1
|
Choy KW, Wijeratne N, Chiang C, Don-Wauchope A. Copeptin as a surrogate marker for arginine vasopressin: analytical insights, current utility, and emerging applications. Crit Rev Clin Lab Sci 2025; 62:24-44. [PMID: 39086073 DOI: 10.1080/10408363.2024.2383899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Copeptin is a 39-amino-acid long glycosylated peptide with a leucine-rich core segment in the C-terminal part of pre-pro-vasopressin. It exhibits a rapid response comparable to arginine vasopressin (AVP) in response to osmotic, hemodynamic, and nonspecific stress-related stimuli. This similarity can be attributed to equimolar production of copeptin alongside AVP. However, there are markedly different decay kinetics for both peptides, with an estimated initial half-life of copeptin being approximately two times longer than that of AVP. Like AVP, copeptin correlates strongly over a wide osmolality range in healthy individuals, making it a useful alternative to AVP measurement. While copeptin does not appear to be significantly affected by food intake, small amounts of oral fluid intake may result in a significant decrease in copeptin levels. Compared to AVP, copeptin is considerably more stable in vitro. An automated immunofluorescent assay is now available and has been used in recent landmark trials. However, separate validation studies are required before copeptin thresholds from these studies are applied to other assays. The biological variation of copeptin in presumably healthy subjects has been recently reported, which could assist in defining analytical performance specifications for this measurand. An established diagnostic utility of copeptin is in the investigation of polyuria-polydipsia syndrome and copeptin-based testing protocols have been explored in recent years. A single baseline plasma copeptin >21.4 pmol/L differentiates AVP resistance (formerly known as nephrogenic diabetes insipidus) from other causes with 100% sensitivity and specificity, rendering water deprivation testing unnecessary in such cases. In a recent study among adult patients with polyuria-polydipsia syndrome, AVP deficiency (formerly known as central diabetes insipidus) was more accurately diagnosed with hypertonic saline-stimulated copeptin than with arginine-stimulated copeptin. Glucagon-stimulated copeptin has been proposed as a potentially safe and precise test in the investigation of polyuria-polydipsia syndrome. Furthermore, copeptin could reliably identify those with AVP deficiency among patients with severe hypernatremia, though its diagnostic utility is reportedly limited in the differential diagnosis of profound hyponatremia. Copeptin measurement may be a useful tool for early goal-directed management of post-operative AVP deficiency. Additionally, the potential prognostic utility of copeptin has been explored in other diseases. There is an interest in examining the role of the AVP system (with copeptin as a marker) in the pathogenesis of insulin resistance and diabetes mellitus. Copeptin has been found to be independently associated with an increased risk of incident stroke and cardiovascular disease mortality in men with diabetes mellitus. Increased levels of copeptin have been reported to be independently predictive of a decline in estimated glomerular filtration rate and a greater risk of new-onset chronic kidney disease. Furthermore, copeptin is associated with disease severity in patients with autosomal dominant polycystic kidney disease. Copeptin predicts the development of coronary artery disease and cardiovascular mortality in the older population. Moreover, the predictive value of copeptin was found to be comparable with that of N-terminal pro-brain natriuretic peptide for all-cause mortality in patients with heart failure. Whether the measurement of copeptin in these conditions alters clinical management remains to be demonstrated in future studies.
Collapse
Affiliation(s)
- Kay Weng Choy
- Department of Pathology, Northern Health, Epping, Australia
| | - Nilika Wijeratne
- Eastern Health Pathology, Eastern Health, Box Hill, Australia
- Department of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Cherie Chiang
- Department of Medicine, The University of Melbourne, Melbourne, Australia
- Department of Internal Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Diabetes and Endocrinology, The Royal Melbourne Hospital, Melbourne, Australia
| | - Andrew Don-Wauchope
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
- Laverty Pathology, North Ryde, Australia
| |
Collapse
|
2
|
Minatoguchi S, Hayashi H, Umeda R, Koide S, Hasegawa M, Tsuboi N. Additional renoprotective effect of the SGLT2 inhibitor dapagliflozin in a patient with ADPKD receiving tolvaptan treatment. CEN Case Rep 2024; 13:419-424. [PMID: 38494546 PMCID: PMC11444039 DOI: 10.1007/s13730-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a major cause of end-stage kidney disease (ESKD). Vasopressin plays a pivotal role in ADPKD progression; therefore, the selective vasopressin V2 receptor antagonist tolvaptan is used as a key drug in the management of ADPKD. On the other hand, sodium-glucose cotransporter-2 inhibitors (SGLT2i), which may possibly stimulate vasopressin secretion due to the diuretic effect of the drug, have been shown to have both renal and cardioprotective effects in various populations, including those with non-diabetic chronic kidney disease. However, the effect of SGLT2i in patients with ADPKD have not been fully elucidated. Herein, we report the case of a patient with ADPKD on tolvaptan who was administered the SGLT2i dapagliflozin. The patient was a Japanese woman diagnosed with ADPKD at age 30. Despite the treatment with tolvaptan, eGFR was gradually declined from 79.8 to 50 ml/min/1.73 m2 in almost 5 years and 10 mg of dapagliflozin was initiated in the hope of renoprotective effects. Although a small increase in vasopressin levels was observed, eGFR decline rate was moderated after dapagliflozin initiation. This case suggested an additional renoprotective effect of dapagliflozin in patient with ADPKD receiving tolvaptan. Although there is no evidence about the renal protective effect of SGLT2i in patients with ADPKD, we hereby report a case successfully treated with dapagliflozin for approximately 2 years. Further research, including clinical trials, is needed to evaluate whether SGLT2i are effective in patients with ADPKD.
Collapse
Affiliation(s)
- Shun Minatoguchi
- Department of Nephrology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiroki Hayashi
- Department of Nephrology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Ryosuke Umeda
- Department of Nephrology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Shigehisa Koide
- Department of Nephrology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Midori Hasegawa
- Department of Nephrology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
3
|
Xue L, Geurts F, Meijer E, de Borst MH, Gansevoort RT, Zietse R, Hoorn EJ, Salih M. Kidney phosphate wasting predicts poor outcome in polycystic kidney disease. Nephrol Dial Transplant 2024; 39:1105-1114. [PMID: 37985930 PMCID: PMC11249971 DOI: 10.1093/ndt/gfad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Patients with autosomal dominant polycystic kidney disease (ADPKD) have disproportionately high levels of fibroblast growth factor 23 (FGF-23) for their chronic kidney disease stage, however only a subgroup develops kidney phosphate wasting. We assessed factors associated with phosphate wasting and hypothesize that it identifies patients with more severe disease and predicts disease progression. METHODS We included 604 patients with ADPKD from a multicenter prospective observational cohort (DIPAK; Developing Intervention Strategies to Halt Progression of Autosomal Dominant Polycystic Kidney Disease) in four university medical centers in the Netherlands. We measured parathyroid hormone (PTH) and total plasma FGF-23 levels, and calculated the ratio of tubular maximum reabsorption rate of phosphate to glomerular filtration rate (TmP/GFR) with <0.8 mmol/L defined as kidney phosphate wasting. We analysed the association of TmP/GFR with estimated GFR (eGFR) decline over time and the risk for a composite kidney outcome (≥30% eGFR decline, kidney failure or kidney replacement therapy). RESULTS In our cohort (age 48 ± 12 years, 39% male, eGFR 63 ± 28 mL/min/1.73 m2), 59% of patients had phosphate wasting. Male sex [coefficient -0.2, 95% confidence interval (CI) -0.2; -0.1], eGFR (0.002, 95% CI 0.001; 0.004), FGF-23 (0.1, 95% CI 0.03; 0.2), PTH (-0.2, 95% CI -0.3; -0.06) and copeptin (-0.08, 95% CI -0.1; -0.08) were associated with TmP/GFR. Corrected for PTH, FGF-23 and eGFR, every 0.1 mmol/L decrease in TmP/GFR was associated with a greater eGFR decline of 0.2 mL/min/1.73 m2/year (95% CI 0.01; 0.3) and an increased hazard ratio of 1.09 (95% CI 1.01; 1.18) of the composite kidney outcome. CONCLUSION Our study shows that in patients with ADPKD, phosphate wasting is prevalent and associated with more rapid disease progression. Phosphate wasting may be a consequence of early proximal tubular dysfunction and insufficient suppression of PTH.
Collapse
Affiliation(s)
- Laixi Xue
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank Geurts
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Esther Meijer
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin H de Borst
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mahdi Salih
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Lan Q, Li J, Zhang H, Zhou Z, Fang Y, Yang B. Mechanistic complement of autosomal dominant polycystic kidney disease: the role of aquaporins. J Mol Med (Berl) 2024; 102:773-785. [PMID: 38668786 DOI: 10.1007/s00109-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Autosomal dominant polycystic kidney disease is a genetic kidney disease caused by mutations in the genes PKD1 or PKD2. Its course is characterized by the formation of progressively enlarged cysts in the renal tubules bilaterally. The basic genetic explanation for autosomal dominant polycystic kidney disease is the double-hit theory, and many of its mechanistic issues can be explained by the cilia doctrine. However, the precise molecular mechanisms underpinning this condition's occurrence are still not completely understood. Experimental evidence suggests that aquaporins, a class of transmembrane channel proteins, including aquaporin-1, aquaporin-2, aquaporin-3, and aquaporin-11, are involved in the mechanism of autosomal dominant polycystic kidney disease. Aquaporins are either a potential new target for the treatment of autosomal dominant polycystic kidney disease, and further study into the physiopathological role of aquaporins in autosomal dominant polycystic kidney disease will assist to clarify the disease's pathophysiology and increase the pool of potential treatment options. We primarily cover pertinent findings on aquaporins in autosomal dominant polycystic kidney disease in this review.
Collapse
Affiliation(s)
- Qiumei Lan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jie Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Hanqing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zijun Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yaxuan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bo Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
- Department of Nephrology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.88, Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
5
|
Sorić Hosman I, Cvitković Roić A, Fištrek Prlić M, Vuković Brinar I, Lamot L. Predicting autosomal dominant polycystic kidney disease progression: review of promising Serum and urine biomarkers. Front Pediatr 2023; 11:1274435. [PMID: 38027263 PMCID: PMC10667601 DOI: 10.3389/fped.2023.1274435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the leading causes of end-stage renal disease. In spite of the recent tremendous progress in the understanding of ADPKD pathogenesis, the molecular mechanisms of the disease remain incompletely understood. Considering emerging new targeted therapies for ADPKD, it has become crucial to disclose easily measurable and widely available biomarkers for identifying patients with future rapid disease progression. This review encompasses all the research with a shared goal of identifying promising serum or urine biomarkers for predicting ADPKD progression or response to therapy. The rate of the ADPKD progress varies significantly between patients. The phenotypic variability is only partly explained by the underlying genetic lesion diversity. Considering significant decline in kidney function in ADPKD is not usually evident until at least 50% of the parenchyma has been destroyed, conventional kidney function measures, such as glomerular filtration rate (GFR), are not suitable for monitoring disease progression in ADPKD, particularly in its early stages. Since polycystic kidney enlargement usually precedes the decline in GFR, height-adjusted total kidney volume (ht-TKV) has been accepted as an early biomarker for assessing disease severity in ADPKD patients. However, since measuring ht-TKV is time-consuming and observer-dependent, the identification of a sensitive and quickly measurable biomarker is of a great interest for everyday clinical practice. Throughout the last decade, due to development of proteomic and metabolomic techniques and the enlightenment of multiple molecular pathways involved in the ADPKD pathogenesis, a number of urine and serum protein biomarkers have been investigated in ADPKD patients, some of which seem worth of further exploring. These include copeptin, angiotensinogen, monocyte chemoattractant protein 1, kidney injury molecule-1 and urine-to-plasma urea ratio among many others. The aim of the current review is to provide an overview of all of the published evidence on potentially clinically valuable serum and urine biomarkers that could be used for predicting disease progression or response to therapy in patients with ADPKD. Hopefully, this review will encourage future longitudinal prospective clinical studies evaluating proposed biomarkers as prognostic tools to improve management and outcome of ADPKD patients in everyday clinical practice.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, General Hospital Zadar, Zadar, Croatia
| | - Andrea Cvitković Roić
- Department of Nephrology and Urology, Clinic for Pediatric Medicine Helena, Zagreb, Croatia
- Department of Pediatrics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Pediatrics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Margareta Fištrek Prlić
- Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ivana Vuković Brinar
- Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Internal Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Pediatrics, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Geurts F, Xue L, Kramers BJ, Zietse R, Gansevoort RT, Fenton RA, Meijer E, Salih M, Hoorn EJ. Prostaglandin E2, Osmoregulation, and Disease Progression in Autosomal Dominant Polycystic Kidney Disease. Clin J Am Soc Nephrol 2023; 18:1426-1434. [PMID: 37574650 PMCID: PMC10637469 DOI: 10.2215/cjn.0000000000000269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) plays a physiological role in osmoregulation, a process that is affected early in autosomal dominant polycystic kidney disease (ADPKD). PGE2 has also been implicated in the pathogenesis of ADPKD in preclinical models, but human data are limited. Here, we hypothesized that urinary PGE2 excretion is associated with impaired osmoregulation, disease severity, and disease progression in human ADPKD. METHODS Urinary excretions of PGE2 and its metabolite (PGEM) were measured in a prospective cohort of patients with ADPKD. The associations between urinary PGE2 and PGEM excretions, markers of osmoregulation, eGFR and height-adjusted total kidney volume were assessed using linear regression models. Cox regression and linear mixed models were used for the longitudinal analysis of the associations between urinary PGE2 and PGEM excretions and disease progression defined as 40% eGFR loss or kidney failure, and change in eGFR over time. In two intervention studies, we quantified the effect of starting tolvaptan and adding hydrochlorothiazide to tolvaptan on urinary PGE2 and PGEM excretions. RESULTS In 562 patients with ADPKD (61% female, eGFR 63±28 ml/min per 1.73 m 2 ), higher urinary PGE2 or PGEM excretions were independently associated with higher plasma copeptin, lower urine osmolality, lower eGFR, and greater total kidney volume. Participants with higher baseline urinary PGE2 and PGEM excretions had a higher risk of 40% eGFR loss or kidney failure (hazard ratio, 1.28; 95% confidence interval [CI], 1.13 to 1.46 and hazard ratio, 1.50; 95% CI, 1.26 to 1.80 per two-fold higher urinary PGE2 or PGEM excretions) and a faster change in eGFR over time (-0.39 [95% CI, -0.59 to -0.20] and -0.53 [95% CI, -0.75 to -0.31] ml/min per 1.73 m 2 per year). In the intervention studies, urinary PGEM excretion was higher after starting tolvaptan, while urinary PGE2 excretion was higher after adding hydrochlorothiazide to tolvaptan. CONCLUSIONS Higher urinary PGE2 and PGEM excretions in patients with ADPKD are associated with impaired osmoregulation, disease severity, and progression.
Collapse
Affiliation(s)
- Frank Geurts
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laixi Xue
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bart J. Kramers
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ron T. Gansevoort
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Esther Meijer
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Mahdi Salih
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Nakae A, Ozaki E, Kuriyama N, Tomida S, Koyama T. Copeptin is associated with microalbuminuria and renal function in the general Japanese population. Endocr J 2023; 70:797-804. [PMID: 37286517 DOI: 10.1507/endocrj.ej23-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
An association between copeptin (precursor molecule of arginine vasopressin) and markers for renal function has been reported, but data on the Japanese population has been limited. In this study, we investigated whether elevated copeptin levels are associated with microalbuminuria and renal dysfunction in the general Japanese population. A total of 1,262 participants (842 female and 420 male) were enrolled. Multiple regression analysis was performed to assess the association of copeptin levels (logarithm) with estimated glomerular filtration rate (eGFR) and the urine albumin-to-creatinine ratio (UACR) after adjusting for age, BMI, and lifestyle variables. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression methods in which chronic kidney disease (CKD) was the dependent variable. The copeptin levels differed significantly with sex, but were not found to be related to age or the span of time from preceding meal to blood sampling. In female participants, copeptin level was negatively correlated with eGFR (beta = -0.100, p-value = 0.006) and positively correlated with UACR (beta = 0.099, p-value = 0.003). In male participants, a negative correlation (beta = -0.140, p-value = 0.008) was observed for eGFR. In both females and males, those with high copeptin levels had more than double the ORs of CKD (OR = 2.1-2.9) adjusted for CKD-related factors. The present study found elevated copeptin levels to be associated with renal function loss in the Japanese population and microalbuminuria in female. Moreover, it was evident that high copeptin levels are associated with CKD. These results suggest that copeptin could be considered a marker of renal function.
Collapse
Affiliation(s)
- Aya Nakae
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
| | - Satomi Tomida
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| |
Collapse
|
8
|
Iglesias P, Silvestre RA, Fernández-Reyes MJ, Díez JJ. The role of copeptin in kidney disease. Endocrine 2023; 79:420-429. [PMID: 36242751 DOI: 10.1007/s12020-022-03219-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
Abstract
Copeptin is a 39-amino acid glycopeptide that is secreted equimolecularly with arginine-vasopressin (AVP) from the prepro-hormone AVP in the posterior pituitary. While AVP is a very unstable molecule and is accompanied by significant technical troubles in its quantification, copeptin is a stable and easily quantifiable molecule. For this reason, circulating copeptin is currently used as a surrogate for AVP in different pathological conditions, including renal diseases. In recent years it has been shown that copeptin is associated with an increased risk of developing chronic kidney disease in the general population. In addition, copeptin has also been associated with multiple renal diseases with relevant clinical consequences and potential therapeutic implications. In the present review, we update and summarize the clinical significance of copeptin as a surrogate marker for AVP concentrations in different kidney diseases, as well as in renal replacement therapy (hemodialysis and peritoneal dialysis) and renal transplantation.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology and Nutrition, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain.
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Ramona A Silvestre
- Department of Clinical Biochemistry, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Department of Physiology, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Juan J Díez
- Department of Endocrinology and Nutrition, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Polycystic Kidney Disease Drug Development: A Conference Report. Kidney Med 2022; 5:100596. [PMID: 36698747 PMCID: PMC9867973 DOI: 10.1016/j.xkme.2022.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is part of a spectrum of inherited diseases that also includes autosomal recessive polycystic kidney disease, autosomal dominant polycystic liver disease, and an expanding group of recessively inherited disorders collectively termed hepatorenal fibrocystic disorders. ADPKD is the most common monogenic disorder frequently leading to chronic kidney failure with an estimated prevalence of 12 million people worldwide. Currently, only one drug (tolvaptan) has been approved by regulatory agencies as disease-modifying therapy for ADPKD, but, given its mechanism of action and side effect profile, the need for an improved therapy for ADPKD remains a priority. Although significant regulatory progress has been made, with qualification of total kidney volume as a prognostic enrichment biomarker and its later designation as a reasonably likely surrogate endpoint for progression of ADPKD within clinical trials, further work is needed to accelerate drug development efforts for all forms of PKD. In May 2021, the PKD Outcomes Consortium at the Critical Path Institute and the PKD Foundation organized a PKD Regulatory Summit to spur conversations among patients, industry, academic, and regulatory stakeholders regarding future development of tools and drugs for ADPKD and autosomal recessive polycystic kidney disease. This Special Report reviews the key points discussed during the summit and provides future direction related to PKD drug development tools.
Collapse
|
10
|
Jdiaa SS, Husainat NM, Mansour R, Kalot MA, McGreal K, Chebib FT, Perrone RD, Yu A, Mustafa RA. A Systematic Review of Reported Outcomes in ADPKD Studies. Kidney Int Rep 2022; 7:1964-1979. [PMID: 36090492 PMCID: PMC9459055 DOI: 10.1016/j.ekir.2022.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
|
11
|
AQP2 trafficking in health and diseases: an updated overview. Int J Biochem Cell Biol 2022; 149:106261. [DOI: 10.1016/j.biocel.2022.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
|
12
|
Scholz JK, Kraus A, Lüder D, Skoczynski K, Schiffer M, Grampp S, Schödel J, Buchholz B. Loss of Polycystin-1 causes cAMP-dependent switch from tubule to cyst formation. iScience 2022; 25:104359. [PMID: 35620436 PMCID: PMC9127160 DOI: 10.1016/j.isci.2022.104359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease is the most common monogenic disease that causes end-stage renal failure. It primarily results from mutations in the PKD1 gene that encodes for Polycystin-1. How loss of Polycystin-1 translates into bilateral renal cyst development is mostly unknown. cAMP is significantly involved in cyst enlargement but its role in cyst initiation has remained elusive. Deletion of Polycystin-1 in collecting duct cells resulted in a switch from tubule to cyst formation and was accompanied by an increase in cAMP. Pharmacological elevation of cAMP in Polycystin-1-competent cells caused cyst formation, impaired plasticity, nondirectional migration, and mis-orientation, and thus strongly resembled the phenotype of Polycystin-1-deficient cells. Mis-orientation of developing tubule cells in metanephric kidneys upon loss of Polycystin-1 was phenocopied by pharmacological increase of cAMP in wildtype kidneys. In vitro, cAMP impaired tubule formation after capillary-induced injury which was further impaired by loss Polycystin-1. Loss of Polycystin-1 switches renal cells from tubule to cyst formation Deletion of Polycystin-1 leads to increase in cAMP Elevation of cAMP in wildtype cells phenocopies Polycystin-1-deficient features Features are: impaired plasticity, nondirectional migration, and mis-orientation
Collapse
|
13
|
Christ-Crain M, Refardt J, Winzeler B. Approach to the Patient: "Utility of the Copeptin Assay". J Clin Endocrinol Metab 2022; 107:1727-1738. [PMID: 35137148 PMCID: PMC9113794 DOI: 10.1210/clinem/dgac070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 11/19/2022]
Abstract
Copeptin derives from the same precursor peptide preprovasopressin as arginine vasopressin (AVP). The secretion of both peptides is stimulated by similar physiological processes, such as osmotic stimulation, hypovolemia, or stress. AVP is difficult to measure due to complex preanalytical requirements and due to technical difficulties. In the last years, copeptin was found to be a stable, sensitive, and simple to measure surrogate marker of AVP release. Different immunoassays exist to measure copeptin. The 2 assays which have most often be used in clinical studies are the original sandwich immunoluminometric assay and its automated immunofluorescent successor. In addition, various enzyme-linked immunosorbent assay have been developed. With the availability of the copeptin assay, the differential diagnosis of diabetes insipidus was recently revisited. The goal for this article is therefore to first review the physiology of copeptin, and second to describe its use as marker for the differential diagnosis of vasopressin-dependent fluid disorders, mainly diabetes insipidus but also hyper- and hyponatremia. Furthermore, we highlight the role of copeptin as prognostic marker in other acute and chronic diseases.
Collapse
Affiliation(s)
- Mirjam Christ-Crain
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
- Correspondence: Mirjam Christ-Crain, MD, PhD, Department of Endocrinology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Julie Refardt
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Bettina Winzeler
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
14
|
Chronic lithium therapy and urine concentrating ability in individuals with bipolar disorder: association between daily dose and resistance to vasopressin and polyuria. Kidney Int Rep 2022; 7:1557-1564. [PMID: 35812274 PMCID: PMC9263256 DOI: 10.1016/j.ekir.2022.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Lithium treatment can induce nephrogenic diabetes insipidus (NDI), but no consensus intervention is offered to date. We evaluated in these patients patterns of urine concentration and the correlates of 24-hour urine output. Methods Prospective, single-center, observational study of 217 consecutive lithium-treated individuals, with 24-hour urine collection, desmopressin (1-deamino-arginine vasopressin [DDAVP]) concentrating test, fasting plasma vasopressin measurement (copeptin measurement in n = 119), and measured glomerular filtration rate (mGFR). Maximal urine osmolality (MaxUosm) was the highest level during the DDAVP test. Results Of the individuals, 21% displayed polyuria (>3 l/d), but 55% displayed elevated fasting vasopressin level (>5 pg/ml). Uosm was significantly lower and urinary output and free water clearance were significantly higher in individuals treated for >10 years. MaxUosm was >600 mOsm/KgH2O in 128 patients (59%), among which vasopressin was increased in 51%, associated with higher lithium dose (950 [750–1200] vs. 800 [500–1000] mg/d, P < 0.001). All patients with lithium daily dose ≥1400 mg/d had high vasopressin levels. In multivariable analysis, 24-hour urine output was associated with higher lithium daily dose (β 0.49 ± 0.17, P = 0.005), female sex (β −359 ± 123, P = 0.004), daily osmolar intake (β 2.21 ± 0.24, P < 0.001), MaxUosm (β −2.89 ± 0.35, P < 0.001), and plasma vasopressin level (β 10.17 ± 4.76, P = 0.03). Conclusion Higher lithium daily dose was associated with higher vasopressin levels and higher urine output, independently of other factors. Daily osmolar intake was also associated with higher 24-hour urine output. These results suggest that controlled salt and protein intake and lithium dose might reduce polyuria in these patients.
Collapse
|
15
|
Go S, Kim S, Son HE, Ryu JY, Yang H, Choi SR, Seo JW, Jo YH, Koo JR, Baek SH. Association between copeptin levels and treatment responses to hypertonic saline infusion in patients with symptomatic hyponatremia: a prospective cohort study. Kidney Res Clin Pract 2021; 40:371-382. [PMID: 34233437 PMCID: PMC8476303 DOI: 10.23876/j.krcp.20.233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/28/2021] [Indexed: 11/05/2022] Open
Abstract
Background Copeptin is secreted in equimolar amounts as arginine vasopressin, main hormone regulating body fluid homeostasis. A recent study reported a copeptin-based classification of osmoregulatory defects in syndromes of inappropriate antidiuresis that may aid in prediction of therapeutic success. We investigated usefulness of copeptin for differentiating etiologies of hyponatremia and predicting efficacy and safety of hypertonic saline treatment in hyponatremic patients. Methods We performed a multicenter, prospective cohort study of 100 inpatients with symptomatic hyponatremia (corrected serum sodium [sNa] ≤ 125 mmol/L) treated with hypertonic saline. Copeptin levels were measured at baseline and 24 hours after treatment initiation, and patients were classified as being below or above median of copeptin at baseline or at 24 hours, respectively. Correlations between target, under correction, and overcorrection rates of sNa within 24 hours/24–48 hours and copeptin levels at baseline/24 hours were analyzed. Results Mean sNa and median copeptin levels were 117.9 and 16.9 pmol/L, respectively. Ratio of copeptin-to-urine sodium allowed for an improved differentiation among some (insufficient effective circulatory volume), but not all hyponatremia etiologic subgroups. Patients with below-median copeptin levels at baseline achieved a higher target correction rate in 6/24 hours (odds ratio [OR], 2.97; p = 0.02/OR, 6.21; p = 0.006). Patients with below-median copeptin levels 24 hours after treatment showed a higher overcorrection rate in next 24 hours (OR, 18.00, p = 0.02). Conclusion There is a limited diagnostic utility of copeptin for differential diagnosis of hyponatremia. However, copeptin might be useful for predicting responses to hypertonic saline treatment in hyponatremic patients.
Collapse
Affiliation(s)
- Suryeong Go
- Department of Internal Medicine, Armed Forces Yangju Hospital, Yangju, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyung-Eun Son
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji-Young Ryu
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Huijin Yang
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Sun Ryoung Choi
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Jang-Won Seo
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ja-Ryong Koo
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Seon Ha Baek
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| |
Collapse
|
16
|
Abstract
Direct measurement of the nonapeptide vasopressin has been limited by analyte instability ex vivo and in vivo rapid degradation, low serum concentrations requiring a sensitive assay and inherent secretory pulsatility. Copeptin is a 39 amino acid glycopeptide cleavage product of vasopressin synthesis with high stability, providing a marker of vasopressin secretion. Copeptin measurement has applications in diagnosis of diabetes insipidus and other diseases with altered vasopressin secretion. This review summarises our current understanding of serum copeptin measurement in diabetes insipidus and possible future applications of copeptin assays. As vasopressin is a stress hormone, there is emerging evidence on the use of copeptin for diagnosis and prognostication of disorders such as syndrome of inappropriate anti-diuretic hormone secretion, diabetes mellitus, critical illness, stroke, cardiovascular disease, respiratory disease, renal disease and thermal stress. Copeptin concentration measurement is likely to improve the diagnostic reliability of diabetes insipidus and, as a marker of stress, may have diagnostic or prognostic utility in specific clinical circumstances. Further studies are needed to determine if goal-directed therapy using plasma copeptin concentrations may improve patient outcomes.
Collapse
Affiliation(s)
- R Jalleh
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - DJ Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
17
|
Raptis V, Loutradis C, Boutou AK, Faitatzidou D, Sioulis A, Ferro CJ, Papagianni A, Sarafidis PA. Serum Copeptin, NLPR3, and suPAR Levels among Patients with Autosomal-Dominant Polycystic Kidney Disease with and without Impaired Renal Function. Cardiorenal Med 2020; 10:440-451. [PMID: 33202410 DOI: 10.1159/000510834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/07/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The pathophysiology of renal disease progression in autosomal-dominant polycystic kidney disease (ADPKD) involves not only cystogenesis but also endothelial dysfunction, leading to the activation of inflammatory and fibrotic pathways. This study evaluated the levels of biomarkers related to osmoregulation, immune system activation, and tubular injury in ADPKD patients with impaired or preserved renal function. METHODS This study included 26 ADPKD patients with modestly impaired renal function (estimated glomerular filtration rate [eGFR] 45-70 mL/min/1.73 m2; Group A), 26 age- and sex-matched ADPKD patients with relatively preserved renal function (eGFR >70 mL/min/1.73 m2; Group B), and 26 age- and sex-matched controls (Group C). Serum levels of copeptin, the inflammasome nucleotide-binding and oligomerization domain-like receptors pyrin domain-containing protein 3 (NLRP3), and soluble urokinase-type plasminogen activator receptor (suPAR) were measured with ELISA techniques. RESULTS Patients in Group A had higher levels of copeptin (median [interquartile range]: 50.44 [334.85] pg/mL), NLRP3 (5.86 [3.89] ng/mL), and suPAR (390.05 [476.53] pg/mL) compared to patients in Group B (32.38 [58.33], p = 0.042; 2.42 [1.96], p < 0.001; and 313.78 [178.85], p = 0.035, respectively) and Group C (6.75 [6.43]; 1.09 [0.56]; and 198.30 [28.53], respectively; p < 0.001 for all comparisons). Levels of all studied markers were also significantly higher in Group B patients compared to controls (p < 0.001), despite having similar eGFR. In patients with ADPKD, all studied biomarkers were correlated positively with asymmetric-dimethylarginine (ADMA) and endocan levels, and negatively with eGFR. ADMA and endocan levels were the only parameters independently associated with increased copeptin levels. CONCLUSIONS This study showed that ADPKD patients with impaired and preserved renal function had higher copeptin, NLRP3, and suPAR levels than controls. Such findings support that cystogenesis and inflammation are associated with endothelial dysfunction, even in the early stages of ADKPD.
Collapse
Affiliation(s)
- Vasileios Raptis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Loutradis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, Papanikolaou General Hospital, Thessaloniki, Greece
| | - Danai Faitatzidou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Sioulis
- Section of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charles J Ferro
- Department of Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis A Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece,
| |
Collapse
|
18
|
Heida JE, Minović I, van Faassen M, Kema IP, Boertien WE, Bakker SJL, van Beek AP, Gansevoort RT. Effect of Vasopressin on the Hypothalamic-Pituitary-Adrenal Axis in ADPKD Patients during V2 Receptor Antagonism. Am J Nephrol 2020; 51:861-870. [PMID: 33147589 DOI: 10.1159/000511000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/31/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Patients with autosomal dominant polycystic kidney disease (ADPKD) are treated with a vasopressin V2 receptor antagonist (V2RA) to slow disease progression. This drug increases vasopressin considerably in these patients with already elevated baseline levels. Vasopressin is known to stimulate the hypothalamic-pituitary-adrenal (HPA) axis through V1 and V3 receptor activation. It is unknown whether this increase in vasopressin during V2RA treatment affects glucocorticoid production. METHODS Twenty-seven ADPKD patients were studied on and off treatment with a V2RA and compared to age- and sex-matched healthy controls and IgA nephropathy patients, the latter also matched for kidney function. Vasopressin was measured by its surrogate copeptin. Twenty-four-hour urinary excretions of cortisol, cortisone, tetrahydrocortisone, tetrahydrocortisol, allotetrahydrocortisol, and the total glucocorticoid pool were measured. RESULTS At baseline, ADPKD patients demonstrated a higher copeptin concentration in comparison with healthy controls, while urinary excretion of cortisol and cortisone was lower (medians of 0.23 vs. 0.34 μmol/24 h, p = 0.007, and 0.29 vs. 0.53 μmol/24 h, p < 0.001, respectively). There were no differences in cortisol and cortisone excretion compared to IgA nephropathy patients. Cortisol, cortisone, and total glucocorticoid excretions correlated with kidney function (R = 0.37, 0.58, and 0.19, respectively; all p < 0.05). Despite that V2RA treatment resulted in a 3-fold increase in copeptin, only cortisone excretion increased (median of 0.44 vs. baseline 0.29 μmol/24 h, p < 0.001), whereas no changes in cortisol or total glucocorticoid excretion were observed. CONCLUSIONS Increased concentration of vasopressin in ADPKD patients at baseline and during V2RA treatment does not result in activation of the HPA axis. The impaired glucocorticoid production in these patients is related to their degree of kidney function impairment.
Collapse
Affiliation(s)
- Judith E Heida
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,
| | - Isidor Minović
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wendy E Boertien
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - André P van Beek
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Arginine Vasopressin Modulates Ion and Acid/Base Balance by Regulating Cell Numbers of Sodium Chloride Cotransporter and H +-ATPase Rich Ionocytes. Int J Mol Sci 2020; 21:ijms21113957. [PMID: 32486459 PMCID: PMC7312464 DOI: 10.3390/ijms21113957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 01/14/2023] Open
Abstract
Arginine vasopressin (Avp) is a conserved pleiotropic hormone that is known to regulate both water reabsorption and ion balance; however, many of the mechanisms underlying its effects remain unclear. Here, we used zebrafish embryos to investigate how Avp modulates ion and acid–base homeostasis. After incubating embryos in double-deionized water for 24 h, avp mRNA expression levels were significantly upregulated. Knockdown of Avp protein expression by an antisense morpholino oligonucleotide (MO) reduced the expression of ionocyte-related genes and downregulated whole-body Cl− content and H+ secretion, while Na+ and Ca2+ levels were not affected. Incubation of Avp antagonist SR49059 also downregulated the mRNA expression of sodium chloride cotransporter 2b (ncc2b), which is a transporter responsible for Cl− uptake. Correspondingly, avp morphants showed lower NCC and H+-ATPase rich (HR) cell numbers, but Na+/K+-ATPase rich (NaR) cell numbers remained unchanged. avp MO also downregulated the numbers of foxi3a- and p63-expressing cells. Finally, the mRNA expression levels of calcitonin gene-related peptide (cgrp) and its receptor, calcitonin receptor-like 1 (crlr1), were downregulated in avp morphants, suggesting that Avp might affect Cgrp and Crlr1 for modulating Cl− balance. Together, our results reveal a molecular/cellular pathway through which Avp regulates ion and acid–base balance, providing new insights into its function.
Collapse
|
20
|
Colbert GB, Elrggal ME, Gaur L, Lerma EV. Update and review of adult polycystic kidney disease. Dis Mon 2020; 66:100887. [DOI: 10.1016/j.disamonth.2019.100887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
22
|
Kanbay M, Yilmaz S, Dincer N, Ortiz A, Sag AA, Covic A, Sánchez-Lozada LG, Lanaspa MA, Cherney DZI, Johnson RJ, Afsar B. Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown? J Clin Endocrinol Metab 2019; 104:5406-5420. [PMID: 31365096 DOI: 10.1210/jc.2019-01049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Abstract
CONTEXT Although the physiology of sodium, water, and arginine vasopressin (AVP), also known as antidiuretic hormone, has long been known, accumulating data suggest that this system operates as a more complex network than previously thought. EVIDENCE ACQUISITION English-language basic science and clinical studies of AVP and osmolarity on the development of kidney and cardiovascular disease and overall outcomes. EVIDENCE SYNTHESIS Apart from osmoreceptors and hypovolemia, AVP secretion is modified by novel factors such as tongue acid-sensing taste receptor cells and brain median preoptic nucleus neurons. Moreover, pharyngeal, esophageal, and/or gastric sensors and gut microbiota modulate AVP secretion. Evidence is accumulating that increased osmolarity, AVP, copeptin, and dehydration are all associated with worse outcomes in chronic disease states such as chronic kidney disease (CKD), diabetes, and heart failure. On the basis of these pathophysiological relationships, an AVP receptor 2 blocker is now licensed for CKD related to polycystic kidney disease. CONCLUSION From a therapeutic perspective, fluid intake may be associated with increased AVP secretion if it is driven by loss of urine concentration capacity or with suppressed AVP if it is driven by voluntary fluid intake. In the current review, we summarize the literature on the relationship between elevated osmolarity, AVP, copeptin, and dehydration with renal and cardiovascular outcomes and underlying classical and novel pathophysiologic pathways. We also review recent unexpected and contrasting findings regarding AVP physiology in an attempt to explain and understand some of these relationships.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sezen Yilmaz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Neris Dincer
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, "Dr. C. I. Parhon" University Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Department of Nephrology, INC Ignacio Chávez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| |
Collapse
|
23
|
The pathobiology of polycystic kidney disease from a metabolic viewpoint. Nat Rev Nephrol 2019; 15:735-749. [PMID: 31488901 DOI: 10.1038/s41581-019-0183-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects an estimated 1 in 1,000 people and slowly progresses to end-stage renal disease (ESRD) in about half of these individuals. Tolvaptan, a vasopressin 2 receptor blocker, has been approved by regulatory authorities in many countries as a therapy to slow cyst growth, but additional treatments that target dysregulated signalling pathways in cystic kidney and liver are needed. Metabolic reprogramming is a prominent feature of cystic cells and a potentially important contributor to the pathophysiology of ADPKD. A number of pathways previously implicated in the pathogenesis of the disease, such as dysregulated mTOR and primary ciliary signalling, have roles in metabolic regulation and may exert their effects through this mechanism. Some of these pathways are amenable to manipulation through dietary modifications or drug therapies. Studies suggest that polycystin-1 and polycystin-2, which are encoded by PKD1 and PKD2, respectively (the genes that are mutated in >99% of patients with ADPKD), may in part affect cellular metabolism through direct effects on mitochondrial function. Mitochondrial dysfunction could alter the redox state and cellular levels of acetyl-CoA, resulting in altered histone acetylation, gene expression, cytoskeletal architecture and response to cellular stress, and in an immunological response that further promotes cyst growth and fibrosis.
Collapse
|
24
|
Abstract
Arginine Vasopressin (AVP) and copeptin derive from the same precursor molecule. Due to the equimolar secretion, copeptin responds as rapidly as AVP to osmotic, hemodynamic and unspecific stress-related stimuli and both peptides show a very strong correlation. The physiological functions of AVP are homeostasis of fluid balance, vascular tonus and regulation of the endocrine stress response. In contrast, the exact function of copeptin remains unknown. Since copeptin, in contrast to AVP, can easily be measured with a sandwich immunoassay, its main function so far that it indirectly indicates the amount of AVP in the circulation. Copeptin has emerged as a useful measure in different diseases. On one hand, through its characteristics as a marker of stress, it provides a unique measure of the individual stress burden. As such, it is a prognostic marker in different acute diseases such as ischemic stroke or myocardial infarction. On the other side, it has emerged as a promising marker in the diagnosis of AVP-dependent fluid disorders. Copeptin reliably differentiates various entities of the polyuria polydipsia syndrome; baseline levels >20 pmol/L without prior fluid deprivation identify patients with nephrogenic diabetes insipidus, whereas levels measured upon osmotic stimulation with hypertonic saline or upon non-osmotic stimulation with arginine differentiate primary polydipsia from central diabetes insipidus. In patients with hyponatremia, low levels of copeptin together with low urine osmolality identify patients with primary polydipsia, but copeptin levels overlap in all other causes of hyponatremia, limiting its diagnostic use in hyponatremia. Copeptin has also been put forward as predictive marker for autosomal dominant polycystic kidney disease and for diabetes mellitus, but more studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Mirjam Christ-Crain
- Department of Endocrinology, University hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
25
|
Rudenko TE, Bobkova IN, Stavrovskaya EV. Modern approaches to conservative therapy of polycystic kidney disease. TERAPEVT ARKH 2019; 91:116-123. [DOI: 10.26442/00403660.2019.06.000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/22/2022]
Abstract
Polycystic kidney disease (PKD) is a genetically determined pathological process associated with the formation and growth of cysts originating from the epithelial cells of the tubules and/or collecting tubes. PBP is represented by two main types - autosomal dominant (ADPKD) and autosomal recessive PKD (ARPKD), which are different diseases. The main causes of ADPKD are mutations of the PKD1 and PKD2 genes, which encode the formation of polycystin-1 and polycystin-2 proteins. ARPKD-linked mutation in the gene PKHD1, leads to total absence or defective synthesis of receptor protein primary cilia - fibrocystin. There are relationships between the structural and functional defects in the primary cilia and PBP. Mechanisms of cysts formation and growth include a) mutations of polycystines genes located on the cilia; b) increased activity of renal intracellular cAMP; c) vasopressin V2 receptors activation; d) violation of the tubular epithelium polarity (translocation of Na,K-ATPasa from basolateral to apical membrane); e) increased mTOR activity in epithelial cells lining renal cyst. The most promising directions of ADPKD therapy are blockade of vasopressin V2 receptors activation, inhibition of mTOR signaling pathways and reduction of intracellular cAMP level. The review presents clinical studies that assessed the effectiveness of named drugs in ADPKD.
Collapse
|
26
|
Chang DC, Basolo A, Piaggi P, Votruba SB, Krakoff J. Hydration biomarkers and copeptin: relationship with ad libitum energy intake, energy expenditure, and metabolic fuel selection. Eur J Clin Nutr 2019; 74:158-166. [PMID: 31160665 PMCID: PMC6888878 DOI: 10.1038/s41430-019-0445-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Background/Objective Evidence from non-human species indicate that hydration and arginine vasopressin (AVP) influence fuel selection, energy expenditure (EE), and food intake, but these relationships are unclear in humans. We sought to assess whether hydration biomarkers [24-h urine volume (UVol) and urine urea nitrogen concentration (UUN)] and copeptin (a surrogate for AVP) are associated with 24-h EE, respiratory quotient (RQ), and daily energy intake (DEI). Subjects/Methods In a secondary analysis of collected data, we selected healthy adults (Group 1, n = 177) who had 24-h whole-room indirect calorimetry measurements in energy balance with 24-h urine collection and fasting copeptin measurements (n=117), followed by 3 days ad libitum food intake. A separate group (Group 2, n=284) with hydration markers and calorimetry measurements was also studied. The main outcome measures were 24-h RQ, 24-h EE, DEI, substrate oxidation. Results In Group 1, lower 24-h UVol and higher 24-h UUN, indicating lower hydration, were correlated with lower 24-h RQ (r = 0.35, p <0.0001, and r = −0.29, p = 0.0001, respectively; results similar in Group 2) and predicted subsequent reduced DEI (r = 0.20, p = 0.01, and r = −0.27, p = 0.0003, respectively), adjusted for confounders. Copeptin was independently associated with 24-h lipid oxidation (r = −0.23, p = 0.01). In Group 2, lower hydration was associated with reduced 24-h EE (24-h UVol: r = 0.29, p <0.0001; 24-h UUN: r = −0.25, p <0.0001). Conclusions Hydration biomarkers were associated with metabolic differences characterized by altered food intake, fuel selection, and possibly EE. Independently, copeptin was associated with higher lipid oxidation.
Collapse
Affiliation(s)
- Douglas C Chang
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA.
| | - Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Susanne B Votruba
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
27
|
Gansevoort RT, van Gastel MDA, Chapman AB, Blais JD, Czerwiec FS, Higashihara E, Lee J, Ouyang J, Perrone RD, Stade K, Torres VE, Devuyst O. Plasma copeptin levels predict disease progression and tolvaptan efficacy in autosomal dominant polycystic kidney disease. Kidney Int 2019; 96:159-169. [PMID: 30898339 DOI: 10.1016/j.kint.2018.11.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
In the TEMPO 3:4 Trial, treatment with tolvaptan, a vasopressin V2 receptor antagonist, slowed the increase in total kidney volume and decline in estimated glomerular filtration rate (eGFR) in autosomal dominant polycystic kidney disease (ADPKD). We investigated whether plasma copeptin levels, a marker of plasma vasopressin, are associated with disease progression, and whether pre-treatment copeptin and treatment-induced change in copeptin are associated with tolvaptan treatment efficacy. This post hoc analysis included 1,280 TEMPO 3:4 participants (aged 18-50 years, estimated creatinine clearance ≥60 ml/min and total kidney volume ≥750 mL) who had plasma samples available at baseline for measurement of copeptin using an automated immunofluorescence assay. In placebo-treated subjects, baseline copeptin predicted kidney growth and eGFR decline over 3 years. These associations were independent of sex, age, and baseline eGFR, but were no longer statistically significant after additional adjustment for baseline total kidney volume. In tolvaptan-treated subjects, copeptin increased from baseline to week 3 (6.3 pmol/L versus 21.9 pmol/L, respectively). In tolvaptan-treated subjects with higher baseline copeptin levels, a larger treatment effect was noted with respect to kidney growth rate and eGFR decline. Tolvaptan-treated subjects with a larger percentage increase in copeptin from baseline to week 3 had a better disease outcome, with less kidney growth and eGFR decline after three years. Copeptin holds promise as a biomarker to predict outcome and tolvaptan treatment efficacy in ADPKD.
Collapse
Affiliation(s)
- Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Maatje D A van Gastel
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arlene B Chapman
- Section of Nephrology, University of Chicago, Chicago, Illinois, USA
| | - Jaime D Blais
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - Frank S Czerwiec
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - Eiji Higashihara
- Department of ADPKD Research, Kyorin University School of Medicine, Tokyo, Japan
| | - Jennifer Lee
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - John Ouyang
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | - Ronald D Perrone
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and Division of Nephrology, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
28
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic systemic disorder causing the development of renal and hepatic cysts and decline in renal function. It affects around 1 in 1,000 live births. Early hypertension and progressive renal failure due to massive enlargement of cysts and fibrosis are hallmarks of the disease. This article reviews recent advances in ADPKD and focuses mainly on diagnosis, management, and prediction of the course of the disease.
Collapse
Affiliation(s)
- Roser Torra
- Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, REDINREN, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08025, Spain
| |
Collapse
|
29
|
El Boustany R, Tasevska I, Meijer E, Kieneker LM, Enhörning S, Lefèvre G, Mohammedi K, Marre M, Fumeron F, Balkau B, Bouby N, Bankir L, Bakker SJ, Roussel R, Melander O, Gansevoort RT, Velho G. Plasma copeptin and chronic kidney disease risk in 3 European cohorts from the general population. JCI Insight 2018; 3:121479. [PMID: 29997293 PMCID: PMC6124520 DOI: 10.1172/jci.insight.121479] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The prevalence of chronic kidney disease (CKD) is increasing worldwide. The identification of factors contributing to its progression is important for designing preventive measures. Previous studies have suggested that chronically high vasopressin is deleterious to renal function. Here, we evaluated the association of plasma copeptin, a surrogate of vasopressin, with the incidence of CKD in the general population. METHODS We studied 3 European cohorts: DESIR (n = 5,047; France), MDCS-CC (n = 3,643; Sweden), and PREVEND (n = 7,684; the Netherlands). Median follow-up was 8.5, 16.5, and 11.3 years, respectively. Pooled data were analyzed at an individual level for 4 endpoints during follow-up: incidence of stage 3 CKD (estimated glomerular filtration rate [eGFR] < 60 ml/min/1.73 m2); the KDIGO criterion "certain drop in eGFR"; rapid kidney function decline (eGFR slope steeper than -3 ml/min/1.73 m2/yr); and incidence of microalbuminuria. RESULTS The upper tertile of plasma copeptin was significantly and independently associated with a 49% higher risk for stage 3 CKD (P < 0.0001); a 64% higher risk for kidney function decline, as defined by the KDIGO criterion (P < 0.0001); a 79% higher risk for rapid kidney function decline (P < 0.0001); and a 24% higher risk for microalbuminuria (P = 0.008). CONCLUSIONS High copeptin levels are associated with the development and the progression of CKD in the general population. Intervention studies are needed to assess the potential beneficial effect on kidney health in the general population of reducing vasopressin secretion or action. FUNDING INSERM and Danone Research Centre for Specialized Nutrition.
Collapse
Affiliation(s)
- Ray El Boustany
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- Danone Nutricia Research, Palaiseau, France
| | - Irina Tasevska
- Departments of Internal Medicine and Clinical Sciences, Lund University, Malmö, Sweden
| | - Esther Meijer
- Department of Internal Medicine, University Medical Center, Division of Nephrology, University of Groningen, Groningen, Netherlands
| | - Lyanne M. Kieneker
- Department of Internal Medicine, University Medical Center, Division of Nephrology, University of Groningen, Groningen, Netherlands
| | - Sofia Enhörning
- Departments of Internal Medicine and Clinical Sciences, Lund University, Malmö, Sweden
| | - Guillaume Lefèvre
- Service de Biochimie et Hormonologie, Assistance Publique — Hôpitaux de Paris, Hôpitaux Universitaires Est Parisien–Tenon, Paris, France
| | - Kamel Mohammedi
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- Department of Diabetology, Endocrinology and Nutrition, DHU Fire, Assistance Publique — Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Michel Marre
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- Department of Diabetology, Endocrinology and Nutrition, DHU Fire, Assistance Publique — Hôpitaux de Paris, Bichat Hospital, Paris, France
- UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Frédéric Fumeron
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Beverley Balkau
- Inserm Research Unit 1018, Center for Research in Epidemiology and Population Health, Villejuif, France
- Université Paris Sud, Villejuif, France
| | - Nadine Bouby
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lise Bankir
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- UPMC University Paris 6, Sorbonne Universités, Paris, France
| | - Stephan J.L. Bakker
- Department of Internal Medicine, University Medical Center, Division of Nephrology, University of Groningen, Groningen, Netherlands
| | - Ronan Roussel
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
- Department of Diabetology, Endocrinology and Nutrition, DHU Fire, Assistance Publique — Hôpitaux de Paris, Bichat Hospital, Paris, France
- UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Olle Melander
- Departments of Internal Medicine and Clinical Sciences, Lund University, Malmö, Sweden
| | - Ron T. Gansevoort
- Department of Internal Medicine, University Medical Center, Division of Nephrology, University of Groningen, Groningen, Netherlands
| | - Gilberto Velho
- Inserm Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
30
|
Janssens P, Weydert C, De Rechter S, Wissing KM, Liebau MC, Mekahli D. Expanding the role of vasopressin antagonism in polycystic kidney diseases: From adults to children? Pediatr Nephrol 2018; 33:395-408. [PMID: 28455745 DOI: 10.1007/s00467-017-3672-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Polycystic kidney disease (PKD) encompasses a group of genetic disorders that are common causes of renal failure. The two classic forms of PKD are autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD). Despite their clinical differences, ARPKD and ADPKD share many similarities. Altered intracellular Ca2+ and increased cyclic adenosine monophosphate (cAMP) concentrations have repetitively been described as central anomalies that may alter signaling pathways leading to cyst formation. The vasopressin V2 receptor (V2R) antagonist tolvaptan lowers cAMP in cystic tissues and slows renal cystic progression and kidney function decline when given over 3 years in adult ADPKD patients. Tolvaptan is currently approved for the treatment of rapidly progressive disease in adult ADPKD patients. On the occasion of the recent initiation of a clinical trial with tolvaptan in pediatric ADPKD patients, we aim to describe the most important aspects in the literature regarding the AVP-cAMP axis and the clinical use of tolvaptan in PKD.
Collapse
Affiliation(s)
- Peter Janssens
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium. .,Department of Nephrology, University Hospitals Brussel, Brussel, Belgium.
| | - Caroline Weydert
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Stephanie De Rechter
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | | | - Max Christoph Liebau
- Pediatric Nephrology, Department of Pediatrics and Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany.,Department II of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Djalila Mekahli
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Pejchinovski M, Siwy J, Metzger J, Dakna M, Mischak H, Klein J, Jankowski V, Bae KT, Chapman AB, Kistler AD. Urine peptidome analysis predicts risk of end-stage renal disease and reveals proteolytic pathways involved in autosomal dominant polycystic kidney disease progression. Nephrol Dial Transplant 2017; 32:487-497. [PMID: 27382111 DOI: 10.1093/ndt/gfw243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/12/2016] [Indexed: 01/27/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is characterized by slowly progressive bilateral renal cyst growth ultimately resulting in loss of kidney function and end-stage renal disease (ESRD). Disease progression rate and age at ESRD are highly variable. Therapeutic interventions therefore require early risk stratification of patients and monitoring of disease progression in response to treatment. Methods We used a urine peptidomic approach based on capillary electrophoresis-mass-spectrometry (CE-MS) to identify potential biomarkers reflecting the risk for early progression to ESRD in the Consortium of Radiologic Imaging in Polycystic Kidney Disease (CRISP) cohort. Results A biomarker-based classifier consisting of 20 urinary peptides allowed the prediction of ESRD within 10-13 years of follow-up in patients 24-46 years of age at baseline. The performance of the biomarker score approached that of height-adjusted total kidney volume (htTKV) and the combination of the biomarker panel with htTKV improved prediction over either one alone. In young patients (<24 years at baseline), the same biomarker model predicted a 30 mL/min/1.73 m 2 glomerular filtration rate decline over 8 years. Sequence analysis of the altered urinary peptides and the prediction of the involved proteases by in silico analysis revealed alterations in distinct proteolytic pathways, in particular matrix metalloproteinases and cathepsins. Conclusion We developed a urinary test that accurately predicts relevant clinical outcomes in ADPKD patients and suggests altered proteolytic pathways involved in disease progression.
Collapse
Affiliation(s)
- Martin Pejchinovski
- Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany.,Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Justyna Siwy
- Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany
| | - Jochen Metzger
- Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany
| | - Mohammed Dakna
- Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany
| | - Harald Mischak
- Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany.,BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Vera Jankowski
- Universitätsklinikum RWTH Aachen, Institute of Molecular Cardiovascular Research, Aachen, Germany
| | - Kyongtae T Bae
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Arlene B Chapman
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Andreas D Kistler
- Department of Internal Medicine, Renal Unit, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland
| |
Collapse
|
32
|
Lanktree MB, Chapman AB. New treatment paradigms for ADPKD: moving towards precision medicine. Nat Rev Nephrol 2017; 13:750-768. [DOI: 10.1038/nrneph.2017.127] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Abstract
Copeptin is derived from the cleavage of the precursor of arginine vasopressin (AVP), produced in an equimolar ratio in hypothalamus and processed during axonal transport AVP is an unstable peptide and has a short half-life of 5-20 min. Unlike AVP, copeptin is a stable molecule and can easily be measured. Recent evidence suggest that increased copeptin levels have been associated with worse outcomes in various clinical conditions including chronic kidney disease (CKD) and hypertension. In this review, the data regarding copeptin with kidney function (evaluated as glomerular filtration rate, increased albumin/protein excretion or both) and hypertension with regard to performed studies, prognosis and pathogenesis was summarised.
Collapse
|
34
|
Diedrich B, Dengjel J. Insights into autosomal dominant polycystic kidney disease by quantitative mass spectrometry-based proteomics. Cell Tissue Res 2017; 369:41-51. [DOI: 10.1007/s00441-017-2617-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022]
|
35
|
Zittema D, Casteleijn NF, Bakker SJL, Boesten LSM, Duit AAM, Franssen CFM, Gaillard CAJM, Gansevoort RT. Urine Concentrating Capacity, Vasopressin and Copeptin in ADPKD and IgA Nephropathy Patients with Renal Impairment. PLoS One 2017; 12:e0169263. [PMID: 28081165 PMCID: PMC5231267 DOI: 10.1371/journal.pone.0169263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/14/2016] [Indexed: 01/18/2023] Open
Abstract
Background Autosomal Dominant Polycystic Kidney Disease (ADPKD) patients have an impaired urine concentrating capacity. Increased circulating vasopressin (AVP) concentrations are supposed to play a role in the progression of ADPKD. We hypothesized that ADPKD patients have a more severely impaired urine concentrating capacity in comparison to other patients with chronic kidney disease at a similar level of kidney function, with consequently an enhanced AVP response to water deprivation with higher circulating AVP concentrations. Methods 15 ADPKD (eGFR<60) patients and 15 age-, sex- and eGFR-matched controls with IgA nephropathy (IgAN), underwent a water deprivation test to determine maximal urine concentrating capacity. Plasma and urine osmolality, urine aquaporin-2 (AQP2) and plasma AVP and copeptin (a surrogate marker for AVP) were measured at baseline and after water deprivation (average 16 hours). In ADPKD patients, height adjusted total kidney volume (hTKV) was measured by MRI. Results Maximal achieved urine concentration was lower in ADPKD compared to IgAN controls (533±138 vs. 642±148 mOsm/kg, p = 0.046), with particularly a lower maximal achieved urine urea concentration (223±74 vs. 299±72 mmol/L, p = 0.008). After water deprivation, plasma osmolality was similar in both groups although change in plasma osmolality was more profound in ADPKD due to a lower baseline plasma osmolality in comparison to IgAN controls. Copeptin and AVP increased significantly in a similar way in both groups. AVP, copeptin and urine AQP2 were inversely associated with maximal urine concentrating in both groups. Conclusions ADPKD patients have a more severely impaired maximal urine concentrating capacity with a lower maximal achieved urine urea concentration in comparison to IgAN controls with similar endogenous copeptin and AVP responses.
Collapse
Affiliation(s)
- Debbie Zittema
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niek F. Casteleijn
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lianne S. M. Boesten
- Department of Clinical Chemistry, IJsselland Ziekenhuis, Capelle aan den IJssel, The Netherlands
| | - A. A. Margreeth Duit
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Casper F. M. Franssen
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carlo A. J. M. Gaillard
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ron T. Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Tolvaptan treatment for severe neonatal autosomal-dominant polycystic kidney disease. Pediatr Nephrol 2017; 32:893-896. [PMID: 28194574 PMCID: PMC5368203 DOI: 10.1007/s00467-017-3584-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Severe neonatal autosomal-dominant polycystic kidney disease (ADPKD) is rare and easily confused with recessive PKD. Managing such infants is difficult and often unsuccessful. CASE DIAGNOSIS/TREATMENT A female infant with massive renal enlargement, respiratory compromise and hyponatraemia was treated with the arginine vasopressin receptor 2 antagonist tolvaptan. This resolved hyponatraemia, and there was no further increase in renal size. CONCLUSION Tolvaptan may be a useful treatment for severe neonatal PKD.
Collapse
|
37
|
Velho G, El Boustany R, Lefèvre G, Mohammedi K, Fumeron F, Potier L, Bankir L, Bouby N, Hadjadj S, Marre M, Roussel R. Plasma Copeptin, Kidney Outcomes, Ischemic Heart Disease, and All-Cause Mortality in People With Long-standing Type 1 Diabetes. Diabetes Care 2016; 39:2288-2295. [PMID: 27729425 DOI: 10.2337/dc16-1003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 09/17/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Plasma copeptin, a surrogate for vasopressin, has been associated with a decline in renal function and albuminuria in population-based studies as well as with progression of diabetic nephropathy in people with type 2 diabetes. We assessed the risk of kidney and coronary events and all-cause mortality associated with plasma copeptin in people with type 1 diabetes. RESEARCH DESIGN AND METHODS Plasma copeptin was measured in baseline samples of the GENEDIAB (n = 398; 56% male; mean ± SD age 45 ± 12 years and diabetes duration 28 ± 10 years) and GENESIS (n = 588; 52% male; age 42 ± 11 years; diabetes duration 27 ± 9 years) cohorts. Follow-up data were available for 218 GENEDIAB and 518 GENESIS participants. Median duration of follow-up was 10.2 and 5.0 years, respectively. RESULTS Upper sex-specific tertiles of copeptin were associated with a higher incidence of end-stage renal disease (ESRD) during follow-up (hazard ratio [HR] for third vs. first tertile 26.5 [95% CI 8.0-163.3; P < 0.0001]; analysis in pooled cohorts adjusted for age, sex, duration of diabetes, and cohort membership). The highest tertile of copeptin was also associated with incidence of myocardial infarction or coronary revascularization (HR 2.2 [95% CI 1.2-4.0]; P = 0.01) and all-cause mortality (HR 3.3 [95% CI 1.8-6.5]; P < 0.0001) during follow-up. CONCLUSIONS Plasma copeptin is a predictor for the risk of ESRD, coronary heart disease, and all-cause mortality in people with type 1 diabetes. Results are consistent with data from experimental and epidemiological studies, suggesting that high circulating levels of vasopressin are deleterious to renal function.
Collapse
Affiliation(s)
- Gilberto Velho
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Ray El Boustany
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Guillaume Lefèvre
- Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Est Parisien-Tenon, Service de Biochimie et Hormonologie, Paris, France
| | - Kamel Mohammedi
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Départment de Diabétologie, Endocrinologie et Nutrition, Paris, France
| | - Frédéric Fumeron
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, Paris, France
| | - Louis Potier
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Départment de Diabétologie, Endocrinologie et Nutrition, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, Paris, France
| | - Lise Bankir
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Nadine Bouby
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Samy Hadjadj
- Départment de Endocrinologie et Diabétologie, CHU de Poitiers, Poitiers, France.,INSERM, Unité de Recherche 1082, Poitiers, France.,INSERM, CIC 1402, Poitiers, France.,Université de Poitiers, UFR de Médecine et Pharmacie, Poitiers, France
| | - Michel Marre
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Départment de Diabétologie, Endocrinologie et Nutrition, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, Paris, France
| | - Ronan Roussel
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Départment de Diabétologie, Endocrinologie et Nutrition, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, Paris, France
| |
Collapse
|
38
|
The importance of total kidney volume in evaluating progression of polycystic kidney disease. Nat Rev Nephrol 2016; 12:667-677. [PMID: 27694979 DOI: 10.1038/nrneph.2016.135] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The rate at which autosomal dominant polycystic kidney disease (ADPKD) progresses to end-stage renal disease varies widely and is determined by genetic and non-genetic factors. The ability to determine the prognosis of children and young adults with ADPKD is important for the effective life-long management of the disease and to enable the efficacy of emerging therapies to be determined. Total kidney volume (TKV) reflects the sum volume of hundreds of individual cysts with potentially devastating effects on renal function. The sequential measurement of TKV has been advanced as a dynamic biomarker of disease progression, yet doubt remains among nephrologists and regulatory agencies as to its usefulness. Here, we review the mechanisms that lead to an increase in TKV in ADPKD, and examine the evidence supporting the conclusion that TKV provides a metric of disease progression that can be used to assess the efficacy of potential therapeutic regimens in children and adults with ADPKD. Moreover, we propose that TKV can be used to monitor treatment efficacy in patients with normal levels of renal function, before the pathologic processes of ADPKD cause extensive fibrosis and irreversible loss of functioning renal tissue.
Collapse
|
39
|
Hilliard LM, Colafella KMM, Bulmer LL, Puelles VG, Singh RR, Ow CPC, Gaspari T, Drummond GR, Evans RG, Vinh A, Denton KM. Chronic recurrent dehydration associated with periodic water intake exacerbates hypertension and promotes renal damage in male spontaneously hypertensive rats. Sci Rep 2016; 6:33855. [PMID: 27653548 PMCID: PMC5032121 DOI: 10.1038/srep33855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/05/2016] [Indexed: 01/12/2023] Open
Abstract
Epidemiological evidence links recurrent dehydration associated with periodic water intake with chronic kidney disease (CKD). However, minimal attention has been paid to the long-term impact of periodic water intake on the progression of CKD and underlying mechanisms involved. Therefore we investigated the chronic effects of recurrent dehydration associated with periodic water restriction on arterial pressure and kidney function and morphology in male spontaneously hypertensive rats (SHR). Arterial pressure increased and glomerular filtration rate decreased in water-restricted SHR. This was observed in association with cyclic changes in urine osmolarity, indicative of recurrent dehydration. Additionally, water-restricted SHR demonstrated greater renal fibrosis and an imbalance in favour of pro-inflammatory cytokine-producing renal T cells compared to their control counterparts. Furthermore, urinary NGAL levels were greater in water-restricted than control SHR. Taken together, our results provide significant evidence that recurrent dehydration associated with chronic periodic drinking hastens the progression of CKD and hypertension, and suggest a potential role for repetitive bouts of acute renal injury driving renal inflammatory processes in this setting. Further studies are required to elucidate the specific pathways that drive the progression of recurrent dehydration-induced kidney disease.
Collapse
Affiliation(s)
- Lucinda M Hilliard
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Louise L Bulmer
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Reetu R Singh
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Connie P C Ow
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Tracey Gaspari
- Department of Pharmacology, Monash University, Melbourne, Victoria, 3800 Australia
| | - Grant R Drummond
- Department of Pharmacology, Monash University, Melbourne, Victoria, 3800 Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Antony Vinh
- Department of Pharmacology, Monash University, Melbourne, Victoria, 3800 Australia
| | - Kate M Denton
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
40
|
Zittema D, Versteeg IB, Gansevoort RT, van Goor H, de Heer E, Veraar KAM, Peters DJM, Meijer E. Dose-Titrated Vasopressin V2 Receptor Antagonist Improves Renoprotection in a Mouse Model for Autosomal Dominant Polycystic Kidney Disease. Am J Nephrol 2016; 44:194-203. [PMID: 27578560 DOI: 10.1159/000448693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/21/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND In autosomal dominant polycystic kidney disease, renoprotective treatment with a vasopressin V2 receptor antagonist (V2RA) is given in a fixed dose (FD). Disease progression and drug habituation could diminish treatment efficacy. We investigated whether the renoprotective effect of the V2RA can be improved by dose titration of the V2RA aiming to maintain aquaresis at a high level. METHODS The V2RA OPC-31260 was administered to Pkd1-deletion mice in an FD (0.1%) or in a titrated dose (TD, up to 0.8% when drinking volume dropped). Total kidney weight (TKW) and cyst ratio were investigated and compared to non-treated Pkd1-deletion mice. Treatment was started early or late (21 or 42 days postnatal). RESULTS Water intake was significantly higher throughout the experiment in the TD compared to the FD group. FD treatment that was initiated early reduced TKW and cyst ratio but lost its renoprotective effect later during the experiment. In contrast, TD treatment was able to maintain the renoprotective effect. TD treatment, however, was also associated with a higher early termination rate in comparison with FD treatment. Late start of treatment (FD or TD) did not show a renoprotective effect. CONCLUSIONS Titration of a V2RA aimed to maintain aquaresis at a high level showed a better renoprotective effect compared to FD administration. However, this treatment regimen was poorly tolerated and did not overcome treatment unresponsiveness when started later in the disease.
Collapse
Affiliation(s)
- Debbie Zittema
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease. This article will describe the factors associated with both functional and structural evidence of disease progression. It will also review the results of recent clinical trials that have shown an impact on markers of disease progression. RECENT FINDINGS A variety of prognostic factors have been described that relate to a decline in glomerular filtration rate or an increase in total cyst or kidney volumes. We now have clinical trials that show that glomerular filtration rate decline and kidney volume growth can be slowed in those with ADPKD. SUMMARY With the emergence of potential disease-modifying therapies, factors that can accurately identify those who are most at risk for renal progression or ADPKD-related complications need to be identified and validated.
Collapse
|
42
|
Park HC, Ahn C. Diagnostic Evaluation as a Biomarker in Patients with ADPKD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 933:85-103. [PMID: 27730437 DOI: 10.1007/978-981-10-2041-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, newer treatments have been introduced for autosomal dominant polycystic kidney disease (ADPKD) patients. Since cysts grow and renal function declines over a long period of time, the evaluation of treatment effects in ADPKD has been very difficult. Therefore, there has been a great interest to find out the "better" surrogate marker or biomarker which reflects disease progression. Biomarkers in ADPKD should have three clinical implications: (1) They should reflect disease severity, (2) they should distinguish patients with poor versus good prognosis to select those who will benefit better from the treatment, and (3) they should be easy to evaluate short-term outcome after treatment, which will demonstrate hard outcome. Herein, we will discuss currently available surrogate biomarkers including the volume of total kidney and urinary molecular markers.
Collapse
Affiliation(s)
- Hayne Cho Park
- Division of Nephrology, Department of Internal Medicine, The Armed Forces Capital Hospital, Seongnam-si, Gyeonggi-do, South Korea.
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
43
|
Roussel R, Matallah N, Bouby N, El Boustany R, Potier L, Fumeron F, Mohammedi K, Balkau B, Marre M, Bankir L, Velho G. Plasma Copeptin and Decline in Renal Function in a Cohort from the Community: The Prospective D.E.S.I.R. Study. Am J Nephrol 2015; 42:107-14. [PMID: 26346607 DOI: 10.1159/000439061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/27/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS In recent days, chronic kidney disease (CKD) is becoming an increasing public health problem. Identification of factors contributing to its progression is crucial for designing preventive interventions. Previous studies suggested that chronically high vasopressin is deleterious to the renal function. We evaluated plasma copeptin, a surrogate of vasopressin, as a predictor for renal function decline in a community cohort. METHODS Plasma copeptin was measured at baseline in 1,234 participants from the D.E.S.I.R. study, a prospective cohort from the French general population. All participants were followed for 9 years. Progression towards CKD during follow-up was defined as an estimated glomerular filtration rate (eGFR) below 60 ml/min/1.73 m2 on at least one follow-up visit. We have also considered the criterion 'Certain Drop in eGFR' proposed by the Kidney Disease Improving Global Outcomes (KDIGO) group. RESULTS Progression towards CKD was observed in 86 (7.0%) participants. Factors like age, female gender, plasma copeptin and use of angiotensin converting enzyme inhibitor or angiotensin 2 receptor blocker at baseline were positively associated, and eGFR inversely associated with CKD progression during follow-up. The hazard ratio per unit of log10-transformed plasma copeptin was 1.65 (95% CI 1.06-2.54) and p=0.02. Copeptin was similarly associated with CKD and this was observed when we considered the KDIGO criterion: OR 3.03 (95% CI 1.21-7.57), p=0.02. CONCLUSION The plasma copeptin level was independently and positively associated with progression towards CKD in a community-based cohort. Our results add to the available evidence for a deleterious effect of high vasopressin on renal health not only in selected groups of patients with CKD but also in the general population.
Collapse
Affiliation(s)
- Ronan Roussel
- INSERM, Research Unit 1138, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol 2015; 11:451-64. [PMID: 25870007 PMCID: PMC4539141 DOI: 10.1038/nrneph.2015.39] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is responsible for 5-10% of cases of end-stage renal disease worldwide. ADPKD is characterized by the relentless development and growth of cysts, which cause progressive kidney enlargement associated with hypertension, pain, reduced quality of life and eventual kidney failure. Mutations in the PKD1 or PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively, cause ADPKD. However, neither the functions of these proteins nor the molecular mechanisms of ADPKD pathogenesis are well understood. Here, we review the literature that examines how reduced levels of functional PC1 or PC2 at the primary cilia and/or the endoplasmic reticulum directly disrupts intracellular calcium signalling and indirectly disrupts calcium-regulated cAMP and purinergic signalling. We propose a hypothetical model in which dysregulated metabolism of cAMP and purinergic signalling increases the sensitivity of principal cells in collecting ducts and of tubular epithelial cells in the distal nephron to the constant tonic action of vasopressin. The resulting magnified response to vasopressin further enhances the disruption of calcium signalling that is initiated by mutations in PC1 or PC2, and activates downstream signalling pathways that cause impaired tubulogenesis, increased cell proliferation, increased fluid secretion and interstitial inflammation.
Collapse
Affiliation(s)
- Fouad T Chebib
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Caroline R Sussman
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| |
Collapse
|
45
|
Hogan MC, Bakeberg JL, Gainullin VG, Irazabal MV, Harmon AJ, Lieske JC, Charlesworth MC, Johnson KL, Madden BJ, Zenka RM, McCormick DJ, Sundsbak JL, Heyer CM, Torres VE, Harris PC, Ward CJ. Identification of Biomarkers for PKD1 Using Urinary Exosomes. J Am Soc Nephrol 2015; 26:1661-70. [PMID: 25475747 PMCID: PMC4483583 DOI: 10.1681/asn.2014040354] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of ESRD. Affected individuals inherit a defective copy of either PKD1 or PKD2, which encode polycystin-1 (PC1) or polycystin-2 (PC2), respectively. PC1 and PC2 are secreted on urinary exosome-like vesicles (ELVs) (100-nm diameter vesicles), in which PC1 is present in a cleaved form and may be complexed with PC2. Here, label-free quantitative proteomic studies of urine ELVs in an initial discovery cohort (13 individuals with PKD1 mutations and 18 normal controls) revealed that of 2008 ELV proteins, 9 (0.32%) were expressed at significantly different levels in samples from individuals with PKD1 mutations compared to controls (P<0.03). In samples from individuals with PKD1 mutations, levels of PC1 and PC2 were reduced to 54% (P<0.02) and 53% (P<0.001), respectively. Transmembrane protein 2 (TMEM2), a protein with homology to fibrocystin, was 2.1-fold higher in individuals with PKD1 mutations (P<0.03). The PC1/TMEM2 ratio correlated inversely with height-adjusted total kidney volume in the discovery cohort, and the ratio of PC1/TMEM2 or PC2/TMEM2 could be used to distinguish individuals with PKD1 mutations from controls in a confirmation cohort. In summary, results of this study suggest that a test measuring the urine exosomal PC1/TMEM2 or PC2/TMEM2 ratio may have utility in diagnosis and monitoring of polycystic kidney disease. Future studies will focus on increasing sample size and confirming these studies. The data were deposited in the ProteomeXchange (identifier PXD001075).
Collapse
Affiliation(s)
| | - Jason L Bakeberg
- Division of Nephrology and Hypertension, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | | | - John C Lieske
- Renal Laboratory, Department of Laboratory Medicine and Pathology, and
| | | | - Kenneth L Johnson
- Medical Genome Facility-Proteomics Core, Mayo Clinic, Rochester, Minnesota; and
| | - Benjamin J Madden
- Medical Genome Facility-Proteomics Core, Mayo Clinic, Rochester, Minnesota; and
| | - Roman M Zenka
- Medical Genome Facility-Proteomics Core, Mayo Clinic, Rochester, Minnesota; and
| | - Daniel J McCormick
- Medical Genome Facility-Proteomics Core, Mayo Clinic, Rochester, Minnesota; and
| | | | | | | | | | - Christopher J Ward
- Division of Nephrology and Hypertension, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
46
|
Hu W, Ni YJ, Ma L, Hao HR, Chen L, Yu WN. Serum copeptin as a new biomarker in the early diagnosis of decline in renal function of type 2 diabetes mellitus patients. Int J Clin Exp Med 2015; 8:9730-9736. [PMID: 26309649 PMCID: PMC4537970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study aimed to investigate the correlation between serum copeptin and glomerular filtration rate (GFR) in type 2 diabetes mellitus (T2DM) patients and to investigate the role of serum copeptin in the diagnosis of early DN in T2DM patients. METHODS 120 T2DM inpatients were recruited and divided into 2 groups according to 24-h urine albumin excretion (UAE): normal UAE group (UAE<30 mg/24 h) and microalbuminuria group (30 mg/24 h≤UAE≤300 mg/24 h). RESULTS Decline in GFR was found in 6.1% of patients in normal UAE group and 26.4% in microalbuminuria group. However, serum copeptin was comparable between two groups. Serum copeptin was negatively related to GFR (r=-0.586, P<0.001). Multivariate logistic regression analysis showed, after adjustment for age and gender, the OR of copeptin, 24-h UAE was 1.234 (95% CI: 1.003-1.456) (P<0.05) and 1.068 (95% CI: 1.005-1.187) (P<0.05), respectively. Univariate analysis of ROC showed the sensitivity of copeptin and 24-h UAE was 78.9% and 63.2%, respectively and the specificity was 88.9% and 89.7%, respectively in the diagnosis of DN, but the area under ROC of copeptin in combination with 24-h UAE was 0.90 (95% CI: 0.82-0.99) with the sensitivity of 80.9% and specificity of 91.1%. CONCLUSION Serum copeptin is an independent risk factor of decline in renal function of T2DM patients. Copeptin in combination with 24-h UAE are helpful for the early diagnosis of DN. The causative relationship between serum copeptin and GFR is required to be further studied in long-term follow up.
Collapse
Affiliation(s)
- Wen Hu
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical College and Huai’an Second People’s HospitalHuai’an 221000, China
| | - Yao-Jun Ni
- Department of Cardiothoracic Surgery, Hospital Affiliated to Nanjing Medical College and Huai’an First People’s HospitalHuai’an 223001, China
| | - Li Ma
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical College and Huai’an Second People’s HospitalHuai’an 221000, China
| | - Hai-Rong Hao
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical College and Huai’an Second People’s HospitalHuai’an 221000, China
| | - Liang Chen
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical College and Huai’an Second People’s HospitalHuai’an 221000, China
| | - Wei-Nan Yu
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical College and Huai’an Second People’s HospitalHuai’an 221000, China
| |
Collapse
|
47
|
Ponte B, Pruijm M, Ackermann D, Vuistiner P, Guessous I, Ehret G, Alwan H, Youhanna S, Paccaud F, Mohaupt M, Péchère-Bertschi A, Vogt B, Burnier M, Martin PY, Devuyst O, Bochud M. Copeptin is associated with kidney length, renal function, and prevalence of simple cysts in a population-based study. J Am Soc Nephrol 2015; 26:1415-25. [PMID: 25270071 PMCID: PMC4446870 DOI: 10.1681/asn.2014030260] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/30/2014] [Indexed: 12/31/2022] Open
Abstract
Arginine vasopressin (AVP) has a key role in osmoregulation by facilitating water transport in the collecting duct. Recent evidence suggests that AVP may have additional effects on renal function and favor cyst growth in polycystic kidney disease. Whether AVP also affects kidney structure in the general population is unknown. We analyzed the association of copeptin, an established surrogate for AVP, with parameters of renal function and morphology in a multicentric population-based cohort. Participants from families of European ancestry were randomly selected in three Swiss cities. We used linear multilevel regression analysis to explore the association of copeptin with renal function parameters as well as kidney length and the presence of simple renal cysts assessed by ultrasound examination. Copeptin levels were log-transformed. The 529 women and 481 men had median copeptin levels of 3.0 and 5.2 pmol/L, respectively (P<0.001). In multivariable analyses, the copeptin level was associated inversely with eGFR (β=-2.1; 95% confidence interval [95% CI], -3.3 to -0.8; P=0.002) and kidney length (β=-1.2; 95% CI, -1.9 to -0.4; P=0.003) but positively with 24-hour urinary albumin excretion (β=0.11; 95% CI, 0.01 to 0.20; P=0.03) and urine osmolality (β=0.08; 95% CI, 0.05 to 0.10; P<0.001). A positive association was found between the copeptin level and the presence of renal cysts (odds ratio, 1.6; 95% CI, 1.1 to 2.4; P=0.02). These results suggest that AVP has a pleiotropic role in renal function and may favor the development of simple renal cysts.
Collapse
Affiliation(s)
- Belen Ponte
- Divisions of Nephrology and Institute of Social and Preventive Medicine and
| | - Menno Pruijm
- Division of Nephrology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Daniel Ackermann
- Department of Nephrology, Hypertension, and Clinical Pharmacology, University Hospital, University of Bern, Bern, Switzerland; and
| | | | - Idris Guessous
- Institute of Social and Preventive Medicine and Units of Populational Epidemiology and Department of Community Medicine and Primary Care, University Hospital of Geneva, Geneva, Switzerland
| | | | - Heba Alwan
- Institute of Social and Preventive Medicine and
| | - Sonia Youhanna
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Markus Mohaupt
- Department of Nephrology, Hypertension, and Clinical Pharmacology, University Hospital, University of Bern, Bern, Switzerland; and
| | - Antoinette Péchère-Bertschi
- Department of Community Medicine and Primary Care, University Hospital of Geneva, Geneva, Switzerland; Hypertension
| | - Bruno Vogt
- Department of Nephrology, Hypertension, and Clinical Pharmacology, University Hospital, University of Bern, Bern, Switzerland; and
| | - Michel Burnier
- Division of Nephrology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
48
|
Casteleijn NF, Zittema D, Bakker SJL, Boertien WE, Gaillard CA, Meijer E, Spithoven EM, Struck J, Gansevoort RT. Urine and plasma osmolality in patients with autosomal dominant polycystic kidney disease: reliable indicators of vasopressin activity and disease prognosis? Am J Nephrol 2015; 41:248-56. [PMID: 25926129 DOI: 10.1159/000382081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/03/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vasopressin plays an essential role in osmoregulation, but has deleterious effects in patients with ADPKD. Increased water intake to suppress vasopressin activity has been suggested as a potential renoprotective strategy. This study investigated whether urine and plasma osmolality can be used as reflection of vasopressin activity in ADPKD patients. METHODS We measured urine and plasma osmolality, plasma copeptin concentration, total kidney volume (TKV, by MRI) and GFR ((125)I-iothalamate). In addition, change in estimated GFR (eGFR) during follow-up was assessed. RESULTS Ninety-four patients with ADPKD were included (56 males, age 40 ± 10, mGFR 77 ± 32 ml/min/1.73 m(2), TKV 1.55 (0.99-2.40) l. Urine osmolality, plasma osmolality and copeptin concentration were 420 ± 195, 289 ± 7 mOsmol/l and 7.3 (3.2-14.6) pmol/l, respectively. Plasma osmolality was associated with copeptin concentration (R = 0.54, p < 0.001), whereas urine osmolality was not (p = 0.4). In addition, urine osmolality was not associated with TKV (p = 0.3), in contrast to plasma osmolality (R = 0.52, p < 0.001) and copeptin concentration (R = 0.61, p < 0.001). Fifty-five patients were followed for 2.8 ± 0.8 years. Baseline plasma and urine osmolality were not associated with change in eGFR (p = 0.6 and p = 0.3, respectively), whereas baseline copeptin concentration did show an association with change in eGFR, in a crude analysis (St. β = -0.41, p = 0.003) and also after adjustment for age, sex and TKV (St. β = -0.23, p = 0.05). CONCLUSIONS These data suggest that neither urine nor plasma osmolality are valid measures to identify ADPKD patients that may benefit from increasing water intake. Copeptin appears a better alternative for this purpose.
Collapse
Affiliation(s)
- Niek F Casteleijn
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nakajima A, Lu Y, Kawano H, Horie S, Muto S. Association of arginine vasopressin surrogate marker urinary copeptin with severity of autosomal dominant polycystic kidney disease (ADPKD). Clin Exp Nephrol 2015; 19:1199-205. [PMID: 25715868 DOI: 10.1007/s10157-015-1101-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/19/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Experimental studies suggest a detrimental role for cyclic adenosine monophosphate (cAMP) and vasopressin in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). It is unknown, however, whether urinary cAMP and copeptin concentration are associated with disease severity in patients with ADPKD. METHODS Urinary cAMP (u-cAMP) and copeptin concentration (u-copeptin) were measured by immunoassay in ADPKD patients with CKD stage ≤4. We compared our measurements with clinical parameters including estimated glomerular filtration rate (eGFR), total kidney volume (TKV), and height-adjusted TKV (htTKV). Logarithmic transformation of all variables was performed to fulfill the requirement of equal distribution of the residuals. RESULTS We included 50 patients in this study (24 females and 26 males; mean age: 49.3 years). The median eGFR and TKV were 53.2 ml/min/1.73 m(2) (interquartile range: IQR; 29.4-68.45) and 1138.1 ml (IQR; 814.7-2065.0), respectively. The median u-copeptin level was 12.19 (IQR; 6.91-22.32) ng/ml. Although u-cAMP/u-Cr was not significantly correlated with TKV (R = -0.006, p = 0.967) and eGFR (R = 0.077, p = 0.602), urinary copeptin/u-Cr was statistically associated with the various markers of disease severity in ADPKD [positively with TKV (R = 0.351, p = 0.014), htTKV (R = 0.383, p = 0.008) and negatively with eGFR (R = -0.304, p = 0.036)]. CONCLUSIONS In ADPKD subjects, a higher u-copeptin is associated with disease progression, suggesting that u-copeptin may be a new surrogate marker to predict renal prognosis in ADPKD.
Collapse
Affiliation(s)
- Akiko Nakajima
- Department of Urology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Yan Lu
- Department of Urology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Haruna Kawano
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shigeo Horie
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Satoru Muto
- Department of Urology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
50
|
Myint TM, Rangan GK, Webster AC. Treatments to slow progression of autosomal dominant polycystic kidney disease: systematic review and meta-analysis of randomized trials. Nephrology (Carlton) 2014; 19:217-26. [PMID: 24460701 DOI: 10.1111/nep.12211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2014] [Indexed: 01/13/2023]
Abstract
AIM Autosomal dominant polycystic kidney disease (ADPKD) is a monogenetic disorder that leads to kidney failure. Our aim was to undertake a meta-analysis of randomized trials of interventions that have been hypothesized to reduce the progression of total kidney volume (TKV) and renal function in ADPKD. METHODS Relevant trials were identified, and outcomes were: change in TKV, total cyst volume (TCV), renal function and adverse events. Meta-analysis used random effects, with results expressed as mean difference and risk ratio both with 95% confidence intervals (CI). RESULTS Eleven trials (2262 patients) were included. Compared with placebo, Target of Rapamycin complex 1 (TORC1) inhibitors (5 trials, n = 619), showed no significant change in TKV (P = 0.21), TCV (P = 0.06) or eGFR (P = 0.22). Somatostatin analogues (3 trials, n = 157) reduced TKV by 9% (95% CI -10.33 to -7.58%) but did not alter eGFR. The vasopressin receptor antagonist (n = 1455) attenuated TKV increase to 3%/year (95% CI -3.48 to -2.52) and slowed kidney function decline over a 3-year period. A single trial (n = 41) of eicosapentaenoic acid did not alter the progression of either TKV (P = 0.9) or renal dysfunction (P = 0.78). Adverse events were significant for interventions in all trials compared with placebo. CONCLUSION These data suggest that somatostatin analogues and vasopressin receptor antagonists attenuate TKV increase. The neutral effects of TORC1 inhibitors on TKV could be true, or due to heterogeneity in study population, drug efficacy and follow-up duration. In the future, further well-designed and powered trials of longer duration using new biomarkers or therapeutic agents with better tolerance are required.
Collapse
Affiliation(s)
- Thida M Myint
- Department of Renal Medicine and Transplantation, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | | | | |
Collapse
|