1
|
George AE, Stout JJ, Griffin AL. Pausing and reorienting behaviors enhance the performance of a spatial working memory task. Behav Brain Res 2023; 446:114410. [PMID: 36990355 PMCID: PMC10173357 DOI: 10.1016/j.bbr.2023.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
During spatial working memory tasks, animals need to retain information about a previous trial in order to successfully select their next trajectory. Specifically, the delayed non-match to position task requires rats to follow a cued sample trajectory, then select the opposite route after a delay period. When faced with this choice, rats will occasionally exhibit complex behaviors, such as pausing and sweeping their head back and forth. These behaviors, called vicarious trial and error (VTE), are thought to be a behavioral manifestation of deliberation. However, we identified similarly complex behaviors during sample-phase traversals, despite the fact that these laps do not require a decision. First, we identified that these behaviors occurred more often after incorrect trials than before them, indicating that rats are retaining information between trials. Next, we determined that these pause-and-reorient (PAR) behaviors increased the likelihood of the next choice being selected correctly, suggesting that these behaviors assist the rat in successful task performance. Finally, we identified similarities between PARs and choice-phase VTEs, suggesting that VTEs may not only be reflective of deliberation, but may also contribute to a strategy for successful performance of spatial working memory tasks.
Collapse
Affiliation(s)
- Allison E George
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - John J Stout
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
2
|
Kaki S, DeRosa H, Timmerman B, Brummelte S, Hunter RG, Kentner AC. Developmental Manipulation-Induced Changes in Cognitive Functioning. Curr Top Behav Neurosci 2023; 63:241-289. [PMID: 36029460 PMCID: PMC9971379 DOI: 10.1007/7854_2022_389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Schizophrenia is a complex neurodevelopmental disorder with as-yet no identified cause. The use of animals has been critical to teasing apart the potential individual and intersecting roles of genetic and environmental risk factors in the development of schizophrenia. One way to recreate in animals the cognitive impairments seen in people with schizophrenia is to disrupt the prenatal or neonatal environment of laboratory rodent offspring. This approach can result in congruent perturbations in brain physiology, learning, memory, attention, and sensorimotor domains. Experimental designs utilizing such animal models have led to a greatly improved understanding of the biological mechanisms that could underlie the etiology and symptomology of schizophrenia, although there is still more to be discovered. The implementation of the Research and Domain Criterion (RDoC) has been critical in taking a more comprehensive approach to determining neural mechanisms underlying abnormal behavior in people with schizophrenia through its transdiagnostic approach toward targeting mechanisms rather than focusing on symptoms. Here, we describe several neurodevelopmental animal models of schizophrenia using an RDoC perspective approach. The implementation of animal models, combined with an RDoC framework, will bolster schizophrenia research leading to more targeted and likely effective therapeutic interventions resulting in better patient outcomes.
Collapse
Affiliation(s)
- Sahith Kaki
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Holly DeRosa
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
- University of Massachusetts Boston, Boston, MA, USA
| | - Brian Timmerman
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | | | - Amanda C Kentner
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
3
|
Sun T, Shi Q, Zhang Y, Power C, Hoesch C, Antonelli S, Schroeder MK, Caldarone BJ, Taudte N, Schenk M, Hettmann T, Schilling S, McDannold NJ, Lemere CA. Focused ultrasound with anti-pGlu3 Aβ enhances efficacy in Alzheimer's disease-like mice via recruitment of peripheral immune cells. J Control Release 2021; 336:443-456. [PMID: 34186148 DOI: 10.1016/j.jconrel.2021.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Pyroglutamate-3 amyloid-β (pGlu3 Aβ) is an N-terminally modified, pathogenic form of amyloid-β that is present in cerebral amyloid plaques and vascular deposits. Here, we used focused ultrasound (FUS) with microbubbles to enhance the intravenous delivery of an Fc-competent anti-pGlu3 Aβ monoclonal antibody, 07/2a mAb, across the blood brain barrier (BBB) in an attempt to improve Aβ removal and memory in aged APP/PS1dE9 mice, an Alzheimer's disease (AD)-like model of amyloidogenesis. First, we demonstrated that bilateral hippocampal FUS-BBB disruption (FUS-BBBD) led to a 5.5-fold increase of 07/2a mAb delivery to the brains compared to non-sonicated mice 72 h following a single treatment. Then, we determined that three weekly treatments with 07/2a mAb alone improved spatial learning and memory in aged, plaque-rich APP/PS1dE9 mice, and that this improvement occurred faster and in a higher percentage of animals when combined with FUS-BBBD. Mice given the combination treatment had reduced hippocampal plaque burden compared to PBS-treated controls. Furthermore, synaptic protein levels were higher in hippocampal synaptosomes from mice given the combination treatment compared to sham controls, and there were more CA3 synaptic puncta labeled in the APP/PS1dE9 mice given the combination treatment compared to those given mAb alone. Plaque-associated microglia were present in the hippocampi of APP/PS1dE9 mice treated with 07/2a mAb with and without FUS-BBBD. However, we discovered that plaque-associated Ly6G+ monocytes were only present in the hippocampi of APP/PS1dE9 mice that were given FUS-BBBD alone or even more so, the combination treatment. Lastly, FUS-BBBD did not increase the incidence of microhemorrhage in mice with or without 07/2a mAb treatment. Our findings suggest that FUS is a useful tool to enhance delivery and efficacy of an anti-pGlu3 Aβ mAb for immunotherapy either via an additive effect or an independent mechanism. We revealed a potential novel mechanism wherein the combination of 07/2a mAb with FUS-BBBD led to greater monocyte infiltration and recruitment to plaques in this AD-like model. Overall, these effects resulted in greater plaque removal, sparing of synapses and improved cognitive function without causing overt damage, suggesting the possibility of FUS-BBBD as a noninvasive method to increase the therapeutic efficacy of drugs or biologics in AD patients.
Collapse
Affiliation(s)
- Tao Sun
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Qiaoqiao Shi
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Yongzhi Zhang
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Chanikarn Power
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America
| | - Camilla Hoesch
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America
| | - Shawna Antonelli
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America
| | - Maren K Schroeder
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America
| | - Barbara J Caldarone
- Harvard Medical School Mouse Behavior Core, Boston, MA, United States of America
| | - Nadine Taudte
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Halle (Saale), Germany
| | - Mathias Schenk
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Halle (Saale), Germany
| | | | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Halle (Saale), Germany; Vivoryon Therapeutics AG, Halle (Saale), Germany; Anhalt University of Applied Sciences, Köthen, Germany
| | - Nathan J McDannold
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases in the Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|