5
|
Ng A, Wei B, Jain J, Ward EA, Tandon SD, Moskowitz JT, Krogh-Jespersen S, Wakschlag LS, Alshurafa N. Predicting the Next-Day Perceived and Physiological Stress of Pregnant Women by Using Machine Learning and Explainability: Algorithm Development and Validation. JMIR Mhealth Uhealth 2022; 10:e33850. [PMID: 35917157 PMCID: PMC9382551 DOI: 10.2196/33850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/02/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Cognitive behavioral therapy–based interventions are effective in reducing prenatal stress, which can have severe adverse health effects on mothers and newborns if unaddressed. Predicting next-day physiological or perceived stress can help to inform and enable pre-emptive interventions for a likely physiologically and perceptibly stressful day. Machine learning models are useful tools that can be developed to predict next-day physiological and perceived stress by using data collected from the previous day. Such models can improve our understanding of the specific factors that predict physiological and perceived stress and allow researchers to develop systems that collect selected features for assessment in clinical trials to minimize the burden of data collection. Objective The aim of this study was to build and evaluate a machine-learned model that predicts next-day physiological and perceived stress by using sensor-based, ecological momentary assessment (EMA)–based, and intervention-based features and to explain the prediction results. Methods We enrolled pregnant women into a prospective proof-of-concept study and collected electrocardiography, EMA, and cognitive behavioral therapy intervention data over 12 weeks. We used the data to train and evaluate 6 machine learning models to predict next-day physiological and perceived stress. After selecting the best performing model, Shapley Additive Explanations were used to identify the feature importance and explainability of each feature. Results A total of 16 pregnant women enrolled in the study. Overall, 4157.18 hours of data were collected, and participants answered 2838 EMAs. After applying feature selection, 8 and 10 features were found to positively predict next-day physiological and perceived stress, respectively. A random forest classifier performed the best in predicting next-day physiological stress (F1 score of 0.84) and next-day perceived stress (F1 score of 0.74) by using all features. Although any subset of sensor-based, EMA-based, or intervention-based features could reliably predict next-day physiological stress, EMA-based features were necessary to predict next-day perceived stress. The analysis of explainability metrics showed that the prolonged duration of physiological stress was highly predictive of next-day physiological stress and that physiological stress and perceived stress were temporally divergent. Conclusions In this study, we were able to build interpretable machine learning models to predict next-day physiological and perceived stress, and we identified unique features that were highly predictive of next-day stress that can help to reduce the burden of data collection.
Collapse
Affiliation(s)
- Ada Ng
- McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Boyang Wei
- McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Jayalakshmi Jain
- McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Erin A Ward
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - S Darius Tandon
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Judith T Moskowitz
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Lauren S Wakschlag
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Nabil Alshurafa
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
7
|
Carmichael H, Coquet J, Sun R, Sang S, Groat D, Asch SM, Bledsoe J, Peltan ID, Jacobs JR, Hernandez-Boussard T. Learning from past respiratory failure patients to triage COVID-19 patient ventilator needs: A multi-institutional study. J Biomed Inform 2021; 119:103802. [PMID: 33965640 PMCID: PMC8159260 DOI: 10.1016/j.jbi.2021.103802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Unlike well-established diseases that base clinical care on randomized trials, past experiences, and training, prognosis in COVID19 relies on a weaker foundation. Knowledge from other respiratory failure diseases may inform clinical decisions in this novel disease. The objective was to predict 48-hour invasive mechanical ventilation (IMV) within 48 h in patients hospitalized with COVID-19 using COVID-like diseases (CLD). METHODS This retrospective multicenter study trained machine learning (ML) models on patients hospitalized with CLD to predict IMV within 48 h in COVID-19 patients. CLD patients were identified using diagnosis codes for bacterial pneumonia, viral pneumonia, influenza, unspecified pneumonia and acute respiratory distress syndrome (ARDS), 2008-2019. A total of 16 cohorts were constructed, including any combinations of the four diseases plus an exploratory ARDS cohort, to determine the most appropriate cohort to use. Candidate predictors included demographic and clinical parameters that were previously associated with poor COVID-19 outcomes. Model development included the implementation of logistic regression and three ensemble tree-based algorithms: decision tree, AdaBoost, and XGBoost. Models were validated in hospitalized COVID-19 patients at two healthcare systems, March 2020-July 2020. ML models were trained on CLD patients at Stanford Hospital Alliance (SHA). Models were validated on hospitalized COVID-19 patients at both SHA and Intermountain Healthcare. RESULTS CLD training data were obtained from SHA (n = 14,030), and validation data included 444 adult COVID-19 hospitalized patients from SHA (n = 185) and Intermountain (n = 259). XGBoost was the top-performing ML model, and among the 16 CLD training cohorts, the best model achieved an area under curve (AUC) of 0.883 in the validation set. In COVID-19 patients, the prediction models exhibited moderate discrimination performance, with the best models achieving an AUC of 0.77 at SHA and 0.65 at Intermountain. The model trained on all pneumonia and influenza cohorts had the best overall performance (SHA: positive predictive value (PPV) 0.29, negative predictive value (NPV) 0.97, positive likelihood ratio (PLR) 10.7; Intermountain: PPV, 0.23, NPV 0.97, PLR 10.3). We identified important factors associated with IMV that are not traditionally considered for respiratory diseases. CONCLUSIONS The performance of prediction models derived from CLD for 48-hour IMV in patients hospitalized with COVID-19 demonstrate high specificity and can be used as a triage tool at point of care. Novel predictors of IMV identified in COVID-19 are often overlooked in clinical practice. Lessons learned from our approach may assist other research institutes seeking to build artificial intelligence technologies for novel or rare diseases with limited data for training and validation.
Collapse
Affiliation(s)
- Harris Carmichael
- Department of Medicine, Stanford University, Stanford, CA, United States; Healthcare Delivery Institute, Intermountain Healthcare, Murray, UT, United States
| | - Jean Coquet
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ran Sun
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Shengtian Sang
- Department of Medicine, Stanford University, Stanford, CA, United States
| | - Danielle Groat
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Intermountain Medical Center, Murray, UT, United States
| | - Steven M Asch
- Department of Medicine, Stanford University, Stanford, CA, United States; Center for Innovation to Implementation, VA Palo Alto Medical Center, United States
| | - Joseph Bledsoe
- Healthcare Delivery Institute, Intermountain Healthcare, Murray, UT, United States; Department of Emergency Medicine, Stanford University, Stanford, CA, United States
| | - Ithan D Peltan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Intermountain Medical Center, Murray, UT, United States; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Jason R Jacobs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Intermountain Medical Center, Murray, UT, United States
| | - Tina Hernandez-Boussard
- Department of Medicine, Stanford University, Stanford, CA, United States; Department of Biomedical Data Science, Stanford University, Stanford, CA, United States; Department of Surgery, Stanford University, Stanford, CA, United States.
| |
Collapse
|
8
|
Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, Bonten MMJ, Dahly DL, Damen JAA, Debray TPA, de Jong VMT, De Vos M, Dhiman P, Haller MC, Harhay MO, Henckaerts L, Heus P, Kammer M, Kreuzberger N, Lohmann A, Luijken K, Ma J, Martin GP, McLernon DJ, Andaur Navarro CL, Reitsma JB, Sergeant JC, Shi C, Skoetz N, Smits LJM, Snell KIE, Sperrin M, Spijker R, Steyerberg EW, Takada T, Tzoulaki I, van Kuijk SMJ, van Bussel B, van der Horst ICC, van Royen FS, Verbakel JY, Wallisch C, Wilkinson J, Wolff R, Hooft L, Moons KGM, van Smeden M. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ 2020; 369:m1328. [PMID: 32265220 PMCID: PMC7222643 DOI: 10.1136/bmj.m1328] [Citation(s) in RCA: 1671] [Impact Index Per Article: 417.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease. DESIGN Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. DATA SOURCES PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020. STUDY SELECTION Studies that developed or validated a multivariable covid-19 related prediction model. DATA EXTRACTION At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). RESULTS 37 421 titles were screened, and 169 studies describing 232 prediction models were included. The review identified seven models for identifying people at risk in the general population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequent types of predictors included in the covid-19 prediction models are vital signs, age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. Reported C index estimates from the strongest form of validation available per model ranged from 0.71 to 0.99 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic models. All models were rated at high or unclear risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and unclear reporting. Many models did not include a description of the target population (n=27, 12%) or care setting (n=75, 32%), and only 11 (5%) were externally validated by a calibration plot. The Jehi diagnostic model and the 4C mortality score were identified as promising models. CONCLUSION Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that almost all pubished prediction models are poorly reported, and at high risk of bias such that their reported predictive performance is probably optimistic. However, we have identified two (one diagnostic and one prognostic) promising models that should soon be validated in multiple cohorts, preferably through collaborative efforts and data sharing to also allow an investigation of the stability and heterogeneity in their performance across populations and settings. Details on all reviewed models are publicly available at https://www.covprecise.org/. Methodological guidance as provided in this paper should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, prediction model authors should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. SYSTEMATIC REVIEW REGISTRATION Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. READERS' NOTE This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity.
Collapse
Affiliation(s)
- Laure Wynants
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ben Van Calster
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Gary S Collins
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Richard D Riley
- Centre for Prognosis Research, School of Primary, Community and Social Care, Keele University, Keele, UK
| | - Georg Heinze
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Ewoud Schuit
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marc M J Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Darren L Dahly
- HRB Clinical Research Facility, Cork, Ireland
- School of Public Health, University College Cork, Cork, Ireland
| | - Johanna A A Damen
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas P A Debray
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Valentijn M T de Jong
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten De Vos
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT Stadius, KU Leuven, Leuven, Belgium
| | - Paul Dhiman
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Maria C Haller
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Ordensklinikum Linz, Hospital Elisabethinen, Department of Nephrology, Linz, Austria
| | - Michael O Harhay
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Palliative and Advanced Illness Research Center and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liesbet Henckaerts
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
- Department of General Internal Medicine, KU Leuven-University Hospitals Leuven, Leuven, Belgium
| | - Pauline Heus
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michael Kammer
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Nina Kreuzberger
- Evidence-Based Oncology, Department I of Internal Medicine and Centre for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Lohmann
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Kim Luijken
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Jie Ma
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Glen P Martin
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David J McLernon
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Constanza L Andaur Navarro
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johannes B Reitsma
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jamie C Sergeant
- Centre for Biostatistics, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Chunhu Shi
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, University of Manchester, Manchester, UK
| | - Nicole Skoetz
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Luc J M Smits
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
| | - Kym I E Snell
- Centre for Prognosis Research, School of Primary, Community and Social Care, Keele University, Keele, UK
| | - Matthew Sperrin
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - René Spijker
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Medical Library, Netherlands
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Toshihiko Takada
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Bas van Bussel
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht University, Maastricht, Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht University, Maastricht, Netherlands
| | - Florien S van Royen
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jan Y Verbakel
- EPI-Centre, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Christine Wallisch
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jack Wilkinson
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - Lotty Hooft
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Karel G M Moons
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten van Smeden
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|