1
|
Hodžić A, Veinović G, Alić A, Seki D, Kunert M, Nikolov G, Sukara R, Šupić J, Tomanović S, Berry D. A metalloprotease secreted by an environmentally acquired gut bacterium hinders Borrelia afzelii colonization in Ixodes ricinus. Front Cell Infect Microbiol 2024; 14:1476266. [PMID: 39450335 PMCID: PMC11499241 DOI: 10.3389/fcimb.2024.1476266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Although the importance of the microbiome in the context of tick biology and vector competence has recently come into a broader research focus, the field is still in its infancy and the complex ecological interactions between the tick residential bacteria and pathogens are obscure. Here, we show that an environmentally acquired gut bacterium has the potential to impair Borrelia afzelii colonization within the tick vector through a secreted metalloprotease. Oral introduction of either Bacillus cereus LTG-1 isolate or its purified enhancin (BcEnhancin) protein significantly reduces B. afzelii burden in the guts of Ixodes ricinus ticks. This effect is attributed to the ability of BcEnhancin to degrade a glycan-rich peritrophic matrix (PM), which is a gut protective barrier essential for Borrelia survival. Our study highlights the importance of the gut microbiome in determining tick vector competence and provides a deeper mechanistic insight into the complex network of interactions between Borrelia, the tick, and the tick microbiome.
Collapse
Affiliation(s)
- Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Gorana Veinović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Amer Alić
- Department of Clinical Sciences of Veterinary Medicine, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - David Seki
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Martin Kunert
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Georgi Nikolov
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Ratko Sukara
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jovana Šupić
- Department of Clinical Sciences of Veterinary Medicine, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Snežana Tomanović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Rosche KL, Hurtado J, Fisk EA, Vosbigian KA, Warren AL, Sidak-Loftis LC, Wright SJ, Ramirez-Zepp E, Park JM, Shaw DK. PERK-mediated antioxidant response is key for pathogen persistence in ticks. mSphere 2023; 8:e0032123. [PMID: 37733353 PMCID: PMC10597351 DOI: 10.1128/msphere.00321-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
A crucial phase in the life cycle of tick-borne pathogens is the time spent colonizing and persisting within the arthropod. Tick immunity is emerging as a key force shaping how transmissible pathogens interact with the vector. How pathogens remain in the tick despite immunological pressure remains unknown. In persistently infected Ixodes scapularis, we found that Borrelia burgdorferi (causative agent of Lyme disease) and Anaplasma phagocytophilum (causative agent of granulocytic anaplasmosis) activate a cellular stress pathway mediated by the endoplasmic reticulum receptor PKR-like ER kinase (PERK) and the central regulatory molecule eIF2α. Disabling the PERK pathway through pharmacological inhibition and RNA interference (RNAi) significantly decreased microbial numbers. In vivo RNAi of the PERK pathway not only reduced the number of A. phagocytophilum and B. burgdorferi colonizing larvae after a bloodmeal but also significantly reduced the number of bacteria that survive the molt. An investigation into PERK pathway-regulated targets revealed that A. phagocytophilum and B. burgdorferi induce activity of the antioxidant response regulator, nuclear factor erythroid 2-related factor 2 (Nrf2). Tick cells deficient for nrf2 expression or PERK signaling showed accumulation of reactive oxygen and nitrogen species in addition to reduced microbial survival. Supplementation with antioxidants rescued the microbicidal phenotype caused by blocking the PERK pathway. Altogether, our study demonstrates that the Ixodes PERK pathway is activated by transmissible microbes and facilitates persistence in the arthropod by potentiating an Nrf2-regulated antioxidant environment. IMPORTANCE Recent advances demonstrate that the tick immune system recognizes and limits the pathogens they transmit. Innate immune mediators such as antimicrobial peptides and reactive oxygen/nitrogen species are produced and restrict microbial survival. It is currently unclear how pathogens remain in the tick, despite this immune assault. We found that an antioxidant response controlled by the PERK branch of the unfolded protein response is activated in ticks that are persistently infected with Borrelia burgdorferi (Lyme disease) or Anaplasma phagocytophilum (granulocytic anaplasmosis). The PERK pathway induces the antioxidant response transcription factor, Nrf2, which coordinates a gene network that ultimately neutralizes reactive oxygen and nitrogen species. Interfering with this signaling cascade in ticks causes a significant decline in pathogen numbers. Given that innate immune products can cause collateral damage to host tissues, we speculate that this is an arthropod-driven response aimed at minimizing damage to "self" that also inadvertently benefits the pathogen. Collectively, our findings shed light on the mechanistic push and pull between tick immunity and pathogen persistence within the arthropod vector.
Collapse
Affiliation(s)
- Kristin L. Rosche
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Joanna Hurtado
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kaylee A. Vosbigian
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Ashley L. Warren
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Lindsay C. Sidak-Loftis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Sarah J. Wright
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Elisabeth Ramirez-Zepp
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Jason M. Park
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Sapiro AL, Hayes BM, Volk RF, Zhang JY, Brooks DM, Martyn C, Radkov A, Zhao Z, Kinnersley M, Secor PR, Zaro BW, Chou S. Longitudinal map of transcriptome changes in the Lyme pathogen Borrelia burgdorferi during tick-borne transmission. eLife 2023; 12:RP86636. [PMID: 37449477 PMCID: PMC10393048 DOI: 10.7554/elife.86636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Borrelia burgdorferi (Bb), the causative agent of Lyme disease, adapts to vastly different environments as it cycles between tick vector and vertebrate host. During a tick bloodmeal, Bb alters its gene expression to prepare for vertebrate infection; however, the full range of transcriptional changes that occur over several days inside of the tick are technically challenging to capture. We developed an experimental approach to enrich Bb cells to longitudinally define their global transcriptomic landscape inside nymphal Ixodes scapularis ticks during a transmitting bloodmeal. We identified 192 Bb genes that substantially change expression over the course of the bloodmeal from 1 to 4 days after host attachment. The majority of upregulated genes encode proteins found at the cell envelope or proteins of unknown function, including 45 outer surface lipoproteins embedded in the unusual protein-rich coat of Bb. As these proteins may facilitate Bb interactions with the host, we utilized mass spectrometry to identify candidate tick proteins that physically associate with Bb. The Bb enrichment methodology along with the ex vivo Bb transcriptomes and candidate tick interacting proteins presented here provide a resource to facilitate investigations into key determinants of Bb priming and transmission during the tick stage of its unique transmission cycle.
Collapse
Affiliation(s)
- Anne L Sapiro
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Beth M Hayes
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Regan F Volk
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Jenny Y Zhang
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Diane M Brooks
- Division of Biological Sciences, University of MontanaMissoulaUnited States
| | - Calla Martyn
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Atanas Radkov
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Ziyi Zhao
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Margie Kinnersley
- Division of Biological Sciences, University of MontanaMissoulaUnited States
| | - Patrick R Secor
- Division of Biological Sciences, University of MontanaMissoulaUnited States
| | - Balyn W Zaro
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
4
|
Rosche KL, Hurtado J, Fisk EA, Vosbigian KA, Warren AL, Sidak-Loftis LC, Wright SJ, Ramirez-Zepp E, Park JM, Shaw DK. PERK-mediated antioxidant response is key for pathogen persistence in ticks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542958. [PMID: 37398437 PMCID: PMC10312570 DOI: 10.1101/2023.05.30.542958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A crucial phase in the lifecycle of tick-borne pathogens is the time spent colonizing and persisting within the arthropod. Tick immunity is emerging as a key force shaping how transmissible pathogens interact with the vector. How pathogens remain in the tick despite immunological pressure remains unknown. In persistently infected Ixodes scapularis , we found that Borrelia burgdorferi (Lyme disease) and Anaplasma phagocytophilum (granulocytic anaplasmosis) activate a cellular stress pathway mediated by the endoplasmic reticulum receptor PERK and the central regulatory molecule, eIF2α. Disabling the PERK pathway through pharmacological inhibition and RNAi significantly decreased microbial numbers. In vivo RNA interference of the PERK pathway not only reduced the number of A. phagocytophilum and B. burgdorferi colonizing larvae after a bloodmeal, but also significantly reduced the number of bacteria that survive the molt. An investigation into PERK pathway-regulated targets revealed that A. phagocytophilum and B. burgdorferi induce activity of the antioxidant response regulator, Nrf2. Tick cells deficient for nrf2 expression or PERK signaling showed accumulation of reactive oxygen and nitrogen species in addition to reduced microbial survival. Supplementation with antioxidants rescued the microbicidal phenotype caused by blocking the PERK pathway. Altogether, our study demonstrates that the Ixodes PERK pathway is activated by transmissible microbes and facilitates persistence in the arthropod by potentiating an Nrf2-regulated antioxidant environment.
Collapse
Affiliation(s)
- Kristin L. Rosche
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Joanna Hurtado
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Kaylee A. Vosbigian
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Ashley L. Warren
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Lindsay C. Sidak-Loftis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Sarah J. Wright
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Elisabeth Ramirez-Zepp
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Jason M. Park
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Dana K. Shaw
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
5
|
Thompson C, Waldron C, George S, Ouyang Z. Role of the Hypothetical Protein BB0563 during Borrelia burgdorferi Infection in Animals. Infect Immun 2023; 91:e0053922. [PMID: 36744894 PMCID: PMC10016080 DOI: 10.1128/iai.00539-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The alternative sigma factor RpoS in Borrelia burgdorferi, the etiological agent of Lyme disease, has long been postulated to regulate virulence-associated genes other than ospC and dbpA. Here, we demonstrate that bb0563, a gene encoding a hypothetical protein, is regulated by RpoS and contributes to the optimal infectivity of B. burgdorferi. When B. burgdorferi was exposed to environmental stimuli, bb0563 showed similar expression patterns as rpoS, ospC, and dbpA. Expression of bb0563 was significantly downregulated when rpoS was inactivated and was restored in the complemented strain. By using rapid amplification of cDNA ends (RACE) and luciferase reporter assays, a functional promoter was identified in the regulatory region upstream of bb0563. Gene expression from this promoter was drastically decreased in the rpoS mutant. We next investigated the role of bb0563 during animal infection. By using quantitative reverse transcription-PCR (RT-PCR), we found that bb0563 was highly expressed in mouse tissues during infection. We further created a bb0563-deficient mutant in a bioluminescent B. burgdorferi strain and examined infection dynamics using in vivo imaging. Relative to the parental and complemented strains, the mutant showed a delayed infection pattern and bacterial load was reduced. Another bb0563 deletion mutant was also created in the strain 297 background, and quantitative PCR (qPCR) analysis revealed a significantly lower spirochetal burden in tissue samples collected from animals infected with the mutant. In addition, localization studies indicate that BB0563 is not exposed on the cell surface but is associated with outer membrane. Taken together, these results suggest that bb0563 is required for optimal infectivity of B. burgdorferi during experimental infection.
Collapse
Affiliation(s)
- Christina Thompson
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Connor Waldron
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Sierra George
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Kumar D, Downs LP, Embers M, Flynt AS, Karim S. Identification of microRNAs in the Lyme Disease Vector Ixodes scapularis. Int J Mol Sci 2022; 23:5565. [PMID: 35628370 PMCID: PMC9141961 DOI: 10.3390/ijms23105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in many biological processes, including the immune pathways that control bacterial, parasitic, and viral infections. Pathogens probably modify host miRNAs to facilitate successful infection, so they might be useful targets for vaccination strategies. There are few data on differentially expressed miRNAs in the black-legged tick Ixodes scapularis after infection with Borrelia burgdorferi, the causative agent of Lyme disease in the United States. Small RNA sequencing and qRT-PCR analysis were used to identify and validate differentially expressed I. scapularis salivary miRNAs. Small RNA-seq yielded 133,465,828 (≥18 nucleotides) and 163,852,135 (≥18 nucleotides) small RNA reads from Borrelia-infected and uninfected salivary glands for downstream analysis using the miRDeep2 algorithm. As such, 254 miRNAs were identified across all datasets, 25 of which were high confidence and 51 low confidence known miRNAs. Further, 23 miRNAs were differentially expressed in uninfected and infected salivary glands: 11 were upregulated and 12 were downregulated upon pathogen infection. Gene ontology and network analysis of target genes of differentially expressed miRNAs predicted roles in metabolic, cellular, development, cellular component biogenesis, and biological regulation processes. Several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including sphingolipid metabolism; valine, leucine and isoleucine degradation; lipid transport and metabolism; exosome biogenesis and secretion; and phosphate-containing compound metabolic processes, were predicted as targets of differentially expressed miRNAs. A qRT-PCR assay was utilized to validate the differential expression of miRNAs. This study provides new insights into the miRNAs expressed in I. scapularis salivary glands and paves the way for their functional manipulation to prevent or treat B. burgdorferi infection.
Collapse
Affiliation(s)
- Deepak Kumar
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (A.S.F.)
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA;
| | - Latoyia P. Downs
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA;
| | - Monica Embers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Alex Sutton Flynt
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (A.S.F.)
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA;
| | - Shahid Karim
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (D.K.); (A.S.F.)
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA;
| |
Collapse
|
7
|
Dwużnik-Szarek D, Mierzejewska EJ, Bajer A. Occurrence of juvenile Dermacentor reticulatus ticks in three regions in Poland: the final evidence of the conquest. Parasit Vectors 2021; 14:536. [PMID: 34649613 PMCID: PMC8518239 DOI: 10.1186/s13071-021-05039-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background Two populations of Dermacentor reticulatus ticks (Western and Eastern) in Poland are among the most dynamic tick populations in Central Europe. Expansion and settlement of ticks in new localizations depend on the presence of suitable hosts, for both adult and juvenile ticks. Methods The current study was planned to complement our previous studies on questing adult ticks and was focused on a collection of juvenile D. reticulatus ticks from rodents from three regions in Poland, defined by the presence/absence of adult ticks (regions of the Western and Eastern tick population and the gap area between them) to confirm the existence of stable populations. Rodent trapping was conducted in open habitats (fallow lands, wasteland and submerged meadows) in 2016–2018 in June, July and/or August to encompass seasonal peaks of larvae and nymph activity. Results Altogether, three tick species were collected, 2866 D. reticulatus, 2141 Ixodes ricinus and 427 Haemaphysalis concinna. Dermacentor reticulatus was the most common (72.3%) and abundant (mean 17.94 ± 2.62 ticks/rodent) tick species on rodents from the Eastern region; in the Western region infestation of rodents was only 6.8%. Ixodes ricinus was found in all three regions and was the only tick species collected from rodents from the gap area. Haemaphysalis concinna was noted only in the Western region. The highest infestation of juvenile D. reticulatus was recorded on voles (Myodes and Microtus spp.), infestation of I. ricinus was the highest on Apodemus mice, and the majority of H. concinna ticks were collected from root voles Alexandromys oeconomus. Conclusions Our study confirmed a stable population of D. reticulatus in Eastern and Central Poland and a lower prevalence and mean abundance of this tick species among rodents from the Western region. A lack of juvenile D. reticulatus on rodents in Niewiadów confirmed the existence of the gap area, free of D. reticulatus ticks. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05039-z.
Collapse
Affiliation(s)
- Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Ewa Julia Mierzejewska
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
8
|
Trevisan G, Cinco M, Trevisini S, di Meo N, Chersi K, Ruscio M, Forgione P, Bonin S. Borreliae Part 1: Borrelia Lyme Group and Echidna-Reptile Group. BIOLOGY 2021; 10:biology10101036. [PMID: 34681134 PMCID: PMC8533607 DOI: 10.3390/biology10101036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Borreliae are spirochaetes, which represent a heterogeneous phylum within bacteria. Spirochaetes are indeed distinguished from other bacteria for their spiral shape, which also characterizes Borreliae. This review describes briefly the organization of the phylum Spirocheteales with a digression about its pathogenicity and historical information about bacteria isolation and characterization. Among spirochaetes, Borrelia genus is here divided into three groups, namely the Lyme group (LG), the Echidna-Reptile group (REPG) and the Relapsing Fever group (RFG). Borreliae Part 1 deals with Lyme group and Echidna-Reptile group Borreliae, while the subject of Borreliae Part 2 is Relapsing Fever group and unclassified Borreliae. Lyme group Borreliae is organized here in sections describing ecology, namely tick vectors and animal hosts, epidemiology, microbiology, and Borrelia genome organization and antigen characterization. Furthermore, the main clinical manifestations in Lyme borreliosis are also described. Although included in the Lyme group due to their particular clinical features, Borrelia causing Baggio Yoshinari syndrome and Borrelia mayonii are described in dedicated paragraphs. The Borrelia Echidna-Reptile group has been recently characterized including spirochaetes that apparently are not pathogenic to humans, but infect reptiles and amphibians. The paragraph dedicated to this group of Borreliae describes their vectors, hosts, geographical distribution and their characteristics. Abstract Borreliae are divided into three groups, namely the Lyme group (LG), the Echidna-Reptile group (REPG) and the Relapsing Fever group (RFG). Currently, only Borrelia of the Lyme and RF groups (not all) cause infection in humans. Borreliae of the Echidna-Reptile group represent a new monophyletic group of spirochaetes, which infect amphibians and reptiles. In addition to a general description of the phylum Spirochaetales, including a brief historical digression on spirochaetosis, in the present review Borreliae of Lyme and Echidna-Reptile groups are described, discussing the ecology with vectors and hosts as well as microbiological features and molecular characterization. Furthermore, differences between LG and RFG are discussed with respect to the clinical manifestations. In humans, LG Borreliae are organotropic and cause erythema migrans in the early phase of the disease, while RFG Borreliae give high spirochaetemia with fever, without the development of erythema migrans. With respect of LG Borreliae, recently Borrelia mayonii, with intermediate characteristics between LG and RFG, has been identified. As part of the LG, it gives erythema migrans but also high spirochaetemia with fever. Hard ticks are vectors for both LG and REPG groups, but in LG they are mostly Ixodes sp. ticks, while in REPG vectors do not belong to that genus.
Collapse
Affiliation(s)
- Giusto Trevisan
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
| | - Marina Cinco
- DSV—Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Sara Trevisini
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Nicola di Meo
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Karin Chersi
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Maurizio Ruscio
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (K.C.); (M.R.)
| | - Patrizia Forgione
- UOSD Dermatologia, Centro Rif. Regionale Malattia di Hansen e Lyme, P.O. dei Pellegrini, ASL Napoli 1 Centro, 80145 Naples, Italy;
| | - Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
- Correspondence: ; Tel.: +39-040-3993266
| |
Collapse
|
9
|
Muz MN, Erat S, Mumcuoglu KY. Protozoan and Microbial Pathogens of House Cats in the Province of Tekirdag in Western Turkey. Pathogens 2021; 10:pathogens10091114. [PMID: 34578146 PMCID: PMC8466416 DOI: 10.3390/pathogens10091114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Domestic felines’ re-emerging infectious and neglected zoonotic diseases are a significant focus of global “One Health” efforts. This study aimed to rapidly diagnose 14 pathogens, including zoonoses by using PCR primers in 167 client-owned symptomatic cats, routinely accepted to the Veterinary Clinics of Tekirdag. The prevalence of pathogens investigated were as follows: Babesia canis canis (24%), Babesia microti (2.4%), Hepatozoon felis (10.8%), Cytauxzoon felis (6.6%), Bartonella henselae (40.1%), Anaplasma platys (30.5%), Anaplasma phagocytophilum (7.2%), Rickettsia felis (26.3%), Borrelia burgdorferi (21%), and hemotropic Mycoplasma sp. (11.4%). There was a significant difference between the prevalence of the pathogens (χ2 = 152.26, df = 9, p < 0.001). There was also a statistical difference between the gender of the cats in terms of the prevalence of all pathogens considered together (χ2 = 4.80, df = 1, p = 0.028), where the female cats showed a higher prevalence. This was not the case for the different age groups (χ2 = 2.92, df = 1, p = 0.088). The lowest infection was observed for B. microti (p < 0.001), while the highest infection was observed for B. henselae (p < 0.01). Leishmania donovani, Plasmodium spp., Ehrlichia chaffeensis, and Neoehrlichia mikurensis PCR test results were negative in all samples. In conclusion, house cats of Tekirdag are apparently highly susceptible to some neglected zoonoses important for “One Health”, and their prevalence in the region is most probably underestimated. Hence, applying PCR tests to assist fast clinic diagnosis in routine, may be an efficient option to protect the public as well as the cats from severe diseases.
Collapse
Affiliation(s)
- Mustafa Necati Muz
- Department of Parasitology, Faculty of Veterinary Medicine, University of Namik Kemal, Tekirdag 59000, Turkey
- Correspondence:
| | - Serkan Erat
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale 71450, Turkey;
| | - Kosta Y. Mumcuoglu
- Parasitology Unit, Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hadassah Medical School, The Hebrew University, Jerusalem 91120, Israel;
| |
Collapse
|