenotype. These data show that RA/RAR signaling is required for maintenance of the decidual vasculature that supports early pregnancy in mice, and distinct RAR signaling is required for initiation, but not maintenance of primary HESC decidualization in vitro.
Collapse
Affiliation(s)
- Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Cherie‐Ann Samuels
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Patrick Timmins
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Noura Massri
- Department of Obstetrics, Gynecology and Reproductive BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Tracy Wu
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Rachel Loia
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Emma K. Cheung
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Xusheng Zhang
- Epigenomics/Computational Genomics CoreAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Andy V. Babwah
- Department of PediatricsRobert Wood Johnson Medical School, Rutgers Biomedical and Health SciencesNew BrunswickNew JerseyUSA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive HealthRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
- Center for Immunity and InflammationRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| |
Collapse
|
2
|
Black V, Bafligil C, Greaves E, Zondervan KT, Becker CM, Hellner K. Modelling Endometriosis Using In Vitro and In Vivo Systems. Int J Mol Sci 2025; 26:580. [PMID: 39859296 PMCID: PMC11766166 DOI: 10.3390/ijms26020580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Endometriosis is a chronic inflammatory condition characterised by the presence of endometrium-like tissue outside the uterus. Despite its high prevalence and recent advances in molecular science, many aspects of endometriosis and its pathophysiology are still poorly understood. Previously, in vitro and in vivo modelling have been instrumental in establishing our current understanding of endometriosis. As the field of molecular science and the advance towards personalised medicine is ever increasing, more sophisticated models are continually being developed. These hold great potential to provide more intricate knowledge of the underlying pathophysiology and facilitate investigations into potential future approaches to diagnosis and treatment. This review provides an overview of different in vitro and in vivo models of endometriosis that are pertinent to establishing our current understanding. Moreover, we discuss new cross-cutting approaches to endometriosis modelling, such as the use of microfluidic cultures and 3D printing, which have the potential to shape the future of endometriosis research.
Collapse
Affiliation(s)
- Verity Black
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
| | - Cemsel Bafligil
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Krina T. Zondervan
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christian M. Becker
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
| | - Karin Hellner
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
| |
Collapse
|
3
|
George AF, McGregor M, Gingrich D, Neidleman J, Marquez RS, Young KC, Thanigaivelan KL, Greene WC, Tien PC, Deitchman AN, Spitzer TL, Roan NR. Female Genital Fibroblasts Diminish the In Vitro Efficacy of PrEP against HIV. Viruses 2022; 14:v14081723. [PMID: 36016345 PMCID: PMC9413545 DOI: 10.3390/v14081723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023] Open
Abstract
The efficacy of HIV pre-exposure prophylaxis (PrEP) is high in men who have sex with men, but much more variable in women, in a manner largely attributed to low adherence. This reduced efficacy, however, could also reflect biological factors. Transmission to women is typically via the female reproductive tract (FRT), and vaginal dysbiosis, genital inflammation, and other factors specific to the FRT mucosa can all increase transmission risk. We have demonstrated that mucosal fibroblasts from the lower and upper FRT can markedly enhance HIV infection of CD4+ T cells. Given the current testing of tenofovir disoproxil fumarate, cabotegravir, and dapivirine regimens as candidate PrEP agents for women, we set out to determine using in vitro assays whether endometrial stromal fibroblasts (eSF) isolated from the FRT can affect the anti-HIV activity of these PrEP drugs. We found that PrEP drugs exhibit significantly reduced antiviral efficacy in the presence of eSFs, not because of decreased PrEP drug availability, but rather of eSF-mediated enhancement of HIV infection. These findings suggest that drug combinations that target both the virus and infection-promoting factors in the FRT-such as mucosal fibroblasts-may be more effective than PrEP alone at preventing sexual transmission of HIV to women.
Collapse
Affiliation(s)
- Ashley F. George
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Matthew McGregor
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - David Gingrich
- Drug Research Unit, Department of Clinical Pharmacy, School of Pharmacy, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jason Neidleman
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | - Kyrlia C. Young
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Kaavya L. Thanigaivelan
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Warner C. Greene
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA 94158, USA
- Departments of Medicine and Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Phyllis C. Tien
- Departments of Medicine and Veterans Affairs, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Amelia N. Deitchman
- Drug Research Unit, Department of Clinical Pharmacy, School of Pharmacy, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Trimble L. Spitzer
- Lieutenant Colonel, United States Air Force, Medical Center, Women’s Health Clinic, Naval Medical Center, Portsmouth, VA 23708, USA
| | - Nadia R. Roan
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, USA
- Correspondence:
| |
Collapse
|
4
|
Haloperidol Instigates Endometrial Carcinogenesis and Cancer Progression by the NF-κB/CSF-1 Signaling Cascade. Cancers (Basel) 2022; 14:cancers14133089. [PMID: 35804859 PMCID: PMC9265032 DOI: 10.3390/cancers14133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Haloperidol, a typical antipsychotic, is widely used in schizophrenia and palliative care of cancer; however, the role and impact of chronic haloperidol treatment in endometrial cancer (EC) development are unclear. Here, we showed that haloperidol is a carcinogenic compound capable of inducing endometrial hyperplasia and promoting EC progression in rodents. Mechanistically, haloperidol stimulates the production of colony-stimulating factor 1 (CSF-1) on tumor cells by activating nuclear factor kappa B (NF-κB), and its downstream autocrine oncogenic CSF-1 receptor signaling contributes to this carcinogenesis. Furthermore, we demonstrated that the use of haloperidol is associated with increased EC-specific mortality in EC patients. Overall, these findings highlighted that physicians should be cautious about the use of haloperidol in female patients. Abstract Haloperidol is a routine drug for schizophrenia and palliative care of cancer; it also has antitumor effects in several types of cancer. However, the role of haloperidol in endometrial cancer (EC) development is still unclear. Here, we show that chronic haloperidol treatment in clinically relevant doses induced endometrial hyperplasia in normal mice and promoted tumor growth and malignancy in mice with orthotopic EC. The pharmacokinetic study indicated that haloperidol highly accumulated in the uterus of mice. In vitro studies revealed that haloperidol stimulated the cellular transformation of human endometrial epithelial cells (HECCs) and promoted the proliferation, migration, and invasion of human endometrial carcinoma cells (HECCs) by activating nuclear factor kappa B (NF-κB) and its downstream signaling target, colony-stimulating factor 1 (CSF-1). Gain of function of CSF-1 promotes the cellular transformation of HEECs and the malignant progression of HECCs. Moreover, blockade of CSF-1 inhibited haloperidol-promoted EC progression in vitro and in vivo. A population-based cohort study of EC patients further demonstrated that the use of haloperidol was associated with increased EC-specific mortality. Collectively, these findings indicate that clinical use of haloperidol could potentially be harmful to female patients with EC.
Collapse
|
5
|
Watanabe N, Kawagoe J, Sugiyama A, Takehara I, Ohta T, Nagase S. Nuclear receptor coactivator-6 is essential for the morphological change of human uterine stromal cell decidualization via regulating actin fiber reorganization. Mol Reprod Dev 2022; 89:165-174. [PMID: 35384116 DOI: 10.1002/mrd.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Nuclear receptor coactivator 6 (Ncoa6), a modulator of several nuclear receptors and transcription factors, is essential for the decidualization of endometrial stromal cells in mice. However, the function of Ncoa6 in the human endometrium remains unclear. We investigated its function in the decidualization of human endometrial stromal cells (HESCs) isolated from resected uteri. Knockdown of Ncoa6 was performed using two independent small interfering RNAs. Decidualization was induced in vitro via medroxyprogesterone and cyclic adenosine monophosphate. We compared decidualized cellular morphology between the Ncoa6 knockdown cells and control cells. Messenger RNA (mRNA) sequencing was performed to determine the Ncoa6 target genes in undecidualized HESCs. We found that the knockdown of Ncoa6 caused the failure of morphological changes in decidualized HESCs compared to that in the control cells. mRNA sequencing revealed that Ncoa6 regulates the expression of genes associated with the regulation of actin fibers. Ncoa6 knockdown cells failed to reorganize actin fibers during the decidualization of HESCs. Ncoa6 was shown to play an essential role in decidualization via the appropriate regulation of actin fiber regulation in HESCs. Herein, our in vitro studies revealed a part of the mechanisms involved in endometrial decidualization. Future research is needed to investigate these mechanisms in women with implantation defects.
Collapse
Affiliation(s)
- Norikazu Watanabe
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Jun Kawagoe
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akiko Sugiyama
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Isao Takehara
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tsuyoshi Ohta
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Satoru Nagase
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
6
|
Nguyen TTTN, MacDougall M, Kwok YSS, Russell SJ, Librach CL. Human platelet lysates stimulate in vitro proliferation of human endometrial cells from patients with a history of recurrent implantation failure. F&S SCIENCE 2022; 3:64-73. [PMID: 35559996 DOI: 10.1016/j.xfss.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To optimize and compare the isolation of platelet-rich plasma (PRP) and its cryopreserved derivative, platelet lysate (PL), to a commercial human platelet lysate (HPL) product PLUS and investigate their proliferative stimulation on primary human endometrial cells in vitro. DESIGN Basic research. SETTING Academic fertility center. PATIENT(S) Three healthy blood donors and eight patients with a history of recurrent implantation failure. INTERVENTIONS(S) Stimulated proliferation of isolated primary endometrial epithelial cells and endometrial stromal cells in vitro with autologous and nonautologous HPL (PLUS; Compass Biomedical). MAIN OUTCOME MEASURE(S) Platelet-derived growth factor BB homodimer protein content in isolated PRP/PL and commercial HPL and endometrial epithelial cell and endometrial stromal cell proliferation after 24- or 48-hour stimulation with PL (measured by metabolic activity and Ki67 expression). RESULT(S) To optimize and compare the isolation of autologous PRP/PL, three double-centrifugation protocols were assessed by flow cytometry for platelet yield (CD45-CD41+CD61+) and platelet-derived growth factor BB homodimer protein content by enzyme-linked immunosorbent assay. Cryopreserved PL, especially isolated by our fastest protocol, contained higher protein concentrations and, thus, was optimal for experimental flexibility compared with fresh PRP. The autologous and commercial PLs displayed comparable immune and growth factor content and stimulation of cell proliferation in vitro. CONCLUSION(S) Our results provide the groundwork for the isolation and use of HPL to stimulate endometrial growth. Furthermore, commercial PL consistently stimulated cell proliferation and may allow standardization of clinical treatment for recurrent implantation failure.
Collapse
Affiliation(s)
- Tina Tu-Thu Ngoc Nguyen
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | | - Yat Sze Sheila Kwok
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Clifford L Librach
- CReATe Fertility Centre, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Stejskalová A, Vankelecom H, Sourouni M, Ho MY, Götte M, Almquist BD. In vitro modelling of the physiological and diseased female reproductive system. Acta Biomater 2021; 132:288-312. [PMID: 33915315 DOI: 10.1016/j.actbio.2021.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
The maladies affecting the female reproductive tract (FRT) range from infections to endometriosis to carcinomas. In vitro models of the FRT play an increasingly important role in both basic and translational research, since the anatomy and physiology of the FRT of humans and other primates differ significantly from most of the commonly used animal models, including rodents. Using organoid culture to study the FRT has overcome the longstanding hurdle of maintaining epithelial phenotype in culture. Both ECM-derived and engineered materials have proved critical for maintaining a physiological phenotype of FRT cells in vitro by providing the requisite 3D environment, ligands, and architecture. Advanced materials have also enabled the systematic study of factors contributing to the invasive metastatic processes. Meanwhile, microphysiological devices make it possible to incorporate physical signals such as flow and cyclic exposure to hormones. Going forward, advanced materials compatible with hormones and optimised to support FRT-derived cells' long-term growth, will play a key role in addressing the diverse array of FRT pathologies and lead to impactful new treatments that support the improvement of women's health. STATEMENT OF SIGNIFICANCE: The female reproductive system is a crucial component of the female anatomy. In addition to enabling reproduction, it has wide ranging influence on tissues throughout the body via endocrine signalling. This intrinsic role in regulating normal female biology makes it susceptible to a variety of female-specific diseases. However, the complexity and human-specific features of the reproductive system make it challenging to study. This has spurred the development of human-relevant in vitro models for helping to decipher the complex issues that can affect the reproductive system, including endometriosis, infection, and cancer. In this Review, we cover the current state of in vitro models for studying the female reproductive system, and the key role biomaterials play in enabling their development.
Collapse
|
8
|
Bergmann S, Schindler M, Munger C, Penfold CA, Boroviak TE. Building a stem cell-based primate uterus. Commun Biol 2021; 4:749. [PMID: 34140619 PMCID: PMC8211708 DOI: 10.1038/s42003-021-02233-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
The uterus is the organ for embryo implantation and fetal development. Most current models of the uterus are centred around capturing its function during later stages of pregnancy to increase the survival in pre-term births. However, in vitro models focusing on the uterine tissue itself would allow modelling of pathologies including endometriosis and uterine cancers, and open new avenues to investigate embryo implantation and human development. Motivated by these key questions, we discuss how stem cell-based uteri may be engineered from constituent cell parts, either as advanced self-organising cultures, or by controlled assembly through microfluidic and print-based technologies.
Collapse
Affiliation(s)
- Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Magdalena Schindler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Christopher A Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Wellcome Trust - Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
9
|
George AF, Jang KS, Nyegaard M, Neidleman J, Spitzer TL, Xie G, Chen JC, Herzig E, Laustsen A, Marques de Menezes EG, Houshdaran S, Pilcher CD, Norris PJ, Jakobsen MR, Greene WC, Giudice LC, Roan NR. Seminal plasma promotes decidualization of endometrial stromal fibroblasts in vitro from women with and without inflammatory disorders in a manner dependent on interleukin-11 signaling. Hum Reprod 2021; 35:617-640. [PMID: 32219408 DOI: 10.1093/humrep/deaa015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Do seminal plasma (SP) and its constituents affect the decidualization capacity and transcriptome of human primary endometrial stromal fibroblasts (eSFs)? SUMMARY ANSWER SP promotes decidualization of eSFs from women with and without inflammatory disorders (polycystic ovary syndrome (PCOS), endometriosis) in a manner that is not mediated through semen amyloids and that is associated with a potent transcriptional response, including the induction of interleukin (IL)-11, a cytokine important for SP-induced decidualization. WHAT IS KNOWN ALREADY Clinical studies have suggested that SP can promote implantation, and studies in vitro have demonstrated that SP can promote decidualization, a steroid hormone-driven program of eSF differentiation that is essential for embryo implantation and that is compromised in women with the inflammatory disorders PCOS and endometriosis. STUDY DESIGN, SIZE, DURATION This is a cross-sectional study involving samples treated with vehicle alone versus treatment with SP or SP constituents. SP was tested for the ability to promote decidualization in vitro in eSFs from women with or without PCOS or endometriosis (n = 9). The role of semen amyloids and fractionated SP in mediating this effect and in eliciting transcriptional changes in eSFs was then studied. Finally, the role of IL-11, a cytokine with a key role in implantation and decidualization, was assessed as a mediator of the SP-facilitated decidualization. PARTICIPANTS/MATERIALS, SETTING, METHODS eSFs and endometrial epithelial cells (eECs) were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. Assays were conducted to assess whether the treatment of eSFs with SP or SP constituents affects the rate and extent of decidualization in women with and without inflammatory disorders. To characterize the response of the endometrium to SP and SP constituents, RNA was isolated from treated eSFs or eECs and analyzed by RNA sequencing (RNAseq). Secreted factors in conditioned media from treated cells were analyzed by Luminex and ELISA. The role of IL-11 in SP-induced decidualization was assessed through Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-9-mediated knockout experiments in primary eSFs. MAIN RESULTS AND THE ROLE OF CHANCE SP promoted decidualization both in the absence and presence of steroid hormones (P < 0.05 versus vehicle) in a manner that required seminal proteins. Semen amyloids did not promote decidualization and induced weak transcriptomic and secretomic responses in eSFs. In contrast, fractionated SP enriched for seminal microvesicles (MVs) promoted decidualization. IL-11 was one of the most potently SP-induced genes in eSFs and was important for SP-facilitated decidualization. LARGE SCALE DATA RNAseq data were deposited in the Gene Expression Omnibus repository under series accession number GSE135640. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro analyses. WIDER IMPLICATIONS OF THE FINDINGS Our results support the notion that SP promotes decidualization, including within eSFs from women with inflammatory disorders. Despite the general ability of amyloids to induce cytokines known to be important for implantation, semen amyloids poorly signaled to eSFs and did not promote their decidualization. In contrast, fractionated SP enriched for MVs promoted decidualization and induced a transcriptional response in eSFs that overlapped with that of SP. Our results suggest that SP constituents, possibly those associated with MVs, can promote decidualization of eSFs in an IL-11-dependent manner in preparation for implantation. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by NIH (R21AI116252, R21AI122821 and R01AI127219) to N.R.R. and (P50HD055764) to L.C.G. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Ashley F George
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Karen S Jang
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jason Neidleman
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Trimble L Spitzer
- Lt Col, USAF; Women's Health Clinic, Naval Medical Center, Portsmouth, VA, USA
| | - Guorui Xie
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | | | - Eytan Herzig
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Erika G Marques de Menezes
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Christopher D Pilcher
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Warner C Greene
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, CA, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| |
Collapse
|
10
|
Zhao R, Feng D, Zhuang G, Liu Y, Chi S, Zhang J, Zhou X, Zhang W, Wang H. Protein kinase CK2 participates in estrogen-mediated endothelial progenitor cell homing to endometriotic lesions through stromal cells in a stromal cell-derived factor-1- CXCR4-dependent manner. Fertil Steril 2021; 113:1067-1079.e5. [PMID: 32386617 DOI: 10.1016/j.fertnstert.2019.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To explore the possible mechanism of protein kinase CK2, which participates in estrogen recruitment of endothelial progenitor cells (EPCs), and its role in the angiogenesis of endometriosis lesions. DESIGN Laboratory study. SETTING University. ANIMAL(S) BALB/c mice. INTERVENTION(S) Exposure of human endometrial stromal cells (HESCs) to estrogen and CK2 inhibitor CX-4945 and endometrial stromal cells transfected with the protein kinase CK2 vector (HESC-CK2). Endometriosis models were induced by allogeneic mice transplantation of the endometrium into dorsal skinfold chambers. The mice received an IP injection of 50 mg/kg emodin per day or were treated with 100 μg/kg estrogen by SC injection once a week. MAIN OUTCOME MEASURE(S) The concentration of cytokines in cells was measured with ELISA. The migration of EPCs was examined using the scratch assay method and Transwell, a capillary tube-formation assay to determine EPC tube-forming capacity, and protein and mRNA expression with Western blot and polymerase chain reaction analyses, respectively. RESULT(S) Protein kinase CK2 participates in estrogen-mediated EPC homing to endometriotic lesions through stromal cells in a stromal cell-derived factor-1 (SDF-1)-CXCR4-dependent manner. Conditioned medium from endometrial stromal cells that were stably transfected with the protein kinase CK2 vector (HESC-CK2) or pretreated with estrogen significantly enhanced the migration and recruitment of EPCs. In contrast, conditioned medium from HESCs that were treated with CX-4945, a selective inhibitor of CK2, inhibited the mobility and viability of EPCs. Furthermore, CK2 overexpression significantly upregulated SDF-1 expression and secretion in endometrial stromal cells by activating the AKT/mTOR pathway. Moreover, treatment with the SDF-1 receptor CXCR4-specific inhibitor AMD3100 completely reversed the CK2-enhanced migration of EPCs. CONCLUSION(S) This study demonstrates that CK2 participates in estrogen-mediated EPC homing to endometriotic lesions through stromal cells in an SDF-1-CXCR4-dependent manner and may be a therapeutic target.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dilu Feng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guobin Zhuang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuqi Chi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huang Zhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
11
|
Marques de Menezes EG, Jang K, George AF, Nyegaard M, Neidleman J, Inglis HC, Danesh A, Deng X, Afshari A, Kim YH, Billaud JN, Marson K, Pilcher CD, Pillai SK, Norris PJ, Roan NR. Seminal Plasma-Derived Extracellular-Vesicle Fractions from HIV-Infected Men Exhibit Unique MicroRNA Signatures and Induce a Proinflammatory Response in Cells Isolated from the Female Reproductive Tract. J Virol 2020; 94:e00525-20. [PMID: 32434889 PMCID: PMC7394899 DOI: 10.1128/jvi.00525-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
The continuing spread of HIV/AIDS is predominantly fueled by sexual exposure to HIV-contaminated semen. Seminal plasma (SP), the liquid portion of semen, harbors a variety of factors that may favor HIV transmission by facilitating viral entry into host cells, eliciting the production of proinflammatory cytokines, and enhancing the translocation of HIV across the genital epithelium. One important and abundant class of factors in SP is extracellular vesicles (EVs), which, in general, are important intercellular signal transducers. Although numerous studies have characterized blood plasma-derived EVs from both uninfected and HIV-infected individuals, little is known about the properties of EVs from the semen of HIV-infected individuals. We report here that fractionated SP enriched for EVs from HIV-infected men induces potent transcriptional responses in epithelial and stromal cells that interface with the luminal contents of the female reproductive tract. Semen EV fractions from acutely infected individuals induced a more proinflammatory signature than those from uninfected individuals. This was not associated with any observable differences in the surface phenotypes of the vesicles. However, microRNA (miRNA) expression profiling analysis revealed that EV fractions from infected individuals exhibit a broader and more diverse profile than those from uninfected individuals. Taken together, our data suggest that SP EVs from HIV-infected individuals exhibit unique miRNA signatures and exert potent proinflammatory transcriptional changes in cells of the female reproductive tract, which may facilitate HIV transmission.IMPORTANCE Seminal plasma (SP), the major vehicle for HIV, can modulate HIV transmission risk through a variety of mechanisms. Extracellular vesicles (EVs) are extremely abundant in semen, and because they play a key role in intercellular communication pathways and immune regulation, they may impact the likelihood of HIV transmission. However, little is known about the properties and signaling effects of SP-derived EVs in the context of HIV transmission. Here, we conduct a phenotypic, transcriptomic, and functional characterization of SP and SP-derived EVs from uninfected and HIV-infected men. We find that both SP and its associated EVs elicit potent proinflammatory transcriptional responses in cells that line the genital tract. EVs from HIV-infected men exhibit a more diverse repertoire of miRNAs than EVs from uninfected men. Our findings suggest that EVs from the semen of HIV-infected men may significantly impact the likelihood of HIV transmission through multiple mechanisms.
Collapse
Affiliation(s)
- Erika G Marques de Menezes
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Karen Jang
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| | - Ashley F George
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jason Neidleman
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| | | | - Ali Danesh
- Vitalant Research Institute, San Francisco, California, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, California, USA
| | | | - Young H Kim
- Agilent Technologies, Inc., Santa Clara, California, USA
| | | | - Kara Marson
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Christopher D Pilcher
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| |
Collapse
|
12
|
Alzamil L, Nikolakopoulou K, Turco MY. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ 2020; 28:35-51. [PMID: 32494027 PMCID: PMC7852529 DOI: 10.1038/s41418-020-0565-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Both the proper functioning of the female reproductive tract (FRT) and normal placental development are essential for women’s health, wellbeing, and pregnancy outcome. The study of the FRT in humans has been challenging due to limitations in the in vitro and in vivo tools available. Recent developments in 3D organoid technology that model the different regions of the FRT include organoids of the ovaries, fallopian tubes, endometrium and cervix, as well as placental trophoblast. These models are opening up new avenues to investigate the normal biology and pathology of the FRT. In this review, we discuss the advances, potential, and limitations of organoid cultures of the human FRT. ■. ![]()
Collapse
Affiliation(s)
- Lama Alzamil
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Centre for Trophoblast Research, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
13
|
Saare M, Krigul KL, Laisk-Podar T, Ponandai-Srinivasan S, Rahmioglu N, Lalit Kumar PG, Zondervan K, Salumets A, Peters M. DNA methylation alterations-potential cause of endometriosis pathogenesis or a reflection of tissue heterogeneity? Biol Reprod 2019; 99:273-282. [PMID: 29796617 DOI: 10.1093/biolre/ioy067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023] Open
Abstract
Alterations in the DNA methylation pattern of endometriotic lesions and endometrium of endometriosis patients have been proposed as one potential factor accompanying the endometriosis development. Although many differentially methylated genes have been associated with the pathogenesis of this disease, the overlap between the results of different studies has remained small. Among other potential confounders, the impact of tissue heterogeneity on the outcome of DNA methylation studies should be considered, as tissues are mixtures of different cell types with their own specific DNA methylation signatures. This review focuses on the results of DNA methylation studies in endometriosis from the cellular heterogeneity perspective. We consider both the studies using highly heterogeneous whole-lesion biopsies and endometrial tissue, as well as pure cell fractions isolated from lesions and endometrium to understand the potential impact of the cellular composition to the results of endometriosis DNA methylation studies. Also, future perspectives on how to diminish the impact of tissue heterogeneity in similar studies are provided.
Collapse
Affiliation(s)
- Merli Saare
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Clinical Medicine, Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
| | - Kertu Liis Krigul
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Triin Laisk-Podar
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Clinical Medicine, Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
| | | | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.,Endometriosis CaRe Centre, Nuffield Department of Obstetrics & Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Parameswaran Grace Lalit Kumar
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Krina Zondervan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.,Endometriosis CaRe Centre, Nuffield Department of Obstetrics & Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Clinical Medicine, Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia.,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Insitute of Bio- and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Clinical Medicine, Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
Martin JW, Chen JC, Neidleman J, Tatsumi K, Hu J, Giudice LC, Greene WC, Roan NR. Potent and rapid activation of tropomyosin-receptor kinase A in endometrial stromal fibroblasts by seminal plasma. Biol Reprod 2019. [PMID: 29518187 DOI: 10.1093/biolre/ioy056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seminal plasma (SP), the liquid fraction of semen, is not mandatory for conception, but clinical studies suggest that SP improves implantation rates. Prior in vitro studies examining the effects of SP on the endometrium, the site of implantation, surprisingly revealed that SP induces transcriptional profiles associated with neurogenesis. We investigated the presence and activity of neurogenesis pathways in the endometrium, focusing on TrkA, one of the canonical receptors associated with neurotrophic signaling. We demonstrate that TrkA is expressed in the endometrium. To determine if SP activates TrkA signaling, we isolated the two most abundant endometrial cell types-endometrial epithelial cells (eEC) and endometrial stromal fibroblasts (eSF)-and examined TrkA activity in these cells after SP exposure. While SP only moderately activated TrkA in eEC, it potently and rapidly activated TrkA in eSF. This activation occurred in both non-decidualized and decidualized eSF. Blocking this pathway resulted in dysregulation of SP-induced cytokine production by eSF. Surprisingly, while the canonical TrkA agonist nerve growth factor was detected in SP, TrkA activation was principally induced by a 30-100-kDa protein whose identity remains to be established. Our results show that TrkA signaling is highly active in eSF and is rapidly induced by SP.
Collapse
Affiliation(s)
- Jeremy W Martin
- Department of Urology, UCSF, San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, UCSF, San Francisco, California, USA
| | - Joseph C Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, California, USA
| | - Jason Neidleman
- Department of Urology, UCSF, San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, UCSF, San Francisco, California, USA
| | - Keiji Tatsumi
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, California, USA.,Department of Gynecology and Obstetrics, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - James Hu
- Gladstone Institute of Virology and Immunology, UCSF, San Francisco, California, USA
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, California, USA
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, UCSF, San Francisco, California, USA.,Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, USA
| | - Nadia R Roan
- Department of Urology, UCSF, San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, UCSF, San Francisco, California, USA
| |
Collapse
|
15
|
Stepanjuk A, Koel M, Pook M, Saare M, Jääger K, Peters M, Krjutškov K, Ingerpuu S, Salumets A. MUC20 expression marks the receptive phase of the human endometrium. Reprod Biomed Online 2019; 39:725-736. [PMID: 31519421 DOI: 10.1016/j.rbmo.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
Abstract
RESEARCH QUESTION How does mucin MUC20 expression change during the menstrual cycle in different cell types of human endometrium? DESIGN Study involved examination of MUC20 expression in two previously published RNA-seq datasets in whole endometrial tissue (n = 10), sorted endometrial epithelial (n = 44) or stromal (n = 42) cell samples. RNA-Seq results were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) in whole tissue (n = 10), sorted epithelial (n = 17) and stromal (n = 17) cell samples. MUC20 protein localization and expression were analysed in human endometrium by immunohistochemical analysis of intact endometrial tissue (n = 6) and also Western blot of cultured stromal and epithelial cells (n = 2). RESULTS MUC20 is differentially expressed in the endometrium between the pre-receptive and receptive phases. We show that MUC20 is predominantly expressed by epithelial cells of the receptive endometrium, both at the mRNA (RNA-Seq, P = 0.005; qRT-PCR, P = 0.039) and protein levels (Western blot; immunohistochemistry, P = 0.029). CONCLUSION Our results indicate MUC20 as a novel marker of mid-secretory endometrial biology. We propose a model of MUC20 function in the hepatocyte growth factor (HGF)-activated mesenchymal-epithelial transition (MET) receptor signalling specifically in the receptive phase. Further investigations should reveal the precise function of MUC20 in human endometrium and the possible connection between MUC20 and HGF-activated MET receptor signalling. MUC20 could potentially be included in the list of endometrial receptivity markers after further clinical validation.
Collapse
Affiliation(s)
- Artjom Stepanjuk
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Mariann Koel
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia; Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia
| | - Martin Pook
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Merli Saare
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu 50406, Estonia
| | - Kersti Jääger
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu 50406, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Research Program of Molecular Neurology, Research Programs Unit, University of Helsinki, and Folkhälsan Institute of Genetics, Haartmaninkatu 8, Helsinki 00290, Finland
| | - Sulev Ingerpuu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tiigi 61b, Tartu 50410, Estonia; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu 50406, Estonia; Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, Tartu 50411, Estonia; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, Helsinki 00014, Finland.
| |
Collapse
|
16
|
Cavrois M, Hilton JF, Roan NR, Takeda M, Seidman D, Averbach S, Chang E, Raman N, Greenblatt R, Shacklett BL, Smith-McCune K. Effects of the levonorgestrel-containing intrauterine device, copper intrauterine device, and levonorgestrel-containing oral contraceptive on susceptibility of immune cells from cervix, endometrium and blood to HIV-1 fusion measured ex vivo. PLoS One 2019; 14:e0221181. [PMID: 31437197 PMCID: PMC6705759 DOI: 10.1371/journal.pone.0221181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
Globally, HIV/AIDS is a leading cause of morbidity worldwide among reproductive-aged cisgender women, highlighting the importance of understanding effects of contraceptives on HIV-1 risk. Some observational studies suggest there may be an increased risk of HIV-1 acquisition among women using the long-acting injectable progestin contraceptive, depo-medroxyprogesterone acetate. The potential mechanism of this susceptibility is unclear. There are few data on the role of the upper female reproductive tract in HIV-1 transmission, and the mechanisms of HIV-1 infection are likely to differ in the upper compared to the lower reproductive tract due to differences in tissue composition and variable effects of sex steroids on mucosal immune cell distribution and activity. In this study, we measured the susceptibility of mucosal immune cells from the upper female reproductive tract to HIV-1 entry using the virion-based HIV-1 fusion assay in samples from healthy female volunteers. We studied 37 infectious molecular clones for their ability to fuse to cells from endometrial biopsies in three participants and found that subtype (B or C) and origin of the virus (transmitted founder or chronic control) had little influence on HIV-1 fusion susceptibility. We studied the effect of contraceptives on HIV-1 susceptibility of immune cells from the cervix, endometrium and peripheral blood by comparing fusion susceptibility in four groups: users of the copper intrauterine device (IUD), levonorgestrel-containing oral contraceptive, levonorgestrel-containing IUD and unexposed controls (n = 58 participants). None of the contraceptives was associated with higher rates of HIV-1 entry into female reproductive tract cells compared to control samples from the mid-luteal phase.
Collapse
Affiliation(s)
- Marielle Cavrois
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
| | - Joan F. Hilton
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Nadia R. Roan
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
| | - Margaret Takeda
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Dominika Seidman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Sarah Averbach
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, San Diego, California, United States of America
| | - Eric Chang
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
| | - Nandhini Raman
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
| | - Ruth Greenblatt
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- Departments of Clinical Pharmacy and Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Karen Smith-McCune
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hennes A, Held K, Boretto M, De Clercq K, Van den Eynde C, Vanhie A, Van Ranst N, Benoit M, Luyten C, Peeraer K, Tomassetti C, Meuleman C, Voets T, Vankelecom H, Vriens J. Functional expression of the mechanosensitive PIEZO1 channel in primary endometrial epithelial cells and endometrial organoids. Sci Rep 2019; 9:1779. [PMID: 30741991 PMCID: PMC6370865 DOI: 10.1038/s41598-018-38376-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022] Open
Abstract
Successful pregnancy requires the establishment of a complex dialogue between the implanting embryo and the endometrium. Knowledge regarding molecular candidates involved in this early communication process is inadequate due to limited access to primary human endometrial epithelial cells (EEC). Since pseudo-pregnancy in rodents can be induced by mechanical scratching of an appropriately primed uterus, this study aimed to investigate the expression of mechanosensitive ion channels in EEC. Poking of EEC provoked a robust calcium influx and induced an increase in current densities, which could be blocked by an inhibitor of mechanosensitive ion channels. Interestingly, RNA expression studies showed high expression of PIEZO1 in EEC of mouse and human. Additional analysis provided further evidence for the functional expression of PIEZO1 since stimulation with Yoda1, a chemical agonist of PIEZO1, induced increases in intracellular calcium concentrations and current densities in EEC. Moreover, the ion channel profile of human endometrial organoids (EMO) was validated as a representative model for endometrial epithelial cells. Mechanical and chemical stimulation of EMO induced strong calcium responses supporting the hypothesis of mechanosensitive ion channel expression in endometrial epithelial cells. In conclusion, EEC and EMO functionally express the mechanosensitive PIEZO1 channel that could act as a potential target for the development of novel treatments to further improve successful implantation processes.
Collapse
Affiliation(s)
- Aurélie Hennes
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katharina Held
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Matteo Boretto
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 804, 3000, Leuven, Belgium
| | - Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Charlotte Van den Eynde
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Arne Vanhie
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium
- Leuven University Fertility Centre, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Nele Van Ranst
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Melissa Benoit
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Catherine Luyten
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium
| | - Karen Peeraer
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium
- Leuven University Fertility Centre, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Carla Tomassetti
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium
- Leuven University Fertility Centre, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Christel Meuleman
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium
- Leuven University Fertility Centre, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 804, 3000, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium.
| |
Collapse
|
18
|
Müller JA, Harms M, Krüger F, Groß R, Joas S, Hayn M, Dietz AN, Lippold S, von Einem J, Schubert A, Michel M, Mayer B, Cortese M, Jang KS, Sandi-Monroy N, Deniz M, Ebner F, Vapalahti O, Otto M, Bartenschlager R, Herbeuval JP, Schmidt-Chanasit J, Roan NR, Münch J. Semen inhibits Zika virus infection of cells and tissues from the anogenital region. Nat Commun 2018; 9:2207. [PMID: 29880824 PMCID: PMC5992203 DOI: 10.1038/s41467-018-04442-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) causes severe birth defects and can be transmitted via sexual intercourse. Semen from ZIKV-infected individuals contains high viral loads and may therefore serve as an important vector for virus transmission. Here we analyze the effect of semen on ZIKV infection of cells and tissues derived from the anogenital region. ZIKV replicates in all analyzed cell lines, primary cells, and endometrial or vaginal tissues. However, in the presence of semen, infection by ZIKV and other flaviviruses is potently inhibited. We show that semen prevents ZIKV attachment to target cells, and that an extracellular vesicle preparation from semen is responsible for this anti-ZIKV activity. Our findings suggest that ZIKV transmission is limited by semen. As such, semen appears to serve as a protector against sexual ZIKV transmission, despite the availability of highly susceptible cells in the anogenital tract and high viral loads in this bodily fluid.
Collapse
Affiliation(s)
- Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Franziska Krüger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Simone Joas
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Manuel Hayn
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Andrea N Dietz
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sina Lippold
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Axel Schubert
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Manuela Michel
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075, Ulm, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Karen S Jang
- Gladstone Institute of Virology and Immunology, San Francisco, CA, 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | | | - Miriam Deniz
- Klinik für Frauenheilkunde und Geburtshilfe, Ulm University Medical Center, 89081, Ulm, Germany
| | - Florian Ebner
- Klinik für Frauenheilkunde und Geburtshilfe, Ulm University Medical Center, 89081, Ulm, Germany
- Frauenklinik, Helios Amper Klinik, 85221, Dachau, Germany
| | - Olli Vapalahti
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, 00014, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Markus Otto
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg University, 69120, Heidelberg, Germany
| | - Jean-Philippe Herbeuval
- Chemistry, Biology, Modeling and Immunotherapy (CBMIT), CNRS, UMR8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CICB Paris, 75006, Paris, France
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 20359, Hamburg, Germany
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, CA, 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
19
|
Jiang J, Pan Y, Cui Y, Fan J, Li Q, Yu S. Effects of estradiol and progesterone on secretion of epidermal growth factor and insulin-like growth factor-1 in cultured yak endometrial epithelial cells. Tissue Cell 2018; 52:28-34. [DOI: 10.1016/j.tice.2018.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
|
20
|
Has the time come to include low-level laser photobiomodulation as an adjuvant therapy in the treatment of impaired endometrial receptivity? Lasers Med Sci 2018; 33:1105-1114. [DOI: 10.1007/s10103-018-2476-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
|
21
|
Khatun M, Sorjamaa A, Kangasniemi M, Sutinen M, Salo T, Liakka A, Lehenkari P, Tapanainen JS, Vuolteenaho O, Chen JC, Lehtonen S, Piltonen TT. Niche matters: The comparison between bone marrow stem cells and endometrial stem cells and stromal fibroblasts reveal distinct migration and cytokine profiles in response to inflammatory stimulus. PLoS One 2017; 12:e0175986. [PMID: 28419140 PMCID: PMC5395216 DOI: 10.1371/journal.pone.0175986] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
Objective Intrinsic inflammatory characteristics play a pivotal role in stem cell recruitment and homing through migration where the subsequent change in niche has been shown to alter these characteristics. The bone marrow mesenchymal stem cells (bmMSCs) have been demonstrated to migrate to the endometrium contributing to the stem cell reservoir and regeneration of endometrial tissue. Thus, the aim of the present study was to compare the inflammation-driven migration and cytokine secretion profile of human bmMSCs to endometrial mesenchymal stem cells (eMSCs) and endometrial fibroblasts (eSFs). Materials and methods The bmMSCs were isolated from bone marrow aspirates through culturing, whereas eMSCs and eSFs were FACS-isolated. All cell types were tested for their surface marker, proliferation profiles and migration properties towards serum and inflammatory attractants. The cytokine/chemokine secretion profile of 35 targets was analysed in each cell type at basal level along with lipopolysaccharide (LPS)-induced state. Results Both stem cell types, bmMSCs and eMSCs, presented with similar stem cell surface marker profiles as well as possessed high proliferation and migration potential compared to eSFs. In multiplex assays, the secretion of 16 cytokine targets was detected and LPS stimulation expanded the cytokine secretion pattern by triggering the secretion of several targets. The bmMSCs exhibited higher cytokine secretion of vascular endothelial growth factor (VEGF)-A, stromal cell-derived factor-1 alpha (SDF)-1α, interleukin-1 receptor antagonist (IL-1RA), IL-6, interferon-gamma inducible protein (IP)-10, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)1α and RANTES compared to eMSCs and/or eSFs after stimulation with LPS. The basal IL-8 secretion was higher in both endometrial cell types compared to bmMSCs. Conclusion Our results highlight that similar to bmMSCs, the eMSCs possess high migration activity while the differentiation process towards stromal fibroblasts seemed to result in loss of stem cell surface markers, minimal migration activity and a subtler cytokine profile likely contributing to normal endometrial function.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Anna Sorjamaa
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Marika Kangasniemi
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Meeri Sutinen
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Annikki Liakka
- Department of Pathology, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Petri Lehenkari
- Department of Anatomy and Department of Internal Medicine, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Juha S. Tapanainen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Joseph C. Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, United States of America
| | - Siri Lehtonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Terhi T. Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- * E-mail:
| |
Collapse
|