1
|
De Beuckeleer S, Van De Looverbosch T, Van Den Daele J, Ponsaerts P, De Vos WH. Unbiased identification of cell identity in dense mixed neural cultures. eLife 2025; 13:RP95273. [PMID: 39819559 PMCID: PMC11741521 DOI: 10.7554/elife.95273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.
Collapse
Affiliation(s)
- Sarah De Beuckeleer
- Laboratory of Cell Biology and Histology, University of AntwerpAntwerpBelgium
| | | | | | - Peter Ponsaerts
- Laboratory of Experimental Haematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of AntwerpAntwerpBelgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of AntwerpAntwerpBelgium
- Antwerp Centre for Advanced Microscopy, University of AntwerpAntwerpBelgium
- µNeuro Research Centre of Excellence, University of AntwerpAntwerpBelgium
| |
Collapse
|
2
|
Won S, Sweeney CL, Roche KW. Biochemical Properties of Synaptic Proteins Are Dependent on Tissue Preparation: NMDA Receptor Solubility Is Regulated by the C-Terminal Tail. J Cell Biochem 2025; 126:e30664. [PMID: 39370692 PMCID: PMC11730348 DOI: 10.1002/jcb.30664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
Synaptic proteins are essential for neuronal development, synaptic transmission, and synaptic plasticity. The postsynaptic density (PSD) is a membrane-associated structure at excitatory synapses, which is composed of a huge protein complex. To understand the interactions and functions of PSD proteins, researchers have employed a variety of imaging and biochemical approaches including sophisticated mass spectrometry. However, the field is lacking a systematic comparison of different experimental conditions and how they might influence the study of the PSD interactome isolated from various tissue preparations. To evaluate the efficiency of several common solubilization conditions, we isolated receptors, scaffolding proteins, and adhesion molecules from brain tissue or primary cultured neurons or human forebrain neurons differentiated from induced pluripotent stem cells (iPSCs). We observed some striking differences in solubility. We found that N-methyl-d-aspartate receptors (NMDARs) and PSD-95 are relatively insoluble in brain tissue, cultured neurons, and human forebrain neurons compared to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptors (AMPARs) or SAP102. In general, synaptic proteins were more soluble in primary neuronal cultures and human forebrain neurons compared to brain tissue. Interestingly, NMDARs are relatively insoluble in HEK293T cells suggesting that insolubility does not directly represent the synaptic fraction but rather it is related to a detergent-insoluble fraction such as lipid rafts. Surprisingly, truncation of the intracellular carboxyl-terminal tail (C-tail) of NMDAR subunits increased NMDAR solubility in HEK293T cells. Our findings show that detergent, pH, and temperature are important for protein preparations to study PSD protein complexes, and NMDAR solubility is regulated by its C-tail, thus providing a technical guide to study synaptic interactomes and subcellular localization of synaptic proteins.
Collapse
Affiliation(s)
- Sehoon Won
- Receptor Biology SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Colin L. Sweeney
- Genetic Immunotherapy SectionNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Katherine W. Roche
- Receptor Biology SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
3
|
Donadoni M, Cakir S, Bellizzi A, Swingler M, Sariyer IK. Modeling HIV-1 infection and NeuroHIV in hiPSCs-derived cerebral organoid cultures. J Neurovirol 2024; 30:362-379. [PMID: 38600307 PMCID: PMC11464638 DOI: 10.1007/s13365-024-01204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
The human immunodeficiency virus (HIV) epidemic is an ongoing global health problem affecting 38 million people worldwide with nearly 1.6 million new infections every year. Despite the advent of combined antiretroviral therapy (cART), a large percentage of people with HIV (PWH) still develop neurological deficits, grouped into the term of HIV-associated neurocognitive disorders (HAND). Investigating the neuropathology of HIV is important for understanding mechanisms associated with cognitive impairment seen in PWH. The major obstacle for studying neuroHIV is the lack of suitable in vitro human culture models that could shed light into the HIV-CNS interactions. Recent advances in induced pluripotent stem cell (iPSC) culture and 3D brain organoid systems have allowed the generation of 2D and 3D culture methods that possess a potential to serve as a model of neurotropic viral diseases, including HIV. In this study, we first generated and characterized several hiPSC lines from healthy human donor skin fibroblast cells. hiPSCs were then used for the generation of microglia-containing human cerebral organoids (hCOs). Once fully characterized, hCOs were infected with HIV-1 in the presence and absence of cART regimens and viral infection was studied by cellular, molecular/biochemical, and virological assays. Our results revealed that hCOs were productively infected with HIV-1 as evident by viral p24-ELISA in culture media, RT-qPCR and RNAscope analysis of viral RNA, as well as ddPCR analysis of proviral HIV-1 in genomic DNA samples. More interestingly, replication and gene expression of HIV-1 were also greatly suppressed by cART in hCOs as early as 7 days post-infections. Our results suggest that hCOs derived from hiPSCs support HIV-1 replication and gene expression and may serve as a unique platform to better understand neuropathology of HIV infection in the brain.
Collapse
Affiliation(s)
- Martina Donadoni
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Senem Cakir
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Michael Swingler
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Burrack N, Yitzhaky A, Mizrahi L, Wang M, Stern S, Hertzberg L. Altered Expression of PDE4 Genes in Schizophrenia: Insights from a Brain and Blood Sample Meta-Analysis and iPSC-Derived Neurons. Genes (Basel) 2024; 15:609. [PMID: 38790238 PMCID: PMC11121586 DOI: 10.3390/genes15050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Schizophrenia symptomatology includes negative symptoms and cognitive impairment. Several studies have linked schizophrenia with the PDE4 family of enzymes due to their genetic association and function in cognitive processes such as long-term potentiation. We conducted a systematic gene expression meta-analysis of four PDE4 genes (PDE4A-D) in 10 brain sample datasets (437 samples) and three blood sample datasets (300 samples). Subsequently, we measured mRNA levels in iPSC-derived hippocampal dentate gyrus neurons generated from fibroblasts of three groups: healthy controls, healthy monozygotic twins (MZ), and their MZ siblings with schizophrenia. We found downregulation of PDE4B in brain tissues, further validated by independent data of the CommonMind consortium (515 samples). Interestingly, the downregulation signal was present in a subgroup of the patients, while the others showed no differential expression or even upregulation. Notably, PDE4A, PDE4B, and PDE4D exhibited upregulation in iPSC-derived neurons compared to healthy controls, whereas in blood samples, PDE4B was found to be upregulated while PDE4A was downregulated. While the precise mechanism and direction of altered PDE4 expression necessitate further investigation, the observed multilevel differential expression across the brain, blood, and iPSC-derived neurons compellingly suggests the involvement of PDE4 genes in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Nitzan Burrack
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- Shalvata Mental Health Center, Affiliated with the Faculty of Medicine, Tel-Aviv University, 13 Aliat Hanoar St., Hod Hasharon 45100, Israel
| |
Collapse
|
5
|
Hu Y, Li CY, Lu Q, Kuang Y. Multiplex miRNA reporting platform for real-time profiling of living cells. Cell Chem Biol 2024; 31:150-162.e7. [PMID: 38035883 DOI: 10.1016/j.chembiol.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Accurately characterizing cell types within complex cell structures provides invaluable information for comprehending the cellular status during biological processes. In this study, we have developed an miRNA-switch cocktail platform capable of reporting and tracking the activities of multiple miRNAs (microRNAs) at the single-cell level, while minimizing disruption to the cell culture. Drawing on the principles of traditional miRNA-sensing mRNA switches, our platform incorporates subcellular tags and employs intelligent engineering to segment three subcellular regions using two fluorescent proteins. These designs enable the quantification of multiple miRNAs within the same cell. Through our experiments, we have demonstrated the platform's ability to track marker miRNA levels during cell differentiation and provide spatial information of heterogeneity on outlier cells exhibiting extreme miRNA levels. Importantly, this platform offers real-time and in situ miRNA reporting, allowing for multidimensional evaluation of cell profile and paving the way for a comprehensive understanding of cellular events during biological processes.
Collapse
Affiliation(s)
- Yaxin Hu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Qiuyu Lu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
6
|
Saglam-Metiner P, Duran E, Sabour-Takanlou L, Biray-Avci C, Yesil-Celiktas O. Differentiation of Neurons, Astrocytes, Oligodendrocytes and Microglia From Human Induced Pluripotent Stem Cells to Form Neural Tissue-On-Chip: A Neuroinflammation Model to Evaluate the Therapeutic Potential of Extracellular Vesicles Derived from Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:413-436. [PMID: 37938408 DOI: 10.1007/s12015-023-10645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Advances in stem cell (SC) technology allow the generation of cellular models that recapitulate the histological, molecular and physiological properties of humanized in vitro three dimensional (3D) models, as well as production of cell-derived therapeutics such as extracellular vesicles (EVs). Improvements in organ-on-chip platforms and human induced pluripotent stem cells (hiPSCs) derived neural/glial cells provide unprecedented systems for studying 3D personalized neural tissue modeling with easy setup and fast output. Here, we highlight the key points in differentiation procedures for neurons, astrocytes, oligodendrocytes and microglia from single origin hiPSCs. Additionally, we present a well-defined humanized neural tissue-on-chip model composed of differentiated cells with the same genetic backgrounds, as well as the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles to propose a novel treatment for neuroinflammation derived diseases. Around 100 nm CD9 + EVs promote a more anti-inflammatory and pro-remodeling of cell-cell interaction cytokine responses on tumor necrosis factor-α (TNF-α) induced neuroinflammation in neural tissue-on-chip model which is ideal for modeling authentic neural-glial patho-physiology.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elif Duran
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
7
|
Bayati P, Taherian M, Soleimani M, Farajifard H, Mojtabavi N. Induced pluripotent stem cells modulate the Wnt pathway in the bleomycin-induced model of idiopathic pulmonary fibrosis. Stem Cell Res Ther 2023; 14:343. [PMID: 38017561 PMCID: PMC10685538 DOI: 10.1186/s13287-023-03581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The Wnt signaling pathway has been implicated in the pathogenesis of fibrotic disorders and malignancies. Hence, we aimed to assess the potential of the induced pluripotent stem cells (IPS) in modulating the expression of the cardinal genes of the Wnt pathway in a mouse model of idiopathic pulmonary fibrosis (IPF). METHODS C57Bl/6 mice were randomly divided into three groups of Control, Bleomycin (BLM), and BLM + IPS; the BLM mice received intratracheal instillation of bleomycin, BLM + IPS mice received tail vein injection of IPS cells 48 h post instillation of the BLM; The Control group received Phosphate-buffered saline instead. After 3 weeks, the mice were sacrificed and Histologic assessments including hydroxy proline assay, Hematoxylin and Eosin, and Masson-trichrome staining were performed. The expression of the genes for Wnt, β-Catenin, Lef, Dkk1, and Bmp4 was assessed utilizing specific primers and SYBR green master mix. RESULTS Histologic assessments revealed that the fibrotic lesions and inflammation were significantly alleviated in the BLM + IPS group. Besides, the gene expression analyses demonstrated the upregulation of Wnt, β-Catenin, and LEF along with the significant downregulation of the Bmp4 and DKK1 in response to bleomycin treatment; subsequently, it was found that the treatment of the IPF mice with IPS cells results in the downregulation of the Wnt, β-Catenin, and Lef, as well as upregulation of the Dkk1, but not the Bmp4 gene (P values < 0.05). CONCLUSION The current study highlights the therapeutic potential of the IPS cells on the IPF mouse model in terms of regulating the aberrant expression of the factors contributing to the Wnt signaling pathway.
Collapse
Affiliation(s)
- Paria Bayati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Taherian
- Immunology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Farajifard
- Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Adegunsoye A, Gonzales NM, Gilad Y. Induced Pluripotent Stem Cells in Disease Biology and the Evidence for Their In Vitro Utility. Annu Rev Genet 2023; 57:341-360. [PMID: 37708421 DOI: 10.1146/annurev-genet-022123-090319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Many human phenotypes are impossible to recapitulate in model organisms or immortalized human cell lines. Induced pluripotent stem cells (iPSCs) offer a way to study disease mechanisms in a variety of differentiated cell types while circumventing ethical and practical issues associated with finite tissue sources and postmortem states. Here, we discuss the broad utility of iPSCs in genetic medicine and describe how they are being used to study musculoskeletal, pulmonary, neurologic, and cardiac phenotypes. We summarize the particular challenges presented by each organ system and describe how iPSC models are being used to address them. Finally, we discuss emerging iPSC-derived organoid models and the potential value that they can bring to studies of human disease.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Genetics, Genomics, and Systems Biology, Section of Pulmonary and Critical Care, and the Department of Medicine, University of Chicago, Chicago, Illinois, USA;
| | - Natalia M Gonzales
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
| | - Yoav Gilad
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Junge S, Ricci Signorini ME, Al Masri M, Gülink J, Brüning H, Kasperek L, Szepes M, Bakar M, Gruh I, Heisterkamp A, Torres-Mapa ML. A micro-LED array based platform for spatio-temporal optogenetic control of various cardiac models. Sci Rep 2023; 13:19490. [PMID: 37945622 PMCID: PMC10636122 DOI: 10.1038/s41598-023-46149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Optogenetics relies on dynamic spatial and temporal control of light to address emerging fundamental and therapeutic questions in cardiac research. In this work, a compact micro-LED array, consisting of 16 × 16 pixels, is incorporated in a widefield fluorescence microscope for controlled light stimulation. We describe the optical design of the system that allows the micro-LED array to fully cover the field of view regardless of the imaging objective used. Various multicellular cardiac models are used in the experiments such as channelrhodopsin-2 expressing aggregates of cardiomyocytes, termed cardiac bodies, and bioartificial cardiac tissues derived from human induced pluripotent stem cells. The pacing efficiencies of the cardiac bodies and bioartificial cardiac tissues were characterized as a function of illumination time, number of switched-on pixels and frequency of stimulation. To demonstrate dynamic stimulation, steering of calcium waves in HL-1 cell monolayer expressing channelrhodopsin-2 was performed by applying different configurations of patterned light. This work shows that micro-LED arrays are powerful light sources for optogenetic control of contraction and calcium waves in cardiac monolayers, multicellular bodies as well as three-dimensional artificial cardiac tissues.
Collapse
Affiliation(s)
- Sebastian Junge
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Maria Elena Ricci Signorini
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Masa Al Masri
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Jan Gülink
- QubeDot GmbH, Wilhelmsgarten 3, 38100, Brunswick, Germany
| | - Heiko Brüning
- QubeDot GmbH, Wilhelmsgarten 3, 38100, Brunswick, Germany
| | - Leon Kasperek
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Monika Szepes
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Mine Bakar
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Ina Gruh
- Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30625, Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, 30167, Hannover, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625, Hannover, Germany.
| |
Collapse
|
10
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. Stem Cell Res Ther 2023; 14:319. [PMID: 37936199 PMCID: PMC10631132 DOI: 10.1186/s13287-023-03547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
- Alexander Blümke
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Orthopedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erica Ijeoma
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Jessica Simon
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Rachel Wellington
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, School of Medicine, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Medania Purwaningrum
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth Leber
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Marta Scatena
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA.
| |
Collapse
|
11
|
Korsgen ME, Sun C, Seranova E, Zatyka M, Astuti D, Kataura T, Barrett T, Korolchuk VI, Sarkar S. Analysis of autophagy deficiency and cytotoxicity in autophagy-deficient human embryonic stem cell-derived neurons. STAR Protoc 2023; 4:102529. [PMID: 37624702 PMCID: PMC10474488 DOI: 10.1016/j.xpro.2023.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Autophagy, a catabolic process governing cellular and energy homeostasis, is essential for cell survival and human health. Here, we present a protocol for generating autophagy-deficient (ATG5-/-) human neurons from human embryonic stem cell (hESC)-derived neural precursors. We describe steps for analyzing loss of autophagy by immunoblotting. We then detail analysis of cell death by luminescence-based cytotoxicity assay and fluorescence-based TUNEL staining. This hESC-based experimental platform provides a genetic knockout model for undertaking autophagy studies relevant to human biology. For complete details on the use and execution of this protocol, please refer to Sun et al. (2023).1.
Collapse
Affiliation(s)
- Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Malgorzata Zatyka
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Dewi Astuti
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Endocrinology, Birmingham Women's and Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
12
|
Hettige NC, Fleming P, Semenak A, Zhang X, Peng H, Hagel MD, Théroux JF, Zhang Y, Ni A, Jefri M, Antonyan L, Alsuwaidi S, Schuppert A, Stumpf PS, Ernst C. FOXG1 targets BMP repressors and cell cycle inhibitors in human neural progenitor cells. Hum Mol Genet 2023; 32:2511-2522. [PMID: 37216650 PMCID: PMC10360395 DOI: 10.1093/hmg/ddad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
FOXG1 is a critical transcription factor in human brain where loss-of-function mutations cause a severe neurodevelopmental disorder, while increased FOXG1 expression is frequently observed in glioblastoma. FOXG1 is an inhibitor of cell patterning and an activator of cell proliferation in chordate model organisms but different mechanisms have been proposed as to how this occurs. To identify genomic targets of FOXG1 in human neural progenitor cells (NPCs), we engineered a cleavable reporter construct in endogenous FOXG1 and performed chromatin immunoprecipitation (ChIP) sequencing. We also performed deep RNA sequencing of NPCs from two females with loss-of-function mutations in FOXG1 and their healthy biological mothers. Integrative analyses of RNA and ChIP sequencing data showed that cell cycle regulation and Bone Morphogenic Protein (BMP) repression gene ontology categories were over-represented as FOXG1 targets. Using engineered brain cell lines, we show that FOXG1 specifically activates SMAD7 and represses CDKN1B. Activation of SMAD7 which inhibits BMP signaling may be one way that FOXG1 patterns the forebrain, while repression of cell cycle regulators such as CDKN1B may be one way that FOXG1 expands the NPC pool to ensure proper brain size. Our data reveal novel mechanisms on how FOXG1 may control forebrain patterning and cell proliferation in human brain development.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Peter Fleming
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Amelia Semenak
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Marc-Daniel Hagel
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | | | - Ying Zhang
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Anjie Ni
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lilit Antonyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
| | - Shaima Alsuwaidi
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andreas Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Psychiatric Genetics Group, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
13
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. RESEARCH SQUARE 2023:rs.3.rs-3089289. [PMID: 37461708 PMCID: PMC10350192 DOI: 10.21203/rs.3.rs-3089289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferrable regarding the differentiation of osteoclasts. Methods In this study we compare the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. Results were validated using qRT-PCR throughout the differentiation stages. Results Embryoid-body based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. Conclusions The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
| | - Erica Ijeoma
- University of Washington Department of Bioengineering
| | - Jessica Simon
- University of Washington Department of Bioengineering
| | | | | | | | | | - Marta Scatena
- University of Washington Department of Bioengineering
| | | |
Collapse
|
14
|
Hejrati N, Wong R, Khazaei M, Fehlings MG. How can clinical safety and efficacy concerns in stem cell therapy for spinal cord injury be overcome? Expert Opin Biol Ther 2023; 23:883-899. [PMID: 37545020 DOI: 10.1080/14712598.2023.2245321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Spinal cord injury (SCI) can lead to severe neurological dysfunction. Despite scientific and medical advances, clinically effective regenerative therapies including stem cells are lacking for SCI. AREAS COVERED This paper discusses translational challenges related to the safe, effective use of stem cells for SCI, with a focus on mesenchymal stem cells (MSCs), neural stem cells (NSCs), Schwann cells (SCs), olfactory ensheathing cells (OECs), oligodendrocyte precursor cells (OPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). We discuss approaches to enhance the efficacy of cell-based strategies by i) addressing patient heterogeneity and enhancing patient selection; ii) selecting cell type, cell source, cell developmental stage, and delivery technique; iii) enhancing graft integration and mitigating immune-mediated graft rejection; and iv) ensuring availability of cells. Additionally, we review strategies to optimize outcomes including combinatorial use of rehabilitation and discuss ways to mitigate potential risks of tumor formation associated with stem cell-based strategies. EXPERT OPINION Basic science research will drive translational advances to develop stem cell-based therapies for SCI. Genetic, serological, and imaging biomarkers may enable individualization of cell-based treatments. Moreover, combinatorial strategies will be required to enhance graft survival, migration and functional integration, to enable precision-based intervention.
Collapse
Affiliation(s)
- Nader Hejrati
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery & Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Raymond Wong
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mohamad Khazaei
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Human In Vitro Models of Epilepsy Using Embryonic and Induced Pluripotent Stem Cells. Cells 2022; 11:cells11243957. [PMID: 36552721 PMCID: PMC9776452 DOI: 10.3390/cells11243957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
The challenges in making animal models of complex human epilepsy phenotypes with varied aetiology highlights the need to develop alternative disease models that can address the limitations of animal models by effectively recapitulating human pathophysiology. The advances in stem cell technology provide an opportunity to use human iPSCs to make disease-in-a-dish models. The focus of this review is to report the current information and progress in the generation of epileptic patient-specific iPSCs lines, isogenic control cell lines, and neuronal models. These in vitro models can be used to study the underlying pathological mechanisms of epilepsies, anti-seizure medication resistance, and can also be used for drug testing and drug screening with their isogenic control cell lines.
Collapse
|
16
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Xu M, Chen G, Dong Y, Xiang S, Xue M, Liu Y, Song H, Song H, Wang Y. Stable expression of a truncated TLX variant drives differentiation of induced pluripotent stem cells into self-renewing neural stem cells for production of extracellular vesicles. Stem Cell Res Ther 2022; 13:436. [PMID: 36056423 PMCID: PMC9438273 DOI: 10.1186/s13287-022-03131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neural stem cells (NSCs)-derived extracellular vesicles (EVs) possess great potential in treating severe neurological and cerebrovascular diseases, as they carry the modulatory and regenerative ingredients of NSCs. Induced pluripotent stem cells (iPSCs)-derived NSCs culture represents a sustainable source of therapeutic EVs. However, there exist two major challenges in obtaining a scalable culture of NSCs for high-efficiency EVs production: (1) the heterogeneity of iPSC-derived NSCs culture impairs the production of high-quality EVs and (2) the intrinsic propensity of neuronal or astroglial differentiation of NSCs during prolonged culturing reduces the number of NSCs for preparing EVs. A NSCs strain that is amenable to stable self-renewal and proliferation is thus greatly needed for scalable and long-term culture. Methods Various constructs of the genes encoding the orphan nuclear receptor NR2E1 (TLX) were stably transfected in iPSCs, which were subsequently cultured in a variety of differentiation media for generation of iNSCsTLX. Transcriptomic and biomarker profile of iNSCsTLX were investigated. In particular, the positivity ratios of Sox2/Nestin and Musashi/Vimentin were used to gauge the homogeneity of the iNSCsTLX culture. The iNSCs expressing a truncated version of TLX (TLX-TP) was expanded for up to 45 passages, after which its neuronal differentiation potential and EV activity were evaluated. Results Stable expression of TLX-TP could confer the iPSCs with rapid and self-driven differentiation into NSCs through stable passaging up to 225 days. The long-term culture of NSCs maintained the highly homogenous expression of NSC-specific biomarkers and potential of neuronal differentiation. EVs harvested from the TLX-expressing NSCs cultures exhibited anti-inflammatory and neuroprotective activities. Conclusions iPSC-derived NSCs stably expressing TLX-TP is a promising cell line for scalable production of EVs, which should be further exploited for therapeutic development in neurological treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03131-4.
Collapse
Affiliation(s)
- Mingzhi Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Gang Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yanan Dong
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Shensi Xiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Miaomiao Xue
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yongxue Liu
- Anti-Radiation Medical Laboratory, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Haijing Song
- Emergency Medicine, PLA Strategic Support Force Medical Center, Beijing, 100101, China.
| | - Haifeng Song
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Yi Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
18
|
Hettige NC, Peng H, Wu H, Zhang X, Yerko V, Zhang Y, Jefri M, Soubannier V, Maussion G, Alsuwaidi S, Ni A, Rocha C, Krishnan J, McCarty V, Antonyan L, Schuppert A, Turecki G, Fon EA, Durcan TM, Ernst C. FOXG1 dose tunes cell proliferation dynamics in human forebrain progenitor cells. Stem Cell Reports 2022; 17:475-488. [PMID: 35148845 PMCID: PMC9040178 DOI: 10.1016/j.stemcr.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/26/2022] Open
Abstract
Heterozygous loss-of-function mutations in Forkhead box G1 (FOXG1), a uniquely brain-expressed gene, cause microcephaly, seizures, and severe intellectual disability, whereas increased FOXG1 expression is frequently observed in glioblastoma. To investigate the role of FOXG1 in forebrain cell proliferation, we modeled FOXG1 syndrome using cells from three clinically diagnosed cases with two sex-matched healthy parents and one unrelated sex-matched control. Cells with heterozygous FOXG1 loss showed significant reduction in cell proliferation, increased ratio of cells in G0/G1 stage of the cell cycle, and increased frequency of primary cilia. Engineered loss of FOXG1 recapitulated this effect, while isogenic repair of a patient mutation reverted output markers to wild type. An engineered inducible FOXG1 cell line derived from a FOXG1 syndrome case demonstrated that FOXG1 dose-dependently affects all cell proliferation outputs measured. These findings provide strong support for the critical importance of FOXG1 levels in controlling human brain cell growth in health and disease.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Hanrong Wu
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Volodymyr Yerko
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Ying Zhang
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Vincent Soubannier
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Gilles Maussion
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Shaima Alsuwaidi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Anjie Ni
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Cecilia Rocha
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Jeyashree Krishnan
- Institute for Computational Biomedicine, Aachen University, Pauwelsstraße 19, 52074 Aachen, Germany
| | - Vincent McCarty
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Lilit Antonyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Andreas Schuppert
- Institute for Computational Biomedicine, Aachen University, Pauwelsstraße 19, 52074 Aachen, Germany
| | - Gustavo Turecki
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Edward A Fon
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
19
|
Mitrečić D, Hribljan V, Jagečić D, Isaković J, Lamberto F, Horánszky A, Zana M, Foldes G, Zavan B, Pivoriūnas A, Martinez S, Mazzini L, Radenovic L, Milasin J, Chachques JC, Buzanska L, Song MS, Dinnyés A. Regenerative Neurology and Regenerative Cardiology: Shared Hurdles and Achievements. Int J Mol Sci 2022; 23:855. [PMID: 35055039 PMCID: PMC8776151 DOI: 10.3390/ijms23020855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 02/05/2023] Open
Abstract
From the first success in cultivation of cells in vitro, it became clear that developing cell and/or tissue specific cultures would open a myriad of new opportunities for medical research. Expertise in various in vitro models has been developing over decades, so nowadays we benefit from highly specific in vitro systems imitating every organ of the human body. Moreover, obtaining sufficient number of standardized cells allows for cell transplantation approach with the goal of improving the regeneration of injured/disease affected tissue. However, different cell types bring different needs and place various types of hurdles on the path of regenerative neurology and regenerative cardiology. In this review, written by European experts gathered in Cost European action dedicated to neurology and cardiology-Bioneca, we present the experience acquired by working on two rather different organs: the brain and the heart. When taken into account that diseases of these two organs, mostly ischemic in their nature (stroke and heart infarction), bring by far the largest burden of the medical systems around Europe, it is not surprising that in vitro models of nervous and heart muscle tissue were in the focus of biomedical research in the last decades. In this review we describe and discuss hurdles which still impair further progress of regenerative neurology and cardiology and we detect those ones which are common to both fields and some, which are field-specific. With the goal to elucidate strategies which might be shared between regenerative neurology and cardiology we discuss methodological solutions which can help each of the fields to accelerate their development.
Collapse
Affiliation(s)
- Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Valentina Hribljan
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | | | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Alex Horánszky
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
| | - Gabor Foldes
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Salvador Martinez
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain
| | - Letizia Mazzini
- ALS Center, Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy
| | - Lidija Radenovic
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Milasin
- Laboratory for Stem Cell Research, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan Carlos Chachques
- Laboratory of Biosurgical Research, Pompidou Hospital, University of Paris, 75006 Paris, France
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Min Suk Song
- Omnion Research International Ltd., 10000 Zagreb, Croatia
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
- HCEMM-USZ Stem Cell Research Group, Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Ruden JB, Dixit M, Zepeda JC, Grueter BA, Dugan LL. Robust Expression of Functional NMDA Receptors in Human Induced Pluripotent Stem Cell-Derived Neuronal Cultures Using an Accelerated Protocol. Front Mol Neurosci 2021; 14:777049. [PMID: 34899184 PMCID: PMC8661903 DOI: 10.3389/fnmol.2021.777049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are critical for higher-order nervous system function, but in previously published protocols to convert human induced pluripotent stem cells (iPSCs) to mature neurons, functional NMDA receptors (NMDARs) are often either not reported or take an extended time to develop. Here, we describe a protocol to convert human iPSC-derived neural progenitor cells (NPCs) to mature neurons in only 37 days. We demonstrate that the mature neurons express functional NMDARs exhibiting ligand-activated calcium flux, and we document the presence of NMDAR-mediated electrically evoked postsynaptic current. In addition to being more rapid than previous procedures, our protocol is straightforward, does not produce organoids which are difficult to image, and does not involve co-culture with rodent astrocytes. This could enhance our ability to study primate/human-specific aspects of NMDAR function and signaling in health and disease.
Collapse
Affiliation(s)
- Jacob B Ruden
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Mrinalini Dixit
- Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - José C Zepeda
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Laura L Dugan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States.,Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,VA Tennessee Valley Geriatric Research, Education, and Clinical Center (GRECC), Nashville, TN, United States
| |
Collapse
|
21
|
Bell S, McCarty V, Peng H, Jefri M, Hettige N, Antonyan L, Crapper L, O'Leary LA, Zhang X, Zhang Y, Wu H, Sutcliffe D, Kolobova I, Rosenberger TA, Moquin L, Gratton A, Popic J, Gantois I, Stumpf PS, Schuppert AA, Mechawar N, Sonenberg N, Tremblay ML, Jinnah HA, Ernst C. Lesch-Nyhan disease causes impaired energy metabolism and reduced developmental potential in midbrain dopaminergic cells. Stem Cell Reports 2021; 16:1749-1762. [PMID: 34214487 PMCID: PMC8282463 DOI: 10.1016/j.stemcr.2021.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 10/30/2022] Open
Abstract
Mutations in HPRT1, a gene encoding a rate-limiting enzyme for purine salvage, cause Lesch-Nyhan disease which is characterized by self-injury and motor impairments. We leveraged stem cell and genetic engineering technologies to model the disease in isogenic and patient-derived forebrain and midbrain cell types. Dopaminergic progenitor cells deficient in HPRT showed decreased intensity of all developmental cell-fate markers measured. Metabolic analyses revealed significant loss of all purine derivatives, except hypoxanthine, and impaired glycolysis and oxidative phosphorylation. real-time glucose tracing demonstrated increased shunting to the pentose phosphate pathway for de novo purine synthesis at the expense of ATP production. Purine depletion in dopaminergic progenitor cells resulted in loss of RHEB, impairing mTORC1 activation. These data demonstrate dopaminergic-specific effects of purine salvage deficiency and unexpectedly reveal that dopaminergic progenitor cells are programmed to a high-energy state prior to higher energy demands of terminally differentiated cells.
Collapse
Affiliation(s)
- Scott Bell
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Vincent McCarty
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Nuwan Hettige
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Lilit Antonyan
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Liam Crapper
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Liam A O'Leary
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Ying Zhang
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Hanrong Wu
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Diane Sutcliffe
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Ilaria Kolobova
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Thad A Rosenberger
- Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Luc Moquin
- Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Alain Gratton
- Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Jelena Popic
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Ilse Gantois
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Andreas A Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Naguib Mechawar
- Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Hyder A Jinnah
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Carl Ernst
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada.
| |
Collapse
|
22
|
Axonal TAU Sorting Requires the C-terminus of TAU but is Independent of ANKG and TRIM46 Enrichment at the AIS. Neuroscience 2021; 461:155-171. [PMID: 33556457 DOI: 10.1016/j.neuroscience.2021.01.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/06/2023]
Abstract
Somatodendritic missorting of the axonal protein TAU is a hallmark of Alzheimer's disease and related tauopathies. Rodent primary neurons and iPSC-derived neurons are used for studying mechanisms of neuronal polarity, including TAU trafficking. However, these models are expensive, time-consuming, and/or require the killing of animals. In this study, we tested four differentiation procedures to generate mature neuron cultures from human SH-SY5Y neuroblastoma cells and assessed the TAU sorting capacity. We show that SH-SY5Y-derived neurons, differentiated with sequential RA/BDNF treatment, are suitable for investigating axonal TAU sorting. These human neurons show pronounced neuronal polarity, axodendritic outgrowth, expression of the neuronal maturation markers TAU and MAP2, and, importantly, efficient axonal sorting of endogenous and transfected human wild-type TAU, similar to mouse primary neurons. We demonstrate that the N-terminal half of TAU is not sufficient for axonal targeting, as a C-terminus-lacking construct (N-term-TAUHA) is not axonally enriched in both neuronal cell models. Importantly, SH-SY5Y-derived neurons do not show the formation of a classical axon initial segment (AIS), indicated by the lack of ankyrin G (ANKG) and tripartite motif-containing protein 46 (TRIM46) at the proximal axon, which suggests that successful axonal TAU sorting is independent of classical AIS formation. Taken together, our results provide evidence that (i) SH-SY5Y-derived neurons are a valuable human neuronal cell model for studying TAU sorting readily accessible at low cost and without animal need, and that (ii) efficient axonal TAU targeting is independent of ANKG or TRIM46 enrichment at the proximal axon in these neurons.
Collapse
|
23
|
Bell S, Rousseau J, Peng H, Aouabed Z, Priam P, Theroux JF, Jefri M, Tanti A, Wu H, Kolobova I, Silviera H, Manzano-Vargas K, Ehresmann S, Hamdan FF, Hettige N, Zhang X, Antonyan L, Nassif C, Ghaloul-Gonzalez L, Sebastian J, Vockley J, Begtrup AG, Wentzensen IM, Crunk A, Nicholls RD, Herman KC, Deignan JL, Al-Hertani W, Efthymiou S, Salpietro V, Miyake N, Makita Y, Matsumoto N, Østern R, Houge G, Hafström M, Fassi E, Houlden H, Klein Wassink-Ruiter JS, Nelson D, Goldstein A, Dabir T, van Gils J, Bourgeron T, Delorme R, Cooper GM, Martinez JE, Finnila CR, Carmant L, Lortie A, Oegema R, van Gassen K, Mehta SG, Huhle D, Abou Jamra R, Martin S, Brunner HG, Lindhout D, Au M, Graham JM, Coubes C, Turecki G, Gravel S, Mechawar N, Rossignol E, Michaud JL, Lessard J, Ernst C, Campeau PM. Mutations in ACTL6B Cause Neurodevelopmental Deficits and Epilepsy and Lead to Loss of Dendrites in Human Neurons. Am J Hum Genet 2019; 104:815-834. [PMID: 31031012 PMCID: PMC6507050 DOI: 10.1016/j.ajhg.2019.03.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/01/2019] [Indexed: 02/04/2023] Open
Abstract
We identified individuals with variations in ACTL6B, a component of the chromatin remodeling machinery including the BAF complex. Ten individuals harbored bi-allelic mutations and presented with global developmental delay, epileptic encephalopathy, and spasticity, and ten individuals with de novo heterozygous mutations displayed intellectual disability, ambulation deficits, severe language impairment, hypotonia, Rett-like stereotypies, and minor facial dysmorphisms (wide mouth, diastema, bulbous nose). Nine of these ten unrelated individuals had the identical de novo c.1027G>A (p.Gly343Arg) mutation. Human-derived neurons were generated that recaptured ACTL6B expression patterns in development from progenitor cell to post-mitotic neuron, validating the use of this model. Engineered knock-out of ACTL6B in wild-type human neurons resulted in profound deficits in dendrite development, a result recapitulated in two individuals with different bi-allelic mutations, and reversed on clonal genetic repair or exogenous expression of ACTL6B. Whole-transcriptome analyses and whole-genomic profiling of the BAF complex in wild-type and bi-allelic mutant ACTL6B neural progenitor cells and neurons revealed increased genomic binding of the BAF complex in ACTL6B mutants, with corresponding transcriptional changes in several genes including TPPP and FSCN1, suggesting that altered regulation of some cytoskeletal genes contribute to altered dendrite development. Assessment of bi-alleic and heterozygous ACTL6B mutations on an ACTL6B knock-out human background demonstrated that bi-allelic mutations mimic engineered deletion deficits while heterozygous mutations do not, suggesting that the former are loss of function and the latter are gain of function. These results reveal a role for ACTL6B in neurodevelopment and implicate another component of chromatin remodeling machinery in brain disease.
Collapse
Affiliation(s)
- Scott Bell
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Justine Rousseau
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Zahia Aouabed
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jean-Francois Theroux
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Arnaud Tanti
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Hanrong Wu
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Ilaria Kolobova
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Heika Silviera
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Karla Manzano-Vargas
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Sophie Ehresmann
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Fadi F Hamdan
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Nuwan Hettige
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Lilit Antonyan
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Christina Nassif
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Lina Ghaloul-Gonzalez
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Jessica Sebastian
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Jerry Vockley
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | | | | | - Robert D Nicholls
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Kristin C Herman
- University of California at Davis Medical Center, Section of Medical Genomics, Sacramento, CA 95817, USA
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Walla Al-Hertani
- Departments of Medical Genetics and Paediatrics, Cumming School of Medicine, Alberta Children's Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yoshio Makita
- Education Center, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Rune Østern
- Department of Pediatrics, St. Olav's Hospital, Trondheim University Hospital, Postbox 3250, Sluppen 7006 Trondheim, Norway
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Maria Hafström
- Department of Pediatrics, St. Olav's Hospital, Trondheim University Hospital, Postbox 3250, Sluppen 7006 Trondheim, Norway
| | - Emily Fassi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Jolien S Klein Wassink-Ruiter
- Department of Genetics, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Dominic Nelson
- McGill University, Department of Human Genetics, Montreal, QC H3G 0B1, Canada
| | - Amy Goldstein
- Division of Child Neurology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Tabib Dabir
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, UK
| | - Julien van Gils
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, University Paris Diderot, Paris 75015, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, University Paris Diderot, Paris 75015, France
| | - Richard Delorme
- Assistance Publique Hôpitaux de Paris (APHP), Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris, France
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | - Lionel Carmant
- Children's Rehabilitation Service, Mobile, AL 36604, USA
| | - Anne Lortie
- Department of Neurology, University of Montreal, Montreal, QC, Canada
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, 3508 AB Utrecht, the Netherlands
| | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, 3508 AB Utrecht, the Netherlands
| | - Sarju G Mehta
- Department of Clinical Genetics, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Dagmar Huhle
- Department of Clinical Genetics, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - Sonja Martin
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 GA, the Netherlands; Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6202 AZ Maastricht, the Netherlands
| | - Dick Lindhout
- Department of Genetics, University Medical Center Utrecht, Utrecht & Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Margaret Au
- Medical Genetics, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John M Graham
- Medical Genetics, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christine Coubes
- Service de génétique clinique, Département de génétique médicale, Maladies rares et médecine personnalisée, Centre de Référence Anomalies du développement et Syndromes malformatifs du Sud-Ouest Occitanie Réunion, CHU de Montpellier, 34295 Montpellier Cedex 5, France
| | - Gustavo Turecki
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Simon Gravel
- Department of Genetics, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Naguib Mechawar
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Elsa Rossignol
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Jacques L Michaud
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Julie Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Carl Ernst
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada.
| | - Philippe M Campeau
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|