1
|
Cheva A, Chorti A, Boulogeorgou K, Chatzikyriakidou A, Achilla C, Bontinis V, Bontinis A, Milias S, Zarampoukas T, Bakkar SY, Papavramidis T. Sporadic Parathyroid Adenoma: A Pilot Study of Novel Biomarkers in Females. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1100. [PMID: 39064529 PMCID: PMC11279064 DOI: 10.3390/medicina60071100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Parathyroid adenoma is a distinct cause of primary hyperparathyroidism, with the vast majority being sporadic ones. Proteomic analysis of parathyroid adenomas has proposed a large number of related proteins. The aim of this study is to evaluate the immunohistochemical staining of ANXA2, MED12, MAPK1 and VDR in parathyroid adenoma tissue. Materials and Methods: Fifty-one parathyroid adenomas were analyzed for ANXA2, MED12, MAPK1 and VDR expressions. Tissue was extracted from formalin-fixed paraffin-embedded parathyroid adenoma specimens; an immunohistochemical study was applied, and the percentage of allocation and intensity were evaluated. Results: ANXA2 stained positively in 60.8% of all cell types, while MED12 had positive staining in 66%. MAPK1 expression was found to be negative in total, although a specific pattern for oxyphil cells was observed, as they stained positive in 17.7%. Finally, VDR staining was positive at 22.8%, based on nuclear staining. Conclusions: These immunohistochemical results could be utilized as biomarkers for the diagnosis of sporadic parathyroid adenoma. It is of great importance that a distinct immunophenotype of nodule-forming cells in a positive adenoma could suggest a specific pattern of adenoma development, as in hereditary patterns.
Collapse
Affiliation(s)
- Angeliki Cheva
- Laboratory of Pathology, Faculty of Health Science, Medical School, Aristotle University, 541 24 Thessaloniki, Greece
| | - Angeliki Chorti
- 1st Propaedeutic Department of Surgery, Faculty of Health Science, Medical School, AHEPA University Hospital, Aristotle University, 546 36 Thessaloniki, Greece
| | - Kassiani Boulogeorgou
- Laboratory of Pathology, Faculty of Health Science, Medical School, Aristotle University, 541 24 Thessaloniki, Greece
| | - Anthoula Chatzikyriakidou
- Laboratory of Medical Biology—Genetics, Faculty of Health Science, Medical School, Aristotle University, 546 36 Thessaloniki, Greece
| | - Charoula Achilla
- Laboratory of Medical Biology—Genetics, Faculty of Health Science, Medical School, Aristotle University, 546 36 Thessaloniki, Greece
| | - Vangelis Bontinis
- Department of Vascular Surgery, Faculty of Health Science, Medical School, AHEPA University Hospital, Aristotle University, 546 36 Thessaloniki, Greece
| | - Alkis Bontinis
- Department of Vascular Surgery, Faculty of Health Science, Medical School, AHEPA University Hospital, Aristotle University, 546 36 Thessaloniki, Greece
| | - Stefanos Milias
- Minimal Invasive Endocrine Surgery Department, Kyanos Stavros, Euromedica, 546 36 Thessaloniki, Greece
| | - Thomas Zarampoukas
- Laboratory of Pathology, Interbalkan Medical Center, 546 26 Thessaloniki, Greece
| | - Sohail Y. Bakkar
- Endocrine & General Surgery, The Hashemite University, Amman 13133, Jordan
| | - Theodosios Papavramidis
- 1st Propaedeutic Department of Surgery, Faculty of Health Science, Medical School, AHEPA University Hospital, Aristotle University, 546 36 Thessaloniki, Greece
- Minimal Invasive Endocrine Surgery Department, Kyanos Stavros, Euromedica, 546 36 Thessaloniki, Greece
| |
Collapse
|
2
|
Role of the Mediator Complex and MicroRNAs in Breast Cancer Etiology. Genes (Basel) 2022; 13:genes13020234. [PMID: 35205279 PMCID: PMC8871970 DOI: 10.3390/genes13020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
Abstract
Transcriptional coactivators play a key role in RNA polymerase II transcription and gene regulation. One of the most important transcriptional coactivators is the Mediator (MED) complex, which is an evolutionary conserved large multiprotein complex. MED transduces the signal between DNA-bound transcriptional activators (gene-specific transcription factors) to the RNA polymerase II transcription machinery to activate transcription. It is known that MED plays an essential role in ER-mediated gene expression mainly through the MED1 subunit, since estrogen receptor (ER) can interact with MED1 by specific protein–protein interactions; therefore, MED1 plays a fundamental role in ER-positive breast cancer (BC) etiology. Additionally, other MED subunits also play a role in BC etiology. On the other hand, microRNAs (miRNAs) are a family of small non-coding RNAs, which can regulate gene expression at the post-transcriptional level by binding in a sequence-specific fashion at the 3′ UTR of the messenger RNA. The miRNAs are also important factors that influence oncogenic signaling in BC by acting as both tumor suppressors and oncogenes. Moreover, miRNAs are involved in endocrine therapy resistance of BC, specifically to tamoxifen, a drug that is used to target ER signaling. In metazoans, very little is known about the transcriptional regulation of miRNA by the MED complex and less about the transcriptional regulation of miRNAs involved in BC initiation and progression. Recently, it has been shown that MED1 is able to regulate the transcription of the ER-dependent miR-191/425 cluster promoting BC cell proliferation and migration. In this review, we will discuss the role of MED1 transcriptional coactivator in the etiology of BC and in endocrine therapy-resistance of BC and also the contribution of other MED subunits to BC development, progression and metastasis. Lastly, we identified miRNAs that potentially can regulate the expression of MED subunits.
Collapse
|
3
|
Shah A, Bapna M, Al-Saif H, Li R, Couser NL. Eye and ocular adnexa manifestations of MED12-related disorders. Ophthalmic Genet 2021; 43:126-129. [PMID: 34670449 DOI: 10.1080/13816810.2021.1989601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND MED12-related disorders are a rare group of intellectual disability syndromes with a broad range of phenotypic characteristics. The phenotypic spectrum of MED12-related disorders currently includes X-Linked Ohdo Syndrome, Lujan-Fryns Syndrome (LS), and FG syndrome type 1 (FG), also known as Opitz-Kaveggia Syndrome. The MED12 gene encodes the largest component of the mediator complex of RNA polymerase II, which is critical for recruiting activators and repressors to regulate the transcription of genes critical to growth, development, and differentiation. METHODS We performed a systematic literature review of previously published cases to highlight the key ocular features in individuals with MED12-related disorders. In addition, we present a new case of a female patient with a de novo pathogenic c. 3866A>G, p.Q1289R variant. Ocular manifestations are not uncommon in MED12-related disorders, but have not been characterized in literature reports. Commonly reoccurring reported eye and ocular adnexa features within the spectrum include ptosis, downslanting palpebral fissures, and hypertelorism. Other less common findings include strabismus, astigmatism, and optic nerve hypoplasia. RESULTS Our patient presented with developmental delay, mild hypotonia and dysmorphic features including frontal bossing, high arched palate, and syndactyly of the 2nd and 3rd toes bilaterally. DISCUSSION Ocular manifestations identified in this patient included intermittent esotropia, hyperopic astigmatism, epicanthal folds and ptosis bilaterally.
Collapse
Affiliation(s)
- Arth Shah
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Monika Bapna
- Georgetown University School of Medicine, Washington, DC, USA
| | - Hind Al-Saif
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rachel Li
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Natario L Couser
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Ophthalmology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Pediatrics, Virginia Commonwealth University School of Medicine, Children's Hospital of Richmond at VCU, Richmond, Virginia, USA
| |
Collapse
|
4
|
Srivastava S, Kulshreshtha R. Insights into the regulatory role and clinical relevance of mediator subunit, MED12, in human diseases. J Cell Physiol 2020; 236:3163-3177. [PMID: 33174211 DOI: 10.1002/jcp.30099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Transcriptional dysregulation is central to many diseases including cancer. Mutation or deregulated expression of proteins involved in transcriptional machinery leads to aberrant gene expression that disturbs intricate cellular processes of division and differentiation. The subunits of the mediator complex are master regulators of stimuli-derived transcription and are essential for transcription by RNA polymerase II. MED12 is a part of the CDK8 kinase module of the mediator complex and is essential for kinase assembly and function. Other than its function in activation of the kinase activity of CDK8 mediator, it also brings about transcription repression or activation, in response to several signalling pathways, a function that is independent of its role as a part of kinase assembly. Accumulating evidence suggests that MED12 controls complex transcription programs that are defining in cell fate determination, differentiation, and carcinogenesis. Mutations or differential expression of MED12 manifest in several human disorders and diseases. For instance, MED12 mutations are the gold standard for the diagnosis of several X-linked intellectual disability syndromes. Further, certain MED12 mutations are categorised as driver mutations in carcinogenesis as well. This is a timely review that provides for the first time a wholesome view on the critical roles and pathways regulated by MED12, its interactions along with the implications of MED12 alterations/mutations in various cancers and nonneoplastic disorders. Based on the preclinical studies, MED12 indeed emerges as an attractive novel therapeutic target for various diseases and intellectual disorders.
Collapse
Affiliation(s)
- Srishti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
5
|
Yang J, Chen S, Yang Y, Ma X, Shao B, Yang S, Wei Y, Wei X. Jumonji domain-containing protein 6 protein and its role in cancer. Cell Prolif 2020; 53:e12747. [PMID: 31961032 PMCID: PMC7046477 DOI: 10.1111/cpr.12747] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023] Open
Abstract
The jumonji domain‐containing protein 6 (JMJD6) is a Fe(II)‐ and 2‐oxoglutarate (2OG)‐dependent oxygenase that catalyses lysine hydroxylation and arginine demethylation of histone and non‐histone peptides. Recently, the intrinsic tyrosine kinase activity of JMJD6 has also been reported. The JMJD6 has been implicated in embryonic development, cellular proliferation and migration, self‐tolerance induction in the thymus, and adipocyte differentiation. Not surprisingly, abnormal expression of JMJD6 may contribute to the development of many diseases, such as neuropathic pain, foot‐and‐mouth disease, gestational diabetes mellitus, hepatitis C and various types of cancer. In the present review, we summarized the structure and functions of JMJD6, with particular emphasis on the role of JMJD6 in cancer progression.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanfei Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Shao
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shengyong Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
St. John ME, McGirr JA, Martin CH. The behavioral origins of novelty: did increased aggression lead to scale-eating in pupfishes? Behav Ecol 2019; 30:557-569. [PMID: 30971862 PMCID: PMC6450202 DOI: 10.1093/beheco/ary196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/08/2018] [Accepted: 12/14/2018] [Indexed: 11/13/2022] Open
Abstract
Behavioral changes in a new environment are often assumed to precede the origins of evolutionary novelties. Here, we examined whether an increase in aggression is associated with a novel scale-eating trophic niche within a recent radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. We measured aggression using multiple behavioral assays and used transcriptomic analyses to identify differentially expressed genes in aggression and other behavioral pathways across 3 sympatric species in the San Salvador radiation (generalist, snail-eating specialist, and scale-eating specialist) and 2 generalist outgroups. Surprisingly, we found increased behavioral aggression and differential expression of aggression-related pathways in both the scale-eating and snail-eating specialists, despite their independent evolutionary origins. Increased behavioral aggression varied across both sex and stimulus context in both species. Our results indicate that aggression is not unique to scale-eating specialists. Instead, selection may increase aggression in other contexts such as niche specialization in general or mate competition. Alternatively, increased aggression may result from indirect selection on craniofacial traits, pigmentation, or metabolism-all traits which are highly divergent, exhibit signs of selective sweeps, and are affected by aggression-related genetic pathways which are differentially expressed in this system. In conclusion, the evolution of a novel predatory trophic niche within a recent adaptive radiation does not have clear-cut behavioral origins as previously assumed, highlighting the multivariate nature of adaptation and the complex integration of behavior with other phenotypic traits.
Collapse
Affiliation(s)
| | - Joseph A McGirr
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
| | - Christopher H Martin
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Jamaluddin MFB, Nahar P, Tanwar PS. Proteomic Characterization of the Extracellular Matrix of Human Uterine Fibroids. Endocrinology 2018; 159:2656-2669. [PMID: 29788081 DOI: 10.1210/en.2018-00151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/08/2018] [Indexed: 01/04/2023]
Abstract
Uterine leiomyomas (fibroids) are the most common benign tumors that are associated with increased production of extracellular matrix (ECM). Excessive ECM deposition plays a major role in the enlargement and stiffness of these tumors and contributes to clinical symptoms, such as abnormal bleeding and abdominal pain. However, no study so far has explored the global composition of the ECM of fibroids and normal myometrium. In this study, we performed a systematic ECM enrichment procedure and comparative proteomic analyses to profile the ECM composition of genetically annotated different-sized fibroids (small, medium, and large) and adjacent normal myometrium (ANM). Our matrisome analysis identified a combined total of 108, 126, 126, and 130 unique ECM and ECM-associated proteins with a confidence corresponding to a false discovery rate <1% in ANM and in small, medium, and large fibroids, respectively. The majority of fibroid ECM proteins belong to the core matrisome that includes glycoproteins, collagens, and proteoglycans. Considering that the small-sized fibroids represent the initial stages of leiomyogenesis, we highlighted some of the most abundant and important upregulated ECM proteins in small fibroids (i.e., POSTN, TNC, COL3A1, COL24A1, and ASPN). Furthermore, we revealed 30 unique ECM proteins that exist only in fibroids but that are not present in ANM regardless of MED12 mutation. We propose that some of the proteins identified represent potential novel ECM drug targets that may change the paradigm of fibroid treatment.
Collapse
Affiliation(s)
- M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Pravin Nahar
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Maternity and Gynecology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
8
|
Functional pharmacogenomics and toxicity of PolyPurine Reverse Hoogsteen hairpins directed against survivin in human cells. Biochem Pharmacol 2018; 155:8-20. [PMID: 29940174 DOI: 10.1016/j.bcp.2018.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/14/2018] [Indexed: 01/27/2023]
Abstract
PolyPurine Reverse Hoogsteen (PPRH) hairpins constitute a relatively new pharmacological agent for gene silencing that has been applied for a growing number of gene targets. Previously we reported that specific PPRHs against the antiapoptotic gene survivin were able to decrease viability of PC3 prostate cancer cells by increasing apoptosis, while not acting on HUVEC non-tumoral cells. These PPRHs were efficient both in vitro and in vivo. In the present work, we performed a functional pharmacogenomics study on the effects of specific and unspecific hairpins against survivin. Incubation of PC3 cells with the specific HpsPr-C-WT led to 244 differentially expressed genes when applying the p < 0.05, FC > 2, Benjamini-Hochberg filtering. Importantly, the unspecific or control Hp-WC did not originate differentially expressed genes using the same settings. Gene Set Enrichment Analysis (GSEA) revealed that the differentially expressed genes clustered very significantly within the gene sets of Regulation of cell proliferation, Cellular response to stress, Apoptosis and Prostate cancer. Network analyses using STRING identified important interacting gene-nodes within the response of PC3 cells to treatment with the PPRH against survivin, mainly POLR2G, PAK1IP1, SMC3, SF3A1, PPARGC1A, NCOA6, UGT2B7, ALG5, VAMP7 and HIST1H2BE, the former six present in the Gene Sets detected in the GSEA. Additionally, HepG2 and 786-O cell lines were used to carry out in vitro experiments of hepatotoxicity and nephrotoxicity, respectively. The unspecific hairpin did not cause toxicity in cell survival assays (MTT) and produced minor changes in gene expression for selected genes in RT-qPCR arrays specifically developed for hepatic and renal toxicity screening.
Collapse
|
9
|
Gao WW, Xiao RQ, Zhang WJ, Hu YR, Peng BL, Li WJ, He YH, Shen HF, Ding JC, Huang QX, Ye TY, Li Y, Liu ZY, Ding R, Rosenfeld MG, Liu W. JMJD6 Licenses ERα-Dependent Enhancer and Coding Gene Activation by Modulating the Recruitment of the CARM1/MED12 Co-activator Complex. Mol Cell 2018; 70:340-357.e8. [PMID: 29628309 PMCID: PMC6258263 DOI: 10.1016/j.molcel.2018.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/12/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
Whereas the actions of enhancers in gene transcriptional regulation are well established, roles of JmjC-domain-containing proteins in mediating enhancer activation remain poorly understood. Here, we report that recruitment of the JmjC-domain-containing protein 6 (JMJD6) to estrogen receptor alpha (ERα)-bound active enhancers is required for RNA polymerase II recruitment and enhancer RNA production on enhancers, resulting in transcriptional pause release of cognate estrogen target genes. JMJD6 is found to interact with MED12 in the mediator complex to regulate its recruitment. Unexpectedly, JMJD6 is necessary for MED12 to interact with CARM1, which methylates MED12 at multiple arginine sites and regulates its chromatin binding. Consistent with its role in transcriptional activation, JMJD6 is required for estrogen/ERα-induced breast cancer cell growth and tumorigenesis. Our data have uncovered a critical regulator of estrogen/ERα-induced enhancer coding gene activation and breast cancer cell potency, providing a potential therapeutic target of ER-positive breast cancers.
Collapse
Affiliation(s)
- Wei-Wei Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rong-Quan Xiao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wen-Juan Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-Ren Hu
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Bing-Ling Peng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wen-Juan Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yao-Hui He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hai-Feng Shen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jian-Cheng Ding
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Qi-Xuan Huang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Tian-Yi Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ying Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Zhi-Ying Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rong Ding
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wen Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.
| |
Collapse
|
10
|
Medrano-Fernández A, Barco A. Nuclear organization and 3D chromatin architecture in cognition and neuropsychiatric disorders. Mol Brain 2016; 9:83. [PMID: 27595843 PMCID: PMC5011999 DOI: 10.1186/s13041-016-0263-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/06/2016] [Indexed: 01/08/2023] Open
Abstract
The current view of neuroplasticity depicts the changes in the strength and number of synaptic connections as the main physical substrate for behavioral adaptation to new experiences in a changing environment. Although transcriptional regulation is known to play a role in these synaptic changes, the specific contribution of activity-induced changes to both the structure of the nucleus and the organization of the genome remains insufficiently characterized. Increasing evidence indicates that plasticity-related genes may work in coordination and share architectural and transcriptional machinery within discrete genomic foci. Here we review the molecular and cellular mechanisms through which neuronal nuclei structurally adapt to stimuli and discuss how the perturbation of these mechanisms can trigger behavioral malfunction.
Collapse
Affiliation(s)
- Alejandro Medrano-Fernández
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
11
|
Wang H, Ye J, Qian H, Zhou R, Jiang J, Ye L. High-resolution melting analysis of MED12 mutations in uterine leiomyomas in Chinese patients. Genet Test Mol Biomarkers 2015; 19:162-6. [PMID: 25615570 PMCID: PMC4361005 DOI: 10.1089/gtmb.2014.0273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Somatic mutations in mediator complex subunit 12 (MED12) have emerged as a critical genetic change in the development of uterine leiomyomas. Studies, however, have focused largely on cohorts consisting of Caucasian patients. In this study, uterine leiomyomas from Chinese patients were examined for MED12 mutations. In addition, polymerase chain reaction (PCR)-based high-resolution melting analysis (HRMA) was compared with direct sequencing as a potentially more sensitive method for the detection of MED12 mutations. METHODS Tissue samples with the pathologies of uterine leiomyoma (n=181) and other endometrial diseases (n=157) were collected from Chinese patients at the Taizhou People's Hospital and Taizhou Polytechnic College (Taizhou City, China). Genomic DNA was prepared from all samples. Both PCR-based HRMA and PCR-based direct sequencing were used to detect MED12 mutations. RESULTS PCR-based HRMA and direct sequencing revealed MED12 mutations in 95/181 (52.5%) and 93/181 (51.4%) uterine leiomyomas, respectively. Nearly half of these mutations (46/93) were found in a single codon, codon 131. The coincidence rate between the two methods was 98.9% (179/181) so that no statistically significant difference was evident in the application of the methodologies (χ(2)=0.011, p=0.916). In addition, MED12 mutations were identified in 1/157 (4.17%) case of other endometrial pathologies by both methods. CONCLUSIONS MED12 mutations were closely associated with the development of uterine leiomyomas, as opposed to other uterine pathologies in Chinese patients, and PCR-based HRMA was found to be a reliable method for the detection of MED12 mutations.
Collapse
Affiliation(s)
- Hua Wang
- Department of Laboratory Medicine, Taizhou People's Hospital, Taizhou City, China
| | - Jun Ye
- Department of Laboratory Medicine, Taizhou People's Hospital, Taizhou City, China
| | - Hua Qian
- Department of Laboratory Medicine, Taizhou People's Hospital, Taizhou City, China
| | - Ruifang Zhou
- Taizhou Polytechnic College, Taizhou City, China
| | - Jun Jiang
- Taizhou Polytechnic College, Taizhou City, China
| | - Lihua Ye
- Department of Laboratory Medicine, Taizhou People's Hospital, Taizhou City, China
| |
Collapse
|
12
|
Lesca G, Moizard MP, Bussy G, Boggio D, Hu H, Haas SA, Ropers HH, Kalscheuer VM, Des Portes V, Labalme A, Sanlaville D, Edery P, Raynaud M, Lespinasse J. Clinical and neurocognitive characterization of a family with a novel MED12 gene frameshift mutation. Am J Med Genet A 2013; 161A:3063-71. [PMID: 24039113 DOI: 10.1002/ajmg.a.36162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/08/2013] [Indexed: 11/07/2022]
Abstract
FG syndrome, Lujan syndrome, and Ohdo syndrome, the Maat-Kievit-Brunner type, have been described as distinct syndromes with overlapping non-specific features and different missense mutations of the MED12 gene have been reported in all of them. We report a family including 10 males and 1 female affected with profound non-specific intellectual disability (ID) which was linked to a 30-cM region extending from Xp11.21 (ALAS2) to Xq22.3 (COL4A5). Parallel sequencing of all X-chromosome exons identified a frameshift mutation (c.5898dupC) of MED12. Mutated mRNA was not affected by non-sense mediated RNA decay and induced an additional abnormal isoform due to activation of cryptic splice-sites in exon 41. Dysmorphic features common to most affected males were long narrow face, high forehead, flat malar area, high nasal bridge, and short philtrum. Language was absent or very limited. Most patients had a friendly personality. Cognitive impairment, varying from borderline to profound ID was similarly observed in seven heterozygous females. There was no correlation between cognitive function and X-chromosome inactivation profiles in blood cells. The severe degree of ID in male patients, as well as variable cognitive impairment in heterozygous females suggests that the duplication observed in the present family may have a more severe effect on MED12 function than missense mutations. In a cognitively impaired male from this family, who also presented with tall stature and dysmorphism and did not have the MED12 mutation, a 600-kb duplication at 17p13.3 including the YWHAE gene, was found in a mosaic state.
Collapse
Affiliation(s)
- Gaetan Lesca
- Service de Génétique and Centre de Référence des Anomalies du Développement, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France; INSERM U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, TIGER Team, University Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
DeRycke MS, Gunawardena SR, Middha S, Asmann YW, Schaid DJ, McDonnell SK, Riska SM, Eckloff BW, Cunningham JM, Fridley BL, Serie DJ, Bamlet WR, Cicek MS, Jenkins MA, Duggan DJ, Buchanan D, Clendenning M, Haile RW, Woods MO, Gallinger SN, Casey G, Potter JD, Newcomb PA, Le Marchand L, Lindor NM, Thibodeau SN, Goode EL. Identification of novel variants in colorectal cancer families by high-throughput exome sequencing. Cancer Epidemiol Biomarkers Prev 2013; 22:1239-51. [PMID: 23637064 PMCID: PMC3704223 DOI: 10.1158/1055-9965.epi-12-1226] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) in densely affected families without Lynch Syndrome may be due to mutations in undiscovered genetic loci. Familial linkage analyses have yielded disparate results; the use of exome sequencing in coding regions may identify novel segregating variants. METHODS We completed exome sequencing on 40 affected cases from 16 multicase pedigrees to identify novel loci. Variants shared among all sequenced cases within each family were identified and filtered to exclude common variants and single-nucleotide variants (SNV) predicted to be benign. RESULTS We identified 32 nonsense or splice-site SNVs, 375 missense SNVs, 1,394 synonymous or noncoding SNVs, and 50 indels in the 16 families. Of particular interest are two validated and replicated missense variants in CENPE and KIF23, which are both located within previously reported CRC linkage regions, on chromosomes 1 and 15, respectively. CONCLUSIONS Whole-exome sequencing identified DNA variants in multiple genes. Additional sequencing of these genes in additional samples will further elucidate the role of variants in these regions in CRC susceptibility. IMPACT Exome sequencing of familial CRC cases can identify novel rare variants that may influence disease risk.
Collapse
Affiliation(s)
- Melissa S. DeRycke
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shanaka R. Gunawardena
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Sumit Middha
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Yan W Asmann
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Daniel J. Schaid
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shannon K. McDonnell
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shaun M. Riska
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Bruce W Eckloff
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Julie M. Cunningham
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Daniel J. Serie
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - William R. Bamlet
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Mine S. Cicek
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Mark A. Jenkins
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Victoria 3010, Australia
| | - David J. Duggan
- Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Daniel Buchanan
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Queensland, Australia
| | - Mark Clendenning
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Queensland, Australia
| | - Robert W. Haile
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael O. Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. Johns, NL, Canada
| | | | - Graham Casey
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - John D. Potter
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Polly A. Newcomb
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Loic Le Marchand
- Department of Epidemiology, University of Hawaii, Honolulu, HI, USA
| | - Noralane M. Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Stephen N. Thibodeau
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Ellen L. Goode
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
14
|
Coffey CM, Solleveld PA, Fang J, Roberts AK, Hong SK, Dawid IB, Laverriere CE, Glasgow E. Novel oxytocin gene expression in the hindbrain is induced by alcohol exposure: transgenic zebrafish enable visualization of sensitive neurons. PLoS One 2013; 8:e53991. [PMID: 23342055 PMCID: PMC3544674 DOI: 10.1371/journal.pone.0053991] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/07/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Fetal Alcohol Spectrum Disorders (FASD) are a collection of disorders resulting from fetal ethanol exposure, which causes a wide range of physical, neurological and behavioral deficits including heightened susceptibility for alcoholism and addictive disorders. While a number of mechanisms have been proposed for how ethanol exposure disrupts brain development, with selective groups of neurons undergoing reduced proliferation, dysfunction and death, the induction of a new neurotransmitter phenotype by ethanol exposure has not yet been reported. PRINCIPAL FINDINGS The effects of embryonic and larval ethanol exposure on brain development were visually monitored using transgenic zebrafish expressing cell-specific green fluorescent protein (GFP) marker genes. Specific subsets of GFP-expressing neurons were highly sensitive to ethanol exposure, but only during defined developmental windows. In the med12 mutant, which affects the Mediator co-activator complex component Med12, exposure to lower concentrations of ethanol was sufficient to reduce GFP expression in transgenic embryos. In transgenic embryos and larva containing GFP driven by an oxytocin-like (oxtl) promoter, ethanol exposure dramatically up-regulated GFP expression in a small group of hindbrain neurons, while having no effect on expression in the neuroendocrine preoptic area. CONCLUSIONS Alcohol exposure during limited embryonic periods impedes the development of specific, identifiable groups of neurons, and the med12 mutation sensitizes these neurons to the deleterious effects of ethanol. In contrast, ethanol exposure induces oxtl expression in the hindbrain, a finding with profound implications for understanding alcoholism and other addictive disorders.
Collapse
Affiliation(s)
- Caitrín M. Coffey
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Patricia A. Solleveld
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Joyce Fang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Antonia K. Roberts
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Sung-Kook Hong
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Molecular Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Igor B. Dawid
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline E. Laverriere
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Eric Glasgow
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| |
Collapse
|
15
|
Markowski DN, Huhle S, Nimzyk R, Stenman G, Löning T, Bullerdiek J. MED12 mutations occurring in benign and malignant mammalian smooth muscle tumors. Genes Chromosomes Cancer 2012; 52:297-304. [PMID: 23225304 DOI: 10.1002/gcc.22029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/11/2012] [Indexed: 02/01/2023] Open
Abstract
Mutations of the mediator subcomplex 12 gene (MED12) recently have been described in a large group of uterine leiomyomas (UL) but only in a single malignant uterine smooth muscle tumor. To further address the occurrence of fibroid-type MED12 mutations in smooth muscle tumors, we have analyzed samples from 34 leiomyosarcomas (LMS), 21 UL, two extrauterine leiomyomas (EL), and 10 canine genital leiomyomas for the presence of MED12 mutations of the UL-type. Interestingly, besides UL MED12 mutations were found in one uterine LMS, one EL, and two canine vaginal leiomyomas. The results confirm the occurrence of fibroid-type MED12 mutations in malignant uterine smooth muscle tumors thus suggesting a rare but existing leiomyoma-LMS sequence. In addition, for the first time MED12 mutations are reported in smooth muscle tumors in a non-primate mammalian species.
Collapse
|
16
|
Mediator and human disease. Semin Cell Dev Biol 2011; 22:776-87. [PMID: 21840410 DOI: 10.1016/j.semcdb.2011.07.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 01/21/2023]
Abstract
Since the identification of a metazoan counterpart to yeast Mediator nearly 15 years ago, a convergent body of biochemical and molecular genetic studies have confirmed their structural and functional relationship as an integrative hub through which regulatory information conveyed by signal activated transcription factors is transduced to RNA polymerase II. Nonetheless, metazoan Mediator complexes have been shaped during evolution by substantive diversification and expansion in both the number and sequence of their constituent subunits, with important implications for the development of multicellular organisms. The appearance of unique interaction surfaces within metazoan Mediator complexes for transcription factors of diverse species-specific origins extended the role of Mediator to include an essential function in coupling developmentally coded signals with precise gene expression output sufficient to specify cell fate and function. The biological significance of Mediator in human development, suggested by genetic studies in lower metazoans, is emphatically illustrated by an expanding list of human pathologies linked to genetic variation or aberrant expression of its individual subunits. Here, we review our current body of knowledge concerning associations between individual Mediator subunits and specific pathological disorders. When established, molecular etiologies underlying genotype-phenotype correlations are addressed, and we anticipate that future progress in this critical area will help identify therapeutic targets across a range of human pathologies.
Collapse
|
17
|
Young RA. Control of the embryonic stem cell state. Cell 2011; 144:940-54. [PMID: 21414485 DOI: 10.1016/j.cell.2011.01.032] [Citation(s) in RCA: 878] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/23/2010] [Accepted: 01/03/2011] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells and induced pluripotent stem cells hold great promise for regenerative medicine. These cells can be propagated in culture in an undifferentiated state but can be induced to differentiate into specialized cell types. Moreover, these cells provide a powerful model system for studies of cellular identity and early mammalian development. Recent studies have provided insights into the transcriptional control of embryonic stem cell state, including the regulatory circuitry underlying pluripotency. These studies have, as a consequence, uncovered fundamental mechanisms that control mammalian gene expression, connect gene expression to chromosome structure, and contribute to human disease.
Collapse
Affiliation(s)
- Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
The transcriptional mediator component Med12 is required for hindbrain boundary formation. PLoS One 2011; 6:e19076. [PMID: 21533047 PMCID: PMC3080914 DOI: 10.1371/journal.pone.0019076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/23/2011] [Indexed: 11/30/2022] Open
Abstract
Background Rhombomere boundaries form during hindbrain segmentation and are critical for maintaining segmental integrity and regulating migration in the hindbrain. Some genetic models affecting hindbrain boundary formation have been described, but involvement of components of the transcriptional mediator complex in boundary formation has not reported so far. Principal Findings The kto/med12 mutant zebrafish, which affects the Mediator component Med12, causes specific loss of rhombomere boundary cells even though segmentation of the hindbrain takes place at least in part. In kto mutant embryos, cells forming rhombomere boundaries were largely absent as indicated by the use of several marker genes. While no obvious increase in cell death was observed, we found a notable reduction of cell proliferation in the hindbrain of kto mutant zebrafish. Conclusions The kto/med12 mutation results in specific defects of boundary cell formation in the zebrafish hindbrain.
Collapse
|
19
|
Malik S, Roeder RG. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 2010; 11:761-72. [PMID: 20940737 DOI: 10.1038/nrg2901] [Citation(s) in RCA: 535] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.
Collapse
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.
| | | |
Collapse
|
20
|
|
21
|
Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA. Mediator and cohesin connect gene expression and chromatin architecture. Nature 2010; 467:430-5. [PMID: 20720539 PMCID: PMC2953795 DOI: 10.1038/nature09380] [Citation(s) in RCA: 1433] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/30/2010] [Indexed: 02/06/2023]
Abstract
Transcription factors control cell-specific gene expression programs through interactions with diverse coactivators and the transcription apparatus. Gene activation may involve DNA loop formation between enhancer-bound transcription factors and the transcription apparatus at the core promoter, but this process is not well understood. Here we report that mediator and cohesin physically and functionally connect the enhancers and core promoters of active genes in murine embryonic stem cells. Mediator, a transcriptional coactivator, forms a complex with cohesin, which can form rings that connect two DNA segments. The cohesin-loading factor Nipbl is associated with mediator-cohesin complexes, providing a means to load cohesin at promoters. DNA looping is observed between the enhancers and promoters occupied by mediator and cohesin. Mediator and cohesin co-occupy different promoters in different cells, thus generating cell-type-specific DNA loops linked to the gene expression program of each cell.
Collapse
Affiliation(s)
- Michael H. Kagey
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Jamie J. Newman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Steve Bilodeau
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Ye Zhan
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - David A. Orlando
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Nynke L. van Berkum
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Christopher C. Ebmeier
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Jesse Goossens
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Peter B. Rahl
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Stuart S. Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dylan J. Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
22
|
van Bokhoven H, Kramer JM. Disruption of the epigenetic code: an emerging mechanism in mental retardation. Neurobiol Dis 2010; 39:3-12. [PMID: 20304068 DOI: 10.1016/j.nbd.2010.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 01/18/2023] Open
Abstract
Mental retardation (MR) is a highly diverse group of cognitive disorders. Gene defects account for about half of all patients and mutations causative for impaired cognition have been identified in more than 400 genes. While there are numerous genetic defects underlying MR, a more limited number of pathways is emerging whose disruption appears to be shared by groups of MR genes. One of these common pathways is composed of MR genes that encode regulators of chromatin structure and of chromatin-mediated transcription regulation. Already more than 20 "epigenetic MR genes" have been identified and this number is likely to increase in the coming years when deep sequencing of exomes and genomes will become commonplace. Prominent examples of epigenetic MR genes include the methyl CpG-binding protein MECP2 and the CREB binding protein, CBP. Interestingly, several epigenetic MR proteins have been found to interact directly with one another or act together in complexes that regulate the local chromatin structure at target genes. Thus, it appears that the functions of individual epigenetic MR proteins converge onto similar biological processes that are crucial to neuronal processes. The next challenge will be to gain more insight into patterns of altered DNA methylation and histone modifications that are caused by epigenetic gene mutations and how these will disrupt the brain-specific expression of target genes. Such research may reveal that a wide variety of mutations in the genetic code result in a more limited number of disruptions to the epigenetic code. If so, this will provide a rationale for therapeutic strategies.
Collapse
Affiliation(s)
- Hans van Bokhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
23
|
Ding N, Zhou H, Esteve PO, Chin HG, Kim S, Xu X, Joseph SM, Friez MJ, Schwartz CE, Pradhan S, Boyer TG. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell 2008; 31:347-59. [PMID: 18691967 DOI: 10.1016/j.molcel.2008.05.023] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 04/20/2008] [Accepted: 05/29/2008] [Indexed: 11/18/2022]
Abstract
Mediator occupies a central role in RNA polymerase II transcription as a sensor, integrator, and processor of regulatory signals that converge on protein-coding gene promoters. Compared to its role in gene activation, little is known regarding the molecular mechanisms and biological implications of Mediator as a transducer of repressive signals. Here we describe a protein interaction network required for extraneuronal gene silencing comprising Mediator, G9a histone methyltransferase, and the RE1 silencing transcription factor (REST; also known as neuron restrictive silencer factor, NRSF). We show that the MED12 interface in Mediator links REST with G9a-dependent histone H3K9 dimethylation to suppress neuronal genes in nonneuronal cells. Notably, missense mutations in MED12 causing the X-linked mental retardation (XLMR) disorders FG syndrome and Lujan syndrome disrupt its REST corepressor function. These findings implicate Mediator in epigenetic restriction of neuronal gene expression to the nervous system and suggest a pathologic basis for MED12-associated XLMR involving impaired REST-dependent neuronal gene regulation.
Collapse
Affiliation(s)
- Ning Ding
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Del Giacco L, Pistocchi A, Cotelli F, Fortunato AE, Sordino P. A peek inside the neurosecretory brain throughOrthopedialenses. Dev Dyn 2008; 237:2295-303. [DOI: 10.1002/dvdy.21668] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|