1
|
Pu Y, Zhou X, Zhang D, Guan Y, Xia Y, Liu S, Fan L. Quantitative Assessment Characteristics of Small Pulmonary Vessel Remodelling in Populations at High Risk for COPD and Smokers Using Low-Dose CT. Int J Chron Obstruct Pulmon Dis 2024; 19:51-62. [PMID: 38205400 PMCID: PMC10778209 DOI: 10.2147/copd.s436242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Purpose To explore the morphological alterations in small pulmonary vessels in populations at high risk for chronic obstructive pulmonary disease (COPD) and smokers based on multiple computed tomography (CT) quantitative parameters. Patients and Methods A total of 1969 Three Major Chest Diseases Screening Study participants with available demographic data and smoking history who underwent low-dose chest CT from 2018 to 2020 were included. All subjects were divided into normal, high risk for COPD, and COPD groups according to their pulmonary function test (PFT) results. Furthermore, the three groups were further subdivided into never-smokers, current smokers, and former smokers subgroups according to their smoking history. Quantitative parameters, such as the number, area at 6 mm~24 mm subpleura and volume of small pulmonary vessels, were extracted by computer software. Differences in small pulmonary vessel parameters among the groups were compared using two-way ANOVA. Results The number, area at 6 mm~24 mm subpleura and volume of small pulmonary vessels in the group at high risk for COPD were lower than those in the normal group (P<0.05). The number, area at 6 mm~24 mm subpleura and volume of small pulmonary vessels in the COPD group were higher than those in the normal group (P<0.05). The number, area of small pulmonary vessels at 6 mm~12 mm subpleura in current smokers with high risk for COPD were higher than those in former smokers with high risk for COPD (P<0.05). Conclusion The number, area, and volume of small pulmonary vessels in populations at high risk for COPD were decreased. Smoking cessation may impede structural changes in small pulmonary vessels in populations at high risk for COPD.
Collapse
Affiliation(s)
- Yu Pu
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Xiuxiu Zhou
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Di Zhang
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Yu Guan
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Xia
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Shiyuan Liu
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Koster TD, Charbonnier JP, Pruim J, Gietema HA, Posthuma R, Vanfleteren LEGW, van Dijk M, Klooster K, Slebos DJ. High-Resolution Computed Tomography-approximated Perfusion Is Comparable to Nuclear Perfusion Imaging in Severe Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 208:495-498. [PMID: 37192444 DOI: 10.1164/rccm.202303-0463le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023] Open
Affiliation(s)
| | | | - Jan Pruim
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hester A Gietema
- Department of Radiology and Nuclear Medicine and
- GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Rein Posthuma
- Department of Pulmonology, Maastricht University Medical Center+, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- Department of Respiratory Medicine and Allergology, COPD Center, Sahlgrenska University Hospital, Gothenburg, Sweden; and
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
3
|
Pistenmaa CL, Nardelli P, Ash SY, Come CE, Diaz AA, Rahaghi FN, Barr RG, Young KA, Kinney GL, Simmons JP, Wade RC, Wells JM, Hokanson JE, Washko GR, San José Estépar R. Pulmonary Arterial Pruning and Longitudinal Change in Percent Emphysema and Lung Function: The Genetic Epidemiology of COPD Study. Chest 2021; 160:470-480. [PMID: 33607083 PMCID: PMC8411454 DOI: 10.1016/j.chest.2021.01.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pulmonary endothelial damage has been shown to precede the development of emphysema in animals, and vascular changes in humans have been observed in COPD and emphysema. RESEARCH QUESTION Is intraparenchymal vascular pruning associated with longitudinal progression of emphysema on CT imaging or decline in lung function over 5 years? STUDY DESIGN AND METHODS The Genetic Epidemiology of COPD Study enrolled ever smokers with and without COPD from 2008 through 2011. The percentage of emphysema-like lung, or "percent emphysema," was assessed at baseline and after 5 years on noncontrast CT imaging as the percentage of lung voxels < -950 Hounsfield units. An automated CT imaging-based tool assessed and classified intrapulmonary arteries and veins. Spirometry measures are postbronchodilator. Pulmonary arterial pruning was defined as a lower ratio of small artery volume (< 5 mm2 cross-sectional area) to total lung artery volume. Mixed linear models included demographics, anthropomorphics, smoking, and COPD, with emphysema models also adjusting for CT imaging scanner and lung function models adjusting for clinical center and baseline percent emphysema. RESULTS At baseline, the 4,227 participants were 60 ± 9 years of age, 50% were women, 28% were Black, 47% were current smokers, and 41% had COPD. Median percent emphysema was 2.1 (interquartile range, 0.6-6.3) and progressed 0.24 percentage points/y (95% CI, 0.22-0.26 percentage points/y) over 5.6 years. Mean FEV1 to FVC ratio was 68.5 ± 14.2% and declined 0.26%/y (95% CI, -0.30 to -0.23%/y). Greater pulmonary arterial pruning was associated with more rapid progression of percent emphysema (0.11 percentage points/y per 1-SD increase in arterial pruning; 95% CI, 0.09-0.16 percentage points/y), including after adjusting for baseline percent emphysema and FEV1. Arterial pruning also was associated with a faster decline in FEV1 to FVC ratio (-0.04%/y per 1-SD increase in arterial pruning; 95% CI, -0.008 to -0.001%/y). INTERPRETATION Pulmonary arterial pruning was associated with faster progression of percent emphysema and more rapid decline in FEV1 to FVC ratio over 5 years in ever smokers, suggesting that pulmonary vascular differences may be relevant in disease progression. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
| | - P Nardelli
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - S Y Ash
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - C E Come
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - A A Diaz
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - F N Rahaghi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - R G Barr
- Departments of Medicine and Epidemiology, Columbia University, New York, NY
| | - K A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - G L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - J P Simmons
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - R C Wade
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - J M Wells
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - J E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - G R Washko
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | | |
Collapse
|
4
|
Pulmonary Vascular Alterations on Computed Tomography Imaging and Outcomes in Heart Failure With Preserved Ejection Fraction: a Preliminary Data. J Card Fail 2021; 27:1031-1033. [PMID: 33965537 DOI: 10.1016/j.cardfail.2021.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Pulmonary vascular disease may play an important role in the pathophysiology of heart failure (HF) with preserved ejection fraction (HFpEF). However, no study has demonstrated noninvasive quantification of pulmonary vascular alterations in HFpEF. This study sought to determine the association between pulmonary vascular alterations quantified by chest computed tomography scan and clinical outcomes in HFpEF. METHODS AND RESULTS Pulmonary vascular alterations were quantified in 151 patients with HFpEF who underwent noncontrast chest computed tomography scan by measuring the percentage of total cross-sectional area (CSA) of pulmonary vessels less than 5 mm2 to the total lung area (%CSA<5). We divided the patients by the median value of %CSA<5 (=1.45%) and examined the association between %CSA<5 and a composite outcome of all-cause mortality or HF hospitalization. During a median follow-up of 17.3 months, there were 44 (29%) composite outcomes. Event rates were significantly higher in patients with higher %CSA<5 than those with lower %CSA<5 (log-rank P = .02). %CSA<5 was associated with an increased risk of the outcome (hazard ratio per 1.0% increment, 1.46; 95% confidence interval 1.06-1.98; P = .02) in an unadjusted Cox model, and was independently and incrementally associated with the outcome over age, the presence of atrial fibrillation, E/e' ratio, and estimated pulmonary artery systolic pressure (global χ2 17.3 vs 11.5, P = .02). CONCLUSIONS A higher %CSA<5 was associated with an increased risk of all-cause mortality or HF hospitalization in patients with HFpEF, with an incremental prognostic value over age, atrial fibrillation, E/e' ratio, and pulmonary artery systolic pressure.
Collapse
|
5
|
Cigarette Smoke Exposure and Radiographic Pulmonary Vascular Morphology in the Framingham Heart Study. Ann Am Thorac Soc 2020; 16:698-706. [PMID: 30714821 DOI: 10.1513/annalsats.201811-795oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rationale: Cigarette smoke exposure is a risk factor for many lung diseases, and histologic studies suggest that tobacco-related vasoconstriction and vessel loss plays a role in the development of emphysema. However, it remains unclear how tobacco affects the pulmonary vasculature in general populations with a typical range of tobacco exposure, and whether these changes are detectable by radiographic methods. Objectives: To determine whether tobacco exposure in a generally healthy population manifests as lower pulmonary blood vessel volumes and vascular pruning on imaging. Methods: A total of 2,410 Framingham Heart Study participants with demographic data and smoking history underwent volumetric whole-lung computed tomography from 2008 to 2011. Automated algorithms calculated the total blood volume of all intrapulmonary vessels (TBV), smaller peripheral vessels (defined as cross-sectional area <5 mm2 [BV5]), and the relative fraction of small vessels (BV5/TBV). Tobacco exposure was assessed as smoking status, cumulative pack-years, and second-hand exposure. We constructed multivariable linear regression models to evaluate associations of cigarette exposure and pulmonary blood vessel volume measures, adjusting for demographic covariates, including age, sex, height, weight, education, occupation, and median neighborhood income. Results: All metrics of tobacco exposure (including smoking status, pack-years, and second-hand exposure) were consistently associated with higher absolute pulmonary blood vessel volume, higher small vessel volume, and/or higher small vessel fraction. For example, ever-smokers had a 4.6 ml higher TBV (95% confidence interval [CI] = 2.9-6.3, P < 0.001), 2.1 ml higher BV5 (95% CI = 1.3-2.9, P < 0.001), and 0.28 percentage-point-higher BV5/TBV (95% CI = 0.03-0.52, P = 0.03) compared with never-smokers. These associations remained significant after adjustment for percent predicted forced expiratory volume in 1 second, cardiovascular comorbidities, and did not differ based on presence or absence of airflow obstruction. Conclusions: Using computed tomographic imaging, we found that cigarette exposure was associated with higher pulmonary blood vessel volumes, especially in the smaller peripheral vessels. Although, histologically, tobacco-related vasculopathy is characterized by vessel narrowing and loss, our results suggest that radiographic vascular pruning may not be a surrogate of these pathologic changes.
Collapse
|
6
|
Matsuoka S, Kotoku A, Yamashiro T, Matsushita S, Fujikawa A, Yagihashi K, Nakajima Y. Quantitative CT Evaluation of Small Pulmonary Vessels in Patients with Acute Pulmonary Embolism. Acad Radiol 2018; 25:653-658. [PMID: 29331359 DOI: 10.1016/j.acra.2017.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVES The objective of this study was to investigate the correlation between the computed tomography (CT) cross-sectional area (CSA) of small pulmonary vessels and the CT obstruction index in patients with acute pulmonary embolism (PE) and the correlation between the changes in these measurements after anticoagulant therapy. MATERIALS AND METHODS Fifty-two patients with acute PE were selected for this study. We measured the CSA less than 5 mm2 on coronal reconstructed images to obtain the percentage of the CSA (%CSA < 5). CT angiographic index was obtained based on the Qanadli method for the evaluation of the degree of pulmonary arterial obstruction. Spearman rank correlation analysis was used to evaluate the relationship between the initial and the follow-up values and changes in the %CSA < 5 and the CT obstruction index. RESULTS There was no significant correlation between the %CSA < 5 and CT obstruction index on both initial (ρ = -0.03, P = 0.84) and follow-up (ρ = -0.03, P = 0.82) assessments. In contrast, there was a significant negative correlation between the changes in %CSA < 5 and the CT obstruction index (ρ = -0.59, P < 0.0001). CONCLUSIONS Although the absolute %CSA < 5 and CT obstruction index were not significantly correlated, the changes in the values of the two parameters had a significant correlation. Changes in %CSA < 5, which can be obtained easily, can be used as biomarker of therapeutic response in patients with acute PE.
Collapse
Affiliation(s)
- Shin Matsuoka
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki City, Kanagawa 216-8511, Japan.
| | - Akiyuki Kotoku
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki City, Kanagawa 216-8511, Japan
| | - Tsuneo Yamashiro
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki City, Kanagawa 216-8511, Japan; Department of Radiology, Graduate School of Medical Science, University of the Ryukyu, Okinawa, Japan
| | - Shoichiro Matsushita
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki City, Kanagawa 216-8511, Japan
| | - Atsuko Fujikawa
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki City, Kanagawa 216-8511, Japan
| | - Kunihiro Yagihashi
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki City, Kanagawa 216-8511, Japan
| | - Yasuo Nakajima
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki City, Kanagawa 216-8511, Japan
| |
Collapse
|
7
|
Mashimo S, Chubachi S, Tsutsumi A, Kameyama N, Sasaki M, Jinzaki M, Nakamura H, Asano K, Reilly JJ, Betsuyaku T. Relationship between diminution of small pulmonary vessels and emphysema in chronic obstructive pulmonary disease. Clin Imaging 2017; 46:85-90. [DOI: 10.1016/j.clinimag.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|
8
|
Saruya S, Yamashiro T, Matsuoka S, Matsushita S, Yagihashi K, Nakajima Y. Decrease in Small Pulmonary Vessels on Chest Computed Tomography in Light Smokers Without COPD: An Early Change, but Correlated with Smoking Index. Lung 2017; 195:179-184. [PMID: 28224233 DOI: 10.1007/s00408-017-9985-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
PURPOSE The aim of this study was to evaluate the relationship between the amount of smoking and the cross-sectional area (CSA) of small pulmonary vessels in light smokers without a diagnosis of chronic obstructive pulmonary disease (COPD). METHODS This retrospective study was approved by our institutional review board, which waived the need for informed consent from patients. The study included 34 current smokers without COPD, who were defined as light smokers based on their smoking history (≤25 pack years). The CSA of small pulmonary vessels (<5 mm2 [CSA<5]) was measured on computed tomography (CT) scans, and the percentage of total CSA of the lung (%CSA<5) was calculated. The extent of emphysema was also assessed as the percentage of low attenuation area (%LAA, <-950 Hounsfield units). The correlations of %CSA<5 and %LAA with pack years were determined using the Spearman rank correlation. RESULTS There was a significant negative correlation between %CSA<5 and pack years, whereas no significant correlation was found between %LAA and pack years. The correlations between pack years and percent predicted forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity were not significant. CONCLUSIONS The percentage of total CSA of the lung made up of small pulmonary vessels in light smokers without COPD significantly decreases with increasing amount of smoking, in contrast to emphysema measurements. This suggests that small pulmonary vessels might have been injured or might have degenerated because of smoking, and might represent an initial stage in the development of COPD.
Collapse
Affiliation(s)
- Shinji Saruya
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Tsuneo Yamashiro
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.,Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Shin Matsuoka
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Shoichiro Matsushita
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Kunihiro Yagihashi
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yasuo Nakajima
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
9
|
Takayanagi S, Kawata N, Tada Y, Ikari J, Matsuura Y, Matsuoka S, Matsushita S, Yanagawa N, Kasahara Y, Tatsumi K. Longitudinal changes in structural abnormalities using MDCT in COPD: do the CT measurements of airway wall thickness and small pulmonary vessels change in parallel with emphysematous progression? Int J Chron Obstruct Pulmon Dis 2017; 12:551-560. [PMID: 28243075 PMCID: PMC5315203 DOI: 10.2147/copd.s121405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Recent advances in multidetector computed tomography (MDCT) facilitate acquiring important clinical information for managing patients with COPD. MDCT can detect the loss of lung tissue associated with emphysema as a low-attenuation area (LAA) and the thickness of airways as the wall area percentage (WA%). The percentage of small pulmonary vessels <5 mm2 (% cross-sectional area [CSA] <5) has been recently recognized as a parameter for expressing pulmonary perfusion. We aimed to analyze the longitudinal changes in structural abnormalities using these CT parameters and analyze the effect of exacerbation and smoking cessation on structural changes in COPD patients. Methods We performed pulmonary function tests (PFTs), an MDCT, and a COPD assessment test (CAT) in 58 patients with COPD at the time of their enrollment at the hospital and 2 years later. We analyzed the change in clinical parameters including CT indices and examined the effect of exacerbations and smoking cessation on the structural changes. Results The CAT score and forced expiratory volume in 1 second (FEV1) did not significantly change during the follow-up period. The parameters of emphysematous changes significantly increased. On the other hand, the WA% at the distal airways significantly decreased or tended to decrease, and the %CSA <5 slightly but significantly increased over the same period, especially in ex-smokers. The parameters of emphysematous change were greater in patients with exacerbations and continued to progress even after smoking cessation. In contrast, the WA% and %CSA <5 did not change in proportion to emphysema progression. Conclusion The WA% at the distal bronchi and the %CSA <5 did not change in parallel with parameters of LAA over the same period. We propose that airway disease and vascular remodeling may be reversible to some extent by smoking cessation and appropriate treatment. Optimal management may have a greater effect on pulmonary vascularity and airway disease than parenchymal deconstruction in the early stage of COPD.
Collapse
Affiliation(s)
- Shin Takayanagi
- Department of Respirology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba-shi, Chiba
| | - Naoko Kawata
- Department of Respirology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba-shi, Chiba
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba-shi, Chiba
| | - Jun Ikari
- Department of Respirology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba-shi, Chiba
| | - Yukiko Matsuura
- Department of Respirology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba-shi, Chiba
| | - Shin Matsuoka
- Department of Radiology, St Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki-shi, Kanagawa, Japan
| | - Shoichiro Matsushita
- Department of Radiology, St Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki-shi, Kanagawa, Japan
| | - Noriyuki Yanagawa
- Department of Respirology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba-shi, Chiba
| | - Yasunori Kasahara
- Department of Respirology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba-shi, Chiba
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba-shi, Chiba
| |
Collapse
|
10
|
Green CE, Turner AM. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD). Respir Res 2017; 18:20. [PMID: 28100233 PMCID: PMC5241996 DOI: 10.1186/s12931-017-0505-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/13/2017] [Indexed: 01/05/2023] Open
Abstract
COPD and asthma are important chronic inflammatory disorders with a high associated morbidity. Much research has concentrated on the role of inflammatory cells, such as the neutrophil, in these diseases, but relatively little focus has been given to the endothelial tissue, through which inflammatory cells must transmigrate to reach the lung parenchyma and cause damage. There is evidence that there is an abnormal amount of endothelial tissue in COPD and asthma and that this tissue and its’ progenitor cells behave in a dysfunctional manner. This article reviews the evidence of the involvement of pulmonary endothelium in COPD and asthma and potential treatment options for this.
Collapse
Affiliation(s)
- Clara E Green
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK.
| | - Alice M Turner
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Wang Z, Chen X, Liu K, Xie W, Wang H, Wei Y, Tang L, Zhu Y. Small pulmonary vascular alteration and acute exacerbations of COPD: quantitative computed tomography analysis. Int J Chron Obstruct Pulmon Dis 2016; 11:1965-71. [PMID: 27578971 PMCID: PMC5001673 DOI: 10.2147/copd.s112651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The morphologic alterations of pulmonary small vessels measured by computed tomography (CT) have been used to evaluate chronic obstructive pulmonary disease (COPD). However, the relationship between small pulmonary vascular alteration and acute exacerbations of COPD (AECOPD) is not well understood. The aim of this study was to evaluate the cross-sectional area (CSA) of small pulmonary vessel alterations measured on CT images and investigate its relationship with the COPD severity staged by the degree of airflow limitation and the occurrence of AECOPD. We retrospectively reviewed CT scans, clinical characteristics, and pulmonary function test results of 153 patients with COPD. All the patients were divided into AECOPD and non-AECOPD group according to the COPD staging and pulmonary function test results. The percentages of the total CSA less than 5 mm2 and equal to 5–10 mm2 over the lung area (%CSA<5 and %CSA5–10, respectively) were measured. The %CSA<5 steadily decreased in relation to the increase of COPD severity. In addition, %CSA<5 of the AECOPD group was significantly lower than that of the non-AECOPD group (0.41±0.13 versus 0.68±0.18, P<0.001), and the optimal cutoff value was 0.56 (sensitivity, 0.863; specificity, 0.731). Therefore, small pulmonary vascular alteration, as measured by %CSA<5, could indicate not only the degree of COPD severity, but also the occurrence of AECOPD.
Collapse
Affiliation(s)
| | - Xuesong Chen
- Department of Respiratory, The First Affiliated Hospital of Nanjing Medical University
| | - Kouying Liu
- Department of Respiratory, The First Affiliated Hospital of Nanjing Medical University
| | - Weiping Xie
- Department of Respiratory, The First Affiliated Hospital of Nanjing Medical University
| | - Hong Wang
- Department of Respiratory, The First Affiliated Hospital of Nanjing Medical University
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | |
Collapse
|
12
|
Lindenmaier TJ, Kirby M, Paulin G, Mielniczuk L, Cunningham IA, Mura M, Licskai C, Parraga G. Pulmonary Artery Abnormalities in Ex-smokers with and without Airflow Obstruction. COPD 2015; 13:224-34. [DOI: 10.3109/15412555.2015.1074666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Rahaghi FN, Come CE, Ross J, Harmouche R, Diaz AA, Estepar RSJ, Washko G. Morphologic Response of the Pulmonary Vasculature to Endoscopic Lung Volume Reduction. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2015; 2:214-222. [PMID: 26587564 DOI: 10.15326/jcopdf.2.3.2014.0164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Endoscopic Lung Volume Reduction has been used to reduce lung hyperinflation in selected patients with severe emphysema. Little is known about the effect of this procedure on the intraparenchymal pulmonary vasculature. In this study we used CT based vascular reconstruction to quantify the effect of the procedure on the pulmonary vasculature. METHODS Intraparenchymal vasculature was reconstructed and quantified in 12 patients with CT scans at baseline and 12 weeks following bilateral introduction of sealants in the upper lobes. The volume of each lung and each lobe was measured, and the vascular volume profile was calculated for both lower lobes. The detected vasculature was further labeled manually as arterial or venous in the right lower lobe. RESULTS There was an increase in the volume of the lower lobes (3.14L to 3.25L, p=0.0005). There was an increase in BV5, defined as the volume of blood vessels with cross sectional area of less than 5mm2, (53.2ml to 57.9ml, p=0.03). This was found to be correlated with the increase in lower lobe volumes (R=0.65, p=0.02). The changes appear to be symmetric for veins and arteries with a correlation coefficient of 0.87 and a slope of near identity. CONCLUSION In the subjects studied, there was an increase, from baseline, in BV5 in the lower lobes that correlated with the change in the volume of the lower lobes. The change appeared to be symmetric for both arteries and veins. The study illustrates the use of intraparenchymal pulmonary vascular reconstruction to study morphologic changes in response to interventions.
Collapse
Affiliation(s)
- Farbod N Rahaghi
- Brigham and Women's Hospital, Pulmonary and Critical Care Division of Department of Medicine, 75 Francis Street, PBB - CA 3, Boston, MA 02115
| | - Carolyn E Come
- Brigham and Women's Hospital, Pulmonary and Critical Care Division of Department of Medicine, 75 Francis Street, PBB - CA 3, Boston, MA 02115
| | - James Ross
- Deparment of Radiology, Harvard School of Medicine, Surgical Planning Laboratory, 1249 Boylston Street, 2nd Floor, Room 216
| | - Rola Harmouche
- Deparment of Radiology, Harvard School of Medicine, Surgical Planning Laboratory, 1249 Boylston Street, 2nd Floor, Room 216
| | - Alejandro A Diaz
- Brigham and Women's Hospital, Pulmonary and Critical Care Division of Department of Medicine, 75 Francis Street, PBB - CA 3, Boston, MA 02115
| | - Raul San Jose Estepar
- Deparment of Radiology, Harvard School of Medicine, Surgical Planning Laboratory, 1249 Boylston Street, 2nd Floor, Room 216, Boston MA 02215
| | - George Washko
- Brigham and Women's Hospital, Pulmonary and Critical Care Division of Department of Medicine, 75 Francis Street, PBB - CA 3, Boston, MA 02115
| |
Collapse
|
14
|
Matsuoka S, Yamashiro T, Matsushita S, Kotoku A, Fujikawa A, Yagihashi K, Tomita H, Sakamoto S, Saito Y, Saruya S, Nakajima Y. Usefulness of coronal reconstruction CT images for quantitative evaluation of the cross-sectional area of small pulmonary vessels. Acad Radiol 2014; 21:1411-5. [PMID: 25088831 DOI: 10.1016/j.acra.2014.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 04/20/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE AND OBJECTIVES Cross-sectional area <5 mm(2) (CSA<5) is a computed tomography (CT) metric that has been used for the evaluation of pulmonary vessel alterations and perfusion. CSA<5 is calculated from three axial slices; thus, whether CSA<5 represents the small pulmonary vessel alterations in the whole lung remains unclear. The purpose of this study was to compare the measurements of CSA<5 using three axial slices and coronal reconstructed slices in the relationship between the measured CSA<5 and pulmonary perfusion measured using lung perfusion scintigraphy. MATERIALS AND METHODS This study comprised 28 subjects who underwent both noncontrast CT and lung perfusion scintigraphy. The present study measured CSA<5 using both three axial CT images and coronal reconstruction images and then obtained the percentage of the CSA in right lung to that in whole lung (R/W-CSA<5). Using anteroposterior and posteroanterior projections on technetium-99m macroaggregated albumin (MAA) lung perfusion scintigraphy, we obtained right and total lung counts and calculated the percentage of the right to whole lung counts (R/W-MAA). The correlations of the R/W-CSA<5 calculated using three axial slices (R/W-CSA(A)x<5) and coronal reconstructed slices (R/W-CSA(COR)<5) with R/W-MAA were evaluated using Spearman rank correlation analysis. RESULTS Both R/W-CSA(Ax)<5 and R/W-CSA(COR)<5 were significantly correlated with R/W-MAA; however, the correlation coefficient with R/W-CSA(COR)<5 (ρ = 0.842, P < .0001) was greater than that with R/W-CSA(Ax)<5 (ρ = 0.631, P = .0004). CONCLUSIONS Coronal reconstruction images appear suitable for quantitative measurement of CSA of small pulmonary vessels.
Collapse
|