1
|
Nakashima H, Shinohara K, Matsumoto S, Nakashima R, Yoshida D, Ono Y, Miyamoto R, Ikeda S, Matsushima S, Hashimoto T, Katsuki S, Ikeda M, Yoshida K, Kinugawa S, Abe K. Establishment of a HFpEF model using female Dahl salt-sensitive rats: a valuable tool for elucidating the pathophysiology of HFpEF in women. Hypertens Res 2024:10.1038/s41440-024-02025-7. [PMID: 39609645 DOI: 10.1038/s41440-024-02025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
The pathogenesis of heart failure with preserved ejection fraction (HFpEF) remains unclear, and effective treatments are limited. HFpEF is more prevalent in females, indicating potential gender differences in its pathogenesis. However, no female HFpEF model animals have been established. Hypertension is a major contributor to HFpEF, and sympathetic activation is thought to play a role in both conditions. This study aimed to establish a female HFpEF model using hypertensive Dahl salt-sensitive rats and to assess the presence of sympathetic activation. Seven-week-old female Dahl salt-sensitive rats were fed an 8% high-salt diet (HS group, n = 6), while a low-salt diet group (LS group, n = 9) served as controls. The HS group exhibited increased systolic blood pressure and heart rate. Echocardiography revealed an increased left ventricular (LV) wall thickness, a decreased E/A ratio, and an increased E/e' ratio, all indicative of diastolic dysfunction without reduced LV ejection fraction. Additionally, the HS group showed elevated LV end-diastolic pressure, LV weight, and lung weight, along with histological cardiomyocyte hypertrophy and interstitial fibrosis. Gene expression markers for cardiac hypertrophy and fibrosis were also increased. Renal function was significantly impaired, and plasma norepinephrine levels were elevated, consistent with heightened pre-sympathetic neuronal activity in the brain. In conclusion, high salt loading from 7 weeks of age in female Dahl salt-sensitive rats induced hypertensive HFpEF phenotypes with LV hypertrophy and fibrosis, and sympathetic activation by 16 to 19 weeks of age. This model provides a valuable tool for studying HFpEF pathophysiology in women.
Collapse
Affiliation(s)
- Hiroka Nakashima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Sho Matsumoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Nakashima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Yoshida
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiyasu Ono
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryohei Miyamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shota Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Hashimoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Katsuki
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keimei Yoshida
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Sun L, Zhao X, Hou X, Zhang Y, Quan T, Dong L, Rao G, Ren X, Liang R, Nie J, Shi Y, Qin X. The role of serum sodium in evaluating the prognosis of pulmonary hypertension associated with left heart disease. Am J Med Sci 2024; 368:494-502. [PMID: 38909900 DOI: 10.1016/j.amjms.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Previous studies have shown that hyponatremia was strongly associated with a poor prognosis of type 1 pulmonary hypertension, and our team's antecedent studies found that low serum sodium was associated with the severity and the length of hospitalization of pulmonary hypertension associated with left ventricular disease (PH-LHD). However, the relationship between serum sodium and the prognosis of PH-LHD remains unclear. This study aims to determine the clinical value of serum sodium in evaluating poor prognosis in patients with PH-LHD. METHODS We successfully followed 716 patients with PH-LHD. Kaplan-Meier was used to plot survival in PH-LHD patients with different serum sodium levels. The effect of serum sodium on poor prognosis was analyzed using a Cox proportional risk model. The trends between patients serum sodium and survival were visualized by restricted cubic spline (RCS). RESULTS The survival rates at 1, 2, 3 and 4 years were 52%, 41%, 31% and 31% for the patients with hyponatremia associated with PH-LHD and 71%, 71%, 71% and 54% for the patients with hypernatremia, respectively. The observed mortality rate in the hyponatremia and hypernatremia groups surpassed that of the normonatremic group. The adjusted risks of death (risk ratio) for patients with hyponatremia and hypernatremia were found to be 2.044 and 1.877. Furthermore, the restricted cubic spline demonstrated an L-shaped correlation between serum sodium and all-cause mortality in patients with PH-LHD. CONCLUSIONS Abnormal serum sodium level is strongly associated with poor prognosis in PH-LHD. Serum sodium may play an important pathogenic role in PH-LHD occurrence and could be used as a marker to assess the survival in patients.
Collapse
Affiliation(s)
- Lin Sun
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi 030001, China
| | - Xu Zhao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi 030001, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi 030001, China; China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Shanxi 030001, China; Environmental exposures vascular disease institute, Shanxi 030001, China
| | - Yan Zhang
- Department of Foreign Languages, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi 030001, China
| | - Tingting Quan
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi 030001, China
| | - Lin Dong
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi 030001, China
| | - Guojiao Rao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi 030001, China
| | - Xiaoxia Ren
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ruifeng Liang
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi 030001, China
| | - Jisheng Nie
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi 030001, China
| | - Yiwei Shi
- NHC Key Laboratory of Pneumoconiosis, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, China
| | - Xiaojiang Qin
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi 030001, China; China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Shanxi 030001, China; NHC Key Laboratory of Pneumoconiosis, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University) Ministry of Education, China; Environmental exposures vascular disease institute, Shanxi 030001, China.
| |
Collapse
|
3
|
Dhauria M, Mondal R, Deb S, Shome G, Chowdhury D, Sarkar S, Benito-León J. Blood-Based Biomarkers in Alzheimer's Disease: Advancing Non-Invasive Diagnostics and Prognostics. Int J Mol Sci 2024; 25:10911. [PMID: 39456697 PMCID: PMC11507237 DOI: 10.3390/ijms252010911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is expected to rise dramatically in incidence due to the global population aging. Traditional diagnostic approaches, such as cerebrospinal fluid analysis and positron emission tomography, are expensive and invasive, limiting their routine clinical use. Recent advances in blood-based biomarkers, including amyloid-beta, phosphorylated tau, and neurofilament light, offer promising non-invasive alternatives for early AD detection and disease monitoring. This review synthesizes current research on these blood-based biomarkers, highlighting their potential to track AD pathology and enhance diagnostic accuracy. Furthermore, this review uniquely integrates recent findings on protein-protein interaction networks and microRNA pathways, exploring novel combinations of proteomic, genomic, and epigenomic biomarkers that provide new insights into AD's molecular mechanisms. Additionally, we discuss the integration of these biomarkers with advanced neuroimaging techniques, emphasizing their potential to revolutionize AD diagnostics. Although large-scale validation is still needed, these biomarkers represent a critical advancement toward more accessible, cost-effective, and early diagnostic tools for AD.
Collapse
Affiliation(s)
| | - Ritwick Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India;
| | - Shramana Deb
- Department of Stroke Medicine, Institute of Neuroscience, Kolkata 700017, India;
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Kolkata 700054, India;
| | - Dipanjan Chowdhury
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Shramana Sarkar
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, ES-28041 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), ES-28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ES-28029 Madrid, Spain
- Department of Medicine, Complutense University, ES-28040 Madrid, Spain
| |
Collapse
|
4
|
Evans LC, Dailey-Krempel B, Lauar MR, Dayton A, Vulchanova L, Osborn JW. Renal interoception in health and disease. Auton Neurosci 2024; 255:103208. [PMID: 39128142 DOI: 10.1016/j.autneu.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Catheter based renal denervation has recently been FDA approved for the treatment of hypertension. Traditionally, the anti-hypertensive effects of renal denervation have been attributed to the ablation of the efferent sympathetic renal nerves. In recent years the role of the afferent sensory renal nerves in the regulation of blood pressure has received increased attention. In addition, afferent renal denervation is associated with reductions in sympathetic nervous system activity. This suggests that reductions in sympathetic drive to organs other than the kidney may contribute to the non-renal beneficial effects observed in clinical trials of catheter based renal denervation. In this review we will provide an overview of the role of the afferent renal nerves in the regulation of renal function and the development of pathophysiologies, both renal and non-renal. We will also describe the central projections of the afferent renal nerves, to give context to the responses seen following their ablation and activation. Finally, we will discuss the emerging role of the kidney as an interoceptive organ. We will describe the potential role of the kidney in the regulation of interoceptive sensitivity and in this context, speculate on the possible pathological consequences of altered renal function.
Collapse
Affiliation(s)
- Louise C Evans
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Brianna Dailey-Krempel
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, United States of America
| | - Mariana R Lauar
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Alex Dayton
- Division of Nephrology and Hypertension, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, United States of America
| | - John W Osborn
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America.
| |
Collapse
|
5
|
Liu B, Hou B, Zhao Y, Gao F, Dong X, He J. Investigating potential mechanisms of vitamin D against thyroid cancer via network pharmacology and experimental validation. Chem Biol Drug Des 2024; 104:e14586. [PMID: 39013759 DOI: 10.1111/cbdd.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Thyroid cancer (TC) is one of the most common endocrine malignancies worldwide. Increasing evidence suggests that vitamin D (VD) has potential benefits in the treatment of TC. However, evidence regarding the targets and molecular mechanisms of VD in TC remains limited. In this study, we conducted network pharmacology, molecular docking, and experimental evaluation to explore the target genes, biological functions, and signaling pathways involved in this process. Network analysis revealed 77 potential target genes of VD against TC, and four hub target genes were identified: ESR1, KIT, CCND1, and PGR. Furthermore, we identified the biological processes (BP) and signaling pathways involving these potential target genes, and then determined the possible interaction between the hub targets and VD through molecular docking. Finally, through in vitro experiments, we found that VD effectively inhibits the proliferation of TC cells and downregulates the expression of the ESR1 gene. In conclusion, the effects of VD against TC involve multiple biological targets, BP, and signaling pathways. These findings provide scientific evidence for the application of VD in the treatment of TC.
Collapse
Affiliation(s)
- Bin Liu
- Shihezi University School of Medicine, Xinjiang, China
| | - Bowen Hou
- Shihezi University School of Medicine, Xinjiang, China
| | - Yu Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University School, Xinjiang, China
| | - Fengyi Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University School, Xinjiang, China
| | - Xiaoyin Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University School, Xinjiang, China
| | - Jiageng He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University School, Xinjiang, China
| |
Collapse
|
6
|
Oshchepkov DY, Makovka YV, Fedoseeva LA, Seryapina AA, Markel AL, Redina OE. Effect of Short-Term Restraint Stress on the Hypothalamic Transcriptome Profiles of Rats with Inherited Stress-Induced Arterial Hypertension (ISIAH) and Normotensive Wistar Albino Glaxo (WAG) Rats. Int J Mol Sci 2024; 25:6680. [PMID: 38928385 PMCID: PMC11203755 DOI: 10.3390/ijms25126680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Emotional stress is one of the health risk factors in the modern human lifestyle. Stress exposure can provoke the manifestation of various pathological conditions, one of which is a sharp increase in the blood pressure level. In the present study, we analyzed changes in the transcriptome profiles of the hypothalamus of hypertensive ISIAH and normotensive WAG rats exposed to a single short-term restraint stress (the rat was placed in a tight wire-mesh cage for 2 h). This type of stress can be considered emotional stress. The functional annotation of differentially expressed genes allowed us to identify the most significantly altered biological processes in the hypothalamus of hypertensive and normotensive rats. The study made it possible to identify a group of genes that describe a general response to stress, independent of the rat genotype, as well as a hypothalamic response to stress specific to each strain. The alternatively changing expression of the Npas4 (neuronal PAS domain protein 4) gene, which is downregulated in the hypothalamus of the control WAG rats and induced in the hypothalamus of hypertensive ISIAH rats, is suggested to be the key event for understanding inter-strain differences in the hypothalamic response to stress. The stress-dependent ISIAH strain-specific induction of Fos and Jun gene transcription may play a crucial role in neuronal activation in this rat strain. The data obtained can be potentially useful in the selection of molecular targets for the development of pharmacological approaches to the correction of stress-induced pathologies related to neuronal excitability, taking into account the hypertensive status of the patients.
Collapse
Affiliation(s)
- Dmitry Yu. Oshchepkov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
- Kurchatov Genomic Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yulia V. Makovka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Larisa A. Fedoseeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
| | - Alisa A. Seryapina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
| | - Arcady L. Markel
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga E. Redina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
| |
Collapse
|
7
|
Casals J, Broseta JJ, Fernández RM, Rodriguez-Espinosa D, Del Risco J, Gómez M, Rodas LM, Arias-Guillén M, Vera M, Fontseré N, Rico N, Maduell F. Correlation of plasmatic sodium determined by the laboratory and that determined by the dialysis machine. Nefrologia 2024; 44:417-422. [PMID: 38890062 DOI: 10.1016/j.nefroe.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Changes in plasma sodium concentration (pNa, expressed in mEq/L) are common in hemodialysis (HD) patients. Hemodialysis monitors can estimate pNa by using an internal algorithm based on ion dialysance measurements. The present study studies the accuracy of the correlation between the pNa estimated by the dialysis monitor and that measured by the biochemistry laboratory at our center. MATERIAL AND METHODS A single-centre prospective observational study in patients on a chronic HD program with the 6008 CAREsystem monitor and standard sodium (138mmol/L) and bicarbonate (32mmol/L) prescriptions. Venous blood samples were drawn from each patient before and after each HD session to ensure inter- and intra-individual validity. The pNa was measured in the biochemistry laboratory using indirect potentiometry and simultaneously the estimated pNa by the HD monitor was recorded at the beginning and at the end of the HD session. For statistical analysis, a scatterplot was made, and Spearman's correlation quotient was calculated. In addition, the differences between both methods were represented as Bland-Altman diagrams. RESULTS The pre-dialysis pNa measured in the laboratory was 137.49±3.3, and that of the monitor, 137.96±2.91, with a correlation with R2 value of 0.683 (p<0.001). The post-dialysis pNa measured in the laboratory was 137.08±2.23, and that of the monitor was 138.87±1.88, with an R2 of 0.442 (p<0.001). On the Bland-Altman plots, the pre-dialysis pNa has a systematic error of 0.49, in favor of the monitor-estimated pNa, with a 95% confidence interval (CI) of (-3.24 to a 4.22). In the post-dialysis pNa, a systematic error of 1.79 with a 95% CI of (-1.64 to 5.22) was obtained. CONCLUSION The correlation between the pNa estimated by Fresnius 6008 CAREsystem HD monitor and that measured by the laboratory is good, especially pre-dialysis measurements. Further studies should verify the external validity of these results.
Collapse
Affiliation(s)
- Joaquim Casals
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - José Jesús Broseta
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain.
| | | | | | - Jimena Del Risco
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - Miquel Gómez
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - Lida M Rodas
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - Marta Arias-Guillén
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - Manel Vera
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - Néstor Fontseré
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - Naira Rico
- Centro de Diagnóstico Biomédico, Hospital Clínic, Barcelona, Spain
| | - Francisco Maduell
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
8
|
Schwarz C, Lindner G, Windpessl M, Knechtelsdorfer M, Saemann MD. [Consensus recommendations on the diagnosis and treatment of hyponatremia from the Austrian Society for Nephrology 2024]. Wien Klin Wochenschr 2024; 136:1-33. [PMID: 38421476 PMCID: PMC10904443 DOI: 10.1007/s00508-024-02325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Hyponatremia is a disorder of water homeostasis. Water balance is maintained by the collaboration of renal function and cerebral structures, which regulate thirst mechanisms and secretion of the antidiuretic hormone. Measurement of serum-osmolality, urine osmolality and urine-sodium concentration help to diagnose the different reasons for hyponatremia. Hyponatremia induces cerebral edema and might lead to severe neurological symptoms, which need acute therapy. Also, mild forms of hyponatremia should be treated causally, or at least symptomatically. An inadequate fast increase of the serum sodium level should be avoided, because it raises the risk of cerebral osmotic demyelination. Basic pathophysiological knowledge is necessary to identify the different reasons for hyponatremia which need different therapeutic procedures.
Collapse
Affiliation(s)
- Christoph Schwarz
- Innere Medizin 1, Pyhrn-Eisenwurzenklinikum, Sierningerstr. 170, 4400, Steyr, Österreich.
| | - Gregor Lindner
- Zentrale Notaufnahme, Kepler Universitätsklinikum GmbH, Johannes-Kepler-Universität, Linz, Österreich
| | | | | | - Marcus D Saemann
- 6.Medizinische Abteilung mit Nephrologie und Dialyse, Klinik Ottakring, Wien, Österreich
- Medizinische Fakultät, Sigmund-Freud Universität, Wien, Österreich
| |
Collapse
|
9
|
Matsuda T, Kobayashi K, Kobayashi K, Noda M. Two parabrachial Cck neurons involved in the feedback control of thirst or salt appetite. Cell Rep 2024; 43:113619. [PMID: 38157299 DOI: 10.1016/j.celrep.2023.113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Thirst and salt appetite are temporarily suppressed after water and salt ingestion, respectively, before absorption; however, the underlying neural mechanisms remain unclear. The parabrachial nucleus (PBN) is the relay center of ingestion signals from the digestive organs. We herein identify two distinct neuronal populations expressing cholecystokinin (Cck) mRNA in the lateral PBN that are activated in response to water and salt intake, respectively. The two Cck neurons in the dorsal-lateral compartment of the PBN project to the median preoptic nucleus and ventral part of the bed nucleus of the stria terminalis, respectively. The optogenetic stimulation of respective Cck neurons suppresses thirst or salt appetite under water- or salt-depleted conditions. The combination of optogenetics and in vivo Ca2+ imaging during ingestion reveals that both Cck neurons control GABAergic neurons in their target nuclei. These findings provide the feedback mechanisms for the suppression of thirst and salt appetite after ingestion.
Collapse
Affiliation(s)
- Takashi Matsuda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1295, Japan
| | - Masaharu Noda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
10
|
Biagetti B, Sánchez-Montalvá A, Puig-Perez A, Campos-Varela I, Pilia MF, Anderssen-Nordahl E, González-Sans D, Miarons M, Simó R. Hyponatremia after COVID-19 is frequent in the first year and increases re-admissions. Sci Rep 2024; 14:595. [PMID: 38182711 PMCID: PMC10770325 DOI: 10.1038/s41598-023-50970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024] Open
Abstract
Hyponatremia on admission has been related to worse outcomes in patients with COVID-19 infection. However, little is known about the frequency and the associated risk factors of hyponatremia after COVID-19 discharge. We performed an observational 24-month follow-up study of patients admitted during the first COVID-19 wave. Kaplan-Meier curves and Cox proportional hazard models were used to assess the main variables in predicting hyponatremia on follow-up (HYPO-FU). A total of 161 out of 683 (24.4%) developed HYPO-FU. The group with HYPO-FU comprised of more men [(62.3%) vs. (49.2%); p < 0.01], older [65.6 ± 18.2 vs. 60.3 ± 17.0; p < 0.01] and more frequently re-admitted [(16.2%) vs. (3.8%); p < 0.01). The rate of HYPO-FU was higher in the first year 23.6 per 100 individuals per year. After Cox regression analysis, the independent risk factors of HYPO-FU were diabetes [OR 2.12, IC 95% (1.48-3.04)], hypertension [OR 2.18, IC 95% (1.53-3.12)], heart failure [OR 3.34, IC 95% (1.72-6.48)] and invasive ventilation support requirement [OR: 2.38, IC 95% (1.63-3.50)]. To conclude, HYPO-FU was frequent in the first year after COVID-19 infection, and the risk was higher in older men with comorbidities, increasing rehospitalisation. Further studies aimed at evaluating the beneficial effects of correcting hyponatremia in these patients are warranted.
Collapse
Affiliation(s)
- Betina Biagetti
- Endocrinology Department, Diabetes and Metabolism Research Unit, Vall d'Hebron University Hospital and Vall d'Hebron Research Institute (VHIR), Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Adrián Sánchez-Montalvá
- Infectious Diseases Department, Vall d'Hebrón University Hospital, Global Health Program from the Catalan Health Institute (PROSICS), Universitat Autònoma de Barcelona, Barcelona, Spain
- Mycobacterial Infection Study Group from the Spanish Society of Clinical Microbiology and Infectious Diseases (GEIM-SEIMC), Barcelona, Spain
- Infectious Diseases Netword Biomedical Research Center (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Albert Puig-Perez
- Endocrinology Department, Diabetes and Metabolism Research Unit, Vall d'Hebron University Hospital and Vall d'Hebron Research Institute (VHIR), Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Isabel Campos-Varela
- Liver Unit, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María Florencia Pilia
- Pneumology Department, Vall d'Hebron University Hospital, Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Emilie Anderssen-Nordahl
- Department of Clinical Pharmacology, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Didac González-Sans
- Systemic Autoimmune Diseases Unit, Internal Medicine Department, Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marta Miarons
- Pharmacy Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rafael Simó
- Endocrinology Department, Diabetes and Metabolism Research Unit, Vall d'Hebron University Hospital and Vall d'Hebron Research Institute (VHIR), Universidad Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Yang G, Jia M, Li G, Zang YY, Chen YY, Wang YY, Zhan SY, Peng SX, Wan G, Li W, Yang JJ, Shi YS. TMEM63B channel is the osmosensor required for thirst drive of interoceptive neurons. Cell Discov 2024; 10:1. [PMID: 38172113 PMCID: PMC10764952 DOI: 10.1038/s41421-023-00628-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024] Open
Abstract
Thirst plays a vital role in the regulation of body fluid homeostasis and if deregulated can be life-threatening. Interoceptive neurons in the subfornical organ (SFO) are intrinsically osmosensitive and their activation by hyperosmolarity is necessary and sufficient for generating thirst. However, the primary molecules sensing systemic osmolarity in these neurons remain elusive. Here we show that the mechanosensitive TMEM63B cation channel is the osmosensor required for the interoceptive neurons to drive thirst. TMEM63B channel is highly expressed in the excitatory SFO thirst neurons. TMEM63B deletion in these neurons impaired hyperosmolarity-induced drinking behavior, while re-expressing TMEM63B in SFO restored water appetite in TMEM63B-deficient mice. Remarkably, hyperosmolarity activates TMEM63B channels, leading to depolarization and increased firing rate of the interoceptive neurons, which drives drinking behavior. Furthermore, TMEM63B deletion did not affect sensitivities of the SFO neurons to angiotensin II or hypoosmolarity, suggesting that TMEM63B plays a specialized role in detecting hyperosmolarity in SFO neurons. Thus, our results reveal a critical osmosensor molecule for the generation of thirst perception.
Collapse
Affiliation(s)
- Guolin Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
- Department of Anesthesiology, Pain and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Min Jia
- Department of Anesthesiology, Pain and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guizhou Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Yan-Yu Zang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Yang-Yang Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Yue-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Shi-Yu Zhan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Shi-Xiao Peng
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Guoqiang Wan
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China.
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China.
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China.
| |
Collapse
|
12
|
Salgado-Mozo S, Thirouin ZS, Wyrosdic JC, García-Hernández U, Bourque CW. Na X Channel Is a Physiological [Na +] Detector in Oxytocin- and Vasopressin-Releasing Magnocellular Neurosecretory Cells of the Rat Supraoptic Nucleus. J Neurosci 2023; 43:8306-8316. [PMID: 37783507 PMCID: PMC10711705 DOI: 10.1523/jneurosci.1203-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The Scn7A gene encodes NaX, an atypical noninactivating Na+ channel, whose expression in sensory circumventricular organs is essential to maintain homeostatic responses for body fluid balance. However, NaX has also been detected in homeostatic effector neurons, such as vasopressin (VP)-releasing magnocellular neurosecretory cells (MNCVP) that secrete VP (antidiuretic hormone) into the bloodstream in response to hypertonicity and hypernatremia. Yet, the physiological relevance of NaX expression in these effector cells remains unclear. Here, we show that rat MNCVP in males and females is depolarized and excited in proportion with isosmotic increases in [Na+]. These responses were caused by an inward current resulting from a cell-autonomous increase in Na+ conductance. The Na+-evoked current was unaffected by blockers of other Na+-permeable ion channels but was significantly reduced by shRNA-mediated knockdown of Scn7A expression. Furthermore, reducing the density of NaX channels selectively impaired the activation of MNCVP by systemic hypernatremia without affecting their responsiveness to hypertonicity in vivo These results identify NaX as a physiological Na+ sensor, whose expression in MNCVP contributes to the generation of homeostatic responses to hypernatremia.SIGNIFICANCE STATEMENT In this study, we provide the first direct evidence showing that the sodium-sensing channel encoded by the Scn7A gene (NaX) mediates cell-autonomous sodium detection by MNCs in the low millimolar range and that selectively reducing the expression of these channels in MNCs impairs their activation in response to a physiologically relevant sodium stimulus in vitro and in vivo These data reveal that NaX operates as a sodium sensor in these cells and that the endogenous sensory properties of osmoregulatory effector neurons contribute to their homeostatic activation in vivo.
Collapse
Affiliation(s)
- Sandra Salgado-Mozo
- Brain Repair and Integrative Neuroscience Program, Research Institute of McGill University Health Center, Montréal, Québec H3G1A4, Canada
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies, Instituto Politecnico Nacional, 07360 Mexico City, Mexico
| | - Zahra S Thirouin
- Brain Repair and Integrative Neuroscience Program, Research Institute of McGill University Health Center, Montréal, Québec H3G1A4, Canada
| | - Joshua C Wyrosdic
- Brain Repair and Integrative Neuroscience Program, Research Institute of McGill University Health Center, Montréal, Québec H3G1A4, Canada
| | - Ubaldo García-Hernández
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies, Instituto Politecnico Nacional, 07360 Mexico City, Mexico
| | - Charles W Bourque
- Brain Repair and Integrative Neuroscience Program, Research Institute of McGill University Health Center, Montréal, Québec H3G1A4, Canada
| |
Collapse
|
13
|
Lucijanic M, Krecak I, Cicic D, Milosevic M, Vukoja D, Kovacevic I, Marasovic I, Sedinic Lacko M, Bakovic J, Jonjic Z, Vasilj T, Stojic J, Atic A. Hypoosmolar and hyperosmolar COVID-19 patients are predisposed to dismal clinical outcomes. Scand J Clin Lab Invest 2023; 83:397-402. [PMID: 37529905 DOI: 10.1080/00365513.2023.2241368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
We aimed to investigate the associations of hypo- and hyperosmolarity at hospital admission with clinical characteristics and outcomes in 5645 consecutive hospitalized COVID-19 patients treated at a tertiary-level institution. Serum osmolarity was calculated as 2x Na (mmol/L) + urea (mmol/L) + glucose (mmol/L), with normal range from 275 to 295 mOsm/L. Median serum osmolarity was 292.9 mOsm/L with 51.8% normoosmolar, 5.3% hypoosmolar and 42.9% hyperosmolar patients present at the time of hospital admission. Hypoosmolarity was driven by hyponatremia, and was associated with the presence of chronic liver disease, liver cirrhosis, active malignancy and epilepsy. Hyperosmolarity was driven by an increase in urea and glucose and was associated with the presence of chronic metabolic and cardiovascular comorbidities. Both hypo- and hyperosmolar patients presented with more severe COVID-19 symptoms, higher inflammatory status, and experienced higher mortality in comparison to normoosmolar patients. In multivariate analysis, hypoosmolarity (adjusted odds ratio (aOR)=1.39, p = 0.024) and hyperosmolarity (aOR = 1.9, p < 0.001) remained significantly associated with higher mortality independently of older age, male sex, higher Charlson Comorbidity Index and more severe COVID-19. Disruptions in serum osmolarity are frequent in COVID-19 patients, may be easy to detect and target therapeutically, and thus potentially moderate associateds poor prognosis.
Collapse
Affiliation(s)
- Marko Lucijanic
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krecak
- Internal Medicine Department, General Hospital Sibenik-Knin County, Sibenik, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - David Cicic
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Marko Milosevic
- Gastroenterology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Damir Vukoja
- Pulmonology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Ivona Kovacevic
- Pulmonology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Ivan Marasovic
- Pulmonology Department, University Hospital Dubrava, Zagreb, Croatia
| | | | - Josip Bakovic
- Abdominal Surgery Department, University Hospital Dubrava, Zagreb, Croatia
| | - Zeljko Jonjic
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Tamara Vasilj
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Josip Stojic
- Gastroenterology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Armin Atic
- Nephrology Department, University Hospital Center Zagreb, Zagreb, Croatia
| |
Collapse
|
14
|
Wang J, Lv F, Yin W, Gao Z, Liu H, Wang Z, Sun J. The organum vasculosum of the lamina terminalis and subfornical organ: regulation of thirst. Front Neurosci 2023; 17:1223836. [PMID: 37732311 PMCID: PMC10507174 DOI: 10.3389/fnins.2023.1223836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Thirst and water intake are regulated by the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO), located around the anteroventral third ventricle, which plays a critical role in sensing dynamic changes in sodium and water balance in body fluids. Meanwhile, neural circuits involved in thirst regulation and intracellular mechanisms underlying the osmosensitive function of OVLT and SFO are reviewed. Having specific Nax channels in the glial cells and other channels (such as TRPV1 and TRPV4), the OVLT and SFO detect the increased Na+ concentration or hyperosmolality to orchestrate osmotic stimuli to the insular and cingulate cortex to evoke thirst. Meanwhile, the osmotic stimuli are relayed to the supraoptic nucleus (SON) and paraventricular nucleus of the hypothalamus (PVN) via direct neural projections or the median preoptic nucleus (MnPO) to promote the secretion of vasopressin which plays a vital role in the regulation of body fluid homeostasis. Importantly, the vital role of OVLT in sleep-arousal regulation is discussed, where vasopressin is proposed as the mediator in the regulation when OVLT senses osmotic stimuli.
Collapse
Affiliation(s)
- Jiaxu Wang
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Fenglin Lv
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Yin
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhanpeng Gao
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongyu Liu
- Institute of Sport and Exercise Medicine, North University of China, Taiyuan, China
| | - Zhen Wang
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhao Sun
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Jin X, Xie J, Yeh CW, Chen JC, Cheng CJ, Lien CC, Huang CL. WNK1 promotes water homeostasis by acting as a central osmolality sensor for arginine vasopressin release. J Clin Invest 2023; 133:e164222. [PMID: 37071482 PMCID: PMC10231991 DOI: 10.1172/jci164222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
Maintaining internal osmolality constancy is essential for life. Release of arginine vasopressin (AVP) in response to hyperosmolality is critical. Current hypotheses for osmolality sensors in circumventricular organs (CVOs) of the brain focus on mechanosensitive membrane proteins. The present study demonstrated that intracellular protein kinase WNK1 was involved. Focusing on vascular-organ-of-lamina-terminalis (OVLT) nuclei, we showed that WNK1 kinase was activated by water restriction. Neuron-specific conditional KO (cKO) of Wnk1 caused polyuria with decreased urine osmolality that persisted in water restriction and blunted water restriction-induced AVP release. Wnk1 cKO also blunted mannitol-induced AVP release but had no effect on osmotic thirst response. The role of WNK1 in the osmosensory neurons in CVOs was supported by neuronal pathway tracing. Hyperosmolality-induced increases in action potential firing in OVLT neurons was blunted by Wnk1 deletion or pharmacological WNK inhibitors. Knockdown of Kv3.1 channel in OVLT by shRNA reproduced the phenotypes. Thus, WNK1 in osmosensory neurons in CVOs detects extracellular hypertonicity and mediates the increase in AVP release by activating Kv3.1 and increasing action potential firing from osmosensory neurons.
Collapse
Affiliation(s)
- Xin Jin
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jian Xie
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Jen-Chi Chen
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Chih-Jen Cheng
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Cheng-Chang Lien
- Institute of Neuroscience and
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chou-Long Huang
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
16
|
Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023; 15:nu15020395. [PMID: 36678265 PMCID: PMC9862583 DOI: 10.3390/nu15020395] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Body sodium (Na) levels must be maintained within a narrow range for the correct functioning of the organism (Na homeostasis). Na disorders include not only elevated levels of this solute (hypernatremia), as in diabetes insipidus, but also reduced levels (hyponatremia), as in cerebral salt wasting syndrome. The balance in body Na levels therefore requires a delicate equilibrium to be maintained between the ingestion and excretion of Na. Salt (NaCl) intake is processed by receptors in the tongue and digestive system, which transmit the information to the nucleus of the solitary tract via a neural pathway (chorda tympani/vagus nerves) and to circumventricular organs, including the subfornical organ and area postrema, via a humoral pathway (blood/cerebrospinal fluid). Circuits are formed that stimulate or inhibit homeostatic Na intake involving participation of the parabrachial nucleus, pre-locus coeruleus, medial tuberomammillary nuclei, median eminence, paraventricular and supraoptic nuclei, and other structures with reward properties such as the bed nucleus of the stria terminalis, central amygdala, and ventral tegmental area. Finally, the kidney uses neural signals (e.g., renal sympathetic nerves) and vascular (e.g., renal perfusion pressure) and humoral (e.g., renin-angiotensin-aldosterone system, cardiac natriuretic peptides, antidiuretic hormone, and oxytocin) factors to promote Na excretion or retention and thereby maintain extracellular fluid volume. All these intake and excretion processes are modulated by chemical messengers, many of which (e.g., aldosterone, angiotensin II, and oxytocin) have effects that are coordinated at peripheral and central level to ensure Na homeostasis.
Collapse
|
17
|
Durst und Trinken – Physiologie und Bedeutung für die Störungen des Wasserhaushalts. JOURNAL FÜR KLINISCHE ENDOKRINOLOGIE UND STOFFWECHSEL 2022. [DOI: 10.1007/s41969-022-00179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|