1
|
Lamont HC, Wright AL, Devries K, Okur KE, Jones M, Masood I, Hill LJ, Nazhat SN, Grover LM, Haj AJE, Metcalfe AD. Trabecular meshwork cell differentiation in response to collagen and TGFβ-2 spatial interactions. Acta Biomater 2024:S1742-7061(24)00490-2. [PMID: 39218278 DOI: 10.1016/j.actbio.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Primary open-angle glaucoma (POAG) is currently the most prevalent cause of irreversible blindness globally. To date, few in vitro models that can faithfully recapitulate the complex architecture of the trabecular meshwork (TM) and the specialised trabecular meshwork cell (TMC) characteristics that are local to the structurally opposing regions. This study aimed to investigate the parameters that govern TMC phenotype by adapting the extracellular matrix structure to mimic the juxtacanalicular tissue (JCT) region of the TM. Initially, TMC phenotypic characteristics were investigated within type I collagen matrices of controlled fiber density and anisotropy, generated through confined plastic compression (PC). Notably, PC-collagen presented biophysical cues that induced JCT cellular characteristics (elastin, α-β-Crystallin protein expression, cytoskeletal remodelling, increased mesenchymal markers and JCT-specific genetic markers). In parallel, a pathological mesenchymal phenotype associated with POAG was induced through localised transforming growth factor -beta 2 (TGFβ-2) exposure. This resulted in a profile of alternative mesenchymal states (fibroblast/smooth muscle or myofibroblast) displayed by the TMC in vitro. Overall, the study provides an advanced insight into the biophysical cues that modulate TMC fate, inducing a JCT-specific phenotype and transient mesenchymal characteristics that reflect healthy and pathological scenarios. STATEMENT OF SIGNIFICANCE: Glaucoma is a leading cause of blindness, with a lack of long-term efficacy within current drug candidates. Reliable trabecular meshwork (TM) in vitro models will be critical for enhancing the fields understanding of healthy and disease states for pre-clinical testing. Trabecular meshwork cells (TMCs) display heterogeneity throughout the hierarchical TM, however our understanding into recapitulating these phenotypes in vitro, remains elusive. This study hypothesizes the importance of specific matrix/growth factor spatial stimuli in governing TMCs phenotype. By emulating certain biophysical/biochemical in vivo parameters, we introduce an advanced profile of distinct TMC phenotypic states, reflecting healthy and disease scenarios. A notion that has not be stated prior and a fundamental consideration for future 3D TM in vitro modelling.
Collapse
Affiliation(s)
- Hannah C Lamont
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Kate Devries
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Kerime E Okur
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Michael Jones
- Cell Guidance Systems Ltd, Maia Building, Babraham Bioscience Campus, Cambridge, UK
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, UK
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Anthony D Metcalfe
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Goren S, Ergaz B, Barak D, Sorkin R, Lesman A. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy. Acta Biomater 2024; 181:272-281. [PMID: 38685460 DOI: 10.1016/j.actbio.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Semiflexible fiber gels such as collagen and fibrin have unique nonlinear mechanical properties that play an important role in tissue morphogenesis, wound healing, and cancer metastasis. Optical tweezers microrheology has greatly contributed to the understanding of the mechanics of fibrous gels at the microscale, including its heterogeneity and anisotropy. However, the explicit relationship between micromechanical properties and gel deformation has been largely overlooked. We introduce a unique gel-stretching apparatus and employ it to study the relationship between microscale strain and stiffening in fibrin and collagen gels, focusing on the development of anisotropy in the gel. We find that gels stretched by as much as 15 % stiffen significantly both in parallel and perpendicular to the stretching axis, and that the parallel axis is 2-3 times stiffer than the transverse axis. We also measure the stiffening and anisotropy along bands of aligned fibers created by aggregates of cancer cells, and find similar effects as in gels stretched with the tensile apparatus. Our results illustrate that the extracellular microenvironment is highly sensitive to deformation, with implications for tissue homeostasis and pathology. STATEMENT OF SIGNIFICANCE: The inherent fibrous architecture of the extracellular matrix (ECM) gives rise to unique strain-stiffening mechanics. The micromechanics of fibrous networks has been studied extensively, but the deformations involved in its stiffening at the microscale were not quantified. Here we introduce an apparatus that enables measuring the deformations in the gel as it is being stretched while simultaneously using optical tweezers to measure its microscale anisotropic stiffness. We reveal that fibrin and collagen both stiffen dramatically already at ∼10 % deformation, accompanied by the emergence of significant, yet moderate anisotropy. We measure similar stiffening and anisotropy in the matrix remodeled by the tensile apparatus to those found between cancer cell aggregates. Our results emphasize that small strains are enough to introduce substantial stiffening and anisotropy. These have been shown to result in directional cell migration and enhanced force propagation, and possibly control processes like morphogenesis and cancer metastasis.
Collapse
Affiliation(s)
- Shahar Goren
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel; School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Bar Ergaz
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Daniel Barak
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| | - Ayelet Lesman
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Israel.
| |
Collapse
|
3
|
Komsa-Penkova R, Dimitrov B, Todinova S, Ivanova V, Stoycheva S, Temnishki P, Georgieva G, Tonchev P, Iliev M, Altankov G. Early Stages of Ex Vivo Collagen Glycation Disrupt the Cellular Interaction and Its Remodeling by Mesenchymal Stem Cells-Morphological and Biochemical Evidence. Int J Mol Sci 2024; 25:5795. [PMID: 38891981 PMCID: PMC11172055 DOI: 10.3390/ijms25115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stem cells (MSCs), pivotal for tissue repair, utilize collagen to restore structural integrity in damaged tissue, preserving its organization through concomitant remodeling. The non-enzymatic glycation of collagen potentially compromises MSC communication, particularly upon advancing the process, underlying various pathologies such as late-stage diabetic complications and aging. However, an understanding of the impact of early-stage collagen glycation on MSC interaction is lacking. This study examines the fate of in vitro glycated rat tail collagen (RTC) upon exposure to glucose for 1 or 5 days in contact with MSCs. Utilizing human adipose tissue-derived MSCs (ADMSCs), we demonstrate their significantly altered interaction with glycated collagen, characterized morphologically by reduced cell spreading, diminished focal adhesions formation, and attenuated development of the actin cytoskeleton. The morphological findings were confirmed by ImageJ 1.54g morphometric analysis with the most significant drop in the cell spreading area (CSA), from 246.8 μm2 for the native collagen to 216.8 μm2 and 163.7 μm2 for glycated ones, for 1 day and 5 days, respectively, and a similar trend was observed for cell perimeter 112.9 μm vs. 95.1 μm and 86.2 μm, respectively. These data suggest impaired recognition of early glycated collagen by integrin receptors. Moreover, they coincide with the reduced fibril-like reorganization of adsorbed FITC-collagen (indicating impaired remodeling) and a presumed decreased sensitivity to proteases. Indeed, confirmatory assays reveal diminished FITC-collagen degradation for glycated samples at 1 day and 5 days by attached cells (22.8 and 30.4%) and reduced proteolysis upon exogenous collagenase addition (24.5 and 40.4%) in a cell-free system, respectively. The mechanisms behind these effects remain uncertain, although differential scanning calorimetry confirms subtle structural/thermodynamic changes in glycated collagen.
Collapse
Affiliation(s)
| | - Borislav Dimitrov
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Violina Ivanova
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | | | - Peter Temnishki
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Galya Georgieva
- Department of Biochemistry, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Pencho Tonchev
- Department of Surgery, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Mario Iliev
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria
| | - George Altankov
- Research Institute, Medical University Pleven, 5800 Pleven, Bulgaria
| |
Collapse
|
4
|
Pickard A, Garva R, Adamson A, Calverley BC, Hoyle A, Hayward CE, Spiller D, Lu Y, Hodson N, Mandolfo O, Kim KK, Bou-Gharios G, Swift J, Bigger B, Kadler KE. Collagen fibril formation at the plasma membrane occurs independently from collagen secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593302. [PMID: 38766096 PMCID: PMC11100796 DOI: 10.1101/2024.05.09.593302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Collagen fibrils are the primary supporting scaffold of vertebrate tissues but how they are assembled is unclear. Here, using CRISPR-tagging of type I collagen and SILAC labelling, we elucidate the cellular mechanism for the spatiotemporal assembly of collagen fibrils, in cultured fibroblasts. Our findings reveal multifaceted trafficking of collagen, including constitutive secretion, intracellular pooling, and plasma membrane-directed fibrillogenesis. Notably, we differentiate the processes of collagen secretion and fibril assembly and identify the crucial involvement of endocytosis in regulating fibril formation. By employing Col1a1 knockout fibroblasts we demonstrate the incorporation of exogenous collagen into nucleation sites at the plasma membrane through these recycling mechanisms. Our study sheds light on the assembly process and its regulation in health and disease. Mass spectrometry data are available via ProteomeXchange with identifier PXD036794.
Collapse
|
5
|
Aggarwal N, Marsh R, Marcotti S, Shaw TJ, Stramer B, Cox S, Culley S. Characterisation and correction of polarisation effects in fluorescently labelled fibres. J Microsc 2024. [PMID: 38682883 DOI: 10.1111/jmi.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Many biological structures take the form of fibres and filaments, and quantitative analysis of fibre organisation is important for understanding their functions in both normal physiological conditions and disease. In order to visualise these structures, fibres can be fluorescently labelled and imaged, with specialised image analysis methods available for quantifying the degree and strength of fibre alignment. Here we show that fluorescently labelled fibres can display polarised emission, with the strength of this effect varying depending on structure and fluorophore identity. This can bias automated analysis of fibre alignment and mask the true underlying structural organisation. We present a method for quantifying and correcting these polarisation effects without requiring polarisation-resolved microscopy and demonstrate its efficacy when applied to images of fluorescently labelled collagen gels, allowing for more reliable characterisation of fibre microarchitecture.
Collapse
Affiliation(s)
- Nandini Aggarwal
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Richard Marsh
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Stefania Marcotti
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Brian Stramer
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Susan Cox
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Siân Culley
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
6
|
Zhang W, Lu CH, Nakamoto ML, Tsai CT, Roy AR, Lee CE, Yang Y, Jahed Z, Li X, Cui B. Curved adhesions mediate cell attachment to soft matrix fibres in three dimensions. Nat Cell Biol 2023; 25:1453-1464. [PMID: 37770566 PMCID: PMC10567576 DOI: 10.1038/s41556-023-01238-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Integrin-mediated focal adhesions are the primary architectures that transmit forces between the extracellular matrix (ECM) and the actin cytoskeleton. Although focal adhesions are abundant on rigid and flat substrates that support high mechanical tensions, they are sparse in soft three-dimensional (3D) environments. Here we report curvature-dependent integrin-mediated adhesions called curved adhesions. Their formation is regulated by the membrane curvatures imposed by the topography of ECM protein fibres. Curved adhesions are mediated by integrin ɑvβ5 and are molecularly distinct from focal adhesions and clathrin lattices. The molecular mechanism involves a previously unknown interaction between integrin β5 and a curvature-sensing protein, FCHo2. We find that curved adhesions are prevalent in physiological conditions, and disruption of curved adhesions inhibits the migration of some cancer cell lines in 3D fibre matrices. These findings provide a mechanism for cell anchorage to natural protein fibres and suggest that curved adhesions may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA
| | - Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA
| | - Melissa L Nakamoto
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA
| | - Anish R Roy
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Christina E Lee
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Yang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA
- Department of Nanoengineering, University of California, San Diego, CA, USA
| | - Xiao Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Wang H, Lu J, Rathod M, Aw WY, Huang SA, Polacheck WJ. A facile fluid pressure system reveals differential cellular response to interstitial pressure gradients and flow. BIOMICROFLUIDICS 2023; 17:054103. [PMID: 37781136 PMCID: PMC10539030 DOI: 10.1063/5.0165119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Interstitial fluid pressure gradients and interstitial flow have been shown to drive morphogenic processes that shape tissues and influence progression of diseases including cancer. The advent of porous media microfluidic approaches has enabled investigation of the cellular response to interstitial flow, but questions remain as to the critical biophysical and biochemical signals imparted by interstitial fluid pressure gradients and resulting flow on resident cells and extracellular matrix (ECM). Here, we introduce a low-cost method to maintain physiological interstitial fluid pressures that is built from commonly accessible laboratory equipment, including a laser pointer, camera, Arduino board, and a commercially available linear actuator. We demonstrate that when the system is connected to a microfluidic device containing a 3D porous hydrogel, physiologic pressure is maintained with sub-Pascal resolution and when basic feedback control is directed using an Arduino, constant pressure and pressure gradient can be maintained even as cells remodel and degrade the ECM hydrogel over time. Using this model, we characterized breast cancer cell growth and ECM changes to ECM fibril structure and porosity in response to constant interstitial fluid pressure or constant interstitial flow. We observe increased collagen fibril bundling and the formation of porous structures in the vicinity of cancer cells in response to constant interstitial fluid pressure as compared to constant interstitial flow. Collectively, these results further define interstitial fluid pressure as a driver of key pathogenic responses in cells, and the systems and methods developed here will allow for future mechanistic work investigating mechanotransduction of interstitial fluid pressures and flows.
Collapse
Affiliation(s)
- Hao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27514, USA
| | - Jingming Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27514, USA
| | - Mitesh Rathod
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27514, USA
| | - Wen Yih Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27514, USA
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27514, USA
| | | |
Collapse
|
8
|
Vollett KDW, Szulc DA, Cheng HLM. A Manganese Porphyrin Platform for the Design and Synthesis of Molecular and Targeted MRI Contrast Agents. Int J Mol Sci 2023; 24:ijms24119532. [PMID: 37298480 DOI: 10.3390/ijms24119532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Magnetic resonance imaging (MRI) contrast agents, in contrast to the plethora of fluorescent agents available to target disease biomarkers or exogenous implants, have remained predominantly non-specific. That is, they do not preferentially accumulate in specific locations in vivo because doing so necessitates longer contrast retention, which is contraindicated for current gadolinium (Gd) agents. This double-edge sword implies that Gd agents can offer either rapid elimination (but lack specificity) or targeted accumulation (but with toxicity risks). For this reason, MRI contrast agent innovation has been severely constrained. Gd-free alternatives based on manganese (Mn) chelates have been largely ineffective, as they are inherently unstable. In this study, we present a Mn(III) porphyrin (MnP) platform for bioconjugation, offering the highest stability and chemical versatility compared to any other T1 contrast agent. We exploit the inherent metal stability conferred by porphyrins and the absence of pendant bases (found in Gd or Mn chelates) that limit versatile functionalization. As proof-of-principle, we demonstrate labeling of human serum albumin, a model protein, and collagen hydrogels for applications in in-vivo targeted imaging and material tracking, respectively. In-vitro and in-vivo results confirm unprecedented metal stability, ease of functionalization, and high T1 relaxivity. This new platform opens the door to ex-vivo validation by fluorescent imaging and multipurpose molecular imaging in vivo.
Collapse
Affiliation(s)
- Kyle D W Vollett
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Daniel A Szulc
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
9
|
Zhang W, Lu CH, Nakamoto ML, Tsai CT, Roy AR, Lee CE, Yang Y, Jahed Z, Li X, Cui B. Curved adhesions mediate cell attachment to soft matrix fibres in 3D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532975. [PMID: 36993504 PMCID: PMC10055138 DOI: 10.1101/2023.03.16.532975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mammalian cells adhere to the extracellular matrix (ECM) and sense mechanical cues through integrin-mediated adhesions 1, 2 . Focal adhesions and related structures are the primary architectures that transmit forces between the ECM and the actin cytoskeleton. Although focal adhesions are abundant when cells are cultured on rigid substrates, they are sparse in soft environments that cannot support high mechanical tensions 3 . Here, we report a new class of integrin-mediated adhesions, curved adhesions, whose formation is regulated by membrane curvature instead of mechanical tension. In soft matrices made of protein fibres, curved adhesions are induced by membrane curvatures imposed by the fibre geometry. Curved adhesions are mediated by integrin ɑVβ5 and are molecularly distinct from focal adhesions and clathrin lattices. The molecular mechanism involves a previously unknown interaction between integrin β5 and a curvature-sensing protein FCHo2. We find that curved adhesions are prevalent in physiologically relevant environments. Disruption of curved adhesions by knocking down integrin β5 or FCHo2 abolishes the migration of multiple cancer cell lines in 3D matrices. These findings provide a mechanism of cell anchorage to natural protein fibres that are too soft to support the formation of focal adhesions. Given their functional importance for 3D cell migration, curved adhesions may serve as a therapeutic target for future development.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, Stanford University; Stanford, CA 94305, USA
| | - Chih-Hao Lu
- Department of Chemistry, Stanford University; Stanford, CA 94305, USA
| | | | - Ching-Ting Tsai
- Department of Chemistry, Stanford University; Stanford, CA 94305, USA
| | - Anish R. Roy
- Department of Chemistry, Stanford University; Stanford, CA 94305, USA
| | - Christina E. Lee
- Department of Chemistry, Stanford University; Stanford, CA 94305, USA
| | - Yang Yang
- Department of Chemistry, Stanford University; Stanford, CA 94305, USA
| | - Zeinab Jahed
- Department of Chemistry, Stanford University; Stanford, CA 94305, USA
| | - Xiao Li
- Department of Chemistry, Stanford University; Stanford, CA 94305, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University; Stanford, CA 94305, USA
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
10
|
Weiss F, Atlasy N, van Reijmersdal V, Stunnenberg H, Hulsbergen-Veelken C, Friedl P. 3D spheroid culture to examine adaptive therapy response in invading tumor cells. IN VITRO MODELS 2023; 1:463-471. [PMID: 37096022 PMCID: PMC10119213 DOI: 10.1007/s44164-022-00040-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 04/26/2023]
Abstract
3D in vitro culture models of cancer cells in extracellular matrix (ECM) have been developed to investigate drug targeting and resistance or, alternatively, mechanisms of invasion; however, models allowing analysis of shared pathways mediating invasion and therapy resistance are lacking. To evaluate therapy response associated with cancer cell invasion, we here used 3D invasion culture of tumor spheroids in 3D fibrillar collagen and applied Ethanol-Ethyl cinnamate (EtOH-ECi) based optical clearing to detect both spheroid core and invasion zone by subcellular-resolved 3D microscopy. When subjected to a single dose of irradiation (4 Gy), we detected significant cell survival in the invasion zone. By physical separation of the core and invasion zone, we identified differentially regulated genes preferentially engaged in invading cells controlling cell division, repair, and survival. This imaging-based 3D invasion culture may be useful for the analysis of complex therapy-response patterns in cancer cells in drug discovery and invasion-associated resistance development. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00040-x.
Collapse
Affiliation(s)
- Felix Weiss
- Department of Cell Biology, Radboud University Medical Centre, P.O. Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Nader Atlasy
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Vince van Reijmersdal
- Department of Cell Biology, Radboud University Medical Centre, P.O. Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Henk Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Cornelia Hulsbergen-Veelken
- Department of Cell Biology, Radboud University Medical Centre, P.O. Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud University Medical Centre, P.O. Box 9101, 6525 GA Nijmegen, The Netherlands
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
- Cancer Genomics Centre, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Mao BH, Nguyen Thi KM, Tang MJ, Kamm RD, Tu TY. The interface stiffness and topographic feature dictate interfacial invasiveness of cancer spheroids. Biofabrication 2023; 15. [PMID: 36594698 DOI: 10.1088/1758-5090/acaa00] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
During cancer metastasis, tumor cells likely navigate, in a collective manner, discrete tissue spaces comprising inherently heterogeneous extracellular matrix microstructures where interfaces may be frequently encountered. Studies have shown that cell migration modes can be determined by adaptation to mechanical/topographic cues from interfacial microenvironments. However, less attention has been paid to exploring the impact of interfacial mechnochemical attributes on invasive and metastatic behaviors of tumor aggregates. Here, we excogitated a collagen matrix-solid substrate interface platform to investigate the afore-stated interesting issue. Our data revealed that stiffer interfaces stimulated spheroid outgrowth by motivating detachment of single cells and boosting their motility and velocity. However, stronger interfacial adhesive strength between matrix and substrate led to the opposite outcomes. Besides, this interfacial parameter also affected the morphological switch between migration modes of the detached cells and their directionality. Mechanistically, myosin II-mediated cell contraction, compared to matrix metalloproteinases-driven collagen degradation, was shown to play a more crucial role in the invasive outgrowth of tumor spheroids in interfacial microenvironments. Thus, our findings highlight the importance of heterogeneous interfaces in addressing and combating cancer metastasis.
Collapse
Affiliation(s)
- Bin-Hsu Mao
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Kim Mai Nguyen Thi
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts institute of Technology, Cambridge, MA 02139, United States of America.,Department of Mechanical Engineering, Massachusetts institute of Technology, Cambridge, MA 02139, United States of America
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
12
|
Morphological and Quantitative Evidence for Altered Mesenchymal Stem Cell Remodeling of Collagen in an Oxidative Environment—Peculiar Effect of Epigallocatechin-3-Gallate. Polymers (Basel) 2022; 14:polym14193957. [PMID: 36235908 PMCID: PMC9571090 DOI: 10.3390/polym14193957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are involved in the process of extracellular matrix (ECM) remodeling where collagens play a pivotal role. We recently demonstrated that the remodeling of adsorbed collagen type I might be disordered upon oxidation following its fate in the presence of human adipose-derived MSC (ADMSCs). With the present study we intended to learn more about the effect of polyphenolic antioxidant Epigallocatechin-3-gallate (EGCG), attempting to mimic the conditions of oxidative stress in vivo and its putative prevention by antioxidants. Collagen Type I was isolated from mouse tail tendon (MTC) and labelled with FITC before being oxidized according to Fe2+/H2O2 protocol. FITC-collagen remodeling by ADMSC was assessed morphologically before and after EGCG pretreatment and confirmed via detailed morphometric analysis measuring the anisotropy index (AI) and fluorescence intensity (FI) in selected regions of interest (ROI), namely: outside the cells, over the cells, and central (nuclear/perinuclear) region, whereas the pericellular proteolytic activity was measured by de-quenching fluorescent collagen probes (FRET effect). Here we provide morphological evidence that MTC undergoes significant reorganization by the adhering ADMSC and is accompanied by a substantial activation of pericellular proteolysis, and further confirm that both processes are suppressed upon collagen oxidation. An important observation was that this abrogated remodeling cannot be prevented by the EGCG pretreatment. Conversely, the detailed morphometric analysis showed that oxidized FITC-collagen tends to accumulate beneath cells and around cell nuclei, suggesting the activation of alternative routes for its removal, such as internalization and/or transcytosis. Morphometric analysis also revealed that both processes are supported by EGCG pretreatment.
Collapse
|
13
|
Anithabanu P, Balasubramanian S, David Dayanidhi P, Nandhini T, Vaidyanathan VG. Physico-chemical characterization studies of collagen labelled with Ru(II) polypyridyl complex. Heliyon 2022; 8:e10173. [PMID: 36033328 PMCID: PMC9404281 DOI: 10.1016/j.heliyon.2022.e10173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/01/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
The rich luminescence behaviour exerted by transition metal complexes has found significant role in the development of biomolecular and cellular probes. The conjugation of fluorophore to a protein has its own advantage over the label-free system due to its high sensitivity. While numerous proteins have been labelled with either organic or inorganic fluorophores, the conjugation of luminescent transition metal complexes with collagen has not yet been attempted. Here, in this study, the conjugation of a Ru(II) polypyridyl complex with collagen was carried out and its physico-chemical characterization was studied. The conjugation of Ru(II) to collagen was characterized by UV-Visible, fluorescence and ATR-FT-IR spectroscopy. The conjugation of Ru(II) did not alter the triple helical structure of the collagen as evidenced from CD spectral data. The luminescence behaviour of the Ru-tagged collagen was found to be similar to that of the commercially available fluorescein isothiocyanate (FITC) tagged collagen with increase in luminescence upon addition of collagenase. Gel-based collagenase assay showed that the digestion of collagen can be vizualized using UV light due to intrinsic fluorophore tag without carrying out the staining-destaining processes. Energy dispersive X-Ray analysis (EDAX) confirms the presence of Ru in Ru-collagen fibrils. To the best of our knowledge, this is the first report on the conjugation of a Ru(II) complex with the fibrous protein collagen that exhibits similar property as of FITC-collagen and can be used as an alternative.
Collapse
Affiliation(s)
- P Anithabanu
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surabhya Balasubramanian
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P David Dayanidhi
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - T Nandhini
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - V G Vaidyanathan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Zhou X, Zhao R, Yanamandra AK, Hoth M, Qu B. Light-Sheet Scattering Microscopy to Visualize Long-Term Interactions Between Cells and Extracellular Matrix. Front Immunol 2022; 13:828634. [PMID: 35154150 PMCID: PMC8831865 DOI: 10.3389/fimmu.2022.828634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Visualizing interactions between cells and the extracellular matrix (ECM) mesh is important to understand cell behavior and regulatory mechanisms by the extracellular environment. However, long term visualization of three-dimensional (3D) matrix structures remains challenging mainly due to photobleaching or blind spots perpendicular to the imaging plane. Here, we combine label-free light-sheet scattering microcopy (LSSM) and fluorescence microscopy to solve these problems. We verified that LSSM can reliably visualize structures of collagen matrices from different origin including bovine, human and rat tail. The quality and intensity of collagen structure images acquired by LSSM did not decline with time. LSSM offers abundant wavelength choice to visualize matrix structures, maximizing combination possibilities with fluorescently-labelled cells, allowing visualizing of long-term ECM-cell interactions in 3D. Interestingly, we observed ultrathin thread-like structures between cells and matrix using LSSM, which were not observed by normal fluorescence microscopy. Transient local alignment of matrix by cell-applied forces can be observed. In summary, LSSM provides a powerful and robust approach to investigate the complex interplay between cells and ECM.
Collapse
Affiliation(s)
- Xiangda Zhou
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Archana K Yanamandra
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| |
Collapse
|
15
|
Wright AL, Righelli L, Broomhall TJ, Lamont HC, El Haj AJ. Magnetic Nanoparticle-Mediated Orientation of Collagen Hydrogels for Engineering of Tendon-Mimetic Constructs. Front Bioeng Biotechnol 2022; 10:797437. [PMID: 35372293 PMCID: PMC8968910 DOI: 10.3389/fbioe.2022.797437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
Despite the high incidence of tendon injuries worldwide, an optimal treatment strategy has yet to be defined. A key challenge for tendon repair is the alignment of the repaired matrix into orientations which provide maximal mechanical strength. Using oriented implants for tissue growth combined with either exogenous or endogenous stem cells may provide a solution. Previous research has shown how oriented fiber-like structures within 3D scaffolds can provide a framework for organized extracellular matrix deposition. In this article, we present our data on the remote magnetic alignment of collagen hydrogels which facilitates long-term collagen orientation. Magnetic nanoparticles (MNPs) at varying concentrations can be contained within collagen hydrogels. Our data show how, in response to the magnetic field lines, MNPs align and form string-like structures orientating at 90 degrees from the applied magnetic field from our device. This can be visualized by light and fluorescence microscopy, and it persists for 21 days post-application of the magnetic field. Confocal microscopy demonstrates the anisotropic macroscale structure of MNP-laden collagen gels subjected to a magnetic field, compared to gels without MNP dosing. Matrix fibrillation was compared between non- and biofunctionalized MNP hydrogels, and different gels dosed with varying MNP concentrations. Human adipose stem cells (hASCs) seeded within the magnetically aligned gels were observed to align in parallel to MNP and collagen orientation 7 days post-application of the magnetic field. hASCs seeded in isotropic gels were randomly organized. Tenocyte-likeness of the cells 7 days post-seeding in collagen I scaffolds was confirmed by the positive expression of tenomodulin and scleraxis proteins. To summarize, we have developed a convenient, non-invasive protocol to control the collagen I hydrogel architecture. Through the presence or absence of MNP dosing and a magnetic field, collagen can be remotely aligned or randomly organized, respectively, in situ. Tendon-like cells were observed to organize in parallel to unidirectionally aligned collagen fibers and polydirectionally in non-aligned collagen constructs. In this way, we were able to engineer the constructs emulating a physiologically and pathologically relevant tendon niche. This can be considered as an innovative approach particularly useful in tissue engineering or organ-on-a-chip applications for remotely controlling collagen matrix organization to recapitulate the native tendon.
Collapse
Affiliation(s)
| | | | | | | | - Alicia J. El Haj
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Mesenchymal Stem-Cell Remodeling of Adsorbed Type-I Collagen-The Effect of Collagen Oxidation. Int J Mol Sci 2022; 23:ijms23063058. [PMID: 35328478 PMCID: PMC8953637 DOI: 10.3390/ijms23063058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
This study describes the effect of collagen type I (Col I) oxidation on its physiological remodeling by adipose tissue-derived mesenchymal stem cells (ADMSCs), both mechanical and proteolytic, as an in vitro model for the acute oxidative stress that may occur in vivo upon distinct environmental changes. Morphologically, remodeling was interpreted as the mechanical rearrangement of adsorbed FITC-labelled Col I into a fibril-like pattern. This process was strongly abrogated in cells cultured on oxidized Col I albeit without visible changes in cell morphology. Proteolytic activity was quantified utilizing fluorescence de-quenching (FRET effect). The presence of ADMSCs caused a significant increase in native FITC-Col I fluorescence, which was almost absent in the oxidized samples. Parallel studies in a cell-free system confirmed the enzymatic de-quenching of native FITC-Col I by Clostridial collagenase with statistically significant inhibition occurring in the oxidized samples. Structural changes to the oxidized Col I were further studied by differential scanning calorimetry. In the oxidized samples, an additional endotherm with sustained enthalpy (∆H) was observed at 33.6 °C along with Col I’s typical one at 40.5 °C. Collectively, these data support that the remodeling of Col I by ADMSCs is altered upon oxidation due to intrinsic changes to the protein’s structure, which represents a novel mechanism for the control of stem cell behavior.
Collapse
|
17
|
Siadat SM, Silverman AA, Susilo ME, Paten JA, DiMarzio CA, Ruberti JW. Development of Fluorescently Labeled, Functional Type I Collagen Molecules. Macromol Biosci 2021; 22:e2100144. [PMID: 34856056 DOI: 10.1002/mabi.202100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/22/2021] [Indexed: 11/11/2022]
Abstract
While de novo collagen fibril formation is well-studied, there are few investigations into the growth and remodeling of extant fibrils, where molecular collagen incorporation into and erosion from the fibril surface must delicately balance during fibril growth and remodeling. Observing molecule/fibril interactions is difficult, requiring the tracking of molecular dynamics while, at the same time, minimizing the effect of the observation on fibril structure and assembly. To address the observation-interference problem, exogenous collagen molecules are tagged with small fluorophores and the fibrillogenesis kinetics of labeled collagen molecules as well as the structure and network morphology of assembled fibrils are examined. While excessive labeling significantly disturbs fibrillogenesis kinetics and network morphology of assembled fibrils, adding less than ≈1.2 labels per collagen molecule preserves these characteristics. Applications of the functional, labeled collagen probe are demonstrated in both cellular and acellular systems. The functional, labeled collagen associates strongly with native fibrils and when added to an in vitro model of corneal stromal development at low concentration, the labeled collagen is incorporated into a fine extracellular matrix (ECM) network associated with the cells within 24 h.
Collapse
Affiliation(s)
| | | | - Monica E Susilo
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Jeffrey A Paten
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02134, USA
| | - Charles A DiMarzio
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
18
|
Nazari SS. Generation of 3D Tumor Spheroids with Encapsulating Basement Membranes for Invasion Studies. ACTA ACUST UNITED AC 2021; 87:e105. [PMID: 32436628 PMCID: PMC8172047 DOI: 10.1002/cpcb.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the past, in vitro studies of invasion and tumor progression were performed primarily using cancer cells cultured on a flat, two‐dimensional (2D) surface in a monolayer. In recent years, however, many studies have demonstrated differences in cell signaling and cell migration between 2D and 3D cell cultures. Traditional 2D monolayer cancer cell invasion models do not fully recapitulate 3D cell‐to‐cell and cell−to−extracellular matrix interactions that in vivo models can provide. Moreover, although in vivo animal models are irreplaceable for studying tumor biology and metastasis, they are costly, time‐consuming, and impractical for answering preliminary questions. Thus, emergent and evolving 3D spheroid cell culture models have changed the way we study tumors and their interactions with their surrounding extracellular matrix. In the case of breast cancer, metastasis of breast cancer tumors results in high mortality rates, and thus development of robust cell culture models that are reproducible and practical for studying breast cancer progression is important for ultimately developing preventatives for cancer metastasis. This article provides a set of protocols for generating uniform spheroids with a thin sheet of basement membrane for studying the initial invasion of mammary epithelial cells into a surrounding collagen‐rich extracellular matrix. Details are provided for generating 3D spheroids with a basement membrane, polymerizing collagen I, embedding the spheroids in the 3D collagen gel, and immunostaining the spheroids for invasion studies. Published 2020. U.S. Government. Basic Protocol 1: Growth of uniformly sized tumor spheroids with an encapsulating basement membrane Basic Protocol 2: Polymerization and embedding of tumor spheroids in a 3D type I collagen gel Alternate Protocol: Embedding of tumor spheroids in collagen gels using a sandwich method Basic Protocol 3: Fixing and immunostaining of tumor spheroids embedded in 3D collagen gels
Collapse
Affiliation(s)
- Shayan S Nazari
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Doyle AD, Sykora DJ, Pacheco GG, Kutys ML, Yamada KM. 3D mesenchymal cell migration is driven by anterior cellular contraction that generates an extracellular matrix prestrain. Dev Cell 2021; 56:826-841.e4. [PMID: 33705692 PMCID: PMC8082573 DOI: 10.1016/j.devcel.2021.02.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 01/26/2023]
Abstract
We describe a cellular contractile mechanism employed by fibroblasts and mesenchymal cancer cells to migrate in 3D collagen gels. During 3D spreading, fibroblasts strongly deform the matrix. They protrude, polarize, and initiate migration in the direction of highest extracellular matrix (ECM) deformation (prestrain). This prestrain is maintained through anterior cellular contractions behind the leading edge prior to protrusion, coordinating a distinct 3D migration cycle that varies between cell types. Myosin IIA is required for strain polarization, generating anterior contractions, and maintaining prestrain for efficient directional cell migration. Local matrix severing disrupts the matrix prestrain, suppressing directional protrusion. We show that epithelial cancer and endothelial cells rarely demonstrate the sustained prestrain or anterior contractions. We propose that mesenchymal cells sense ECM stiffness in 3D and generate their own matrix prestrain. This requires myosin IIA to generate polarized periodic anterior contractions for maintaining a 3D migration cycle.
Collapse
Affiliation(s)
- Andrew D Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Daniel J Sykora
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gustavo G Pacheco
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew L Kutys
- Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Ave, HSW-613, San Francisco, CA 94143, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
21
|
D. Doyle A. Erratum: Correction Notice: Fluorescent Labeling of Rat-tail Collagen for 3D Fluorescence Imaging. Bio Protoc 2020; 10:e3650. [PMID: 38155730 PMCID: PMC10753367 DOI: 10.21769/bioprotoc.3650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/03/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2023] Open
Abstract
[This corrects the article .].
Collapse
Affiliation(s)
- Andrew D. Doyle
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda Maryland, USA
| |
Collapse
|