1
|
Gonzalez V, Hurtado-Monzón AM, O'Krafka S, Mühlberger E, Letko M, Frank HK, Laing ED, Phelps KL, Becker DJ, Munster VJ, Falzarano D, Schountz T, Seifert SN, Banerjee A. Studying bats using a One Health lens: bridging the gap between bat virology and disease ecology. J Virol 2024; 98:e0145324. [PMID: 39499009 DOI: 10.1128/jvi.01453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Accumulating data suggest that some bat species host emerging viruses that are highly pathogenic in humans and agricultural animals. Laboratory-based studies have highlighted important adaptations in bat immune systems that allow them to better tolerate viral infections compared to humans. Simultaneously, ecological studies have discovered critical extrinsic factors, such as nutritional stress, that correlate with virus shedding in wild-caught bats. Despite some progress in independently understanding the role of bats as reservoirs of emerging viruses, there remains a significant gap in the molecular understanding of factors that drive virus spillover from bats. Driven by a collective goal of bridging the gap between the fields of bat virology, immunology, and disease ecology, we hosted a satellite symposium at the 2024 American Society for Virology meeting. Bringing together virologists, immunologists, and disease ecologists, we discussed the intrinsic and extrinsic factors such as virus receptor engagement, adaptive immunity, and virus ecology that influence spillover from bat hosts. This article summarizes the topics discussed during the symposium and emphasizes the need for interdisciplinary collaborations and resource sharing.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arianna M Hurtado-Monzón
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sabrina O'Krafka
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elke Mühlberger
- Department of Virology, Immunology, and Microbiology, Boston University, Boston, Massachusetts, USA
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Hannah K Frank
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), Hamilton, Montana, USA
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Stephanie N Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Shrewsbury JV, Vitus ES, Koziol AL, Nenarokova A, Jess T, Elmahdi R. Comprehensive phage display viral antibody profiling using VirScan: potential applications in chronic immune-mediated disease. J Virol 2024; 98:e0110224. [PMID: 39431820 PMCID: PMC11575288 DOI: 10.1128/jvi.01102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput platform that uses programmable phage display for serology. VirScan, a specific PhIP-Seq library encoding viral peptides from all known human viruses, enables comprehensive quantification of past viral exposures. We review its use in immune-mediated diseases (IMDs), highlighting its utility in identifying viral exposures in the context of IMD development. Finally, we evaluate its potential for precision medicine by integrating it with other large-scale omics data sets.
Collapse
Affiliation(s)
- Jed Valentiner Shrewsbury
- Faculty of Medicine, Imperial College London, London, United Kingdom
- Ashford and St. Peter's Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Evangelin Shaloom Vitus
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Adam Leslie Koziol
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Tine Jess
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Rahma Elmahdi
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
3
|
Burkes R. The Role of Viral Infections in the Development and Progression of COPD. Semin Respir Crit Care Med 2024; 45:543-547. [PMID: 39454638 DOI: 10.1055/s-0044-1791737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic disease seen in smokers associated with poor functional status, quality of life, and morbidity and mortality from acute worsening of chronic symptoms, also called exacerbations. As a disease, the risk factors for COPD are well defined; however, there is room for innovation in identifying underlying biological processes, or "endotypes," that lead to the emergence and/or progression of COPD. Identifying endotypes allows for more thorough understanding of the disease, may reveal the means of disease prevention, and may be leveraged in novel therapeutic approaches. In this review, we discuss the interface of viral infections with both cellular and epithelial immunity as a potential endotype of interest in COPD.
Collapse
Affiliation(s)
- Robert Burkes
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
4
|
Huang Z, Gunarathne SMS, Liu W, Zhou Y, Jiang Y, Li S, Huang J. PhIP-Seq: methods, applications and challenges. FRONTIERS IN BIOINFORMATICS 2024; 4:1424202. [PMID: 39295784 PMCID: PMC11408297 DOI: 10.3389/fbinf.2024.1424202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Phage-immunoprecipitation sequencing (PhIP-Seq) technology is an innovative, high-throughput antibody detection method. It enables comprehensive analysis of individual antibody profiles. This technology shows great potential, particularly in exploring disease mechanisms and immune responses. Currently, PhIP-Seq has been successfully applied in various fields, such as the exploration of biomarkers for autoimmune diseases, vaccine development, and allergen detection. A variety of bioinformatics tools have facilitated the development of this process. However, PhIP-Seq technology still faces many challenges and has room for improvement. Here, we review the methods, applications, and challenges of PhIP-Seq and discuss its future directions in immunological research and clinical applications. With continuous progress and optimization, PhIP-Seq is expected to play an even more important role in future biomedical research, providing new ideas and methods for disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ziru Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Wenwen Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuwei Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuqing Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiqi Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
5
|
Chan YH, Liu Z, Bastard P, Khobrekar N, Hutchison KM, Yamazaki Y, Fan Q, Matuozzo D, Harschnitz O, Kerrouche N, Nakajima K, Amin P, Yatim A, Rinchai D, Chen J, Zhang P, Ciceri G, Chen J, Dobbs K, Belkaya S, Lee D, Gervais A, Aydın K, Kartal A, Hasek ML, Zhao S, Reino EG, Lee YS, Seeleuthner Y, Chaldebas M, Bailey R, Vanhulle C, Lorenzo L, Boucherit S, Rozenberg F, Marr N, Mogensen TH, Aubart M, Cobat A, Dulac O, Emiroglu M, Paludan SR, Abel L, Notarangelo L, Longnecker R, Smith G, Studer L, Casanova JL, Zhang SY. Human TMEFF1 is a restriction factor for herpes simplex virus in the brain. Nature 2024; 632:390-400. [PMID: 39048830 PMCID: PMC11306101 DOI: 10.1038/s41586-024-07745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Most cases of herpes simplex virus 1 (HSV-1) encephalitis (HSE) remain unexplained1,2. Here, we report on two unrelated people who had HSE as children and are homozygous for rare deleterious variants of TMEFF1, which encodes a cell membrane protein that is preferentially expressed by brain cortical neurons. TMEFF1 interacts with the cell-surface HSV-1 receptor NECTIN-1, impairing HSV-1 glycoprotein D- and NECTIN-1-mediated fusion of the virus and the cell membrane, blocking viral entry. Genetic TMEFF1 deficiency allows HSV-1 to rapidly enter cortical neurons that are either patient specific or derived from CRISPR-Cas9-engineered human pluripotent stem cells, thereby enhancing HSV-1 translocation to the nucleus and subsequent replication. This cellular phenotype can be rescued by pretreatment with type I interferon (IFN) or the expression of exogenous wild-type TMEFF1. Moreover, ectopic expression of full-length TMEFF1 or its amino-terminal extracellular domain, but not its carboxy-terminal intracellular domain, impairs HSV-1 entry into NECTIN-1-expressing cells other than neurons, increasing their resistance to HSV-1 infection. Human TMEFF1 is therefore a host restriction factor for HSV-1 entry into cortical neurons. Its constitutively high abundance in cortical neurons protects these cells from HSV-1 infection, whereas inherited TMEFF1 deficiency renders them susceptible to this virus and can therefore underlie HSE.
Collapse
Affiliation(s)
- Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Noopur Khobrekar
- The Center for Stem Cell Biology & Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Kennen M Hutchison
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qing Fan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniela Matuozzo
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Oliver Harschnitz
- The Center for Stem Cell Biology & Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
- Human Technopole, Milan, Italy
| | - Nacim Kerrouche
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Koji Nakajima
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Param Amin
- The Center for Stem Cell Biology & Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Gabriele Ciceri
- The Center for Stem Cell Biology & Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jia Chen
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Adrian Gervais
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Kürşad Aydın
- Department of Pediatric Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ayse Kartal
- Child Neurology Department, Selcuk University, Konya, Turkey
| | - Mary L Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Eduardo Garcia Reino
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoon Seung Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Matthieu Chaldebas
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | | - Lazaro Lorenzo
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Soraya Boucherit
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris (AP-HP), Cochin Hospital, Paris, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Mélodie Aubart
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Pediatric Neurology Department, Necker Hospital for Sick Children, Paris-City University, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Olivier Dulac
- Department of Pediatric Neurology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Melike Emiroglu
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Luigi Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard Longnecker
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Greg Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology & Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Paris Cité University, Imagine Institute, Paris, France.
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Paris Cité University, Imagine Institute, Paris, France.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.
| |
Collapse
|
6
|
Sojar H, Baron S, Hicar MD. Identification of a mimotope of a complex gp41 Human Immunodeficiency VIrus epitope related to a non-structural protein of Hepacivirus previously implicated in Kawasaki disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600771. [PMID: 38979252 PMCID: PMC11230383 DOI: 10.1101/2024.06.26.600771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background We have previously isolated a highly mutated VH1-02 antibody termed group C 76-Q13-6F5 (6F5) that targets a conformational epitope on gp41. 6F5 has the capacity to mediate Ab dependent cell cytotoxicity (ADCC). When the VH1-02 group C 76 antibodies variable chain sequence was reverted to germline (76Canc), this still retained ADCC activity. Due to this ability for the 76Canc germline antibody to functionally target this epitope, we sought to identify a protein target for vaccine development. Methods Initially, we interrogated peptide targeting by screening a microarray containing 29,127 linear peptides. Western blot and ELISAs were used to confirm binding and explore human serum targeting. Autoimmune targeting was further interrogated on a yeast-displayed human protein microarray. Results 76Canc specifically recognized a number of acidic peptides. Meme analysis identified a peptide sequence similar to a non-structural protein of Hepacivirus previously implicated in Kawasaki disease (KD). Binding was confirmed to top peptides, including the Hepacivirus-related and KD-related peptide. On serum competitions studies using samples from children with KD compared to controls, targeting of this epitope showed no specific correlation to having KD. Human protein autoantigen screening was also reassuring. Conclusions This study identifies a peptide that can mimic the gp41 epitope targeted by 76C group antibodies (i.e. a mimotope). We show little risk of autoimmune targeting including any inflammation similar to KD, implying non-specific targeting of this peptide during KD. Development of such peptides as the basis for vaccination should proceed cautiously.
Collapse
Affiliation(s)
- Hakimuddin Sojar
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| | - Sarah Baron
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| | - Mark D Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
7
|
Srichawla BS, Manan MR, Kipkorir V, Dhali A, Diebel S, Sawant T, Zia S, Carrion-Alvarez D, Suteja RC, Nurani K, Găman MA. Neuroinvasion of emerging and re-emerging arboviruses: A scoping review. SAGE Open Med 2024; 12:20503121241229847. [PMID: 38711470 PMCID: PMC11072077 DOI: 10.1177/20503121241229847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/16/2024] [Indexed: 05/08/2024] Open
Abstract
Background Arboviruses are RNA viruses and some have the potential to cause neuroinvasive disease and are a growing threat to global health. Objectives Our objective is to identify and map all aspects of arbovirus neuroinvasive disease, clarify key concepts, and identify gaps within our knowledge with appropriate future directions related to the improvement of global health. Methods Sources of Evidence: A scoping review of the literature was conducted using PubMed, Scopus, ScienceDirect, and Hinari. Eligibility Criteria: Original data including epidemiology, risk factors, neurological manifestations, neuro-diagnostics, management, and preventive measures related to neuroinvasive arbovirus infections was obtained. Sources of evidence not reporting on original data, non-English, and not in peer-reviewed journals were removed. Charting Methods: An initial pilot sample of 30 abstracts were reviewed by all authors and a Cohen's kappa of κ = 0.81 (near-perfect agreement) was obtained. Records were manually reviewed by two authors using the Rayyan QCRI software. Results A total of 171 records were included. A wide array of neurological manifestations can occur most frequently, including parkinsonism, encephalitis/encephalopathy, meningitis, flaccid myelitis, and Guillain-Barré syndrome. Magnetic resonance imaging of the brain often reveals subcortical lesions, sometimes with diffusion restriction consistent with acute ischemia. Vertical transmission of arbovirus is most often secondary to the Zika virus. Neurological manifestations of congenital Zika syndrome, include microcephaly, failure to thrive, intellectual disability, and seizures. Cerebrospinal fluid analysis often shows lymphocytic pleocytosis, elevated albumin, and protein consistent with blood-brain barrier dysfunction. Conclusions Arbovirus infection with neurological manifestations leads to increased morbidity and mortality. Risk factors for disease include living and traveling in an arbovirus endemic zone, age, pregnancy, and immunosuppressed status. The management of neuroinvasive arbovirus disease is largely supportive and focuses on specific neurological complications. There is a need for therapeutics and currently, management is based on disease prevention and limiting zoonosis.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Arkadeep Dhali
- Department of Internal Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sebastian Diebel
- Department of Family Medicine, Northern Ontario School of Medicine University, Sudbury, ON, Canada
| | - Tirtha Sawant
- Department of Neurology, Spartan Health Sciences University, Spartan Drive St, Saint Lucia
| | - Subtain Zia
- Department of Infectious Diseases, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Richard C Suteja
- Faculty of Medicine, Udayana University, Kampus Bukit, Jl, Raya Kampus Unud Jimbaran, Kec, Kuta Sel, Kabupaten Badung, Bukit Jimbaran, Bali, Indonesia
| | - Khulud Nurani
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, București, Romania
- Bucharest, Romania and Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, București, Romania
| |
Collapse
|
8
|
Liebhoff AM, Venkataraman T, Morgenlander WR, Na M, Kula T, Waugh K, Morrison C, Rewers M, Longman R, Round J, Elledge S, Ruczinski I, Langmead B, Larman HB. Efficient encoding of large antigenic spaces by epitope prioritization with Dolphyn. Nat Commun 2024; 15:1577. [PMID: 38383452 PMCID: PMC10881494 DOI: 10.1038/s41467-024-45601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
We investigate a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To cover large antigenic spaces, we develop Dolphyn, a method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn compresses the size of a peptide library by 78% compared to traditional tiling, increasing the antibody-reactive peptides from 10% to 31%. We find that the immune system develops antibodies to human gut bacteria-infecting viruses, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.
Collapse
Affiliation(s)
- Anna-Maria Liebhoff
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Thiagarajan Venkataraman
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - William R Morgenlander
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Miso Na
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Tomasz Kula
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - Charles Morrison
- Behavioral, Clinical and Epidemiologic Sciences, FHI 360, Durham, NC, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - Randy Longman
- Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - June Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Stephen Elledge
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Ben Langmead
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - H Benjamin Larman
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Fletcher AM, Bhattacharyya S. Infectious Myelopathies. Continuum (Minneap Minn) 2024; 30:133-159. [PMID: 38330476 DOI: 10.1212/con.0000000000001393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
OBJECTIVE Infectious myelopathy of any stage and etiology carries the potential for significant morbidity and mortality. This article details the clinical presentation, risk factors, and key diagnostic components of infectious myelopathies with the goal of improving the recognition of these disorders and guiding subsequent management. LATEST DEVELOPMENTS Despite our era of advanced multimodal imaging and laboratory diagnostic technology, a causative organism often remains unidentified in suspected infectious and parainfectious myelopathy cases. To improve diagnostic capability, newer technologies such as metagenomics are being harnessed to develop diagnostic assays with a greater breadth of data from each specimen and improvements in infection identification. Conventional assays have been optimized for improved sensitivity and specificity. ESSENTIAL POINTS Prompt recognition and treatment of infectious myelopathy decreases morbidity and mortality. The key diagnostic tools include serologies, CSF analysis, and imaging; however clinical presentation, epidemiologic risk factors, and history of recent illness are all vital to making the proper diagnosis because current laboratory and imaging modalities are often inconclusive. The cornerstone of recommended treatment is targeted antimicrobials with appropriate immune modulation, surgical intervention, supportive care, and interdisciplinary involvement, all of which further improve outcomes for patients with infectious myelopathy.
Collapse
|
10
|
Guo C, Wu JY. Pathogen Discovery in the Post-COVID Era. Pathogens 2024; 13:51. [PMID: 38251358 PMCID: PMC10821006 DOI: 10.3390/pathogens13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Pathogen discovery plays a crucial role in the fields of infectious diseases, clinical microbiology, and public health. During the past four years, the global response to the COVID-19 pandemic highlighted the importance of early and accurate identification of novel pathogens for effective management and prevention of outbreaks. The post-COVID era has ushered in a new phase of infectious disease research, marked by accelerated advancements in pathogen discovery. This review encapsulates the recent innovations and paradigm shifts that have reshaped the landscape of pathogen discovery in response to the COVID-19 pandemic. Primarily, we summarize the latest technology innovations, applications, and causation proving strategies that enable rapid and accurate pathogen discovery for both acute and historical infections. We also explored the significance and the latest trends and approaches being employed for effective implementation of pathogen discovery from various clinical and environmental samples. Furthermore, we emphasize the collaborative nature of the pandemic response, which has led to the establishment of global networks for pathogen discovery.
Collapse
Affiliation(s)
- Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Jian-Yong Wu
- School of Public Health, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
11
|
Filimonova I, Innocenti G, Vogl T. Phage Immunoprecipitation Sequencing (PhIP-Seq) for Analyzing Antibody Epitope Repertoires Against Food Antigens. Methods Mol Biol 2024; 2717:101-122. [PMID: 37737980 DOI: 10.1007/978-1-0716-3453-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
While thousands of food and environmental allergens have been reported, conventional methods for allergy testing typically rely on measuring immunoglobulin E (IgE) binding against panels of dozens to hundreds of antigens. Beyond IgE, also the specificity of other Ig (sub-)classes such as IgG4, has gained interest because of a potential protective role toward allergy.Phage immunoprecipitation sequencing (PhIP-Seq) allows to study hundreds of thousands of rationally selected peptide antigens and to resolve binding specificities of different Ig classes. This technology combines synthetic DNA libraries encoding antigens, with the display on the surface of T7 bacteriophages and next-generation sequencing (NGS) for quantitative readouts. Thereby binding of entire Ig repertoires can be measured to detect the exact epitopes of food allergens and to study potential cross-reactivity.In this chapter, we provide a summary of both the key experimental steps and various strategies for analyzing PhIP-Seq datasets, as well as comparing the advantages and disadvantages of this methodology for measuring antibody responses against food antigens.
Collapse
Affiliation(s)
- Ioanna Filimonova
- Medical University of Vienna, Center for Cancer Research, Vienna, Austria
| | - Gabriel Innocenti
- Medical University of Vienna, Center for Cancer Research, Vienna, Austria
| | - Thomas Vogl
- Medical University of Vienna, Center for Cancer Research, Vienna, Austria.
| |
Collapse
|
12
|
Zeng X, Bai G, Sun C, Ma B. Recent Progress in Antibody Epitope Prediction. Antibodies (Basel) 2023; 12:52. [PMID: 37606436 PMCID: PMC10443277 DOI: 10.3390/antib12030052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Recent progress in epitope prediction has shown promising results in the development of vaccines and therapeutics against various diseases. However, the overall accuracy and success rate need to be improved greatly to gain practical application significance, especially conformational epitope prediction. In this review, we examined the general features of antibody-antigen recognition, highlighting the conformation selection mechanism in flexible antibody-antigen binding. We recently highlighted the success and warning signs of antibody epitope predictions, including linear and conformation epitope predictions. While deep learning-based models gradually outperform traditional feature-based machine learning, sequence and structure features still provide insight into antibody-antigen recognition problems.
Collapse
Affiliation(s)
- Xincheng Zeng
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (C.S.)
| | - Ganggang Bai
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (C.S.)
| | - Chuance Sun
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (C.S.)
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (C.S.)
- Shanghai Digiwiser Biological, Inc., Shanghai 200131, China
| |
Collapse
|
13
|
Liebhoff AM, Venkataraman T, Morgenlander WR, Na M, Kula T, Waugh K, Morrison C, Rewers M, Longman R, Round J, Elledge S, Ruczinski I, Langmead B, Larman HB. Efficient encoding of large antigenic spaces by epitope prioritization with Dolphyn. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.30.551179. [PMID: 37577562 PMCID: PMC10418057 DOI: 10.1101/2023.07.30.551179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
We investigated a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To enhance this approach, we developed Dolphyn, a novel method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn improves the fraction of gut phage library peptides bound by antibodies from 10% to 31% in healthy individuals, while also reducing the number of synthesized peptides by 78%. In our study on gut phages, we discovered that the immune system develops antibodies to bacteria-infecting viruses in the human gut, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.
Collapse
Affiliation(s)
- Anna-Maria Liebhoff
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | - William R Morgenlander
- Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Miso Na
- Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Tomasz Kula
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, Colorado, USA
| | - Charles Morrison
- Behavioral, Clinical and Epidemiologic Sciences, FHI 360, Durham, NC, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, Colorado, USA
| | - Randy Longman
- Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - June Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Stephen Elledge
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Ben Langmead
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - H Benjamin Larman
- Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Mitchell MM, Leng Y, Boppana S, Britt WJ, Gutierrez Sanchez LH, Elledge SJ. Signatures of AAV-2 immunity are enriched in children with severe acute hepatitis of unknown etiology. Sci Transl Med 2023; 15:eadh9917. [PMID: 37494473 PMCID: PMC10501808 DOI: 10.1126/scitranslmed.adh9917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Severe acute hepatitis of unknown etiology in children is under investigation in 35 countries. Although several potential etiologic agents have been investigated, a clear cause for the liver damage observed in these cases remains to be identified. Using VirScan, a high-throughput antibody profiling technology, we probed the antibody repertoires of nine cases of severe acute hepatitis of unknown etiology treated at Children's of Alabama and compared their antibody responses with 38 pediatric and 470 adult controls. We report increased adeno-associated dependoparvovirus A (AAV-A) breadth in cases relative to controls and adeno-associated virus 2 (AAV-2) peptide responses that were conserved in seven of nine cases but rarely observed in pediatric and adult controls. These findings suggest that AAV-2 is a likely etiologic agent of severe acute hepatitis of unknown etiology.
Collapse
Affiliation(s)
- Moriah M. Mitchell
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Program in Systems, Synthetic, and Quantitative Biology, Harvard University, Boston, MA 02115, USA
| | - Yumei Leng
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Suresh Boppana
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William J. Britt
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Luz Helena Gutierrez Sanchez
- Division of Gastroenterology, Hepatitis, and Nutrition, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen J. Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Woodruff MC, Bonham KS, Anam FA, Walker TA, Faliti CE, Ishii Y, Kaminski CY, Ruunstrom MC, Cooper KR, Truong AD, Dixit AN, Han JE, Ramonell RP, Haddad NS, Rudolph ME, Yalavarthi S, Betin V, Natoli T, Navaz S, Jenks SA, Zuo Y, Knight JS, Khosroshahi A, Lee FEH, Sanz I. Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID. Nat Commun 2023; 14:4201. [PMID: 37452024 PMCID: PMC10349085 DOI: 10.1038/s41467-023-40012-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
While immunologic correlates of COVID-19 have been widely reported, their associations with post-acute sequelae of COVID-19 (PASC) remain less clear. Due to the wide array of PASC presentations, understanding if specific disease features associate with discrete immune processes and therapeutic opportunities is important. Here we profile patients in the recovery phase of COVID-19 via proteomics screening and machine learning to find signatures of ongoing antiviral B cell development, immune-mediated fibrosis, and markers of cell death in PASC patients but not in controls with uncomplicated recovery. Plasma and immune cell profiling further allow the stratification of PASC into inflammatory and non-inflammatory types. Inflammatory PASC, identifiable through a refined set of 12 blood markers, displays evidence of ongoing neutrophil activity, B cell memory alterations, and building autoreactivity more than a year post COVID-19. Our work thus helps refine PASC categorization to aid in both therapeutic targeting and epidemiological investigation of PASC.
Collapse
Affiliation(s)
- Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| | - Kevin S Bonham
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Fabliha A Anam
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Tiffany A Walker
- Department of Medicine, Division of General Internal Medicine, Emory University, Atlanta, GA, USA
| | - Caterina E Faliti
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Yusho Ishii
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | | | - Martin C Ruunstrom
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Kelly Rose Cooper
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Alexander D Truong
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Adviteeya N Dixit
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Jenny E Han
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Richard P Ramonell
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | - Sherwin Navaz
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Scott A Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Yu Zuo
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Jason S Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Arezou Khosroshahi
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA.
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| |
Collapse
|