1
|
Myćka G, Ropka-Molik K, Cywińska A, Szmatoła T, Stefaniuk-Szmukier M. Molecular insights into the lipid-carbohydrates metabolism switch under the endurance effort in Arabian horses. Equine Vet J 2024; 56:586-597. [PMID: 37565649 DOI: 10.1111/evj.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Recent studies have shown that in Arabian horse muscle, long-term exercise-induced expression of genes related to fatty acid degradation and the downregulation of genes belonging to the glycolysis/gluconeogenesis and insulin signalling pathways. Long-lasting physical exertion may trigger the metabolism to switch the main energy source from carbohydrates to lipids due to higher caloric content. OBJECTIVES To describe the metabolism adaptation at the whole transcriptome of blood to endurance effort in Arabian horses. STUDY DESIGN In vivo experiment. METHODS Venous blood samples from 10 Arabian horses were taken before and after a 120 km long endurance ride to isolate the RNA and perform the high-throughput NGS transcriptome sequencing. RESULTS The results, including KEGG (Kyoto Encyclopaedia of Genes and Genomes) and GO (Gene Ontology) analyses, allowed us to describe the most significantly upregulated-ARV1, DGAT2, LIPE, APOA2, MOGAT1, MOGAT2, GYS1, GYS2 and downregulated-ACACA, ACACB, FADS1, FADS2 genes involved in carbohydrate and lipid metabolism. Also, the increased expression of RAF1, KRAS and NRAS genes involved in the Insulin pathway and PI3K-Akt was shown. MAIN LIMITATIONS Limited sample size, Arabians used for endurance racing were not compared to Arabians from other equestrian disciplines. CONCLUSIONS This general insight into the processes described supports the thesis of the lipid-carbohydrates metabolism switch in endurance Arabian horses and provides the basis for further research.
Collapse
Affiliation(s)
- Grzegorz Myćka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Anna Cywińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
2
|
Cao X, Xue L, Yu X, Yan Y, Lu J, Luo X, Wang H, Wang J. Myogenic exosome miR-140-5p modulates skeletal muscle regeneration and injury repair by regulating muscle satellite cells. Aging (Albany NY) 2024; 16:4609-4630. [PMID: 38428405 PMCID: PMC10968704 DOI: 10.18632/aging.205617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
Muscle satellite cells (SCs) play a crucial role in the regeneration and repair of skeletal muscle injuries. Previous studies have shown that myogenic exosomes can enhance satellite cell proliferation, while the expression of miR-140-5p is significantly reduced during the repair process of mouse skeletal muscle injuries induced by BaCl2. This study aims to investigate the potential of myogenic exosomes carrying miR-140-5p inhibitors to activate SCs and influence the regeneration of injured muscles. Myogenic progenitor cell exosomes (MPC-Exo) and contained miR-140-5p mimics/inhibitors myogenic exosomes (MPC-Exo140+ and MPC-Exo140-) were employed to treat SCs and use the model. The results demonstrate that miR-140-5p regulates SC proliferation by targeting Pax7. Upon the addition of MPC-Exo and MPC-Exo140-, Pax7 expression in SCs significantly increased, leading to the transition of the cell cycle from G1 to S phase and an enhancement in cell proliferation. Furthermore, the therapeutic effect of MPC-Exo140- was validated in animal model, where the expression of muscle growth-related genes substantially increased in the gastrocnemius muscle. Our research demonstrates that MPC-Exo140- can effectively activate dormant muscle satellite cells, initiating their proliferation and differentiation processes, ultimately leading to the formation of new skeletal muscle cells and promoting skeletal muscle repair and remodeling.
Collapse
Affiliation(s)
- Xiaorui Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Linli Xue
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jiayin Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Juan Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
3
|
Ahmad K, Shaikh S, Chun HJ, Ali S, Lim JH, Ahmad SS, Lee EJ, Choi I. Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm Regen 2023; 43:58. [PMID: 38008778 PMCID: PMC10680355 DOI: 10.1186/s41232-023-00308-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
4
|
Burke BI, Goh J, Albathi FA, Valentino TR, Nolt GL, Joshi JK, Dungan CM, Johnson LA, Wen Y, Ismaeel A, McCarthy JJ. ApoE isoform does not influence skeletal muscle regeneration in adult mice. Front Physiol 2023; 14:1302695. [PMID: 38074327 PMCID: PMC10702509 DOI: 10.3389/fphys.2023.1302695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction: Apolipoprotein E (ApoE) has been shown to be necessary for proper skeletal muscle regeneration. Consistent with this finding, single-cell RNA-sequencing analyses of skeletal muscle stem cells (MuSCs) revealed that Apoe is a top marker of quiescent MuSCs that is downregulated upon activation. The purpose of this study was to determine if muscle regeneration is altered in mice which harbor one of the three common human ApoE isoforms, referred to as ApoE2, E3 and E4. Methods: Histomorphometric analyses were employed to assess muscle regeneration in ApoE2, E3, and E4 mice after 14 days of recovery from barium chloride-induced muscle damage in vivo, and primary MuSCs were isolated to assess proliferation and differentiation of ApoE2, E3, and E4 MuSCs in vitro. Results: There was no difference in the basal skeletal muscle phenotype of ApoE isoforms as evaluated by section area, myofiber cross-sectional area (CSA), and myonuclear and MuSC abundance per fiber. Although there were no differences in fiber-type frequency in the soleus, Type IIa relative frequency was significantly lower in plantaris muscles of ApoE4 mice compared to ApoE3. Moreover, ApoE isoform did not influence muscle regeneration as assessed by fiber frequency, fiber CSA, and myonuclear and MuSC abundance. Finally, there were no differences in the proliferative capacity or myogenic differentiation potential of MuSCs between any ApoE isoform. Discussion: Collectively, these data indicate nominal effects of ApoE isoform on the ability of skeletal muscle to regenerate following injury or the in vitro MuSC phenotype.
Collapse
Affiliation(s)
- Benjamin I. Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
| | - Fatmah A. Albathi
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
| | | | - Georgia L. Nolt
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Jai K. Joshi
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
| | - Cory M. Dungan
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, United States
| | - Lance A. Johnson
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
| | - John J. McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
5
|
Heidari D, Shirvani H, Bazgir B, Shamsoddini A. The Resistance Training Effects on Skeletal Muscle Stem Cells in Older Adult: A Systematic Review and Meta-Analysis. CELL JOURNAL 2023; 25:513-523. [PMID: 37641413 PMCID: PMC10542207 DOI: 10.22074/cellj.2023.1986679.1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 08/31/2023]
Abstract
The objective of this systematic review and meta-analysis is to examine the effects of resistance exercise training on muscle stem cells in older adults. A database search was performed (PubMed, Scopus, Web of Science and Google Scholar) to identify controlled clinical trials in English language. The mean difference (MD) with 95% confidence intervals (CIs) and overall effect size were calculated for all comparisons. The PEDro scale was used to assess the methodological quality. Nineteen studies were included in the review. The meta-analysis found a significant effect of resistance training (RT) on muscle stem cells in the elderly (difference in means=-0.008, Z=-3.415, P=0.001). Also, muscle stem cells changes were similar in men and women (difference in means=-0.004, Z=-1.558, P=0.119) and significant changes occur in type II muscle fibers (difference in means=-0.017, Z=-7.048, P=0.000). Resistance-type exercise training significantly increased muscle stem cells content in intervention group that this result is similar in men and womenthis increase occurred more in type II muscle fibers.
Collapse
Affiliation(s)
- Diaco Heidari
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behzad Bazgir
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Alireza Shamsoddini
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Ogrodnik M, Gladyshev VN. The meaning of adaptation in aging: insights from cellular senescence, epigenetic clocks and stem cell alterations. NATURE AGING 2023; 3:766-775. [PMID: 37386259 PMCID: PMC7616215 DOI: 10.1038/s43587-023-00447-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
With recent rapid progress in research on aging, there is increasing evidence that many features commonly considered to be mechanisms or drivers of aging in fact represent adaptations. Here, we examine several such features, including cellular senescence, epigenetic aging and stem cell alterations. We draw a distinction between the causes and consequences of aging and define short-term consequences as 'responses' and long-term ones as 'adaptations'. We also discuss 'damaging adaptations', which despite having beneficial effects in the short term, lead to exacerbation of the initial insult and acceleration of aging. Features commonly recognized as 'basic mechanisms of the aging process' are critically examined for the possibility of their adaptation-driven emergence from processes such as cell competition and the wound-like features of the aging body. Finally, we speculate on the meaning of these interactions for the aging process and their relevance for the development of antiaging interventions.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria.
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Workers' Compensation Board Research Center, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Nie M, Liu Q, Yan C. Skeletal Muscle Transcriptomic Comparison Between Men and Women in Response to Acute Sprint Exercise. Front Genet 2022; 13:860815. [PMID: 35903364 PMCID: PMC9315096 DOI: 10.3389/fgene.2022.860815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Acute sprint exercise is a time-efficient physical activity that improves cardiorespiratory fitness in younger and middle-aged adults. Growing evidence has demonstrated that acute sprint exercise provides equal to or superior health benefits compared with moderate-intensity continuous training, which will dramatically increase aerobic capacity, insulin sensitivity, and muscle capillarization. Although the beneficial effects of acute sprint exercise are well documented, the mechanisms behind how acute sprint exercise prevents disease and benefits health are less understood. Method: We obtained differentially expressed genes in muscle (vastus lateralis) from men and women before and after an acute sprint exercise. Then, we identified hub genes from the protein–protein interaction (PPI) network of differentially expressed genes (DEGs) and key transcription factors in men and women related to acute sprint exercise. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses are performed on DEGs and sex-biased genes, respectively. Results: First, we identified 127 sexually dimorphic genes in men (90 upregulated and 37 downregulated) and 75 genes in women (90 upregulated and 37 downregulated) in response to acute sprint exercise. Second, CEBPB, SMAD3, and CDKN1A are identified as the top three hub genes related to men-biased genes. Accordingly, the top three hub genes related to women-biased genes are JUN, ACTB, and SMAD7. In addition, CLOCK, ZNF217, and KDM2B are the top three enriched transcriptional factors in men-biased genes, while XLR, SOX2, JUND, and KLF4 are transcription factors enriched most in women-biased genes. Furthermore, based on GO and KEGG enrichment analyses, we identified potential key pathways in regulating the exercise-related response in men and women, respectively. Conclusion: In this study, we found the difference in gene expression and enrichment pathways in muscle in men and women in response to acute sprint exercise. These results will shed new light on the mechanism underlying sex-based differences in skeletal muscle remodeling and metabolism related to acute sprint exercise, which may illustrate the mechanisms behind how acute sprint exercise prevents disease and benefits health.
Collapse
Affiliation(s)
- Mingkun Nie
- School of Physical Education, Xinxiang University, Xinxiang, China
| | - Qingling Liu
- School of Pharmacy, Xinxiang University, Xinxiang, China
| | - Cheng Yan
- School of Pharmacy, Xinxiang University, Xinxiang, China
- Key Laboratory of Nano-carbon Modified Film Technology of Henan Province, Xinxiang University, Xinxiang, China
- Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
- *Correspondence: Cheng Yan,
| |
Collapse
|
8
|
Lombardo M, Feraco A, Bellia C, Prisco L, D’Ippolito I, Padua E, Storz MA, Lauro D, Caprio M, Bellia A. Influence of Nutritional Status and Physical Exercise on Immune Response in Metabolic Syndrome. Nutrients 2022; 14:nu14102054. [PMID: 35631195 PMCID: PMC9145042 DOI: 10.3390/nu14102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic Syndrome (MetS) is a cluster of metabolic alterations mostly related to visceral adiposity, which in turn promotes glucose intolerance and a chronic systemic inflammatory state, characterized by immune cell infiltration. Such immune system activation increases the risk of severe disease subsequent to viral infections. Strong correlations between elevated body mass index (BMI), type-2-diabetes and increased risk of hospitalization after pandemic influenza H1N1 infection have been described. Similarly, a correlation between elevated blood glucose level and SARS-CoV-2 infection severity and mortality has been described, indicating MetS as an important predictor of clinical outcomes in patients with COVID-19. Adipose secretome, including two of the most abundant and well-studied adipokines, leptin and interleukin-6, is involved in the regulation of energy metabolism and obesity-related low-grade inflammation. Similarly, skeletal muscle hormones—called myokines—released in response to physical exercise affect both metabolic homeostasis and immune system function. Of note, several circulating hormones originate from both adipose tissue and skeletal muscle and display different functions, depending on the metabolic context. This review aims to summarize recent data in the field of exercise immunology, investigating the acute and chronic effects of exercise on myokines release and immune system function.
Collapse
Affiliation(s)
- Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Correspondence:
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Chiara Bellia
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Luigi Prisco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
| | - Ilenia D’Ippolito
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| | - Elvira Padua
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- School of Human Movement Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Maximilian Andreas Storz
- Department of Internal Medicine II, Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Alfonso Bellia
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| |
Collapse
|
9
|
Plaza-Diaz J, Izquierdo D, Torres-Martos Á, Baig AT, Aguilera CM, Ruiz-Ojeda FJ. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. Biomedicines 2022; 10:biomedicines10010126. [PMID: 35052805 PMCID: PMC8773693 DOI: 10.3390/biomedicines10010126] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Exercise and physical activity induces physiological responses in organisms, and adaptations in skeletal muscle, which is beneficial for maintaining health and preventing and/or treating most chronic diseases. These adaptations are mainly instigated by transcriptional responses that ensue in reaction to each individual exercise, either resistance or endurance. Consequently, changes in key metabolic, regulatory, and myogenic genes in skeletal muscle occur as both an early and late response to exercise, and these epigenetic modifications, which are influenced by environmental and genetic factors, trigger those alterations in the transcriptional responses. DNA methylation and histone modifications are the most significant epigenetic changes described in gene transcription, linked to the skeletal muscle transcriptional response to exercise, and mediating the exercise adaptations. Nevertheless, other alterations in the epigenetics markers, such as epitranscriptomics, modifications mediated by miRNAs, and lactylation as a novel epigenetic modification, are emerging as key events for gene transcription. Here, we provide an overview and update of the impact of exercise on epigenetic modifications, including the well-described DNA methylations and histone modifications, and the emerging modifications in the skeletal muscle. In addition, we describe the effects of exercise on epigenetic markers in other metabolic tissues; also, we provide information about how systemic metabolism or its metabolites influence epigenetic modifications in the skeletal muscle.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Correspondence: (J.P.-D.); (F.J.R.-O.); Tel.: +34-9-5824-1000 (ext. 20314) (F.J.R.-O.)
| | - David Izquierdo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Álvaro Torres-Martos
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Aiman Tariq Baig
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 85M, Canada
| | - Concepción M. Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz, Center Munich, Neuherberg, 85764 Munich, Germany
- Correspondence: (J.P.-D.); (F.J.R.-O.); Tel.: +34-9-5824-1000 (ext. 20314) (F.J.R.-O.)
| |
Collapse
|
10
|
Fairman CM, Lønbro S, Cardaci TD, VanderVeen BN, Nilsen TS, Murphy AE. Muscle wasting in cancer: opportunities and challenges for exercise in clinical cancer trials. JCSM RAPID COMMUNICATIONS 2022; 5:52-67. [PMID: 36118249 PMCID: PMC9481195 DOI: 10.1002/rco2.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Low muscle in cancer is associated with an increase in treatment-related toxicities and is a predictor of cancer-related and all-cause mortality. The mechanisms of cancer-related muscle loss are multifactorial, including anorexia, hypogonadism, anaemia, inflammation, malnutrition, and aberrations in skeletal muscle protein turnover and metabolism. METHODS In this narrative review, we summarise relevant literature to (i) review the factors influencing skeletal muscle mass regulation, (ii) provide an overview of how cancer/treatments negatively impact these, (iii) review factors beyond muscle signalling that can impact the ability to participate in and respond to an exercise intervention to counteract muscle loss in cancer, and (iv) provide perspectives on critical areas of future research. RESULTS Despite the well-known benefits of exercise, there remains a paucity of clinical evidence supporting the impact of exercise in cancer-related muscle loss. There are numerous challenges to reversing muscle loss with exercise in clinical cancer settings, ranging from the impact of cancer/treatments on the molecular regulation of muscle mass, to clinical challenges in responsiveness to an exercise intervention. For example, tumour-related/treatment-related factors (e.g. nausea, pain, anaemia, and neutropenia), presence of comorbidities (e.g. diabetes, arthritis, and chronic obstructive pulmonary disease), injuries, disease progression and bone metastases, concomitant medications (e.g., metformin), can negatively affect an individual's ability to exercise safely and limit subsequent adaptation. CONCLUSIONS This review identifies numerous gaps and oppportunities in the area of low muscle and muscle loss in cancer. Collaborative efforts between preclinical and clinical researchers are imperative to both understanding the mechanisms of atrophy, and develop appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Ciaran M. Fairman
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina 29033, USA
- Correspondence to: Ciaran Fairman, Department of Exercise Science, University of South Carolina, Columbia, SC 29033, USA.
| | - Simon Lønbro
- Department of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
| | - Thomas D. Cardaci
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina 29033, USA
| | - Brandon N. VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Tormod S. Nilsen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Angela E. Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
11
|
Budai Z, Al-Zaeed N, Szentesi P, Halász H, Csernoch L, Szondy Z, Sarang Z. Impaired Skeletal Muscle Development and Regeneration in Transglutaminase 2 Knockout Mice. Cells 2021; 10:3089. [PMID: 34831312 PMCID: PMC8623654 DOI: 10.3390/cells10113089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle regeneration is triggered by local inflammation and is accompanied by phagocytosis of dead cells at the injury site. Efferocytosis regulates the inflammatory program in macrophages by initiating the conversion of their inflammatory phenotype into the healing one. While pro-inflammatory cytokines induce satellite cell proliferation and differentiation into myoblasts, growth factors, such as GDF3, released by healing macrophages drive myoblast fusion and myotube growth. Therefore, improper efferocytosis may lead to impaired muscle regeneration. Transglutaminase 2 (TG2) is a versatile enzyme participating in efferocytosis. Here, we show that TG2 ablation did not alter the skeletal muscle weights or sizes but led to the generation of small size myofibers and to decreased grip force in TG2 null mice. Following cardiotoxin-induced injury, the size of regenerating fibers was smaller, and the myoblast fusion was delayed in the tibialis anterior muscle of TG2 null mice. Loss of TG2 did not affect the efferocytic capacity of muscle macrophages but delayed their conversion to Ly6C-CD206+, GDF3 expressing cells. Finally, TG2 promoted myoblast fusion in differentiating C2C12 myoblasts. These results indicate that TG2 expressed by both macrophages and myoblasts contributes to proper myoblast fusion, and its ablation leads to impaired muscle development and regeneration in mice.
Collapse
Affiliation(s)
- Zsófia Budai
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (N.A.-Z.); (H.H.)
| | - Nour Al-Zaeed
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (N.A.-Z.); (H.H.)
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (P.S.); (L.C.)
| | - Hajnalka Halász
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (N.A.-Z.); (H.H.)
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (P.S.); (L.C.)
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
12
|
Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 2021; 23:204-226. [PMID: 34663964 DOI: 10.1038/s41580-021-00421-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle contains a designated population of adult stem cells, called satellite cells, which are generally quiescent. In homeostasis, satellite cells proliferate only sporadically and usually by asymmetric cell division to replace myofibres damaged by daily activity and maintain the stem cell pool. However, satellite cells can also be robustly activated upon tissue injury, after which they undergo symmetric divisions to generate new stem cells and numerous proliferating myoblasts that later differentiate to muscle cells (myocytes) to rebuild the muscle fibre, thereby supporting skeletal muscle regeneration. Recent discoveries show that satellite cells have a great degree of population heterogeneity, and that their cell fate choices during the regeneration process are dictated by both intrinsic and extrinsic mechanisms. Extrinsic cues come largely from communication with the numerous distinct stromal cell types in their niche, creating a dynamically interactive microenvironment. This Review discusses the role and regulation of satellite cells in skeletal muscle homeostasis and regeneration. In particular, we highlight the cell-intrinsic control of quiescence versus activation, the importance of satellite cell-niche communication, and deregulation of these mechanisms associated with ageing. The increasing understanding of how satellite cells are regulated will help to advance muscle regeneration and rejuvenation therapies.
Collapse
|
13
|
Kiran S, Dwivedi P, Kumar V, Price RL, Singh UP. Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss. Cells 2021; 10:cells10082016. [PMID: 34440785 PMCID: PMC8394423 DOI: 10.3390/cells10082016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Volumetric muscle loss (VML) is defined as a condition in which a large volume of skeletal muscle is lost due to physical insult. VML often results in a heightened immune response, resulting in significant long-term functional impairment. Estimates indicate that ~250,000 fractures occur in the US alone that involve VML. Currently, there is no active treatment to fully recover or repair muscle loss in VML patients. The health economics burden due to VML is rapidly increasing around the world. Immunologists, developmental biologists, and muscle pathophysiologists are exploring both immune responses and biomaterials to meet this challenging situation. The inflammatory response in muscle injury involves a non-specific inflammatory response at the injured site that is coordination between the immune system, especially macrophages and muscle. The potential role of biomaterials in the regenerative process of skeletal muscle injury is currently an important topic. To this end, cell therapy holds great promise for the regeneration of damaged muscle following VML. However, the delivery of cells into the injured muscle site poses a major challenge as it might cause an adverse immune response or inflammation. To overcome this obstacle, in recent years various biomaterials with diverse physical and chemical nature have been developed and verified for the treatment of various muscle injuries. These biomaterials, with desired tunable physicochemical properties, can be used in combination with stem cells and growth factors to repair VML. In the current review, we focus on how various immune cells, in conjunction with biomaterials, can be used to promote muscle regeneration and, most importantly, suppress VML pathology.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy, St. Louis, MO 63110, USA;
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
| | - Robert L. Price
- Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208, USA;
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
- Correspondence:
| |
Collapse
|
14
|
Natural Compounds Attenuate Denervation-Induced Skeletal Muscle Atrophy. Int J Mol Sci 2021; 22:ijms22158310. [PMID: 34361076 PMCID: PMC8348757 DOI: 10.3390/ijms22158310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
The weight of skeletal muscle accounts for approximately 40% of the whole weight in a healthy individual, and the normal metabolism and motor function of the muscle are indispensable for healthy life. In addition, the skeletal muscle of the maxillofacial region plays an important role not only in eating and swallowing, but also in communication, such as facial expressions and conversations. In recent years, skeletal muscle atrophy has received worldwide attention as a serious health problem. However, the mechanism of skeletal muscle atrophy that has been clarified at present is insufficient, and a therapeutic method against skeletal muscle atrophy has not been established. This review provides views on the importance of skeletal muscle in the maxillofacial region and explains the differences between skeletal muscles in the maxillofacial region and other regions. We summarize the findings to change in gene expression in muscle remodeling and emphasize the advantages and disadvantages of denervation-induced skeletal muscle atrophy model. Finally, we discuss the newly discovered beneficial effects of natural compounds on skeletal muscle atrophy.
Collapse
|
15
|
Passive repetitive stretching is associated with greater muscle mass and cross-sectional area in the sarcopenic muscle. Sci Rep 2021; 11:15302. [PMID: 34315961 PMCID: PMC8316451 DOI: 10.1038/s41598-021-94709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
Mechanical stimulation has benefits for muscle mass and function. Passive stretching is widely performed in clinical rehabilitation medicine. However, the hypertrophic effects of passive repetitive stretching on senescent skeletal muscles against muscle atrophy remain unknown. We used senescence-accelerated model SAM-P8 mice. The gastrocnemius muscle was passively repetitive stretched by manual ankle dorsiflexion for 15 min, 5 days a week for 2 weeks under deep anesthesia. We examined the effects of passive stretching on muscle mass, myofiber cross-sectional area, muscle fiber type composition, satellite cell and myonuclei content, signaling pathways involved in muscle protein synthesis, and myogenic regulatory factors. The gastrocnemius muscle weight and fiber cross-sectional area of the stretched side was found greater compared with that of the unstretched side. Passive repetitive stretching increased the mRNA expression level of Akt, p70S6K, 4E-BP1, Myf5, myogenin, MuRF1.The phosphorylation level of p70S6K significantly increased in the stretched muscles, whereas of Akt and 4E-BP1 remained unchanged, compared to the unstretched side. The Pax7+ cells and myonuclei content did not differ between the stretched and unstretched muscles. These findings suggest that the hypertrophic or suppressed atrophic observation in the stretched muscles are mainly attributable to the protein turnover provoked by stretching. These findings are applicable to clinical muscle strengthening and sarcopenia prevention.
Collapse
|
16
|
Lorenz D. Blood Flow Restriction: Cause for Optimism, But Let's Not Abandon The Fundamentals. Int J Sports Phys Ther 2021; 16:962-967. [PMID: 34123546 PMCID: PMC8169004 DOI: 10.26603/001c.23725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
|
17
|
Solsona R, Pavlin L, Bernardi H, Sanchez AMJ. Molecular Regulation of Skeletal Muscle Growth and Organelle Biosynthesis: Practical Recommendations for Exercise Training. Int J Mol Sci 2021; 22:2741. [PMID: 33800501 PMCID: PMC7962973 DOI: 10.3390/ijms22052741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of skeletal muscle mass and organelle homeostasis is dependent on the capacity of cells to produce proteins and to recycle cytosolic portions. In this investigation, the mechanisms involved in skeletal muscle mass regulation-especially those associated with proteosynthesis and with the production of new organelles-are presented. Thus, the critical roles of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway and its regulators are reviewed. In addition, the importance of ribosome biogenesis, satellite cells involvement, myonuclear accretion, and some major epigenetic modifications related to protein synthesis are discussed. Furthermore, several studies conducted on the topic of exercise training have recognized the central role of both endurance and resistance exercise to reorganize sarcomeric proteins and to improve the capacity of cells to build efficient organelles. The molecular mechanisms underlying these adaptations to exercise training are presented throughout this review and practical recommendations for exercise prescription are provided. A better understanding of the aforementioned cellular pathways is essential for both healthy and sick people to avoid inefficient prescriptions and to improve muscle function with emergent strategies (e.g., hypoxic training). Finally, current limitations in the literature and further perspectives, notably on epigenetic mechanisms, are provided to encourage additional investigations on this topic.
Collapse
Affiliation(s)
- Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| | - Laura Pavlin
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Henri Bernardi
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Anthony MJ Sanchez
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| |
Collapse
|
18
|
Maintenance of type 2 glycolytic myofibers with age by Mib1-Actn3 axis. Nat Commun 2021; 12:1294. [PMID: 33637766 PMCID: PMC7910585 DOI: 10.1038/s41467-021-21621-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Age-associated muscle atrophy is a debilitating condition associated with loss of muscle mass and function with age that contributes to limitation of mobility and locomotion. However, the underlying mechanisms of how intrinsic muscle changes with age are largely unknown. Here we report that, with age, Mind bomb-1 (Mib1) plays important role in skeletal muscle maintenance via proteasomal degradation-dependent regulation of α-actinin 3 (Actn3). The disruption of Mib1 in myofibers (Mib1ΔMF) results in alteration of type 2 glycolytic myofibers, muscle atrophy, impaired muscle function, and Actn3 accumulation. After chronic exercise, Mib1ΔMF mice show muscle atrophy even at young age. However, when Actn3 level is downregulated, chronic exercise-induced muscle atrophy is ameliorated. Importantly, the Mib1 and Actn3 levels show clinical relevance in human skeletal muscles accompanied by decrease in skeletal muscle function with age. Together, these findings reveal the significance of the Mib1-Actn3 axis in skeletal muscle maintenance with age and suggest the therapeutic potential for the treatment or amelioration of age-related muscle atrophy.
Collapse
|
19
|
Izadi MR, Habibi A, Khodabandeh Z, Nikbakht M. Synergistic effect of high-intensity interval training and stem cell transplantation with amniotic membrane scaffold on repair and rehabilitation after volumetric muscle loss injury. Cell Tissue Res 2021; 383:765-779. [PMID: 33128624 DOI: 10.1007/s00441-020-03304-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Despite the high regenerative capacity of skeletal muscle, volumetric muscle loss (VML) is an irrecoverable injury. One therapeutic approach is the implantation of engineered biologic scaffolds enriched with stem cells. The objective of this study is to investigate the synergistic effect of high-intensity interval training (HIIT) and stem cell transplantation with an amniotic membrane scaffold on innervation, vascularization and muscle function after VML injury. A VML injury was surgically created in the tibialis anterior (TA) muscle in rats. The animals were randomly assigned to three groups: untreated negative control group (untreated), decellularized human amniotic membrane bio-scaffold group (dHAM) and dHAM seeded with adipose-derived stem cells, which differentiate into skeletal muscle cells (dHAM-ADSCs). Then, each group was divided into sedentary and HIIT subgroups. The exercise training protocol consisted of treadmill running for 8 weeks. The animals underwent in vivo functional muscle tests to evaluate maximal isometric contractile force. Regenerated TA muscles were harvested for molecular analyses and explanted tissues were analyzed with histological methods. The main finding was that HIIT promoted muscle regeneration, innervation and vascularization in regenerated areas in HIIT treatment subgroups, especially in the dHAM-ADSC subgroup. In parallel with innervation, maximal isometric force also increased in vivo. HIIT upregulated neurotrophic factor gene expression in skeletal muscle. The amniotic membrane bio-scaffold seeded with differentiated ADSC, in conjunction with exercise training, improved vascular perfusion and innervation and enhanced the functional and morphological healing process after VML injury. The implications of these findings are of potential importance for future efforts to develop engineered biological scaffolds and for the use of interval training programs in rehabilitation after VML injury.
Collapse
Affiliation(s)
- Mohammad Reza Izadi
- Faculty of Physical Education and Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Abdolhamid Habibi
- Faculty of Physical Education and Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Nikbakht
- Faculty of Physical Education and Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
20
|
Izadi MR, Habibi A, Khodabandeh Z, Nikbakht M. Simultaneous Effects of High Intensity Interval Training and Human Amniotic Membrane Scaffold on Rat Tibialis Anterior Vascularization and Innervation after Volumetric Muscle Loss Injury. Int J Organ Transplant Med 2021; 12:33-43. [PMID: 34987731 PMCID: PMC8717877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Despite the high regenerative capacity of skeletal muscle, volumetric muscle loss (VML) is an irrecoverable injury. One therapeutic approach is the implantation of engineered biologic scaffolds. OBJECTIVE To investigate the simultaneous effect of high intensity interval training (HIIT) and the use of decellularized human amniotic membrane (dHAM) scaffolds on vascularization, growth factor, and neurotrophic factor gene expression, and muscle force generation in the tibialis anterior (TA) of rats after VML injury. METHODS VML injury was created in the TA of 24 rats, which were randomly divided into two groups-12 animals with and 12 without the use of a dHAM scaffold. After injury, each group was further divided into two groups of 6 animals each-sedentary and HIIT. Blood vessels were visualized and counted by hematoxylin and eosin staining. The PowerLab converter assay was used to evaluate isometric contraction force. The relative expression of neurotrophic factors and growth factor genes was measured with reverse transcription PCR (RT-PCR). RESULTS The number of blood vessels in the whole regenerating areas showed a significant difference in the dHAM-HIIT and dHAM-sedentary groups compared to the sedentary group without dHAM (p=0.001 and p=0.003, respectively). BDNF and GDNF mRNA levels in the dHAM-HIIT group were significantly (p<0.05) higher than those in other groups; NGF mRNA levels did not differ significantly among groups. Isometric contraction force in the dHAM-HIIT group was significantly (p=0.001) greater compared to the sedentary group without dHAM. CONCLUSION Combined use of dHAM scaffoldsand HIIT would improve the structure of the injured muscle during regeneration after VML by better vascular perfusion. HIIT leads to greater force generation and innervation by modulating neurotrophic factor synthesis in regenerating muscles.
Collapse
Affiliation(s)
- M. R. Izadi
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - A. Habibi
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Z. Khodabandeh
- Stem Cell Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Nikbakht
- Stem Cell Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Abreu P, Kowaltowski AJ. Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. J Cachexia Sarcopenia Muscle 2020; 11:1661-1676. [PMID: 32748470 PMCID: PMC7749620 DOI: 10.1002/jcsm.12601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Skeletal muscle stem cells (satellite cells) are well known to participate in regeneration and maintenance of the tissue over time. Studies have shown increases in the number of satellite cells after exercise, but their functional role in endurance training remains unexplored. METHODS Young adult mice were submitted to endurance exercise training and the function, differentiation, and metabolic characteristics of satellite cells were investigated in vivo and in vitro. RESULTS We found that injured muscles from endurance-exercised mice display improved regenerative capacity, demonstrated through higher densities of newly formed myofibres compared with controls (evidenced by an increase in embryonic myosin heavy chain expression), as well as lower inflammation (evidenced by quantifying CD68-marked macrophages), and reduced fibrosis. Enhanced myogenic function was accompanied by an increased fraction of satellite cells expressing self-renewal markers, while control satellite cells had morphologies suggestive of early differentiation. The beneficial effects of endurance exercise were associated with satellite cell metabolic reprogramming, including reduced mitochondrial respiration (O2 consumption) under resting conditions (absence of muscle injury) and increased stemness. During proliferation or activated states (3 days after injury), O2 consumption was equal in control and exercised cells, while exercise enhanced myogenic colony formation. Surprisingly, inhibition of mitochondrial O2 consumption was sufficient to enhance muscle stem cell self-renewal characteristics in vitro. Moreover, transplanted muscle satellite cells from exercised mice or cells with reduced mitochondrial respiration promoted a significant reduction in inflammation compared with controls. CONCLUSIONS Our results indicate that endurance exercise promotes self-renewal and inhibits differentiation in satellite cells, an effect promoted by metabolic reprogramming and respiratory inhibition, which is associated with a more favourable muscular response to injury.
Collapse
Affiliation(s)
- Phablo Abreu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Kletzien H, Kelm-Nelson CA, Wang S, Suzuki M, Connor NP. Myogenic marker expression as a function of age and exercise-based therapy in the tongue. Exp Gerontol 2020; 142:111104. [PMID: 33017670 PMCID: PMC7748063 DOI: 10.1016/j.exger.2020.111104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/29/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022]
Abstract
Degeneration of tongue muscles with aging may contribute to swallowing deficits observed in elderly people. However, the capacity for tongue muscle stem cells (SCs) to regenerate and repair the aged tongue and improve tongue strength following tongue exercise (a current clinical treatment) has never been examined. We found that the expression of regenerative, myogenic markers were impaired with age and may be related to increased expression of senescent marker p16INK4a. Tongue strength increased in young adult and old rats following exercise and was related to the expression of Pax7, MyoD, myogenin, and p16INK4a. Our study also suggests that strengthening of tongue muscles via clinical rehabilitation strategies also increased the expression of SC regenerative markers in the tongue throughout the exercise duration.
Collapse
Affiliation(s)
- Heidi Kletzien
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States of America; Department of Surgery, University of Wisconsin School of Medicine and Public Health, United States of America; Department of Stem Cell and Regenerative Biology, Harvard University, United States of America.
| | - Cynthia A Kelm-Nelson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, United States of America
| | - Sabrina Wang
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, United States of America
| | - Masatoshi Suzuki
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States of America; Department of Comparative Biosciences, University of Wisconsin-Madison, United States of America
| | - Nadine P Connor
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, United States of America; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, United States of America
| |
Collapse
|
23
|
In Vitro and In Vivo Effects of Fermented Oyster-Derived Lactate on Exercise Endurance Indicators in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238811. [PMID: 33260934 PMCID: PMC7729911 DOI: 10.3390/ijerph17238811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Exogenous lactate administration has more recently been investigated for its various prophylactic effects. Lactate derived from potential functional foods, such as fermented oyster extract (FO), may emerge as a practical and effective method of consuming exogenous lactate. The current study endeavored to ascertain whether the lactate derived from FO may act on muscle cell biology, and to what extent this may translate into physical fitness improvements. We examined the effects of FO in vitro and in vivo, on mouse C2C12 cells and exercise performance indicators in mice, respectively. In vitro, biochemical analysis was carried out to determine the effects of FO on lactate content and muscle cell energy metabolism, including adenosine triphosphate (ATP) activity. Western blot analysis was also utilized to measure the protein expression of total adenosine monophosphate-activated protein kinase (AMPK), p-AMPK (Thr172), lactate dehydrogenase (LDH), succinate dehydrogenase (SDHA) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in response to FO administration. Three experimental groups were formed: a positive control (PC) treated with 1% horse serum, FO10 treated with 10 μg/mL and FO50 treated with 50 μg/mL. In vivo, the effects of FO supplementation on exercise endurance were measured using the Rota-rod test, and Western blot analysis measured myosin heavy-chain 2 (MYH2) to assess skeletal muscle growth, alongside p-AMPK, total-AMPK, PGC-1α, cytochrome C and UCP3 protein expression. Biochemical analysis was also performed on muscle tissue to measure the changes in concentration of liver lactate, lactate dehydrogenase (LDH), glycogen and citrate. Five groups (n = 10/per group) consisted of a control group (CON), exercise group (Ex), positive control treated with Ex and 500 mg/kg Taurine (Ex-Tau), Ex and 100 mg/kg FO supplementation (Ex-FO100) and Ex and 200 mg/kg FO supplementation (Ex-FO200) orally administered over the 4-week experimental period.FO50 significantly increased PGC-1α expression (p < 0.001), whereas both FO10 and FO50 increased the expression of p-AMPK (p < 0.001), in C2C12 muscle cells, showing increased signaling important for mitochondrial metabolism and biogenesis. Muscle lactate levels were also significantly increased following FO10 (p < 0.05) and FO50 (p < 0.001). In vivo, muscle protein expression of p-AMPK (p < 0.05) and PGC-1α were increased, corroborating our in vitro results. Cytochrome C also significantly increased following FO200 intake. These results suggest that the effects of FO supplementation may manifest in a dose-response manner. FO administration, in vitro, and supplementation, in vivo, both demonstrate a potential for improvements in mitochondrial metabolism and biogenesis, and even for potentiating the adaptive effects of endurance exercise. Mechanistically, lactate may be an important molecule in explaining the aforementioned positive effects of FO.
Collapse
|
24
|
Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance. J Funct Morphol Kinesiol 2020; 5:jfmk5040076. [PMID: 33467291 PMCID: PMC7739346 DOI: 10.3390/jfmk5040076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
While strength is indeed a skill, most discussions have primarily considered structural adaptations rather than ultrastructural augmentation to improve performance. Altering the structural component of the muscle is often the aim of hypertrophic training, yet not all hypertrophy is equal; such alterations are dependent upon how the muscle adapts to the training stimuli and overall training stress. When comparing bodybuilders to strength and power athletes such as powerlifters, weightlifters, and throwers, while muscle size may be similar, the ability to produce force and power is often inequivalent. Thus, performance differences go beyond structural changes and may be due to the muscle's ultrastructural constituents and training induced adaptations. Relative to potentiating strength and power performances, eliciting specific ultrastructural changes should be a variable of interest during hypertrophic training phases. By focusing on task-specific hypertrophy, it may be possible to achieve an optimal amount of hypertrophy while deemphasizing metabolic and aerobic components that are often associated with high-volume training. Therefore, the purpose of this article is to briefly address different types of hypertrophy and provide directions for practitioners who are aiming to achieve optimal rather than maximal hypertrophy, as it relates to altering ultrastructural muscular components, to potentiate strength and power performance.
Collapse
|
25
|
Jørgensen SL, Bohn MB, Aagaard P, Mechlenburg I. Efficacy of low-load blood flow restricted resistance EXercise in patients with Knee osteoarthritis scheduled for total knee replacement (EXKnee): protocol for a multicentre randomised controlled trial. BMJ Open 2020; 10:e034376. [PMID: 33004382 PMCID: PMC7534706 DOI: 10.1136/bmjopen-2019-034376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Up to 20% of patients undergoing total knee replacement (TKR) surgery report no or suboptimal pain relief after TKR. Moreover, despite chances of recovering to preoperative functional levels, patients receiving TKR have demonstrated persistent deficits in quadriceps strength and functional performance compared with healthy age-matched adults. We intend to examine if low-load blood flow restricted exercise (BFRE) is an effective preoperative method to increase functional capacity, lower limb muscle strength and self-reported outcomes after TKR. In addition, the study aims to investigate to which extent preoperative BFRE will protect against surgery-related atrophy 3 months after TKR. METHODS In this multicentre, randomised controlled and assessor blinded trial, 84 patients scheduled for TKR will be randomised to receive usual care and 8 weeks of preoperative BFRE or to follow usual care-only. Data will be collected before randomisation, 3-4 days prior to TKR, 6 weeks, 3 months and 12 months after TKR. Primary outcome will be the change in 30 s chair stand test from baseline to 3-month follow-up. Key secondary outcomes will be timed up and go, 40 me fast-paced walk test, isometric knee extensor and flexor strength, patient-reported outcome and selected myofiber properties.Intention-to-treat principle and per-protocol analyses will be conducted. A one-way analysis of variance model will be used to analyse between group mean changes. Preintervention-to-postintervention comparisons will be analysed using a mixed linear model. Also, paired Student's t-test will be performed to gain insight into the potential pretraining-to-post-training differences within the respective training or control groups and regression analysis will be used for analysation of associations between selected outcomes. ETHICAL APPROVAL The trial has been accepted by the Central Denmark Region Committee on Biomedical Research Ethics (Journal No 10-72-19-19) and the Danish Data Protection Agency (Journal No 652164). All results will be published in international peer-reviewed scientific journals regardless of positive, negative or inconclusive results. TRIAL REGISTRATION NUMBER NCT04081493.
Collapse
Affiliation(s)
- Stian Langgård Jørgensen
- Department of Occupantional and Physical Therapy, Horsens Regional Hospital, Horsens, Denmark
- H-HIP, Horsens Regional Hospital, Horsens, Denmark
- Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marie Bagger Bohn
- Department of Orthopedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Inger Mechlenburg
- Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Orthopedics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Ciecierska A, Motyl T, Sadkowski T. Transcriptomic Profile of Primary Culture of Skeletal Muscle Cells Isolated from Semitendinosus Muscle of Beef and Dairy Bulls. Int J Mol Sci 2020; 21:E4794. [PMID: 32645861 PMCID: PMC7369917 DOI: 10.3390/ijms21134794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of the study was to identify differences in the transcriptomic profiles of primary muscle cell cultures derived from the semitendinosus muscle of bulls of beef breeds (Limousin (LIM) and Hereford (HER)) and a dairy breed (Holstein-Friesian (HF)) (n = 4 for each breed). Finding a common expression pattern for proliferating cells may point to such an early orientation of the cattle beef phenotype at the transcriptome level of unfused myogenic cells. To check this hypothesis, microarray analyses were performed. The analysis revealed 825 upregulated and 1300 downregulated transcripts similar in both beef breeds (LIM and HER) and significantly different when compared with the dairy breed (HF) used as a reference. Ontological analyses showed that the largest group of genes were involved in muscle organ development. Muscle cells of beef breeds showed higher expression of genes involved in myogenesis (including erbb-3, myf5, myog, des, igf-1, tgfb2) and those encoding proteins comprising the contractile apparatus (acta1, actc1, myh3, myh11, myl1, myl2, myl4, tpm1, tnnt2, tnnc1). The obtained results confirmed our hypothesis that the expression profile of several groups of genes is common in beef breeds at the level of proliferating satellite cells but differs from that observed in typical dairy breeds.
Collapse
Affiliation(s)
- Anna Ciecierska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| | - Tomasz Motyl
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| |
Collapse
|
27
|
Nair VD, Ge Y, Li S, Pincas H, Jain N, Seenarine N, Amper MAS, Goodpaster BH, Walsh MJ, Coen PM, Sealfon SC. Sedentary and Trained Older Men Have Distinct Circulating Exosomal microRNA Profiles at Baseline and in Response to Acute Exercise. Front Physiol 2020; 11:605. [PMID: 32587527 PMCID: PMC7298138 DOI: 10.3389/fphys.2020.00605] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Exercise has multi-systemic benefits and attenuates the physiological impairments associated with aging. Emerging evidence suggests that circulating exosomes mediate some of the beneficial effects of exercise via the transfer of microRNAs between tissues. However, the impact of regular exercise and acute exercise on circulating exosomal microRNAs (exomiRs) in older populations remains unknown. In the present study, we analyzed circulating exomiR expression in endurance-trained elderly men (n = 5) and age-matched sedentary males (n = 5) at baseline (Pre), immediately after a forty minute bout of aerobic exercise on a cycle ergometer (Post), and three hours after this acute exercise (3hPost). Following the isolation and enrichment of exosomes from plasma, exosome-enriched preparations were characterized and exomiR levels were determined by sequencing. The effect of regular exercise on circulating exomiRs was assessed by comparing the baseline expression levels in the trained and sedentary groups. The effect of acute exercise was determined by comparing baseline and post-training expression levels in each group. Regular exercise resulted in significantly increased baseline expression of three exomiRs (miR-486-5p, miR-215-5p, miR-941) and decreased expression of one exomiR (miR-151b). Acute exercise altered circulating exomiR expression in both groups. However, exomiRs regulated by acute exercise in the trained group (7 miRNAs at Post and 8 at 3hPost) were distinct from those in the sedentary group (9 at Post and 4 at 3hPost). Pathway analysis prediction and reported target validation experiments revealed that the majority of exercise-regulated exomiRs are targeting genes that are related to IGF-1 signaling, a pathway involved in exercise-induced muscle and cardiac hypertrophy. The immediately post-acute exercise exomiR signature in the trained group correlates with activation of IGF-1 signaling, whereas in the sedentary group it is associated with inhibition of IGF-1 signaling. While further validation is needed, including measurements of IGF-1/IGF-1 signaling in blood or skeletal muscle, our results suggest that training status may counteract age-related anabolic resistance by modulating circulating exomiR profiles both at baseline and in response to acute exercise.
Collapse
Affiliation(s)
- Venugopalan D. Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Side Li
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nimisha Jain
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nitish Seenarine
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mary Anne S. Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bret H. Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Martin J. Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Stuart C. Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
28
|
Chen Z, Li L, Wu W, Liu Z, Huang Y, Yang L, Luo Q, Chen J, Hou Y, Song G. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis. Theranostics 2020; 10:6448-6466. [PMID: 32483463 PMCID: PMC7255041 DOI: 10.7150/thno.43577] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose: The exhaustion of muscle satellite cells (SCs) is correlated with muscle diseases, including sarcopenia and Duchenne muscular dystrophy. Exercise benefits skeletal muscle homeostasis and promotes proliferation of SCs. Elucidating the molecular mechanism underlying the muscle function-improving effect of exercise has important implications in regenerative medicine. Methods: Herein, we investigated the effect of 4-week treadmill training on skeletal muscle and SCs in mice. Hematoxylin and eosin (HE) staining was utilized to detect the morphometry of skeletal muscles. Flow cytometry and immunofluorescence were conducted to analyze the abundance and cell cycle of SCs. RNA sequencing was performed to elucidate the transcriptional regulatory network of SCs. The ChIP-PCR assay was used to detect enrichment of H3K27ac at the promoters of Akt. Results: We observed that exercise resulted in muscle hypertrophy and improved muscle regeneration in mice. Unexpectedly, exercise promoted cell cycling but suppressed the Akt-mTOR pathway in SCs. Proliferative SCs in "exercised mice" required suppressed mTOR activity to limit mitochondrial metabolism, maintaining the "limited activation status" of SCs against exhaustion. Mechanistically, exercise upregulated the expression of Igfbp7, thereby impeding the phosphorylation of Akt and resulting in inhibited mTOR activity and limited mitochondrial metabolism. The limited mitochondrial metabolism resulted in hypoacetylation of histone 3 and reduced enrichment of H3K27ac at promoters of Akt, decreasing the transcription of Akt. Moreover, repeatedly injured mice showed a preserved SC pool and improved muscle regeneration by the suppression of Akt-mTOR signaling. Conclusions: The findings of our study show that exercise protects proliferative SCs against exhaustion via the Igfbp7-Akt-mTOR axis. These findings establish a link between mechanical signaling, mitochondrial metabolism, epigenetic modification, and stem cell fate decisions; thus, present potential therapeutic targets for muscle diseases correlated with SC exhaustion.
Collapse
Affiliation(s)
- Zhe Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lei Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Weiru Wu
- Clinical hematology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhilong Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yongxiu Huang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
29
|
Fang J, Zhang S, Liu Z, Pan Y, Cao L, Hou P, Chen Y, Zhang Y, Li X, Liu R, Shang Q, Zheng Z, Song L, Li Y, Fu Z, Lin L, Melino G, Wang Y, Shao C, Shi Y. Skeletal muscle stem cells confer maturing macrophages anti-inflammatory properties through insulin-like growth factor-2. Stem Cells Transl Med 2020; 9:773-785. [PMID: 32176461 PMCID: PMC7308640 DOI: 10.1002/sctm.19-0447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cytokines produced by immune cells have been demonstrated to act on muscle stem cells (MuSCs) and direct their fate and behavior during muscle repair and regeneration. Nevertheless, it is unclear whether and how MuSCs can also in turn modulate the properties of immune cells. Here, we showed that in vitro expanded MuSCs exhibited a potent anti‐inflammatory effect when infused into mice suffering from inflammatory bowel disease (IBD). Supernatant conditioned by MuSCs similarly ameliorated IBD. This beneficial effect of MuSCs was not observed when macrophages were depleted. The MuSC supernatant was found to greatly attenuate the expression of inflammatory cytokines but increase the expression of programmed death‐ligand 1 in macrophages treated with lipopolysaccharide and interferon gamma. Further analysis revealed that MuSCs produce a large amount of insulin‐like growth factor‐2 (IGF‐2) that instructs maturing macrophages to undergo oxidative phosphorylation and thus acquire anti‐inflammatory properties. Interestingly, the IGF‐2 production by MuSCs is much higher than by mesenchymal stem cells. Knockdown or neutralization of IGF‐2 abrogated the anti‐inflammatory effects of MuSCs and their therapeutic efficacy on IBD. Our study demonstrated that MuSCs possess a strong anti‐inflammatory property and the bidirectional interactions between immune cells and MuSCs have important implications in muscle‐related physiological and pathological conditions.
Collapse
Affiliation(s)
- Jiankai Fang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Shengchao Zhang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Zhanhong Liu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Yongsha Pan
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Pengbo Hou
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Yongjing Chen
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yuyan Zhang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Xiaolei Li
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Qianwen Shang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Zhiyuan Zheng
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Lin Song
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yanan Li
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Zhonglin Fu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Liangyu Lin
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Budai Z, Balogh L, Sarang Z. Altered Gene Expression of Muscle Satellite Cells Contributes to Agerelated Sarcopenia in Mice. Curr Aging Sci 2019; 11:165-172. [PMID: 30251615 PMCID: PMC6388427 DOI: 10.2174/1874609811666180925104241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/21/2018] [Accepted: 07/21/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND During aging, muscle tissue undergoes profound changes which lead to a decline in its functional and regenerative capacity. We utilized global gene expression analysis and gene set enrichment analysis to characterize gene expression changes in aging muscle satellite cells. METHOD Gene expression data; obtained from Affymetrix Mouse Genome 430 2.0 Array, for 14 mouse muscle satellite cell samples (5 young, 4 middle-aged, and 5 aged), were retrieved from public Gene Expression Omnibus repository. List of differentially expressed genes was generated based on 0.05 multiple-testing-adjusted p-value and 2-fold FC cut-off values. Functional profiling of genes was carried out using PANTHER Classification System. RESULTS We have found several differentially expressed genes in satellite cells derived from aged mice compared to young ones. The gene expression changes increased progressively with time, and the majority of the differentially expressed genes were upregulated during aging. While the downregulated genes could not be correlated with specific biological processes the upregulated ones could be associated with muscle differentiation-, inflammation- or fibrosis-related processes. The latter two processes encompass the senescence-associated secretory phenotype for satellite cells which alters the tissue microenvironment and contributes to inflammation and fibrosis observed in aging muscle. CONCLUSION Our analysis reveals that by altering gene expression pattern and expressing inflammatory mediators and extracellular matrix components, these cells can directly contribute to muscle wasting in aged mice.
Collapse
Affiliation(s)
- Zsofia Budai
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Balogh
- Institute of Sport Sciences, University of Debrecen, Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
31
|
Schaaf GJ, Canibano-Fraile R, van Gestel TJM, van der Ploeg AT, Pijnappel WWMP. Restoring the regenerative balance in neuromuscular disorders: satellite cell activation as therapeutic target in Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:280. [PMID: 31392192 DOI: 10.21037/atm.2019.04.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle is capable of efficiently regenerating after damage in a process mediated by tissue-resident stem cells called satellite cells. This regenerative potential is often compromised under muscle-degenerative conditions. Consequently, the damage produced during degeneration is not efficiently repaired and the balance between repair and damage is lost. Here we review recent progress on the role of satellite cell-mediated repair in neuromuscular disorders with a focus on Pompe disease, an inherited metabolic myopathy caused by deficiency of the lysosomal enzyme acid alpha glucosidase (GAA). Studies performed in patient biopsies as well as in Pompe disease mouse models demonstrate that muscle regeneration activity is compromised despite progressing muscle damage. We describe disease-specific mechanisms of satellite cell dysfunction to highlight the differences between Pompe disease and muscle dystrophies. The mechanisms involved provide possible targets for therapy, such as modulation of autophagy, muscle exercise, and pharmacological modulation of satellite cell activation. Most of these approaches are still experimental, although promising in animal models, still warrant caution with respect to their safety and efficiency profile.
Collapse
Affiliation(s)
- Gerben J Schaaf
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rodrigo Canibano-Fraile
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tom J M van Gestel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Lactate Stimulates a Potential for Hypertrophy and Regeneration of Mouse Skeletal Muscle. Nutrients 2019; 11:nu11040869. [PMID: 30999708 PMCID: PMC6520919 DOI: 10.3390/nu11040869] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/19/2023] Open
Abstract
The effects of lactate on muscle mass and regeneration were investigated using mouse skeletal muscle tissue and cultured C2C12 cells. Male C57BL/6J mice were randomly divided into (1) control, (2) lactate (1 mol/L in distilled water, 8.9 mL/g body weight)-administered, (3) cardio toxin (CTX)-injected (CX), and (4) lactate-administered after CTX-injection (LX) groups. CTX was injected into right tibialis anterior (TA) muscle before the oral administration of sodium lactate (five days/week for two weeks) to the mice. Oral lactate administration increased the muscle weight and fiber cross-sectional area, and the population of Pax7-positive nuclei in mouse TA skeletal muscle. Oral administration of lactate also facilitated the recovery process of CTX-associated injured mouse TA muscle mass accompanied with a transient increase in the population of Pax7-positive nuclei. Mouse myoblast-derived C2C12 cells were differentiated for five days to form myotubes with or without lactate administration. C2C12 myotube formation with an increase in protein content, fiber diameter, length, and myo-nuclei was stimulated by lactate. These observations suggest that lactate may be a potential molecule to stimulate muscle hypertrophy and regeneration of mouse skeletal muscle via the activation of muscle satellite cells.
Collapse
|
33
|
Psilander N, Eftestøl E, Cumming KT, Juvkam I, Ekblom MM, Sunding K, Wernbom M, Holmberg HC, Ekblom B, Bruusgaard JC, Raastad T, Gundersen K. Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle. J Appl Physiol (1985) 2019; 126:1636-1645. [PMID: 30991013 DOI: 10.1152/japplphysiol.00917.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously trained mouse muscles acquire strength and volume faster than naïve muscles; it has been suggested that this is related to increased myonuclear density. The present study aimed to determine whether a previously strength-trained leg (mem-leg) would respond better to a period of strength training than a previously untrained leg (con-leg). Nine men and 10 women performed unilateral strength training (T1) for 10 wk, followed by 20 wk of detraining (DT) and a 5-wk bilateral retraining period (T2). Muscle biopsies were taken before and after each training period and analyzed for myonuclear number, fiber volume, and cross-sectional area (CSA). Ultrasound and one repetition of maximum leg extension were performed to determine muscle thickness (MT) and strength. CSA (~17%), MT (~10%), and strength (~20%) increased during T1 in the mem-leg. However, the myonuclear number and fiber volume did not change. MT and CSA returned to baseline values during DT, but strength remained elevated (~60%), supporting previous findings of a long-lasting motor learning effect. MT and strength increased similarly in the mem-leg and con-leg during T2, whereas CSA, fiber volume, and myonuclear number remained unaffected. In conclusion, training response during T2 did not differ between the mem-leg and con-leg. However, this does not discount the existence of human muscle memory, since no increase in the number of myonuclei was detected during T1 and no clear detraining effect was observed for cell size during DT; thus, the present data did not allow for a rigorous test of the muscle memory hypothesis. NEW & NOTEWORTHY If a long-lasting intramuscular memory exists in humans, this will affect strength-training advice for both athletes and the public. Based on animal experiments, we hypothesized that such a memory exists and that it is related to the myonuclear number. However, a period of unilateral strength training, followed by detraining, did not increase the myonuclear number. The training response, during a subsequent bilateral retraining period, was not enhanced in the previously trained leg.
Collapse
Affiliation(s)
- Niklas Psilander
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo , Oslo , Norway
| | | | - Inga Juvkam
- Department of Biosciences, University of Oslo , Oslo , Norway
| | - Maria M Ekblom
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Kerstin Sunding
- Stockholm Sport Trauma Research Center, Karolinska Institutet , Stockholm , Sweden
| | - Mathias Wernbom
- Department of Food and Nutrition and Sport Science, Center for Health and Performance, University of Gothenburg , Gothenburg , Sweden
| | - Hans-Christer Holmberg
- Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Björn Ekblom
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo , Oslo , Norway.,Department of Health Sciences, Kristiania University College , Oslo , Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences , Oslo , Norway
| | | |
Collapse
|
34
|
Alessio E, Buson L, Chemello F, Peggion C, Grespi F, Martini P, Massimino ML, Pacchioni B, Millino C, Romualdi C, Bertoli A, Scorrano L, Lanfranchi G, Cagnin S. Single cell analysis reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle atrophy and mitochondrial network. Nucleic Acids Res 2019; 47:1653-1670. [PMID: 30649422 PMCID: PMC6393313 DOI: 10.1093/nar/gkz007] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/05/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as important players in the regulation of several aspects of cellular biology. For a better comprehension of their function, it is fundamental to determine their tissue or cell specificity and to identify their subcellular localization. In fact, the activity of lncRNAs may vary according to cell and tissue specificity and subcellular compartmentalization. Myofibers are the smallest complete contractile system of skeletal muscle influencing its contraction velocity and metabolism. How lncRNAs are expressed in different myofibers, participate in metabolism regulation and muscle atrophy or how they are compartmentalized within a single myofiber is still unknown. We compiled a comprehensive catalog of lncRNAs expressed in skeletal muscle, associating the fiber-type specificity and subcellular location to each of them, and demonstrating that many lncRNAs can be involved in the biological processes de-regulated during muscle atrophy. We demonstrated that the lncRNA Pvt1, activated early during muscle atrophy, impacts mitochondrial respiration and morphology and affects mito/autophagy, apoptosis and myofiber size in vivo. This work corroborates the importance of lncRNAs in the regulation of metabolism and neuromuscular pathologies and offers a valuable resource to study the metabolism in single cells characterized by pronounced plasticity.
Collapse
Affiliation(s)
- Enrico Alessio
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Lisa Buson
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | | - Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Francesca Grespi
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Paolo Martini
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | | - Beniamina Pacchioni
- Department of Biology, University of Padova, 35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy
| | - Caterina Millino
- Department of Biology, University of Padova, 35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, 35131 Padova, Italy
- Venetian Institute of Molecular Medicine, 35131 Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, 35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, 35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
35
|
Favero G, Bonomini F, Franco C, Rezzani R. Mitochondrial Dysfunction in Skeletal Muscle of a Fibromyalgia Model: The Potential Benefits of Melatonin. Int J Mol Sci 2019; 20:ijms20030765. [PMID: 30754674 PMCID: PMC6386947 DOI: 10.3390/ijms20030765] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
Fibromyalgia syndrome (FMS) is considered a musculoskeletal disorder associated to other symptoms including chronic pain. Since the hypothesis of FMS etiogenesis is consistent with mitochondrial dysfunction and oxidative stress, we evaluated the pathophysiological correlation among these factors studying some proteins involved in the mitochondrial homeostasis. We focused our attention on the roles of peroxisome proliferator activated receptor gamma coactivator-1alpha (PGC-1α), mitofusin2 (Mfn2), and coenzyme Q10 (CoQ10) in reserpine-induced myalgic (RIM) rats that manifest fibromyalgia-like chronic pain symptoms. First, we underlined that RIM rats are a good model for studying the pathophysiology of FMS and moreover, we found that PGC-1α, Mfn2, and CoQ10 are involved in FMS. In fact, their expressions were reduced in gastrocnemius muscle determining an incorrect mitochondrial homeostasis. Today, none of the currently available drugs are fully effective against the symptoms of this disease and they, often, induce several adverse events; hence, many scientists have taken on the challenge of searching for non-pharmacological treatments. Another goal of this study was therefore the evaluation of the potential benefits of melatonin, an endogenous indoleamine having several functions including its potent capacity to induce antioxidant enzymes and to determine the protective or reparative mechanisms in the cells. We observed that melatonin supplementation significantly preserved all the studied parameters, counteracting oxidative stress in RIM rats and confirming that this indoleamine should be taken in consideration for improving health and/or counteract mitochondrial related diseases.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
36
|
Tsukamoto S, Shibasaki A, Naka A, Saito H, Iida K. Lactate Promotes Myoblast Differentiation and Myotube Hypertrophy via a Pathway Involving MyoD In Vitro and Enhances Muscle Regeneration In Vivo. Int J Mol Sci 2018; 19:ijms19113649. [PMID: 30463265 PMCID: PMC6274869 DOI: 10.3390/ijms19113649] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Lactate is a metabolic substrate mainly produced in muscles, especially during exercise. Recently, it was reported that lactate affects myoblast differentiation; however, the obtained results are inconsistent and the in vivo effect of lactate remains unclear. Our study thus aimed to evaluate the effects of lactate on myogenic differentiation and its underlying mechanism. The differentiation of C2C12 murine myogenic cells was accelerated in the presence of lactate and, consequently, myotube hypertrophy was achieved. Gene expression analysis of myogenic regulatory factors showed significantly increased myogenic determination protein (MyoD) gene expression in lactate-treated cells compared with that in untreated ones. Moreover, lactate enhanced gene and protein expression of myosin heavy chain (MHC). In particular, lactate increased gene expression of specific MHC isotypes, MHCIIb and IId/x, in a dose-dependent manner. Using a reporter assay, we showed that lactate increased promoter activity of the MHCIIb gene and that a MyoD binding site in the promoter region was necessary for the lactate-induced increase in activity. Finally, peritoneal injection of lactate in mice resulted in enhanced regeneration and fiber hypertrophy in glycerol-induced regenerating muscles. In conclusion, physiologically high lactate concentrations modulated muscle differentiation by regulating MyoD-associated networks, thereby enhancing MHC expression and myotube hypertrophy in vitro and, potentially, in vivo.
Collapse
Affiliation(s)
- Sakuka Tsukamoto
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Ayako Shibasaki
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Ayano Naka
- Laboratory of Applied Nutrition, Faculty of Human Life and Environmental Sciences, Ochanomizu University, Tokyo 112-8610, Japan..
| | - Hazuki Saito
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Kaoruko Iida
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
- The Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| |
Collapse
|
37
|
Ropka-Molik K, Stefaniuk-Szmukier M, Piórkowska K, Szmatoła T, Bugno-Poniewierska M. Molecular characterization of the apoptosis-related SH3RF1 and SH3RF2 genes and their association with exercise performance in Arabian horses. BMC Vet Res 2018; 14:237. [PMID: 30107803 PMCID: PMC6092840 DOI: 10.1186/s12917-018-1567-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apoptosis plays an important role in the regulation of healthy tissue growth and development as well as in controlling the maintenance of homeostasis in exercising muscles. During an intensive physical effort, the regulation of cell death by apoptosis results in the replacement of unaccustomed muscle cells by new cells that are better suited to exercise. The aim of this study was to determine the expression of two genes (SH3FR1 and SH3RF2) that control apoptosis in muscle tissues during training periods characterized by different intensities. The gene expression levels were estimated using real-time PCR method in skeletal muscle biopsies collected from 15 Arabian horses (untrained, after an intense gallop phase, and at the end of the racing season). An association study was performed on 250 Arabian horses to assess the effect of the SH3RF2:c.796 T > C (p.Ser266Pro) variant on race performance traits in flat gallop-racing. RESULTS A gene expression analysis confirmed a significant decrease (p < 0.01) in the anti-apoptotic SH3RF2 (POSHER) gene during training periods that differed in intensity. The highest SH3RF2 expression level was detected in the muscles of untrained horses, whereas the lowest expression was identified at the end of the racing season in horses that were fully adapted to the exercise. A non-significant decrease in SH3RF1 gene expression following the training periods was observed. Moreover, a serine substitution by proline at amino acid position 266 (CC genotype) was negatively associated with the probability of winning races, the number of races in which a horse occurred and the financial value of the prizes. Horses with the TT genotype achieved the highest financial benefits, both for total winnings and for winnings per race in which the horses participated. CONCLUSIONS The present study showed the supposed regulation mechanism of exercise-induced apoptosis in horses at the molecular level. The identified SH3RF2: c.796 T > C missense variant was associated with selected racing performance traits, which is important information during the evaluation of horses' exercise predisposition. The association results and frequencies of the CT and TT genotypes suggest the possibility of using SH3RF2 variant in selection to improve the racing performance of Arabian horses.
Collapse
Affiliation(s)
- K Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Kraków, Poland. .,Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | - M Stefaniuk-Szmukier
- Department of Horse Breeding, Institute of Animal Science, the University of Agriculture in Cracow, Kraków, Poland
| | - K Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Kraków, Poland
| | - T Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Kraków, Poland
| | - M Bugno-Poniewierska
- Institute of Veterinary Sciences University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
38
|
Fu S, Yin L, Lin X, Lu J, Wang X. Effects of Cyclic Mechanical Stretch on the Proliferation of L6 Myoblasts and Its Mechanisms: PI3K/Akt and MAPK Signal Pathways Regulated by IGF-1 Receptor. Int J Mol Sci 2018; 19:ijms19061649. [PMID: 29865254 PMCID: PMC6032393 DOI: 10.3390/ijms19061649] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Myoblast proliferation is crucial to skeletal muscle hypertrophy and regeneration. Our previous study indicated that mechanical stretch altered the proliferation of C2C12 myoblasts, associated with insulin growth factor 1 (IGF-1)-mediated phosphoinositide 3-kinase (PI3K)/Akt (also known as protein kinase B) and mitogen-activated protein kinase (MAPK) pathways through IGF-1 receptor (IGF-1R). The purpose of this study was to explore the same stretches on the proliferation of L6 myoblasts and its association with IGF-1-regulated PI3K/Akt and MAPK activations. L6 myoblasts were divided into three groups: control, 15% stretch, and 20% stretch. Stretches were achieved using FlexCell Strain Unit. Cell proliferation and IGF-1 concentration were detected by CCK8 and ELISA, respectively. IGF-1R expression, and expressions and activities of PI3K, Akt, and MAPKs (including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38) were determined by Western blot. We found that 15% stretch promoted, while 20% stretch inhibited L6 myoblast proliferation. A 15% stretch increased IGF-1R level, although had no effect on IGF-1 secretion of L6 myoblasts, and PI3K/Akt and ERK1/2 (not p38) inhibitors attenuated 15% stretch-induced pro-proliferation. Exogenous IGF-1 reversed 20% stretch-induced anti-proliferation, accompanied with increases in IGF-1R level as well as PI3K/Akt and MAPK (ERK1/2 and p38) activations. In conclusion, stretch regulated L6 myoblasts proliferation, which may be mediated by the changes in PI3K/Akt and MAPK activations regulated by IGF-1R, despite no detectable IGF-1 from stretched L6 myoblasts.
Collapse
Affiliation(s)
- Shaoting Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Lijun Yin
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaojing Lin
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Jianqiang Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
39
|
Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, Neri LM. Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget 2018; 9:17220-17237. [PMID: 29682218 PMCID: PMC5908319 DOI: 10.18632/oncotarget.24991] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle is a dynamic tissue with remarkable plasticity and its growth and regeneration are highly organized, with the activation of specific transcription factors, proliferative pathways and cytokines. The decline of skeletal muscle tissue with age, is one of the most important causes of functional loss of independence in older adults. Maintaining skeletal muscle function throughout the lifespan is a prerequisite for good health and independent living. Physical activity represents one of the most effective preventive agents for muscle decay in aging. Several studies have underlined the importance of microRNAs (miRNAs) in the control of myogenesis and of skeletal muscle regeneration and function. In this review, we reported an overview and recent advances about the role of miRNAs expressed in the skeletal muscle, miRNAs regulation by exercise in skeletal muscle, the consequences of different physical exercise training modalities in the skeletal muscle miRNA profile, their regulation under pathological conditions and the role of miRNAs in age-related muscle wasting. Specific miRNAs appear to be involved in response to different types of exercise and therefore to play an important role in muscle fiber identity and myofiber gene expression in adults and elder population. Understanding the roles and regulation of skeletal muscle miRNAs during muscle regeneration may result in new therapeutic approaches in aging or diseases with impaired muscle function or re-growth.
Collapse
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
40
|
Prolonged Growth Hormone/Insulin/Insulin-like Growth Factor Nutrient Response Signaling Pathway as a Silent Killer of Stem Cells and a Culprit in Aging. Stem Cell Rev Rep 2018; 13:443-453. [PMID: 28229284 PMCID: PMC5493720 DOI: 10.1007/s12015-017-9728-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dream of slowing down the aging process has always inspired mankind. Since stem cells are responsible for tissue and organ rejuvenation, it is logical that we should search for encoded mechanisms affecting life span in these cells. However, in adult life the hierarchy within the stem cell compartment is still not very well defined, and evidence has accumulated that adult tissues contain rare stem cells that possess a broad trans-germ layer differentiation potential. These most-primitive stem cells-those endowed with pluripotent or multipotent differentiation ability and that give rise to other cells more restricted in differentiation, known as tissue-committed stem cells (TCSCs) - are of particular interest. In this review we present the concept supported by accumulating evidence that a population of so-called very small embryonic-like stem cells (VSELs) residing in adult tissues positively impacts the overall survival of mammals, including humans. These unique cells are prevented in vertebrates from premature depletion by decreased sensitivity to growth hormone (GH), insulin (INS), and insulin-like growth factor (IGF) signaling, due to epigenetic changes in paternally imprinted genes that regulate their resistance to these factors. In this context, we can envision nutrient response GH/INS/IGF signaling pathway as a lethal factor for these most primitive stem cells and an important culprit in aging.
Collapse
|
41
|
Ling YH, Sui MH, Zheng Q, Wang KY, Wu H, Li WY, Liu Y, Chu MX, Fang FG, Xu LN. miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat. Sci Rep 2018; 8:3909. [PMID: 29500394 PMCID: PMC5834623 DOI: 10.1038/s41598-018-22262-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/19/2018] [Indexed: 02/08/2023] Open
Abstract
This study found that miR-27 is expressed in muscle and regulates muscle proliferation and differentiation. We explored the function and regulatory mechanism of miR-27b in goat muscle proliferation and differentiation. Compared with the Boer goat, higher expression of miR-27b was observed in all of the collected muscle tissues of Anhuai goat, excluding the kidney, whereas the opposite expression pattern was observed for Pax3, which showed lower expression in Anhuai goat. Expression of miR-27b decreased gradually during the proliferation of skeletal muscle satellite cells in Anhuai goat and increased during differentiation; however, the expression pattern of Pax3 was opposite. The regulatory activity of miR-27b demonstrated that miR-27b inhibited the proliferation of skeletal muscle satellite cells, but promoted their differentiation. Moreover, function research demonstrated that Pax3 negatively regulated myogenic differentiation of goat skeletal muscle satellite cells, but accelerated their proliferation. The results of a dual-luciferase reporter analysis showed that miR-27b directly targeted the 3’-untranslated regions of Pax3 mRNA, and western blot and immunofluorescence staining analyses showed that miR-27b inhibited expression of the Pax3 protein. In goats, miR-27b can regulate myogenic proliferation and differentiation by targeting Pax3.
Collapse
Affiliation(s)
- Ying-Hui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Meng-Hua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Kang-Yan Wang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Hao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Wen-Yong Li
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Ming-Xing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, CAAS, Beijing, 100193, China
| | - Fu-Gui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Anhui Hefei, China
| | - Li-Na Xu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, China. .,Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
42
|
Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 2018; 243:118-128. [PMID: 29307280 DOI: 10.1177/1535370217749494] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prenatal and postnatal myogenesis share many cellular and molecular aspects. Myogenic regulatory factors are basic Helix-Loop-Helix transcription factors that indispensably regulate both processes. These factors (Myf5, MyoD, Myogenin, and MRF4) function as an orchestrating cascade, with some overlapped actions. Prenatally, myogenic regulatory factors are restrictedly expressed in somite-derived myogenic progenitor cells and their derived myoblasts. Postnatally, myogenic regulatory factors are important in regulating the myogenesis process via satellite cells. Many positive and negative regulatory mechanisms exist either between myogenic regulatory factors themselves or between myogenic regulatory factors and other proteins. Upstream factors and signals are also involved in the control of myogenic regulatory factors expression within different prenatal and postnatal myogenic cells. Here, the authors have conducted a thorough and an up-to-date review of the myogenic regulatory factors since their discovery 30 years ago. This review discusses the myogenic regulatory factors structure, mechanism of action, and roles and regulations during prenatal and postnatal myogenesis. Impact statement Myogenic regulatory factors (MRFs) are key players in the process of myogenesis. Despite a considerable amount of literature regarding these factors, their exact mechanisms of actions are still incompletely understood with several overlapped functions. Herein, we revised what has hitherto been reported in the literature regarding MRF structures, molecular pathways that regulate their activities, and their roles during pre- and post-natal myogenesis. The work submitted in this review article is considered of great importance for researchers in the field of skeletal muscle formation and regeneration, as it provides a comprehensive summary of all the biological aspects of MRFs and advances a better understanding of the cellular and molecular mechanisms regulating myogenesis. Indeed, attaining a better understanding of MRFs could be utilized in developing novel therapeutic protocols for multiple myopathies.
Collapse
Affiliation(s)
- Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Raed S Said
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| |
Collapse
|
43
|
Gatta L, Vitiello L, Gorini S, Chiandotto S, Costelli P, Giammarioli AM, Malorni W, Rosano G, Ferraro E. Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget 2017; 8:113938-113956. [PMID: 29371959 PMCID: PMC5768376 DOI: 10.18632/oncotarget.23044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Trimetazidine (TMZ) is a metabolic reprogramming agent able to partially inhibit mitochondrial free fatty acid β-oxidation while enhancing glucose oxidation. Here we have found that the metabolic shift driven by TMZ enhances the myogenic potential of skeletal muscle progenitor cells leading to MyoD, Myogenin, Desmin and the slow isoforms of troponin C and I over-expression. Moreover, similarly to exercise, TMZ stimulates the phosphorylation of the AMP-activated protein kinase (AMPK) and up-regulates the peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), both of which are known to enhance the mitochondrial biogenesis necessary for myoblast differentiation. TMZ also induces autophagy which is required during myoblast differentiation and promotes myoblast alignment which allows cell fusion and myofiber formation. Finally, we found that intraperitoneally administered TMZ (5mg/kg) is able to stimulate myogenesis in vivo both in a mice model of cancer cachexia (C26 mice) and upon cardiotoxin damage. Collectively, our work demonstrates that TMZ enhances myoblast differentiation and promotes myogenesis, which might contribute recovering stem cell blunted regenerative capacity and counteracting muscle wasting, thanks to the formation of new myofibers; TMZ is already in use in humans as an anti-anginal drug and its repositioning might impact significantly on aging and regeneration-impaired disorders, including cancer cachexia, as well as have implications in regenerative medicine.
Collapse
Affiliation(s)
- Lucia Gatta
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vitiello
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Stefania Gorini
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sergio Chiandotto
- Department of Molecular and Clinical Medicine (DMCM), C/o Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Interuniversity Institute of Myology-IIM, Chieti, Italy
| | - Anna Maria Giammarioli
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanita, Rome, Italy
| | - Walter Malorni
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanita, Rome, Italy
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|