1
|
O'Regan PW, O'Regan JA, Maher MM, Ryan DJ. The Emerging Role and Clinical Applications of Morphomics in Diagnostic Imaging. Can Assoc Radiol J 2024; 75:793-804. [PMID: 38624049 DOI: 10.1177/08465371241242763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Analytic morphomics refers to the accurate measurement of specific biological markers of human body composition in diagnostic medical imaging. The increasing prevalence of disease processes that alter body composition including obesity, cachexia, and sarcopenia has generated interest in specific targeted measurement of these metrics to possibly prevent or reduce negative health outcomes. Typical morphomic measurements include the area and density of muscle, bone, vascular calcification, visceral fat, and subcutaneous fat on a specific validated axial level in the patient's cross-sectional diagnostic imaging. A distinct advantage of these measurements is that they can be made retrospectively and opportunistically with pre-existing datasets. We provide a narrative review of the current state of art in morphomics, but also consider some potential future directions for this exciting field. Imaging based quantitative assessment of body composition has enormous potential across the breadth and scope of modern clinical practice. From risk stratification to treatment planning, and outcome assessment, all can be enhanced with the use of analytic morphomics. Moreover, it is likely that many new opportunities for personalized medicine will emerge as the field evolves. As radiologists, embracing analytic morphomics will enable us to contribute added value in the care of every patient.
Collapse
Affiliation(s)
- Patrick W O'Regan
- Department of Radiology, Cork University Hospital, Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, Cork, Ireland
| | - James A O'Regan
- Department of Medicine, Cork University Hospital, Cork, Ireland
| | - Michael M Maher
- Department of Radiology, Cork University Hospital, Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, Cork, Ireland
| | - David J Ryan
- Department of Radiology, Cork University Hospital, Cork, Ireland
- Department of Radiology, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Loh WJ, Yaligar J, Hooper AJ, Sadananthan SA, Kway Y, Lim SC, Watts GF, Velan SS, Leow MKS, Khoo J. Clinical and imaging features of women with polygenic partial lipodystrophy: a case series. Nutr Diabetes 2024; 14:3. [PMID: 38321009 PMCID: PMC10847407 DOI: 10.1038/s41387-024-00260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Familial partial lipodystrophy (FPLD) is an inherited disorder of white adipose tissue that causes premature cardiometabolic disease. There is no clear diagnostic criteria for FPLD, and this may explain the under-detection of this condition. AIM This pilot study aimed to describe the clinical features of women with FPLD and to explore the value of adipose tissue measurements that could be useful in diagnosis. METHODS In 8 women with FPLD and 4 controls, skinfold measurements, DXA and whole-body MRI were undertaken. RESULTS Whole genome sequencing was negative for monogenic metabolic causes, but polygenic scores for partial lipodystrophy were elevated in keeping with FPLD type 1. The mean age of diagnosis of DM was 31 years in the FPLD group. Compared with controls, the FPLD group had increased HOMA-IR (10.3 vs 2.9, p = 0.028) and lower mean thigh skinfold thickness (19.5 mm vs 48.2 mm, p = 0.008). The FPLD group had lower percentage of leg fat and an increased ratio of trunk to leg fat percentage on DXA. By MRI, the FPLD group had decreased subcutaneous adipose tissue (SAT) volume in the femoral and calf regions (p < 0.01); abdominal SAT, visceral adipose tissue, and femoral and calf muscle volumes were not different from controls. CONCLUSION Women with FPLD1 in Singapore have significant loss of adipose but not muscle tissue in lower limbs and have early onset of diabetes. Reduced thigh skinfold, and increased ratio of trunk to leg fat percentage on DXA are potentially clinically useful markers to identify FPLD1.
Collapse
Affiliation(s)
- Wann Jia Loh
- Department of Endocrinology, Changi General Hospital, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| | - Jadegoud Yaligar
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Amanda J Hooper
- Department of Biochemistry, Pathwest and Fiona Stanley Hospital Network, Perth, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
| | - Yeshe Kway
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
- Departments of Medicine and Physiology, NUS Yong Loo School of Medicine, NUS, Singapore, Singapore
| | - Su Chi Lim
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Australia
- Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia
| | - Sambasivam Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
- Departments of Medicine and Physiology, NUS Yong Loo School of Medicine, NUS, Singapore, Singapore
| | - Melvin Khee Shing Leow
- Duke-NUS Medical School, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- LKC School of Medicine, NTU, Singapore, Singapore
| | - Joan Khoo
- Department of Endocrinology, Changi General Hospital, Singapore, Singapore
| |
Collapse
|
3
|
Clinical Spectrum of LMNA-Associated Type 2 Familial Partial Lipodystrophy: A Systematic Review. Cells 2023; 12:cells12050725. [PMID: 36899861 PMCID: PMC10000975 DOI: 10.3390/cells12050725] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Type 2 familial partial lipodystrophy (FPLD2) is a laminopathic lipodystrophy due to pathogenic variants in the LMNA gene. Its rarity implies that it is not well-known. The aim of this review was to explore the published data regarding the clinical characterisation of this syndrome in order to better describe FPLD2. For this purpose, a systematic review through a search on PubMed until December 2022 was conducted and the references of the retrieved articles were also screened. A total of 113 articles were included. FPLD2 is characterised by the loss of fat starting around puberty in women, affecting limbs and trunk, and its accumulation in the face, neck and abdominal viscera. This adipose tissue dysfunction conditions the development of metabolic complications associated with insulin resistance, such as diabetes, dyslipidaemia, fatty liver disease, cardiovascular disease, and reproductive disorders. However, a great degree of phenotypical variability has been described. Therapeutic approaches are directed towards the associated comorbidities, and recent treatment modalities have been explored. A comprehensive comparison between FPLD2 and other FPLD subtypes can also be found in the present review. This review aimed to contribute towards augmenting knowledge of the natural history of FPLD2 by bringing together the main clinical research in this field.
Collapse
|
4
|
Bonnefond A, Semple RK. Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes. Diabetologia 2022; 65:1782-1795. [PMID: 35618782 PMCID: PMC9522735 DOI: 10.1007/s00125-022-05720-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 01/19/2023]
Abstract
Integration of genomic and other data has begun to stratify type 2 diabetes in prognostically meaningful ways, but this has yet to impact on mainstream diabetes practice. The subgroup of diabetes caused by single gene defects thus provides the best example to date of the vision of 'precision diabetes'. Monogenic diabetes may be divided into primary pancreatic beta cell failure, and primary insulin resistance. In both groups, clear examples of genotype-selective responses to therapy have been advanced. The benign trajectory of diabetes due to pathogenic GCK mutations, and the sulfonylurea-hyperresponsiveness conferred by activating KCNJ11 or ABCC8 mutations, or loss-of-function HNF1A or HNF4A mutations, often decisively guide clinical management. In monogenic insulin-resistant diabetes, subcutaneous leptin therapy is beneficial in some severe lipodystrophy. Increasing evidence also supports use of 'obesity therapies' in lipodystrophic people even without obesity. In beta cell diabetes the main challenge is now implementation of the precision diabetes vision at scale. In monogenic insulin-resistant diabetes genotype-specific benefits are proven in far fewer patients to date, although further genotype-targeted therapies are being evaluated. The conceptual paradigm established by the insulin-resistant subgroup with 'adipose failure' may have a wider influence on precision therapy for common type 2 diabetes, however. For all forms of monogenic diabetes, population-wide genome sequencing is currently forcing reappraisal of the importance assigned to pathogenic mutations when gene sequencing is uncoupled from prior suspicion of monogenic diabetes.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.
- Université de Lille, Lille, France.
- Department of Metabolism, Imperial College London, London, UK.
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Tunariu N, Blackledge M, Messiou C, Petralia G, Padhani A, Curcean S, Curcean A, Koh DM. What's New for Clinical Whole-body MRI (WB-MRI) in the 21st Century. Br J Radiol 2020; 93:20200562. [PMID: 32822545 PMCID: PMC8519652 DOI: 10.1259/bjr.20200562] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Whole-body MRI (WB-MRI) has evolved since its first introduction in the 1970s as an imaging technique to detect and survey disease across multiple sites and organ systems in the body. The development of diffusion-weighted MRI (DWI) has added a new dimension to the implementation of WB-MRI on modern scanners, offering excellent lesion-to-background contrast, while achieving acceptable spatial resolution to detect focal lesions 5 to 10 mm in size. MRI hardware and software advances have reduced acquisition times, with studies taking 40-50 min to complete.The rising awareness of medical radiation exposure coupled with the advantages of MRI has resulted in increased utilization of WB-MRI in oncology, paediatrics, rheumatological and musculoskeletal conditions and more recently in population screening. There is recognition that WB-MRI can be used to track disease evolution and monitor response heterogeneity in patients with cancer. There are also opportunities to combine WB-MRI with molecular imaging on PET-MRI systems to harness the strengths of hybrid imaging. The advent of artificial intelligence and machine learning will shorten image acquisition times and image analyses, making the technique more competitive against other imaging technologies.
Collapse
Affiliation(s)
| | - Matthew Blackledge
- Department of Radiotherapy, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London, UK
| | - Christina Messiou
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, London, UK
| | - Giuseppe Petralia
- Department of Radiology, European Institute of Oncology, Via Ripamonti, 435 - 20141 Milan, Italy
| | - Anwar Padhani
- Mount Vernon Hospital, The Paul Strickland Scanner Centre, Rickmansworth Road, Northwood, Middlesex, UK
| | - Sebastian Curcean
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, London, UK
| | | | - Dow-Mu Koh
- Drug Development Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London, UK
| |
Collapse
|
6
|
Polyzos SA, Perakakis N, Mantzoros CS. Fatty liver in lipodystrophy: A review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement. Metabolism 2019; 96:66-82. [PMID: 31071311 DOI: 10.1016/j.metabol.2019.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 01/17/2023]
Abstract
Lipodystrophy is a group of clinically heterogeneous, inherited or acquired, disorders characterized by complete or partial absence of subcutaneous adipose tissue that may occur simultaneously with the pathological, ectopic, accumulation of fat in other regions of the body, including the liver. Fatty liver adds significantly to hepatic and extra-hepatic morbidity in patients with lipodystrophy. Lipodystrophy is strongly associated with severe insulin resistance and related comorbidities, such as hyperglycemia, hyperlipidemia and nonalcoholic fatty liver disease (NAFLD), but other hepatic diseases may co-exist in some types of lipodystrophy, including autoimmune hepatitis in acquired lipodystrophies, or viral hepatitis in human immunodeficiency virus (HIV)-associated lipodystrophy. The aim of this review is to summarize evidence linking lipodystrophy with hepatic disease and to provide a special focus on potential therapeutic perspectives of leptin replacement therapy and adiponectin upregulation in lipodystrophy.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Nikolaos Perakakis
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the therapeutic approach for lipodystrophy syndromes with conventional treatment options and metreleptin therapy in detail and to point out the current investigational treatments in development. RECENT FINDINGS The observation of leptin deficiency in patients with lipodystrophy and the potential of leptin replacement to rescue metabolic abnormalities in animal models of lipodystrophy were followed by the first clinical study of leptin therapy in patients with severe lipodystrophy. This and several other long-term studies demonstrated important benefits of recombinant human leptin (metreleptin) to treat metabolic abnormalities of lipodystrophy. These studies ultimately led to the recent FDA approval of metreleptin for the treatment of generalized lipodystrophy and EMA approval for both generalized and partial lipodystrophy. Additional research efforts in progress focus on novel treatment options, predominantly for patients with partial lipodystrophy. Current treatment of generalized lipodystrophy includes metreleptin replacement as an adjunct to diet and standard treatment approach for metabolic consequences of lipodystrophy. Beyond metreleptin, a number of different compounds and treatment modalities are being studied for the treatment of partial lipodystrophy.
Collapse
Affiliation(s)
- Baris Akinci
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA
- Division of Endocrinology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Rasimcan Meral
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA
| | - Elif Arioglu Oral
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
8
|
Davis JT, Kwatra N, Schooler GR. Pediatric whole-body MRI: A review of current imaging techniques and clinical applications. J Magn Reson Imaging 2016; 44:783-93. [PMID: 27043465 DOI: 10.1002/jmri.25259] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/15/2016] [Indexed: 12/25/2022] Open
Abstract
There are many congenital, neoplastic, inflammatory, and infectious processes in the pediatric patient for which whole-body imaging may be of benefit diagnostically and prognostically. With recent improvements in magnetic resonance imaging (MRI) hardware and software and resultant dramatically reduced scan times, imaging of the whole body with MRI has become a much more practicable technique in children. Whole-body MRI can provide a high level of soft tissue and skeletal detail while avoiding the exposure to ionizing radiation inherent to computed tomography and nuclear medicine imaging techniques. This article reviews the more common current whole-body MRI techniques in children and the primary pathologies for which this imaging modality may be most useful to the radiologists and referring clinicians. J. MAGN. RESON. IMAGING 2016;44:783-793.
Collapse
Affiliation(s)
- Joseph T Davis
- Department of Radiology, Duke University Medical Center, Children's Health Center, Durham, North Carolina, USA.
| | - Neha Kwatra
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gary R Schooler
- Department of Radiology, Duke University Medical Center, Children's Health Center, Durham, North Carolina, USA
| |
Collapse
|
9
|
Goo HW. Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications. Korean J Radiol 2015; 16:973-85. [PMID: 26355493 PMCID: PMC4559794 DOI: 10.3348/kjr.2015.16.5.973] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022] Open
Abstract
Whole-body magnetic resonance imaging (MRI) is increasingly used in children to evaluate the extent and distribution of various neoplastic and non-neoplastic diseases. Not using ionizing radiation is a major advantage of pediatric whole-body MRI. Coronal and sagittal short tau inversion recovery imaging is most commonly used as the fundamental whole-body MRI protocol. Diffusion-weighted imaging and Dixon-based imaging, which has been recently incorporated into whole-body MRI, are promising pulse sequences, particularly for pediatric oncology. Other pulse sequences may be added to increase diagnostic capability of whole-body MRI. Of importance, the overall whole-body MRI examination time should be less than 30-60 minutes in children, regardless of the imaging protocol. Established and potentially useful clinical applications of pediatric whole-body MRI are described.
Collapse
Affiliation(s)
- Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
10
|
Prieur X, Le May C, Magré J, Cariou B. Congenital lipodystrophies and dyslipidemias. Curr Atheroscler Rep 2015; 16:437. [PMID: 25047893 DOI: 10.1007/s11883-014-0437-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipodystrophies are rare acquired and genetic disorders characterized by the selective loss of adipose tissue. One key metabolic feature of patients with congenital inherited lipodystrophy is hypertriglyceridemia. The precise mechanisms by which the lack of adipose tissue causes dyslipidemia remain largely unknown. In recent years, new insights have arisen from data obtained in vitro in adipocytes, yeast, drosophila, and very recently in several genetically modified mouse models of generalized lipodystrophy. A common metabolic pathway involving accelerated lipolysis and defective energy storage seems to contribute to the dyslipidemia associated with congenital generalized lipodystrophy syndromes, although the pathophysiological changes may vary with the nature of the mutation involved. Therapeutic management of dyslipidemia in patients with lipodystrophy is primarily based on specific approaches using recombinant leptin therapy. Preclinical studies suggest a potential efficacy of thiazolidinediones that remains to be assessed in dedicated clinical trials.
Collapse
Affiliation(s)
- Xavier Prieur
- INSERM U1087-CNRS UMR 6291, L'institut du Thorax, 8 quai Moncousu, 44007, Nantes Cedex 1, France,
| | | | | | | |
Collapse
|
11
|
Thomas EL, Fitzpatrick JA, Malik SJ, Taylor-Robinson SD, Bell JD. Whole body fat: content and distribution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 73:56-80. [PMID: 23962884 DOI: 10.1016/j.pnmrs.2013.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/09/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
Obesity and its co-morbidities, including type II diabetes, insulin resistance and cardiovascular diseases, have become one of the biggest health issues of present times. The impact of obesity goes well beyond the individual and is so far-reaching that, if it continues unabated, it will cause havoc with the economies of most countries. In order to be able to fully understand the relationship between increased adiposity (obesity) and its co-morbidity, it has been necessary to develop proper methodology to accurately and reproducibly determine both body fat content and distribution, including ectopic fat depots. Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) have recently emerged as the gold-standard for accomplishing this task. Here, we will review the use of different MRI techniques currently being used to determine body fat content and distribution. We also discuss the pros and cons of MRS to determine ectopic fat depots in liver, muscle, pancreas and heart and compare these to emerging MRI techniques currently being put forward to create ectopic fat maps. Finally, we will discuss how MRI/MRS techniques are helping in changing the perception of what is healthy and what is normal and desirable body-fat content and distribution.
Collapse
Affiliation(s)
- E L Thomas
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London, UK.
| | | | | | | | | |
Collapse
|