1
|
Noels H, Jankowski V, Schunk SJ, Vanholder R, Kalim S, Jankowski J. Post-translational modifications in kidney diseases and associated cardiovascular risk. Nat Rev Nephrol 2024; 20:495-512. [PMID: 38664592 DOI: 10.1038/s41581-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 07/21/2024]
Abstract
Patients with chronic kidney disease (CKD) are at an increased cardiovascular risk compared with the general population, which is driven, at least in part, by mechanisms that are uniquely associated with kidney disease. In CKD, increased levels of oxidative stress and uraemic retention solutes, including urea and advanced glycation end products, enhance non-enzymatic post-translational modification events, such as protein oxidation, glycation, carbamylation and guanidinylation. Alterations in enzymatic post-translational modifications such as glycosylation, ubiquitination, acetylation and methylation are also detected in CKD. Post-translational modifications can alter the structure and function of proteins and lipoprotein particles, thereby affecting cellular processes. In CKD, evidence suggests that post-translationally modified proteins can contribute to inflammation, oxidative stress and fibrosis, and induce vascular damage or prothrombotic effects, which might contribute to CKD progression and/or increase cardiovascular risk in patients with CKD. Consequently, post-translational protein modifications prevalent in CKD might be useful as diagnostic biomarkers and indicators of disease activity that could be used to guide and evaluate therapeutic interventions, in addition to providing potential novel therapeutic targets.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan J Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, Homburg/Saar, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital, Ghent, Belgium
- European Kidney Health Alliance (EKHA), Brussels, Belgium
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
2
|
Lui DTW, Tan KCB. High-density lipoprotein in diabetes: Structural and functional relevance. J Diabetes Investig 2024; 15:805-816. [PMID: 38416054 PMCID: PMC11215696 DOI: 10.1111/jdi.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) is considered a major cardiovascular risk factor. However, recent studies have suggested a more U-shaped association between HDL-C and cardiovascular disease. It has been shown that the cardioprotective effect of HDL is related to the functions of HDL particles rather than their cholesterol content. HDL particles are highly heterogeneous and have multiple functions relevant to cardiometabolic conditions including cholesterol efflux capacity, anti-oxidative, anti-inflammatory, and vasoactive properties. There are quantitative and qualitative changes in HDL as well as functional abnormalities in both type 1 and type 2 diabetes. Non-enzymatic glycation, carbamylation, oxidative stress, and systemic inflammation can modify the HDL composition and therefore the functions, especially in situations of poor glycemic control. Studies of HDL proteomics and lipidomics have provided further insights into the structure-function relationship of HDL in diabetes. Interestingly, HDL also has a pleiotropic anti-diabetic effect, improving glycemic control through improvement in insulin sensitivity and β-cell function. Given the important role of HDL in cardiometabolic health, HDL-based therapeutics are being developed to enhance HDL functions rather than to increase HDL-C levels. Among these, recombinant HDL and small synthetic apolipoprotein A-I mimetic peptides may hold promise for preventing and treating diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Kathryn Choon Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
3
|
Awwad A, Rhee EP, Grams M, Choles HR, Sondheimer J, He J, Chen J, Hsu CY, Vasan RS, Kimmel PL, Wulczyn K, Berg A, Lash J, Tang M, Kalim S. Comparative CKD risk prediction using homocitrulline and carbamylated albumin: two circulating markers of protein carbamylation. BMC Nephrol 2024; 25:185. [PMID: 38816682 PMCID: PMC11140876 DOI: 10.1186/s12882-024-03619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Protein carbamylation, a post-translational protein modification primarily driven by urea, independently associates with adverse clinical outcomes in patients with CKD. Biomarkers used to quantify carbamylation burden have mainly included carbamylated albumin (C-Alb) and homocitrulline (HCit, carbamylated lysine). In this study, we aimed to compare the prognostic utility of these two markers in order to facilitate comparisons of existing studies employing either marker alone, and to inform future carbamylation studies. METHODS Both serum C-Alb and free HCit levels were assayed from the same timepoint in 1632 individuals with CKD stages 2-4 enrolled in the prospective Chronic Renal Insufficiency Cohort (CRIC) study. Adjusted Cox proportional hazard models were used to assess risks for the outcomes of death (primary) and end stage kidney disease (ESKD) using each marker. C-statistics, net reclassification improvement, and integrated discrimination improvement were used to compare the prognostic value of each marker. RESULTS Participant demographics included mean (SD) age 59 (11) years; 702 (43%) females; 700 (43%) white. C-Alb and HCit levels were positively correlated with one another (Pearson correlation coefficient 0.64). Higher C-Alb and HCit levels showed similar increased risk of death (e.g., the adjusted hazard ratio [HR] for death in the 4th carbamylation quartile compared to the 1st was 1.90 (95% confidence interval [CI] 1.35-2.66) for C-Alb, and 1.89 [1.27-2.81] for HCit; and on a continuous scale, the adjusted HR for death using C-Alb was 1.24 [1.11 to 1.39] per standard deviation increase, and 1.27 [1.10-1.46] using HCit). Both biomarkers also had similar HRs for ESKD. The C-statistics were similar when adding each carbamylation biomarker to base models (e.g., for mortality models, the C-statistic was 0.725 [0.707-0.743] with C-Alb and 0.725 [0.707-0.743] with HCit, both compared to a base model 0.723). Similarities were also observed for the net reclassification improvement and integrated discrimination improvement metrics. CONCLUSIONS C-Alb and HCit had similar performance across multiple prognostic assessments. The markers appear readily comparable in CKD epidemiological studies.
Collapse
Affiliation(s)
- Aya Awwad
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eugene P Rhee
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Grams
- Department of Medicine, New York University, New York, NY, USA
| | - Hernan Rincon Choles
- Department of Nephrology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James Sondheimer
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Jing Chen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California San Francisco School of Medicine, San Francisco, CA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Ramachandran S Vasan
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Medicine, Sections of Preventive Medicine and Epidemiology and Cardiology, Boston University School of Medicine, Boston, MA, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, USA
| | - Kendra Wulczyn
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anders Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jim Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mengyao Tang
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Zhao Y, Xu Q, He N, Jiang M, Chen Y, Ren Z, Tang Z, Wu C, Liu L. Non-oxidative Modified Low-density Lipoproteins: The Underappreciated Risk Factors for Atherosclerosis. Curr Med Chem 2024; 31:5598-5611. [PMID: 37550912 DOI: 10.2174/0929867331666230807154019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 08/09/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular diseases, is a main risk factor causing about 20 million deaths each year worldwide. Oxidized low-density lipoprotein is recognized as the most important and independent risk factor in initiating and promoting atherosclerosis. Numerous antioxidants are extensively used in clinical practice, but they have no significant effect on reducing the morbidity and mortality of cardiovascular diseases. This finding suggests that researchers should pay more attention to the important role of non-oxidative modified low-density lipoprotein in atherosclerosis with a focus on oxidized low-density lipoprotein. This review briefly summarizes several important non-oxidative modified low-density lipoproteins associated with atherosclerosis, introduces the pathways through which these non-oxidative modified low-density lipoproteins induce the development of atherosclerosis in vivo, and discusses the mechanism of atherogenesis induced by these non-oxidative modified low-density lipoproteins. New therapeutic strategies and potential drug targets are provided for the prevention and treatment of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Yimeng Zhao
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Qian Xu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Naiqi He
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Mulin Jiang
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Yingzhuo Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zhong Ren
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zhihan Tang
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Chunyan Wu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Lushan Liu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
6
|
Kalim S, Zhao S, Tang M, Rhee EP, Allegretti AS, Nigwekar S, Karumanchi SA, Lash JP, Berg AH. Protein Carbamylation and the Risk of ESKD in Patients with CKD. J Am Soc Nephrol 2023; 34:876-885. [PMID: 36757153 PMCID: PMC10125635 DOI: 10.1681/asn.0000000000000078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/18/2022] [Indexed: 02/05/2023] Open
Abstract
SIGNIFICANCE STATEMENT Protein carbamylation, a nonenzymatic post-translational protein modification partially driven by elevated blood urea levels, associates with mortality and adverse outcomes in patients with ESKD on dialysis. However, little is known about carbamylation's relationship to clinical outcomes in the much larger population of patients with earlier stages of CKD. In this prospective observational cohort study of 3111 individuals with CKD stages 2-4, higher levels of carbamylated albumin (a marker of protein carbamylation burden) were associated with a greater risk of developing ESKD and other significant adverse clinical outcomes. These findings indicate that protein carbamylation is an independent risk factor for CKD progression. They suggest that further study of therapeutic interventions to prevent or reduce carbamylation is warranted. BACKGROUND Protein carbamylation, a post-translational protein modification partially driven by elevated blood urea levels, associates with adverse outcomes in ESKD. However, little is known about protein carbamylation's relationship to clinical outcomes in the much larger population of patients with earlier stages of CKD. METHODS To test associations between protein carbamylation and the primary outcome of progression to ESKD, we measured baseline serum carbamylated albumin (C-Alb) in 3111 patients with CKD stages 2-4 enrolled in the prospective observational Chronic Renal Insufficiency Cohort study. RESULTS The mean age of study participants was 59 years (SD 10.8); 1358 (43.7%) were female, and 1334 (42.9%) were White. The mean eGFR at the time of C-Alb assessment was 41.8 (16.4) ml/minute per 1.73 m 2 , and the median C-Alb value was 7.8 mmol/mol (interquartile range, 5.8-10.7). During an average of 7.9 (4.1) years of follow-up, 981 (31.5%) individuals developed ESKD. In multivariable adjusted Cox models, higher C-Alb (continuous or quartiles) independently associated with an increased risk of ESKD. For example, compared with quartile 1 (C-Alb ≤5.80 mmol/mol), those in quartile 4 (C-Alb >10.71 mmol/mol) had a greater risk for ESKD (adjusted hazard ratio, 2.29; 95% confidence interval, 1.75 to 2.99), and the ESKD incidence rate per 1000 patient-years increased from 15.7 to 88.5 from quartile 1 to quartile 4. The results remained significant across numerous subgroup analyses, when treating death as a competing event, and using different assessments of eGFR. CONCLUSIONS Having a higher level of protein carbamylation as measured by circulating C-Alb is an independent risk factor for ESKD in individuals with CKD stages 2-4. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2023_04_24_JSN_URE_EP22_042423.mp3.
Collapse
Affiliation(s)
- Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sophia Zhao
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Analytica Now, Brookline, Massachusetts
| | - Mengyao Tang
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eugene P. Rhee
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew S. Allegretti
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sagar Nigwekar
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - James P. Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anders H. Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
7
|
Denimal D. Carbamylated lipoproteins in diabetes. World J Diabetes 2023; 14:159-169. [PMID: 37035232 PMCID: PMC10075031 DOI: 10.4239/wjd.v14.i3.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 03/15/2023] Open
Abstract
Diabetic dyslipidemia is characterized by quantitative and qualitative abnor-malities in lipoproteins. In addition to glycation and oxidation, carbamylation is also a post-translational modification affecting lipoproteins in diabetes. Patients with type 2 diabetes (T2D) exhibit higher levels of carbamylated low-density lipoproteins (cLDL) and high-density lipoproteins (cHDL). Accumulating evidence suggests that cLDL plays a role in atherosclerosis in diabetes. cLDL levels have been shown to predict cardiovascular events and all-cause mortality. cLDL facilitates immune cell recruitment in the vascular wall, promotes accumulation of lipids in macrophages, and contributes to endothelial dysf-unction, endothelial nitric oxide-synthase (eNOS) inactivation and endothelial repair defects. Lastly, cLDL induces thrombus formation and platelet aggregation. On the other hand, recent data have demonstrated that cHDL serum level is independently associated with all-cause and cardiovascular-related mortality in T2D patients. This relationship may be causative since the atheroprotective properties of HDL are altered after carbamylation. Thus, cHDL loses the ability to remove cholesterol from macrophages, to inhibit monocyte adhesion and recruitment, to induce eNOS activation and to inhibit apoptosis. Taken together, it seems very likely that the abnormalities in the biological functions of LDL and HDL after carbamylation contribute to atherosclerosis and to the elevated cardiovascular risk in diabetes.
Collapse
Affiliation(s)
- Damien Denimal
- Department of Biochemistry, University Hospital of Dijon, Dijon 21079, France
- INSERM LNC UMR1231, University of Burgundy, Dijon 21078, France
| |
Collapse
|
8
|
Denimal D, Monier S, Bouillet B, Vergès B, Duvillard L. High-Density Lipoprotein Alterations in Type 2 Diabetes and Obesity. Metabolites 2023; 13:metabo13020253. [PMID: 36837872 PMCID: PMC9967905 DOI: 10.3390/metabo13020253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Alterations affecting high-density lipoproteins (HDLs) are one of the various abnormalities observed in dyslipidemia in type 2 diabetes mellitus (T2DM) and obesity. Kinetic studies have demonstrated that the catabolism of HDL particles is accelerated. Both the size and the lipidome and proteome of HDL particles are significantly modified, which likely contributes to some of the functional defects of HDLs. Studies on cholesterol efflux capacity have yielded heterogeneous results, ranging from a defect to an improvement. Several studies indicate that HDLs are less able to inhibit the nuclear factor kappa-B (NF-κB) proinflammatory pathway, and subsequently, the adhesion of monocytes on endothelium and their recruitment into the subendothelial space. In addition, the antioxidative function of HDL particles is diminished, thus facilitating the deleterious effects of oxidized low-density lipoproteins on vasculature. Lastly, the HDL-induced activation of endothelial nitric oxide synthase is less effective in T2DM and metabolic syndrome, contributing to several HDL functional defects, such as an impaired capacity to promote vasodilatation and endothelium repair, and difficulty counteracting the production of reactive oxygen species and inflammation.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
- Correspondence:
| | - Serge Monier
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
| | - Benjamin Bouillet
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Bruno Vergès
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Laurence Duvillard
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
| |
Collapse
|
9
|
|
10
|
Gorisse L, Jaisson S, Piétrement C, Gillery P. Carbamylated Proteins in Renal Disease: Aggravating Factors or Just Biomarkers? Int J Mol Sci 2022; 23:574. [PMID: 35008998 PMCID: PMC8745352 DOI: 10.3390/ijms23010574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Carbamylation is a nonenzymatic post-translational modification resulting from the reaction between cyanate, a urea by-product, and proteins. In vivo and in vitro studies have demonstrated that carbamylation modifies protein structures and functions, triggering unfavourable molecular and cellular responses. An enhanced formation of carbamylation-derived products (CDPs) is observed in pathological contexts, especially during chronic kidney disease (CKD), because of increased blood urea. Significantly, studies have reported a positive correlation between serum CDPs and the evolutive state of renal failure. Further, serum concentrations of carbamylated proteins are characterized as strong predictors of mortality in end-stage renal disease patients. Over time, it is likely that these modified compounds become aggravating factors and promote long-term complications, including cardiovascular disorders and inflammation or immune system dysfunctions. These poor clinical outcomes have led researchers to consider strategies to prevent or slow down CDP formation. Even if growing evidence suggests the involvement of carbamylation in the pathophysiology of CKD, the real relevance of carbamylation is still unclear: is it a causal phenomenon, a metabolic consequence or just a biological feature? In this review, we discuss how carbamylation, a consequence of renal function decline, may become a causal phenomenon of kidney disease progression and how CDPs may be used as biomarkers.
Collapse
Affiliation(s)
- Laëtitia Gorisse
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
| | - Stéphane Jaisson
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| | - Christine Piétrement
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Pediatrics Department, University Hospital of Reims, 51092 Reims, France
| | - Philippe Gillery
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| |
Collapse
|
11
|
Kalim S, Berg AH, Karumanchi SA, Thadhani R, Allegretti AS, Nigwekar S, Zhao S, Srivastava A, Raj D, Deo R, Frydrych A, Chen J, Sondheimer J, Shafi T, Weir M, Lash JP. Protein carbamylation and chronic kidney disease progression in the Chronic Renal Insufficiency Cohort Study. Nephrol Dial Transplant 2021; 37:139-147. [PMID: 33661286 PMCID: PMC8719615 DOI: 10.1093/ndt/gfaa347] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Protein carbamylation is a post-translational protein modification caused, in part, by exposure to urea's dissociation product cyanate. Carbamylation is linked to cardiovascular outcomes and mortality in dialysis-dependent end-stage kidney disease (ESKD), but its effects in earlier pre-dialysis stages of chronic kidney disease (CKD) are not established. METHODS We conducted two nested case-control studies within the Chronic Renal Insufficiency Cohort Study. First, we matched 75 cases demonstrating CKD progression [50% estimated glomerular filtration rate (eGFR) reduction or reaching ESKD] to 75 controls (matched on baseline eGFR, 24-h proteinuria, age, sex and race). In the second study, we similarly matched 75 subjects who died during follow-up (cases) to 75 surviving controls. Baseline carbamylated albumin levels (C-Alb, a validated carbamylation assay) were compared between cases and controls in each study. RESULTS At baseline, in the CKD progression study, other than blood urea nitrogen (BUN) and smoking status, there were no significant differences in any matched or other parameter. In the mortality group, the only baseline difference was smoking status. Adjusting for baseline differences, the top tertile of C-Alb was associated with an increased risk of CKD progression [odds ratio (OR) = 7.9; 95% confidence interval (CI) 1.9-32.8; P = 0.004] and mortality (OR = 3.4; 95% CI 1.0-11.4; P = 0.05) when compared with the bottom tertile. C-Alb correlated with eGFR but was more strongly correlated with BUN. CONCLUSIONS Our data suggest that protein carbamylation is a predictor of CKD progression, beyond traditional risks including eGFR and proteinuria. Carbamylation's association with mortality was smaller in this limited sample size.
Collapse
Affiliation(s)
- Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anders H Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Ravi Thadhani
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew S Allegretti
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sagar Nigwekar
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophia Zhao
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dominic Raj
- Department of Medicine, Division of Renal Diseases and Hypertension, George Washington University School of Medicine, Washington, DC, USA
| | - Rajat Deo
- Departments of Medicine and Epidemiology and Biostatistics, University of Pennsylvania Philadelphia, PA, USA
| | - Anne Frydrych
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jing Chen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - James Sondheimer
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Tariq Shafi
- Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Matthew Weir
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James P Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
de Araújo Lira AL, de Fátima Mello Santana M, de Souza Pinto R, Minanni CA, Iborra RT, de Lima AMS, Correa-Giannella ML, Passarelli M, Queiroz MS. Serum albumin modified by carbamoylation impairs macrophage cholesterol efflux in diabetic kidney disease. J Diabetes Complications 2021; 35:107969. [PMID: 34183248 DOI: 10.1016/j.jdiacomp.2021.107969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Abnormalities in lipid metabolism, accumulation of uremic toxins and advanced glycation end products may contribute to worsening atherosclerosis. This study characterized the glycation and carbamoylation profile of serum albumin isolated from individuals with diabetic kidney disease and its influence on cholesterol efflux. MATERIAL AND METHODS 49 patients with type 2 diabetes (T2DM) and different eGFR evaluated glycation and carbamoylation profile by measurement of carboxymethyl lysine (CML) and carbamoylated proteins (CBL) in plasma by ELISA, homocitrulline (HCit) in plasma by colorimetry. In the isolated albumins, we quantified CBL (ELISA) and total AGE and pentosidine by fluorescence. Macrophages were treated with albumin isolated, and 14C-Cholesterol efflux mediated by HDL2 or HDL3 was measured. Kruskal-Wallis test, Jonckheere-Terpstra test and Brunner's posttest were used for comparisons among groups. RESULTS Determination of CML, HCit, CBL in plasma, as total AGE and pentosidine in albumins, did not differ between groups; however, CBL in the isolated albumins was higher in the more advanced stages of CKD (p=0.0414). There was reduction in the 14C-cholesterol efflux after treatment for 18h with albumin isolated from patients with eGFR<60mL/min/1.73m2 compared with control group mediated by HDL2 (p=0.0288) and HDL3 (p<0.0001), as well as when compared with eGFR ≥60mL/min/1.73m2 per HDL2 (p=0.0001) and HDL3 (p<0.0001). Treatment for 48h showed that eGFR<15mL/min/1.73m2 had a lower percentage of 14C-cholesterol efflux mediated by HDL2 compared to control and other CKD groups (p=0.0274). CONCLUSIONS Albumins isolated from individuals with T2DM and eGFR<60mL/min/1.73m2 suffer greater carbamoylation, and they impair the cholesterol efflux mediated by HDL2 and HDL3. In turn, this could promote lipids accumulation in macrophages and disorders in reverse cholesterol transport.
Collapse
Affiliation(s)
| | | | - Raphael de Souza Pinto
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil
| | - Carlos André Minanni
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil
| | - Rodrigo Tallada Iborra
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil; Sao Judas Tadeu University, Sao Paulo, Brazil
| | - Adriana Machado Saldiba de Lima
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil; Sao Judas Tadeu University, Sao Paulo, Brazil
| | - Maria Lúcia Correa-Giannella
- Laboratory of Carbohydrates and Radioimuneassays (LIM 18), Clinical Hospital, Medical School, University of Sao Paulo, Sao Paulo, Brazil; Department of Graduation in Medicine, Nove de Julho University (Uninove), Sao Paulo, Brazil
| | - Marisa Passarelli
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Brazil; Department of Graduation in Medicine, Nove de Julho University (Uninove), Sao Paulo, Brazil
| | - Márcia Silva Queiroz
- Endocrinology Division, Internal Medicine Department, University of Sao Paulo Medical School, Sao Paulo, Brazil; Department of Graduation in Medicine, Nove de Julho University (Uninove), Sao Paulo, Brazil.
| |
Collapse
|
13
|
Noels H, Lehrke M, Vanholder R, Jankowski J. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. Nat Rev Nephrol 2021; 17:528-542. [PMID: 33972752 DOI: 10.1038/s41581-021-00423-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) induces modifications in lipid and lipoprotein metabolism and homeostasis. These modifications can promote, modulate and/or accelerate CKD and secondary cardiovascular disease (CVD). Lipid and lipoprotein abnormalities - involving triglyceride-rich lipoproteins, LDL and/or HDL - not only involve changes in concentration but also changes in molecular structure, including protein composition, incorporation of small molecules and post-translational modifications. These alterations modify the function of lipoproteins and can trigger pro-inflammatory and pro-atherogenic processes, as well as oxidative stress. Serum fatty acid levels are also often altered in patients with CKD and lead to changes in fatty acid metabolism - a key process in intracellular energy production - that induce mitochondrial dysfunction and cellular damage. These fatty acid changes might not only have a negative impact on the heart, but also contribute to the progression of kidney damage. The presence of these lipoprotein alterations within a biological environment characterized by increased inflammation and oxidative stress, as well as the competing risk of non-atherosclerotic cardiovascular death as kidney function declines, has important therapeutic implications. Additional research is needed to clarify the pathophysiological link between lipid and lipoprotein modifications, and kidney dysfunction, as well as the genesis and/or progression of CVD in patients with kidney disease.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Michael Lehrke
- Department of Internal Medicine I, RWTH Aachen University, University Hospital, Aachen, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, University Hospital, Ghent, Belgium
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, University Hospital, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
14
|
Lui DTW, Cheung CL, Lee ACH, Wong Y, Shiu SWM, Tan KCB. Carbamylated HDL and Mortality Outcomes in Type 2 Diabetes. Diabetes Care 2021; 44:804-809. [PMID: 33402368 DOI: 10.2337/dc20-2186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Carbamylation is part of the aging process and causes adverse changes in the structure and function of proteins. Lipoproteins are subjected to carbamylation. We investigated the usefulness of carbamylated HDL as a prognostic indicator of survival in patients with type 2 diabetes and the association with mortality outcomes. RESEARCH DESIGN AND METHODS Baseline plasma carbamylated HDL was measured by ELISA in a cohort of 1,517 patients with type 2 diabetes. The primary outcome was all-cause mortality, and the secondary outcomes were cause-specific deaths, including cardiovascular, renal, infection, and cancer related. RESULTS Over a median follow-up of 14 years, 292 patients died, and the mortality rate was 14.5 per 1,000 person-years. Plasma carbamylated HDL level was higher in those with a fatal outcome (46.1 ± 17.8 µg/mL vs. 32.9 ± 10.7; P < 0.01). Patients in the third (hazard ratio [HR] 2.11; 95% CI 1.40-3.17; P < 0.001) and fourth quartiles (HR 6.55; 95% CI 4.67-9.77; P < 0.001) of carbamylated HDL had increased mortality risk. After adjustment for conventional risk factors, elevated carbamylated HDL was independently associated with all-cause mortality (HR 1.39; 95% CI 1.28-1.52; P < 0.001) as well as with all the cause-specific mortalities. Adding plasma carbamylated HDL level improved the power of the multivariable models for predicting all-cause mortality, with significant increments in C index (from 0.78 to 0.80; P < 0.001), net reclassification index, and integrated discrimination improvement. CONCLUSIONS Carbamylation of HDL renders HDL dysfunctional, and carbamylated HDL is independently associated with mortality outcomes in patients with type 2 diabetes.
Collapse
Affiliation(s)
- David T W Lui
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| | - Alan C H Lee
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Ying Wong
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Sammy W M Shiu
- Department of Medicine, University of Hong Kong, Hong Kong
| | | |
Collapse
|
15
|
Chen Z, Ding S, Wang YP, Chen L, Mao JY, Yang Y, Sun JT, Yang K. Association of carbamylated high-density lipoprotein with coronary artery disease in type 2 diabetes mellitus: carbamylated high-density lipoprotein of patients promotes monocyte adhesion. J Transl Med 2020; 18:460. [PMID: 33272295 PMCID: PMC7713164 DOI: 10.1186/s12967-020-02623-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Increasing evidence showed that carbamylated lipoprotein accelerated atherosclerosis. However, whether such modification of high-density lipoprotein (HDL) particles alters in type 2 diabetes mellitus (T2DM) patients and facilitates vascular complications remains unclear. We aimed to investigate the alteration of the carbamylation in HDL among T2DM patients and clarify its potential role in atherogenesis. METHODS A total of 148 consecutive T2DM patients undergoning angiography and 40 age- and gender-matched control subjects were included. HDL was isolated from plasma samples, and the concentration of HDL carbamyl-lysine (HDL-CBL) was measured. Furthermore, the HDL from subjects and in-vitro carbamylated HDL (C-HDL) was incubated with endothelial cells and monocyte to endothelial cell adhesion. Adhesion molecule expression and signaling pathway were detected. RESULTS Compared with the control group, the HDL-CBL level was remarkably increased in T2DM patients (6.13 ± 1.94 vs 12.00 ± 4.06 (ng/mg), P < 0.001). Of note, HDL-CBL demonstrated a more significant increase in T2DM patients with coronary artery disease (CAD) (n = 102) than those without CAD (n = 46) (12.75 ± 3.82 vs. 10.35 ± 4.11(ng/mg), P = 0.001). Multivariate logistic regression analysis demonstrated that higher HDL-CBL level was independently associated with a higher prevalence of CAD in diabetic patients after adjusting for established cofounders (adjusted odds ratio 1.174, 95% confidence Interval 1.045-1.319, p = 0.017). HDL from diabetic patients with CAD enhanced greater monocyte adhesion than that from the non-CAD or the control group (P < 0.001). Such pro-atherogenic capacity of diabetic HDL positively correlated with HDL-CBL level. Furthermore, in-vitro incubation of carbamylated HDL (C-HDL) with endothelial promoted monocyte to endothelial cell adhesion, induced upregulation of cell adhesion molecules expression, and activated NF-κB/p65 signaling in endothelial cells. Inhibiting carbamylation of HDL or NF-κB activation attenuated the monocyte to endothelial cell adhesion and cell surface adhesion molecules expression. CONCLUSIONS Our study identified elevated carbamylation modification of HDL from T2DM patients, especially in those with concomitant CAD. We also evidenced that C-HDL enhanced monocyte to endothelial cell adhesion, indicating a potential pro-atherogenic role of C-HDL in atherosclerosis among T2DM patients. Trial registration https://register.clinicaltrials.gov , NCT04390711 Registered on 14 May 2020; Retrospectively registered.
Collapse
Affiliation(s)
- Zhongli Chen
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200027, People's Republic of China
| | - Yan Ping Wang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China
| | - Liang Chen
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Yan Mao
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200027, People's Republic of China
| | - Ying Yang
- Department of Endocrinology, The Second People's Hospital of Yunnan Province, Kunming, 650021, Yunnan, China
| | - Jia Teng Sun
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200027, People's Republic of China.
| | - Ke Yang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
16
|
Diaz-Ricart M, Torramade-Moix S, Pascual G, Palomo M, Moreno-Castaño AB, Martinez-Sanchez J, Vera M, Cases A, Escolar G. Endothelial Damage, Inflammation and Immunity in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12060361. [PMID: 32492843 PMCID: PMC7354562 DOI: 10.3390/toxins12060361] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) patients have an accelerated atherosclerosis, increased risk of thrombotic-ischemic complications, and excessive mortality rates when compared with the general population. There is also evidence of an endothelial damage in which the proinflammatory state, the enhanced oxidative stress, or the accumulation of toxins due to their reduced renal clearance in uremia play a role. Further, there is evidence that uremic endothelial cells are both involved in and victims of the activation of the innate immunity. Uremic endothelial cells produce danger associated molecular patterns (DAMPS), which by binding to specific pattern recognition receptors expressed in multiple cells, including endothelial cells, induce the expression of adhesion molecules, the production of proinflammatory cytokines and an enhanced production of reactive oxygen species in endothelial cells, which constitute a link between immunity and inflammation. The connection between endothelial damage, inflammation and defective immunity in uremia will be reviewed here.
Collapse
Affiliation(s)
- Maribel Diaz-Ricart
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
- Barcelona Endothelium Team, 08036 Barcelona, Spain
- Correspondence:
| | - Sergi Torramade-Moix
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
| | | | - Marta Palomo
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Barcelona Endothelium Team, 08036 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, 08036 Barcelona, Spain
| | - Ana Belen Moreno-Castaño
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
- Barcelona Endothelium Team, 08036 Barcelona, Spain
| | - Julia Martinez-Sanchez
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Barcelona Endothelium Team, 08036 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, 08036 Barcelona, Spain
| | - Manel Vera
- Nephrology Department. Hospital Clinic, 08036 Barcelona, Spain; (M.V.); (A.C.)
| | - Aleix Cases
- Nephrology Department. Hospital Clinic, 08036 Barcelona, Spain; (M.V.); (A.C.)
| | - Gines Escolar
- Hematopathology, Pathology Department, Center for Biomedical Diagnosis (CDB), Hospital Clinic, 08036 Barcelona, Spain; (S.T.-M.); (M.P.); (A.B.M.-C.); (J.M.-S.); (G.E.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
- Barcelona Endothelium Team, 08036 Barcelona, Spain
| |
Collapse
|