1
|
Seo Y, Seo M, Kim J. Effects of cilengitide derivatives on TGF-β1-induced epithelial-to-mesenchymal transition and invasion in gefitinib-resistant non-small cell lung cancer cells. Front Pharmacol 2023; 14:1277199. [PMID: 37927598 PMCID: PMC10622769 DOI: 10.3389/fphar.2023.1277199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Long-term administration of tyrosine kinase inhibitors (TKIs) used for the treatment of non-small cell lung cancer (NSCLC) induces TKI resistance in cells. The appearance of resistant cells requires the combined administration of another therapeutic agent and may cause side effects in the gastrointestinal and central nervous system. In previous studies, we found that derivatives of cilengitide, a cyclic Arg-Gly-Asp (RGD) peptide, exert NSCLC apoptotic and anti-epithelial-mesenchymal transition (EMT) effects. In particular, cRGDwV and cRGDyV, which are cyclic peptides containing aromatic amino acids, were found to inhibit NSCLC cell growth, TGF-β1-induced EMT, and invasion. In this study, we confirmed the effects of cRGDwV and cRGDyV on proliferation, TGF-β1-induced EMT marker expression, migration, and invasion in gefitinib-resistant NSCLC A549 (A549GR) cells. In A549GR cells, cRGDwV and cRGDyV showed inhibitory effects on the expression of mesenchymal marker expression, migration, and invasion. These results indicate that cyclic RGD peptides containing aromatic amino acids can be used to inhibit mesenchymal marker expression as well as migration and invasion in gefitinib-resistant cells.
Collapse
Affiliation(s)
| | | | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Health Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
2
|
Biochanin A in murine Schistosoma mansoni infection: effects on inflammation, oxidative stress and fibrosis. J Helminthol 2023; 97:e16. [PMID: 36740983 DOI: 10.1017/s0022149x22000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biochanin A (BCA) is a multifunctional natural compound that possesses anti-infective, anti-inflammatory, anti-oxidative and hepatoprotective effects. The aim of the study was to assess the therapeutic efficacy of BCA on Schistosoma mansoni-infected mice. Fifty mice were divided into six different groups as non-infected, non-infected BCA-treated, infected untreated, early infected BCA-treated (seven days post-infection (dpi)), late infected BCA-treated 60 dpi and infected praziquantel (PZQ)-treated groups. Parasitological, histopathological examination and immunohistochemical staining of transforming growth factor (TGF)-β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) were investigated in liver sections. Cytochrome P450 (CYP450) gene expression of S. mansoni was evaluated by quantitative real-time polymerase chain reaction (RT-qPCR). A single dose of BCA significantly reduced worm burden in early (82.14%) and late infection (77.74%), mean tissue egg load in early (7.27 ± 0.495) and late BCA administration (7.63 ± 0.435) and decreased granuloma size. CYP450 mRNA expression was significantly reduced in early BCA treatment as compared to late treatment which emphasizes that early administration of BCA had more pronounced effects on worms than late administration. Both early and late BCA administration led to significant reduction in inflammatory cytokines as TGF and iNOS. Although the reduction of TGF and iNOS in BCA-treated mice was superior to PZQ, no statistically significant differences were noted. However, a significant downregulation of COX2 was noted in hepatocytes as compared to both infected control and PZQ-treated mice. BCA has schistosomicidal, anti-inflammatory, antioxidant and anti-fibrotic effects and could be regarded as a potential drug in schistosomiasis treatment.
Collapse
|
3
|
Bian X, Yin S, Yin X, Fang T, Wang Y, Yang S, Jiang X, Xue Y, Ye F, Zhang L. Clinical and Biological Significances of FBLN5 in Gastric Cancer. Cancers (Basel) 2023; 15:553. [PMID: 36672502 PMCID: PMC9856449 DOI: 10.3390/cancers15020553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Abnormal FBLN5 expression levels are related to various cancer types. This study is the first to explore its clinical and biological significances in gastric cancer (GC). We used The Cancer Genome Atlas-GC (TCGA-GC) and Gene Expression Omnibus (GEO) databases to identify the differential expression of FBLN5, and its association with clinical pathological characteristics was analyzed. A Kaplan-Meier plotter was used to calculate the impact of FBLN5 on GC patient prognosis, and the biological functions of FBLN5 were analyzed. In addition, we constructed a GC tissue microarray, and performed an immunohistochemical staining of FBLN5 to verify our findings. Western blotting was conducted simultaneously to confirm that FBLN5 was overexpressed in GC. We found that the high level of FBLN5 mRNA in GC was associated with a poor prognosis. High FBLN5 expression levels were significantly correlated with INFc and N3 lymph node metastasis. Univariate and multivariate analyses showed that FBLN5 expression levels and lymph node metastasis rate were independent risk factors related to GC patient prognosis, which can be combined to construct a nomogram to serve patients. Therefore, we believe that FBLN5 is significantly related to the poor prognosis of GC patients. FBLN5 is a valuable prognostic indicator to evaluate the prognosis of GC.
Collapse
Affiliation(s)
- Xiulan Bian
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin 150086, China
| | - Shengjie Yin
- Department of Medical Oncology, Municipal Hospital of Chifeng, Chifeng 024000, China
| | - Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150086, China
| | - Tianyi Fang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150086, China
| | - Yufei Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150086, China
| | - Shuo Yang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin 150086, China
| | - Xinju Jiang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin 150086, China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150086, China
| | - Fei Ye
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin 150086, China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
4
|
HPV-Induced MiR-21 Promotes Epithelial Mesenchymal Transformation and Tumor Progression in Cervical Cancer Cells through the TGFβ R2/hTERC Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6297694. [PMID: 36105448 PMCID: PMC9458404 DOI: 10.1155/2022/6297694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Cervical cancer (CC) is a common malignant tumor in women. It ranks first among the malignant tumors of woman reproductive organs and is one of the most important cancers in the world. Current studies suggest that human papillomavirus (HPV) infection, especially high-risk persistent infection, is the basic cause of cervical precancerous lesions and cervical cancer. MicroRNA-21 (miR-21) plays a role similar to oncogenes in the occurrence and growth of malignant tumors and can be developed as a potential target for treating malignant tumors. Recently, the study of the mechanism of malignant invasion and metastasis has made great progress. The current consensus is that the invasion and metastasis of malignant tumors is a complicated biological process with multistep and multigene control; the process of epithelial mesenchymal transition (EMT) may be the initial event of invasion and metastasis of epithelial malignant tumors. EMT means that epithelial cells obtain the characteristics of mesenchymal cells, which has main characteristics such as the loss of epithelial cell characteristics and the achievement of mesenchymal cell features, and then induce epithelial cells to acquire the ability of migration and invasion, and participate in many physiological and pathological processes of human body, including embryogenesis, organ differentiation, tissue inflammation, and wound healing. Research has proved that miR-21 is associated with the invasion and metastasis of cervical cancer, and its specific mechanism has not been completely clear; EMT exerts a significant effect on the invasion and metastasis of epithelial malignant tumors; we speculate whether miR-21 regulates the EMT process of cervical cancer cells. ELISA and RT-PCR studied HPV-induced cervical cancer cells, and it was found that HPV may induce miR-21 to pass through the TGF β R2/hTERC pathway which promotes epithelial stromal transformation and tumor progression of cervical cancer cells.
Collapse
|
5
|
Seo M, Kim J. Combination effect of cilengitide derivatives with gefitinib on
TGF
‐β1‐induced epithelial‐to‐mesenchymal transition in human non‐small cell lung cancer cells. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Minji Seo
- Department of Biomedical Laboratory Science School of Health Science, Dankook University Cheonan Republic of Korea
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science School of Health Science, Dankook University Cheonan Republic of Korea
| |
Collapse
|
6
|
Park K, Jeong J, Kim J. Synthesis and biological evaluation of cilengitide derivatives on
TGF
‐β1‐induced epithelial‐to‐mesenchymal transition in human non‐small cell lung cancer cells. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyeong‐Yong Park
- Department of Integrated Material's Development CHA Meditech Co., Ltd Daejeon South Korea
| | - Jisu Jeong
- Department of Medical Laboratory Science, College of Health Science Dankook University Cheonan Republic of Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, College of Health Science Dankook University Cheonan Republic of Korea
| |
Collapse
|
7
|
Tewari D, Priya A, Bishayee A, Bishayee A. Targeting transforming growth factor-β signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin Transl Med 2022; 12:e795. [PMID: 35384373 PMCID: PMC8982327 DOI: 10.1002/ctm2.795] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer is the world's second leading cause of death, but a significant advancement in cancer treatment has been achieved within the last few decades. However, major adverse effects and drug resistance associated with standard chemotherapy have led towards targeted treatment options. OBJECTIVES Transforming growth factor-β (TGF-β) signaling plays a key role in cell proliferation, differentiation, morphogenesis, regeneration, and tissue homeostasis. The prime objective of this review is to decipher the role of TGF-β in oncogenesis and to evaluate the potential of various natural and synthetic agents to target this dysregulated pathway to confer cancer preventive and anticancer therapeutic effects. METHODS Various authentic and scholarly databases were explored to search and obtain primary literature for this study. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria was followed for the review. RESULTS Here we provide a comprehensive and critical review of recent advances on our understanding of the effect of various bioactive natural molecules on the TGF-β signaling pathway to evaluate their full potential for cancer prevention and therapy. CONCLUSION Based on emerging evidence as presented in this work, TGF-β-targeting bioactive compounds from natural sources can serve as potential therapeutic agents for prevention and treatment of various human malignancies.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of PharmacognosySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anu Priya
- Department of PharmacologySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | | | - Anupam Bishayee
- College of Osteopathic MedicineLake Erie College of Osteopathic MedicineBradentonFloridaUSA
| |
Collapse
|
8
|
Combination Effect of Cilengitide with Erlotinib on TGF-β1-Induced Epithelial-to-Mesenchymal Transition in Human Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23073423. [PMID: 35408781 PMCID: PMC8999066 DOI: 10.3390/ijms23073423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is important for morphogenesis during development and is mainly induced by transforming growth factor (TGF)-β. In lung cancer, EMT is characterized by the transformation of cancer cells into a mobile, invasive form that can transit to other organs. Here, using a non–small cell lung cancer (NSCLC) cell line, we evaluated the EMT-related effects of the epidermal growth factor receptor inhibitor erlotinib alone and in combination with cilengitide, a cyclic RGD-based integrin antagonist. Erlotinib showed anti-proliferative and inhibitory effects against the TGF-β1–induced EMT phenotype in NSCLC cells. Compared with erlotinib alone, combination treatment with cilengitide led to an enhanced inhibitory effect on TGF-β1–induced expression of mesenchymal markers and invasion in non–small cell lung cancer A549 cells. These results suggest that cilengitide could improve anticancer drug efficacy and contribute to improved treatment strategies to inhibit and prevent EMT-based cancer progression.
Collapse
|
9
|
Identifying Differentially Expressed tRNA-Derived Small Fragments as a Biomarker for the Progression and Metastasis of Colorectal Cancer. DISEASE MARKERS 2022; 2022:2646173. [PMID: 35035608 PMCID: PMC8758288 DOI: 10.1155/2022/2646173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
Objectives. The epithelial-to-mesenchymal transition (EMT) is one key step for the invasion and metastasis of colorectal cancer (CRC). Up until now, the underlying mechanism of EMT in CRC is still unpromising. Thus, it is essential to have a better understanding of its carcinogenesis. The transfer RNA-derived small fragments (tsRNAs) are a new group of small noncoding RNAs (sncRNAs), including tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs), which have been observed to play an important role in many cancers. However, the relationship between tRFs and EMT in CRC is still unknown. Herein, we aimed to investigate the involvement of tRFs in EMT and its contribution to CRC development. Methods. We identified the differentially expressed tsRNAs in colorectal cancer cell line HT29 treated with TGF-β compared with control cells by using high-throughput sequencing and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). QRT-PCR was conducted to validate the differentially expressed fragments in 68 CRC tumor samples (22 women and 46 men) and adjacent nontumor samples. The association of the expression of tRFs with CRC metastasis and clinical stage was analyzed. Meanwhile, the correlation between tRF expression and overall survival (OS) was also analyzed. TargetScan and miRanda and multiple bioinformatic approaches were used to predict the possible target genes of tsRNAs and analyze possible functions of the tRFs. Results. A series of differentially expressed tsRNAs were identified in TGF-β-treated HT29 cells compared with control cells. tRF-phe-GAA-031 and tRF-VAL-TCA-002 were found to be significantly upregulated in CRC tissues compared to adjacent nontumor tissues. They were significantly correlated with distant metastasis and clinical stage. We compared the differences between tumor samples and nontumor tissues from the ROC curves. The area under the ROC curve (AUC) was up to 0.7554 (95% confidence interval: 0.6739 to 0.8369,
) for tRF-Phe-GAA-031 and up to 0.7313 (95% confidence interval: 0.6474 to 0.8151,
) for tRF-VAL-TCA-002. For OS analysis, higher tRF-phe-GAA-031 and tRF-VAL-TCA-002 expressions were associated with shorter survival for CRC patients. Conclusion. A series of differentially expressed tsRNAs are identified in the EMT process of CRC. And tRF-phe-GAA-031 and tRF-VAL-TCA-002 are higher expressed in CRC tissues, and they might play an important role in the metastasis of CRC. Meanwhile, they may be potential biomarkers and intervention targets in the clinical treatment of CRC.
Collapse
|
10
|
Jeong J, Kim J. Cyclic RGD Pentapeptide Cilengitide Enhances Efficacy of Gefitinib on TGF-β1-Induced Epithelial-to-Mesenchymal Transition and Invasion in Human Non-Small Cell Lung Cancer Cells. Front Pharmacol 2021; 12:639095. [PMID: 33967774 PMCID: PMC8104086 DOI: 10.3389/fphar.2021.639095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
During non-small cell lung cancer (NSCLC) progression, transforming growth factor (TGF)-β mediated epithelial-to-mesenchymal transition (EMT) is an important process leading to high mortality and poor prognosis. The EMT is a fundamental process for morphogenesis characterized by the transformation of cancer cells into invasive forms that can be transferred to other organs during human lung cancer progression. Gefitinib, an epidermal growth factor receptor (EGFR) inhibitor, has shown anti-proliferative effects in EGFR-mutated NSCLC cells and an inhibitory effect on migration and invasion of NSCLC cells to other organs. In this study, we evaluated the combinatorial treatment effect of cilengitide, a cyclic RGD pentapeptide, on TGF-β1-induced EMT phenotype and invasion. Gefitinib suppressed the expression of TGF-β1-induced mesenchymal markers by inhibiting Smad and non-Smad signaling pathways. Cilengitide enhanced the inhibitory effect of gefitinib on TGF-β1-induced expression of mesenchymal markers, phosphorylation of Smad2/3, and invasion of NSCLC A549 cells. We suggested that the use of cilengitide can improve the efficacy of anti-cancer drugs in combination drug-based chemotherapy. These results provide an improved therapeutic strategy for treating and preventing EMT-related disorders, such as NSCLC, lung fibrosis, cancer metastasis, and relapse.
Collapse
Affiliation(s)
- Jisu Jeong
- Department of Medical Laboratory Science, School of Health Science, Dankook University, Cheonan, Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, School of Health Science, Dankook University, Cheonan, Korea
| |
Collapse
|
11
|
Li Y, Li L, Qin J, Wu J, Dai X, Xu J. OSR1 phosphorylates the Smad2/3 linker region and induces TGF-β1 autocrine to promote EMT and metastasis in breast cancer. Oncogene 2020; 40:68-84. [PMID: 33051597 DOI: 10.1038/s41388-020-01499-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Oxidative stress-responsive kinase 1 (OSR1) plays a critical role in multiple carcinogenic signal pathways, and its overexpression has been found in various types of cancer; however, the pathophysiological role of OSR1 in breast cancer has not been evaluated. This study aims to elaborate on the role of OSR1 in breast cancer metastasis and the specific regulatory mechanism. Our results showed that OSR1 mRNA and protein were upregulated in both human breast cancer samples and cell lines. Moreover, phosphorylated OSR1 (p-OSR1) was an independent poor prognostic indicator in patients with breast cancer. OSR1 upregulation induced epithelial-to-mesenchymal transition (EMT) in normal and malignant mammary epithelial cells with the increasing metastatic capacity. In contrast, deleting OSR1 in aggressive breast cancer cells inhibited these phenotypes. OSR1 is the critical activator for transcription factors of EMT. Mechanistically, we found that OSR1 can directly interact and phosphorylate the linker region of Smad2 at Thr220 and Smad3 at Thr179. Phosphorylated Smad2/3 translocated into the nucleus to enhance transforming growth factor-β1 (TGF-β1) autocrine signalling and increase the transcription of EMT regulators. Importantly, interruption of the OSR1-Smad2/3-TGF-β1 signalling axis elicited a robust anti-EMT and anti-metastatic effect in vitro and in vivo. Taken together, we conclude that OSR1-mediated Smad2/3-TGF-β1 signalling promotes EMT and metastasis representing a promising therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Jun Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Junyi Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Xueming Dai
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Junming Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
12
|
Park KY, Kim J. Cyclic pentapeptide cRGDfK enhances the inhibitory effect of sunitinib on TGF-β1-induced epithelial-to-mesenchymal transition in human non-small cell lung cancer cells. PLoS One 2020; 15:e0232917. [PMID: 32810161 PMCID: PMC7433881 DOI: 10.1371/journal.pone.0232917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
In human lung cancer progression, the EMT process is characterized by the transformation of cancer cells into invasive forms that migrate to other organs. Targeting to EMT-related molecules is emerging as a novel therapeutic approach for the prevention of lung cancer cell migration and invasion. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as an anti-proliferative target molecule to regulate the Wnt signaling pathway in several types of cancer cells. In the present study, we evaluated the inhibitory effect of a tyrosine kinase inhibitor sunitinib and the integrin-αⅤβ3 targeted cyclic peptide (cRGDfK) on EMT in human lung cancer cells. Sunitinib strongly inhibited the TGF-β1-activated EMT through suppression of Wnt signaling, Smad and non-Smad signaling pathways. In addition, the cRGDfK also inhibited the expression of TGFβ1-induced mesenchymal marker genes and proteins. The anti-EMT effect of sunitinib was enhanced when cRGDfK was treated together. When sunitinib was treated with cRGDfK, the mRNA and protein expression levels of mesenchymal markers were decreased compared to the treatment with sunitinib alone. Co-treatment of cRGDfK has shown the potential to improve the efficacy of anticancer agents in combination with therapeutic agents that may be toxic at high concentrations. These results provide new and improved therapies for treating and preventing EMT-related disorders, such as lung fibrosis and cancer metastasis, and relapse.
Collapse
Affiliation(s)
- Kyeong-Yong Park
- Department of Integrated Material’s Development, CHA Meditech Co., Ltd, Daejeon, Republic of Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Lee YJ, Park JH, Oh SM. Activation of NF-κB by TOPK upregulates Snail/Slug expression in TGF-β1 signaling to induce epithelial-mesenchymal transition and invasion of breast cancer cells. Biochem Biophys Res Commun 2020; 530:122-129. [PMID: 32828273 DOI: 10.1016/j.bbrc.2020.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
TGF-β1 is known to induce epithelial-mesenchymal transition (EMT), which is a prerequisite for cancer cell invasion. Here we reveal that TOPK upregulates EMT and invasion of human breast cancer MDA-MB-231 or Hs578T cells via NF-κB-dependent Snail/Slug in TGF-β1 signaling. Endogenous TOPK expression was significantly increased in response to TGF-β1 and TOPK knockdown mitigated TGF-β1-induced breast cancer cell invasion. Interestingly, TOPK knockdown restored TGF-β1 suppression of E-cadherin expression and markedly reduced N-cadherin induced by TGF-β1. Also, NF-κB activity or expression of EMT markers Snail and Slug induced by TGF-β1 was decreased by TOPK knockdown. Meanwhile, knockdown of Snail or TOPK attenuated TGF-β1-induced breast cancer cell invasion. Taken, we conclude that TOPK mediates TGF-β1-induced EMT and invasion in breast cancer cells via NF-κB/Snail signaling, suggesting novel role of TOPK as therapeutic target in TGF-β1-mediated breast cancer development.
Collapse
Affiliation(s)
- Young-Ju Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Jung-Hwan Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, South Korea; Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, South Korea.
| |
Collapse
|
14
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
15
|
Li Y, Zhou X, Liu J, Gao N, Yang R, Wang Q, Ji J, Ma L, He Q. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling. Life Sci 2020; 248:117454. [PMID: 32088211 DOI: 10.1016/j.lfs.2020.117454] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022]
Abstract
AIMS Dihydroartemisinin (DHA) is currently considered as the promising cancer therapeutic drug. In this study, we aimed to investigate the anti-proliferative and anti-metastasis effects of DHA. MAIN METHODS Utilizing breast cancer cells MCF-7, MDA-MB-231 and BT549, cell proliferation, migration and invasion were detected. RT-qPCR was performed to detect CIZ1, TGF-β1 and Snail expression, and the interactions of these related molecules were analyzed by GeneMANIA database. Western blot detected CIZ1, TGF-β1/Smads signaling and Snail expression in DHA-treated cells, in TGFβ1-induced cells with enhanced metastatic capacity, and in cells treated with DHA plus TGFβ1/TGFβ1 inhibitor SD-208. KEY FINDINGS Results indicated DHA inhibited breast cancer cell proliferation and migration, with more potent effects compared with that of artemisinin. RT-qPCR and Western blot showed DHA inhibited CIZ1, TGF-β1 and Snail expression, and these molecules were shown to have protein-protein interactions by bioinformatics. Furthermore, TGFβ1-treatment enhanced MCF-7 migration and invasion, and CIZ1, TGF-β1/Smads signaling and snail activities; DHA, SD-208, combination of DHA and SD-208 reversed these conditions, preliminarily proving the cascade regulation between TGF-β1 signaling and CIZ1. MCF-7 xenografts model demonstrated the inhibition of DHA on tumor burden, and its mechanisms and well-tolerance in vivo; combination of DHA and SD-208 tried by us for the first time showed better treatment effects, but possible liver impairment made its use still keep cautious. SIGNIFICANCE DHA treatment inhibits the proliferation and metastasis of breast cancer, through suppressing TGF-β1/Smad signaling and CIZ1, suggesting the promising potential of DHA as a well-tolerated antitumor TGF-β1 pathway inhibitor.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jiali Liu
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ning Gao
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ruihua Yang
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Qi Wang
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jing Ji
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ling Ma
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Qian He
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
16
|
Ávila-Rodríguez D, Segura-Villalobos DL, Ibarra-Sánchez A, González-Espinosa C, Macías-Silva M. TGF-β y células cebadas: reguladores del desarrollo del tumor. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
El Factor de crecimiento transformante β (TGF-β) es una citocina pleiotrópica implicada en distintas condiciones patológicas, como desórdenes autoinmunes, alergias y en los últimos años, en el cáncer. Esta citocina ejerce efectos supresores de tumores que las células cancerosas deben evadir para lograr la progresión del tumor. Sin embargo, paradójicamente, el TGF-β también modula procesos inflamatorios que favorecen la progresión del tumor, como el reclutamiento de células del sistema inmune al sitio del mismo; entre estas células se encuentran las células cebadas (CCs), las cuales, a su vez también participan en la regulación del tumor, a través de la secreción de distintos mediadores proinflamatorios, proangiogénicos y factores de crecimiento. En esta revisión se describen algunos avances en la comprensión del papel del TGF-β en la regulación de las CCs y la contribución de éstas en el desarrollo y la metástasis de tumores sólidos. El entendimiento de la función del TGF-β y de las células cebadas durante el desarrollo del cáncer es fundamental para el diseño de nuevas terapias que inhiban la progresión del tumor.
Collapse
|
17
|
Lee YJ, Park JH, Oh SM. TOPK promotes epithelial-mesenchymal transition and invasion of breast cancer cells through upregulation of TBX3 in TGF-β1/Smad signaling. Biochem Biophys Res Commun 2019; 522:270-277. [PMID: 31757421 DOI: 10.1016/j.bbrc.2019.11.104] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/16/2019] [Indexed: 12/25/2022]
Abstract
TOPK has been suggested to contribute to invasion of lung, prostate, gastric, pancreatic or breast cancer cells. However, how TOPK mediates TGF-β1/Smad signaling leading to epithelial-mesenchymal transition (EMT) and invasion of breast cancer cells remains unknown. Here we report that TOPK upregulates T-box transcription factor TBX3 to enhance TGF-β1-induced EMT and invasion of MDA-MB-231 breast cancer cells. Expression of endogenous TOPK was promoted by TGF-β1 treatment of MDA-MB-231 cells time-dependently. In addition, knockdown of TOPK attenuated TGF-β1-induced phosphorylation or transcriptional activity of Smad3. Meanwhile, levels of both mRNA and protein of TBX3 induced by TGF-β1 were abolished by TOPK depletion. Also, knockdown of TBX3 inhibited TGF-β1 induction of EMT-related genes Snail, Slug or Fibronectin. Furthermore, ablation of TOPK or TBX3 suppressed TGF-β1-induced MDA-MB-231 cell invasion. Collectively, we conclude that TOPK positively regulates TBX3 in TGF-β1/Smad signaling pathway, thereby enhancing EMT and invasion of breast cancer cells, implying a mechanistic role of TOPK in TGF-β1/Smad signaling.
Collapse
Affiliation(s)
- Young-Ju Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Jung-Hwan Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, South Korea; Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, South Korea.
| |
Collapse
|
18
|
Zhang GL, Song JL, Ji CL, Feng YL, Yu J, Nyachoti CM, Yang GS. Zearalenone Exposure Enhanced the Expression of Tumorigenesis Genes in Donkey Granulosa Cells via the PTEN/ PI3K/ AKT Signaling Pathway. Front Genet 2018; 9:293. [PMID: 30108608 PMCID: PMC6079390 DOI: 10.3389/fgene.2018.00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/13/2018] [Indexed: 01/17/2023] Open
Abstract
Zearalenone (ZEA) is a natural contaminant existing in food and feed products that exhibits a negative effect on domestic animals’ reproduction. Donkeys possess high economic value in China and are at risk of exposure to ZEA. However, few information is available on ZEA-induced toxicity and no report on toxicity in donkeys can be found in scientific literature. We investigated the biological effects of ZEA exposure on donkey granulosa cells (dGCs) by using RNA-seq analysis. ZEA at 10 and 30 μM were administered to GCs within 72 h of in vitro culture. ZEA at 10 μM significantly altered the tumorigenesis associated genes in dGCs. Exposure to 10 and 30 μM ZEA treatment significantly reduced mRNA expression of PTEN, TGFβ, ATM, and CDK2 genes, particularly, the ZEA treatment significantly increased the expression of PI3K and AKT genes. Furthermore, immunofluorescence, RT-qPCR, and Western blot analysis verified the gene expression of ZEA-exposed GCs. Collectively, these results demonstrated the deleterious effect of ZEA exposure on the induction of ovarian cancer related genes via the PTEN/PI3K/AKT signaling pathway in dGCs in vitro.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Jun-Lin Song
- Central Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Chuan-Liang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Yu-Long Feng
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Charles M Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Gong-She Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Gharibi A, La Kim S, Molnar J, Brambilla D, Adamian Y, Hoover M, Hong J, Lin J, Wolfenden L, Kelber JA. ITGA1 is a pre-malignant biomarker that promotes therapy resistance and metastatic potential in pancreatic cancer. Sci Rep 2017; 7:10060. [PMID: 28855593 PMCID: PMC5577248 DOI: 10.1038/s41598-017-09946-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has single-digit 5-year survival rates at <7%. There is a dire need to improve pre-malignant detection methods and identify new therapeutic targets for abrogating PDAC progression. To this end, we mined our previously published pseudopodium-enriched (PDE) protein/phosphoprotein datasets to identify novel PDAC-specific biomarkers and/or therapeutic targets. We discovered that integrin alpha 1 (ITGA1) is frequently upregulated in pancreatic cancers and associated precursor lesions. Expression of ITGA1-specific collagens within the pancreatic cancer microenvironment significantly correlates with indicators of poor patient prognosis, and depleting ITGA1 from PDAC cells revealed that it is required for collagen-induced tumorigenic potential. Notably, collagen/ITGA1 signaling promotes the survival of ALDH1-positive stem-like cells and cooperates with TGFβ to drive gemcitabine resistance. Finally, we report that ITGA1 is required for TGFβ/collagen-induced EMT and metastasis. Our data suggest that ITGA1 is a new diagnostic biomarker and target that can be leveraged to improve patient outcomes.
Collapse
Affiliation(s)
- Armen Gharibi
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Sa La Kim
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Justin Molnar
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Daniel Brambilla
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Yvess Adamian
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Malachia Hoover
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Julie Hong
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Joy Lin
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Laurelin Wolfenden
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Jonathan A Kelber
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA.
| |
Collapse
|
20
|
Fucose-containing fraction of Ling-Zhi enhances lipid rafts-dependent ubiquitination of TGFβ receptor degradation and attenuates breast cancer tumorigenesis. Sci Rep 2016; 6:36563. [PMID: 27830743 PMCID: PMC5103195 DOI: 10.1038/srep36563] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
Ganoderma lucidum exerts antitumor activity, but the mechanism of G. lucidum polysaccharides on cancer is unclear. Here, we demonstrated that a fucose-containing fraction of Ling-Zhi (FFLZ) reduced tumor size and suppressed metastasis in vivo. Furthermore, FFLZ inhibited breast cancer cell migration and altered the epithelial-to-mesenchymal transition (EMT) phenotype. Transforming growth factor-β receptor (TGFR) pathways act as key mediators to promote tumor progression and metastasis. We found that FFLZ down-regulated TGFR and downstream signaling pathways, including the phosphorylation of Smad2/3 and the expression of Smad4. In an investigation of the underlying mechanisms, we found that FFLZ enhanced the Smurf2-dependent ubiquitination of TGFR by disrupting the balance of the lipid rafts, promoted the “re-localization” of the TGFR to the caveolae, and facilitated the degradation of TGFR. Together, our data indicated that FFLZ is associated with the inhibition of EMT and the prevention of metastasis by promoting ubiquitination-dependent TGFR degradation and abolishing TGFR signaling pathways. Moreover, the combination of FFLZ and trastuzumab synergistically inhibited the viability of certain trastuzumab-resistant human breast cancer cells. In summary, our current findings indicate that FFLZ is a potential therapeutic or dietary supplemental agent for cancer patients and that it functions via the caveolin-1/Smad7/Smurf2-dependent ubiquitin-mediated degradation of TGFR.
Collapse
|
21
|
Kim J, Kim TY, Lee MS, Mun JY, Ihm C, Kim SA. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells. Biochem Biophys Res Commun 2016; 478:643-8. [PMID: 27492069 DOI: 10.1016/j.bbrc.2016.07.124] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/31/2016] [Indexed: 12/21/2022]
Abstract
It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Tae Yeon Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Myung Shin Lee
- Department of Microbiology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Ji Young Mun
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam-Si, Gyeonggi-Do, Republic of Korea
| | - Chunhwa Ihm
- Department of Laboratory Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea.
| |
Collapse
|
22
|
Epithelial-mesenchymal transition-related genes are linked to aggressive local recurrence of hepatocellular carcinoma after radiofrequency ablation. Cancer Lett 2016; 375:47-50. [PMID: 26940140 DOI: 10.1016/j.canlet.2016.02.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 02/08/2023]
Abstract
We reported that poor prognoses of hepatocellular carcinoma (HCC) patients after radiofrequency ablation (RFA) are owing to up-regulation of expression of hypoxia-inducible factor-1 and epithelial cell adhesion molecule. We investigated aggressive progression in residual liver tumors (RLTs) after RFA to focus on expression of epithelial-mesenchymal transition (EMT)-related genes and miRNAs. Ten patients with recurrent HCC post-RFA who underwent hepatectomy (RFA group) and 78 patients with HCC without prior RFA (non-RFA group) were enrolled. We examined expression of transforming growth factor (TGF)-β, Twist, vimentin, and Snail-1 mRNAs in tumor tissues, and expression of miR-34a and miR-200c. Expression of TGF-β, Twist and Snail-1 in the RFA group was significantly higher than that in the non-RFA group (P < 0.05); vimentin expression in the RFA group was higher than that in the non-RFA group (P = 0.07). Expression of miR-200c and miR-34a in the RFA group was significantly lower than that in the non-RFA group (miR-200c: P = 0.04; miR-34a: P < 0.01). Increased expression of EMT markers through down-regulation of miRNA expression in RLTs after RFA may be related to poor prognoses of HCC patients with aggressive local recurrence after RFA.
Collapse
|
23
|
Qin Z, He W, Tang J, Ye Q, Dang W, Lu Y, Wang J, Li G, Yan Q, Ma J. MicroRNAs Provide Feedback Regulation of Epithelial-Mesenchymal Transition Induced by Growth Factors. J Cell Physiol 2016; 231:120-9. [PMID: 26032086 DOI: 10.1002/jcp.25060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/10/2015] [Accepted: 05/26/2015] [Indexed: 01/15/2023]
Abstract
As regulators in gene expression, microRNAs take part in most biological processes including cell differentiation, apoptosis, cell cycle, and epithelial-to-mesenchymal transition (EMT). In order to evaluate their roles in EMT process, microRNA expression profile changes induced by EGF or TGF-β treatment on nasopharyngeal carcinoma cell HK-1 were analyzed, and miR-21, miR-148a, miR-505, and miR-1207-5p were found to be upregulated in growth factors-induced EMT process. miR-21 is already known as an oncogenic miRNA to promote metastasis, however, the exact functions of other three miRNAs in EMT are unclear. To our surprise, we found that miR-148a, miR-505, and miR-1207-5p can suppress EMT and metastasis phenotypes in HK-1 cells both in vitro and in vivo, which may relate to their inhibition on EMT and Wnt signaling molecules. MiRNAs confer robustness to biological processes by posttranscriptional repression of key transcriptional programs that are related to previous developmental stages or to alternative cell fates. Our findings indicate that miRNA feedback circuit is tuned to respond to growth factors-induced EMT, and we suggested a new negative feedback loop which may be an important element of the EMT process and confer biological robustness.
Collapse
Affiliation(s)
- Zailong Qin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei He
- Cancer Research Institute, Central South University, Changsha, Hunan, China.,Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiurong Ye
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Dang
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuanjun Lu
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jia Wang
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
| | - Qun Yan
- Department of Laboratory Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Ma
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
| |
Collapse
|
24
|
Boye A, Zou YH, Yang Y. Metabolic derivatives of alcohol and the molecular culprits of fibro-hepatocarcinogenesis: Allies or enemies? World J Gastroenterol 2016; 22:50-71. [PMID: 26755860 PMCID: PMC4698508 DOI: 10.3748/wjg.v22.i1.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/12/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic intake of alcohol undoubtedly overwhelms the structural and functional capacity of the liver by initiating complex pathological events characterized by steatosis, steatohepatitis, hepatic fibrosis and cirrhosis. Subsequently, these initial pathological events are sustained and ushered into a more complex and progressive liver disease, increasing the risk of fibro-hepatocarcinogenesis. These coordinated pathological events mainly result from buildup of toxic metabolic derivatives of alcohol including but not limited to acetaldehyde (AA), malondialdehyde (MDA), CYP2E1-generated reactive oxygen species, alcohol-induced gut-derived lipopolysaccharide, AA/MDA protein and DNA adducts. The metabolic derivatives of alcohol together with other comorbidity factors, including hepatitis B and C viral infections, dysregulated iron metabolism, abuse of antibiotics, schistosomiasis, toxic drug metabolites, autoimmune disease and other non-specific factors, have been shown to underlie liver diseases. In view of the multiple etiology of liver diseases, attempts to delineate the mechanism by which each etiological factor causes liver disease has always proved cumbersome if not impossible. In the case of alcoholic liver disease (ALD), it is even more cumbersome and complicated as a result of the many toxic metabolic derivatives of alcohol with their varying liver-specific toxicities. In spite of all these hurdles, researchers and experts in hepatology have strived to expand knowledge and scientific discourse, particularly on ALD and its associated complications through the medium of scientific research, reviews and commentaries. Nonetheless, the molecular mechanisms underpinning ALD, particularly those underlying toxic effects of metabolic derivatives of alcohol on parenchymal and non-parenchymal hepatic cells leading to increased risk of alcohol-induced fibro-hepatocarcinogenesis, are still incompletely elucidated. In this review, we examined published scientific findings on how alcohol and its metabolic derivatives mount cellular attack on each hepatic cell and the underlying molecular mechanisms leading to disruption of core hepatic homeostatic functions which probably set the stage for the initiation and progression of ALD to fibro-hepatocarcinogenesis. We also brought to sharp focus, the complex and integrative role of transforming growth factor beta/small mothers against decapentaplegic/plasminogen activator inhibitor-1 and the mitogen activated protein kinase signaling nexus as well as their cross-signaling with toll-like receptor-mediated gut-dependent signaling pathways implicated in ALD and fibro-hepatocarcinogenesis. Looking into the future, it is hoped that these deliberations may stimulate new research directions on this topic and shape not only therapeutic approaches but also models for studying ALD and fibro-hepatocarcinogenesis.
Collapse
|
25
|
Fucoidan inhibition of lung cancer in vivo and in vitro : role of the Smurf2-dependent ubiquitin proteasome pathway in TGFβ receptor degradation. Oncotarget 2015; 5:7870-85. [PMID: 25149540 PMCID: PMC4202167 DOI: 10.18632/oncotarget.2317] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fucoidan, a polysaccharide extracted from brown seaweeds, reduces tumor cell proliferation. In this study, we demonstrate that fucoidan reduces tumor size in LLC1-xenograft male C57BL/6 mice. Moreover, we found that LLC1-bearing mice continuously fed fucoidan showed greater antitumor activity than mice with discontinuous feeding. Fucoidan inhibited the in vitro growth of lung cancer cells. Transforming growth factor β (TGFβ) receptors (TGFRs) play important roles in the regulation of proliferation and progression, and high TGFRI expression in lung cancer specimens is associated with a worse prognosis. Herein, using lung cancer cells, we found that fucoidan effectively reduces TGFRI and TGFRII protein levels in vivo and in vitro. Moreover, fucoidan reduces TGFR downstream signaling events, including those in Smad2/3 and non-Smad pathways: Akt, Erk1/2, and FAK phosphorylation. Furthermore, fucoidan suppresses lung cancer cell mobility upon TGFβ stimulation. To elucidate how fucoidan decreases TGFR proteins in lung cancer cells, we found that fucoidan enhances the ubiquitination proteasome pathway (UPP)-mediated degradation of TGFRs in A549 and CL1-5 cells. Mechanistically, fucoidan promotes Smurf2 and Smad7 to conjugate TGFRs, resulting in TGF degradation; however, Smurf2-shRNA abolishes fucoidan-enhanced UPP-mediated TGFR degradation. Our study is the first to identify a novel mechanism for the antitumor activity of fucoidan, namely decreasing tumor growth by modulating the TGFR/Smad7/Smurf2-dependent axis, leading to TGFR protein degradation and inhibition of lung cancer cell progression in vitro and in vivo. Our current findings indicate that fucoidan is a potential therapeutic agent or dietary supplementation for lung cancer, acting via the Smurf2-dependent ubiquitin degradation of TGFβ receptors.
Collapse
|
26
|
Kim J, Moon SH, Kim BT, Chae CH, Lee JY, Kim SH. A novel aminothiazole KY-05009 with potential to inhibit Traf2- and Nck-interacting kinase (TNIK) attenuates TGF-β1-mediated epithelial-to-mesenchymal transition in human lung adenocarcinoma A549 cells. PLoS One 2014; 9:e110180. [PMID: 25337707 PMCID: PMC4206343 DOI: 10.1371/journal.pone.0110180] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022] Open
Abstract
Transforming growth factor (TGF)-β triggers the epithelial-to-mesenchymal transition (EMT) of cancer cells via well-orchestrated crosstalk between Smad and non-Smad signaling pathways, including Wnt/β-catenin. Since EMT-induced motility and invasion play a critical role in cancer metastasis, EMT-related molecules are emerging as novel targets of anti-cancer therapies. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as a first-in-class anti-cancer target molecule to regulate Wnt signaling pathway, but pharmacologic inhibition of its EMT activity has not yet been studied. Here, using 5-(4-methylbenzamido)-2-(phenylamino)thiazole-4-carboxamide (KY-05009) with TNIK-inhibitory activity, its efficacy to inhibit EMT in cancer cells was validated. The molecular docking/binding study revealed the binding of KY-05009 in the hinge region of TNIK, and the inhibitory activity of KY-05009 against TNIK was confirmed by an ATP competition assay (Ki, 100 nM). In A549 cells, KY-05009 significantly and strongly inhibited the TGF-β-activated EMT through the attenuation of Smad and non-Smad signaling pathways, including the Wnt, NF-κB, FAK-Src-paxillin-related focal adhesion, and MAP kinases (ERK and JNK) signaling pathways. Continuing efforts to identify and validate potential therapeutic targets associated with EMT, such as TNIK, provide new and improved therapies for treating and/or preventing EMT-based disorders, such as cancer metastasis and fibrosis.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Jung-gu, Daejeon, Republic of Korea
- * E-mail: (JK); (SHK)
| | - Seong-Hee Moon
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Bum Tae Kim
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Chong Hak Chae
- Drug Discovery Platform Technology Team, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Joo Yun Lee
- Drug Discovery Platform Technology Team, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
- * E-mail: (JK); (SHK)
| |
Collapse
|
27
|
Shi J, Zhuang Y, Liu XK, Zhang YX, Zhang Y. TGF-beta induced RBL2 expression in renal cancer cells by down-regulating miR-93. Clin Transl Oncol 2014; 16:986-92. [PMID: 25183046 DOI: 10.1007/s12094-014-1185-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/11/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE TGF-beta can induce G1 arrest via many mechanisms including up-regulating p21, p27, and Rb. However, as the member of Rb family, whether RBL2 is induced by TGF-beta treatment remains exclusive. METHODS The expression of RBL2 and miR-93 after TGF-beta treatment was determined by quantitative real-time PCR and western blot. The growth of renal cancer cells was determined by CCK-8 assays and cell cycle was determined by PI staining. The binding of miR-93 on RBL2 3'-UTR was determined by double luciferase system. RESULTS In renal cancer cells, TGF-beta treatment induced expression of RBL2 in a time- and concentration-dependent manner, and RBL2 mediated TGF-beta induced growth inhibition and cell cycle arrest in renal cancer cells. Furthermore, we found that miR-93 directly targeted RBL2 by binding to its 3'-UTR in renal cancer cells. Over-expression of miR-93 significantly reduced the expression of RBL2, whereas knock down of miR-93 up-regulated the expression of RBL2. More importantly, TGF-beta treatment inhibited miR-93 expression, which resulted in up-regulation of RBL2 after TGF-beta treatment. CONCLUSION TGF-beta induced RBL2 expression through down-regulating miR-93 in renal cancer cells. The newly identified TGF-beta/miR-93/RBL2 signal pathway reveals a new mechanism of TGF-beta induced growth arrest in renal cancer.
Collapse
Affiliation(s)
- J Shi
- Department of Urology, Tangshan Gongren Hospital, Hebei Medical University, No. 27, Wenhua Road, Lubei District, Tangshan, 063000, China
| | | | | | | | | |
Collapse
|
28
|
Deng B, Tan QY, Wang RW, Jiang YG, Zhou JH, Huang W. P130cas is required for TGF-β1-mediated epithelial-mesenchymal transition in lung cancer. Oncol Lett 2014; 8:454-460. [PMID: 24959295 PMCID: PMC4063590 DOI: 10.3892/ol.2014.2123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/16/2014] [Indexed: 12/21/2022] Open
Abstract
In lung cancer A549 cells, the present study evaluated the associations between p130cas expression and the activation of p38 or Smad2, which are components of two of the main signaling pathways of transforming growth factor-β1 (TGF-β1), i.e., epithelial-mesenchymal transition (EMT) and apoptosis, respectively. TGF-β1-induced EMT was investigated by inspecting cell shape and cell migration, and by testing E-Cadherin, N-Cadherin and Vimentin biomarkers in p130cas-RNA interference (RNAi)-A549 cells. The changes in TGF-β1-induced apoptosis, i.e., cleaved Caspase-3 levels, were additionally analyzed following p130cas-RNAi. p130cas-knockdown decreased the phosphorylated (p)-p38 expression level, and blockaded the TGF-β1-induced activation of p-p38 in the A549 cells. p130cas-knockdown arrested cell migration and impaired TGF-β1-induced EMT in the A549 cells, characterized by changes in cell morphology and biomarker levels. However, p130cas-knockdown had no impact on the activation of Smad2 and the cleavage of Caspase-3. These results indicate that p130cas is a novel molecular ‘rheostat’ that alters the function of the TGF-β1 signaling pathway from tumor suppression to tumor promotion in lung cancer cells. The underlying mechanism warrants further study.
Collapse
Affiliation(s)
- Bo Deng
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Qun-You Tan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Ru-Wen Wang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yao-Guang Jiang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jing-Hai Zhou
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Wei Huang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
29
|
Dietary chlorophyllin abrogates TGFβ signaling to modulate the hallmark capabilities of cancer in an animal model of forestomach carcinogenesis. Tumour Biol 2014; 35:6725-37. [PMID: 24715303 DOI: 10.1007/s13277-014-1849-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/13/2014] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor (TGF) β signaling pathway plays a central role in the regulation of a wide range of cellular processes involved in the acquisition of the malignant phenotype. The objective of the present study was to examine the effect of chlorophyllin, a semisynthetic derivative of chlorophyll on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)--induced rat forestomach carcinogenesis based on the modulation of TGFβ signaling and the downstream target genes associated with cell proliferation, apoptosis evasion, angiogenesis, invasion, and metastasis. We determined the effect of dietary chlorophyllin on TGFβ signaling and the downstream events-cell proliferation, apoptosis evasion, angiogenesis, invasion, and metastasis by semiquantitative and quantitative reverse transcription (RT)-PCR, Western blot, and immunohistochemical analyses. We further validated the inhibition of TGFβ signaling by chlorophyllin by performing molecular docking studies. We found that dietary supplementation of chlorophyllin at 4-mg/kg bw inhibits the development of MNNG-induced forestomach carcinomas by downregulating the expression of TGFβ RI, TGFβ RII, and Smad 2 and 4 and upregulating Smad 7, thereby abrogating canonical TGFβ signaling. Docking interactions also confirmed the inhibition of TGFβ signaling by chlorophyllin via inactivating TGFβ RI. Furthermore, attenuation of TGFβ signaling by chlorophyllin also blocked cell proliferation, angiogenesis, invasion, and metastasis, and induced mitochondria-mediated cell death. Dietary chlorophyllin that simultaneously abrogates TGFβ signaling pathway and the key hallmark events of cancer appear to be an ideal candidate for cancer chemoprevention.
Collapse
|
30
|
Zhu Y, Li J, Jing F, Ji T, Guo X, Yang J, Jiao S. Evaluation of the immune factors in the tumor environment before and after the treatment of cetuximab combined with chemotherapy. World J Surg Oncol 2013; 11:226. [PMID: 24028754 PMCID: PMC3847707 DOI: 10.1186/1477-7819-11-226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/02/2013] [Indexed: 12/03/2022] Open
Abstract
Background The effect of chemotherapy combined with monoclonal antibodies (mAbs) on the immune state of the tumor environment remains unclear and controversial. The aim of this study is to examine the effect of chemotherapy combined with cetuximab (C225, an anti-EGFR mAb) on the immune state of tumor environment, and the correlation of that effect and the clinical efficacy. Methods Twelve patients with colorectal cancer, who received the treatment of chemotherapy combined with C225, were enrolled in this study. The tumor specimen of the primary colorectal cancer before and after treatment was obtained. The expression of a series of immune factors (TGF-β1, CD8, IL-2, TNF-α, and VEGF) was measured by immunochemistry. The expression of these immune factors before and after treatment was compared by the Wilcoxon signed-rank test. The correlation of the change of immune parameter expression after treatment and clinical efficacy was examined by chi-square tests. The correlation of the expression of immune factors, clinical efficacy, and treatment number was examined by the Spearman’s correlation analysis. Results There was no significant difference between the expression of TGF-β1 before and after the treatment (P >0.05). The change of TGF-β1 expression after treatment significantly correlated negatively with clinical efficacy (P = 0.05). As for CD8, IL-2, VEGF, and TNF-α, there were no significant differences between the expression before and after the treatment (P >0.05), and the change of expression after treatment also did not correlate significantly with clinical efficacy (P >0.05). The change of IL-2 expression after treatment significantly correlated negatively with treatment number (correlation coefficient = -0.585, P = 0.046). The change of TGF-β1 expression after treatment significantly correlated negatively with clinical efficacy (correlation coefficient = -0.684, P = 0.014). Before treatment, the expression of TNF-α significantly correlated positively with the expression of IL-2 (correlation coefficient = 0.629, P = 0.028). After treatment, the expression of TGF-β1 significantly correlated negatively with the expression of CD8 (correlation coefficient = -0.664, P = 0.019). Conclusions These results suggested that, in the tumor environment, the change of immune factors after treatment of cetuximab combined with chemotherapy may be associated with clinical efficacy.
Collapse
Affiliation(s)
- Yanyun Zhu
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kim J, Hwan Kim S. CK2 inhibitor CX-4945 blocks TGF-β1-induced epithelial-to-mesenchymal transition in A549 human lung adenocarcinoma cells. PLoS One 2013; 8:e74342. [PMID: 24023938 PMCID: PMC3762800 DOI: 10.1371/journal.pone.0074342] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The epithelial-to-mesenchymal transition (EMT) is a major phenotype of cancer metastasis and invasion. As a druggable cancer target, the inhibition of protein kinase CK2 (formally named to casein kinase 2) has been suggested as a promising therapeutic strategy to treat EMT-controlled cancer metastasis. This study aimed to evaluate the effect of the CK2 inhibitor CX-4945 on the processes of cancer migration and invasion during the EMT in A549 human lung adenocarcinoma cells. MATERIALS AND METHODS The effect of CX-4945 on TGF-β1-induced EMT was evaluated in A549 cells treated with TGF-β1 (5 ng/ml) and CX-4945. The effect of CX-4945 on TGF-β1-induced cadherin switch and activation of key signaling molecules involved in Smad, non-Smad, Wnt and focal adhesion signaling pathways were investigated by Western blot analysis, immunocytochemistry and reporter assay. Additionally, the effect of CX-4945 on TGF-β1-induced migration and invasion was investigated by wound healing assay, Boyden chamber assay, gelatin zymography, and the quantitative real-time PCR. RESULTS CX-4945 inhibits the TGF-β1-induced cadherin switch and the activation of key signaling molecules involved in Smad (Smad2/3, Twist and Snail), non-Smad (Akt and Erk), Wnt (β-catenin) and focal adhesion signaling pathways (FAK, Src and paxillin) that cooperatively regulate the overall process of EMT. As a result, CX-4945 inhibits the migration and invasion of A549 cells accompanied with the downregulation of MMP-2 and 9. CONCLUSIONS Clinical evaluation of CX-4945 in humans as a single agent in solid tumors and multiple myeloma has established its promising pharmacokinetic, pharmacodynamic, and safety profiles. Beyond regression of tumor mass, CX-4945 may be advanced as a new therapy for cancer metastasis and EMT-related disorders.
Collapse
Affiliation(s)
- Jiyeon Kim
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Active TGF-β signaling and decreased expression of PTEN separates angiosarcoma of bone from its soft tissue counterpart. Mod Pathol 2013; 26:1211-21. [PMID: 23599148 DOI: 10.1038/modpathol.2013.56] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/25/2022]
Abstract
Angiosarcomas constitute a heterogeneous group of highly malignant vascular tumors. Angiosarcoma of bone is rare and poorly characterized. For angiosarcoma of soft tissue, some pathways seem to be involved in tumor development. Our aim was to evaluate the role of these pathways in angiosarcoma of bone. We collected 37 primary angiosarcomas of bone and used 20 angiosarcomas of soft tissue for comparison. Immunohistochemistry was performed on constructed tissue microarrays to evaluate expression of CDKN2A, TP53, PTEN, BCL2, CDK4, MDM2, cyclin D1, β-catenin, transforming growth factor-β (TGF-β), CD105, phospho-Smad1, phospho-Smad2, hypoxia-inducible factor-1α, plasminogen activator inhibitor type 1 (PAI-1), VEGF, CD117 and glucose transporter--1. PIK3CA was screened for hotspot mutations in 19 angiosarcomas. In nearly 55% of the angiosarcoma of bone, the retinoblastoma (Rb) pathway was affected. Loss of CDKN2A expression was associated with a significantly worse prognosis. No overexpression of TP53 or MDM2 was found, suggesting that the TP53 pathway is not important in angiosarcoma of bone. Angiosarcoma of bone showed highly active TGF-β signaling with immunoreactivity for phospho-Smad2 and PAI-1. Although the phosphatidylinositol 3-kinase (PI3K)/Akt pathway seems to be active in both tumor groups, different mechanisms were involved: 41% of angiosarcoma of bone showed a decrease in expression of PTEN, whereas in angiosarcoma of soft tissue overexpression of KIT was found (90%). PIK3CA hotspot mutations were absent. In conclusion, the Rb pathway is involved in tumorigenesis of angiosarcoma of bone. The PI3K/Akt pathway is activated in both angiosarcoma of bone and soft tissue, however, with a different cause; PTEN expression is decreased in angiosarcoma of bone, whereas angiosarcomas of soft tissue show overexpression of KIT. Our findings support that angiosarcomas are a heterogeneous group of vascular malignancies. Both angiosarcoma of bone and soft tissue may benefit from therapeutic strategies targeting the PI3K/Akt pathway. However, interference with TGF-β signaling may be specifically relevant in angiosarcoma of bone.
Collapse
|
33
|
Pot I, Patel S, Deng L, Chandhoke AS, Zhang C, Bonni A, Bonni S. Identification of a Novel Link between the Protein Kinase NDR1 and TGFβ Signaling in Epithelial Cells. PLoS One 2013; 8:e67178. [PMID: 23840619 PMCID: PMC3694053 DOI: 10.1371/journal.pone.0067178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/14/2013] [Indexed: 11/19/2022] Open
Abstract
Transforming growth factor-beta (TGFβ) is a secreted polypeptide that plays essential roles in cellular development and homeostasis. Although mechanisms of TGFβ-induced responses have been characterized, our understanding of TGFβ signaling remains incomplete. Here, we uncover a novel function for the protein kinase NDR1 (nuclear Dbf2-related 1) in TGFβ responses. Using an immunopurification approach, we find that NDR1 associates with SnoN, a key component of TGFβ signaling. Knockdown of NDR1 by RNA interference promotes the ability of TGFβ to induce transcription and cell cycle arrest in NMuMG mammary epithelial cells. Conversely, expression of NDR1 represses TGFβ-induced transcription and inhibits the ability of TGFβ to induce cell cycle arrest in NMuMG cells. Mechanistically, we find that NDR1 acts in a kinase-dependent manner to suppress the ability of TGFβ to induce the phosphorylation and consequent nuclear accumulation of Smad2, which is critical for TGFβ-induced transcription and responses. Strikingly, we also find that TGFβ reciprocally regulates NDR1, whereby TGFβ triggers the degradation of NDR1 protein. Collectively, our findings define a novel and intimate link between the protein kinase NDR1 and TGFβ signaling. NDR1 suppresses TGFβ-induced transcription and cell cycle arrest, and counteracting NDR1's negative regulation, TGFβ signaling induces the downregulation of NDR1 protein. These findings advance our understanding of TGFβ signaling, with important implications in development and tumorigenesis.
Collapse
Affiliation(s)
- Isabelle Pot
- Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Shachi Patel
- Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Lili Deng
- Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Amrita Singh Chandhoke
- Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Chi Zhang
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Azad Bonni
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Shirin Bonni
- Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Ohshio Y, Teramoto K, Hashimoto M, Kitamura S, Hanaoka J, Kontani K. Inhibition of transforming growth factor-β release from tumor cells reduces their motility associated with epithelial-mesenchymal transition. Oncol Rep 2013; 30:1000-6. [PMID: 23715805 DOI: 10.3892/or.2013.2505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/25/2013] [Indexed: 11/06/2022] Open
Abstract
The high level of transforming growth factor‑β (TGF‑β) in tumor tissue, which is primarily released from tumor cells, helps maintain their metastatic nature and exacerbates the creation of a pro-tumor microenvironment. Although the strategy of targeting TGF‑β in cancer therapy has shown promise, its effects remain limited. In the present study, we focused on tumor cells as sources of TGF‑β release, and hypothesized that inhibition of their TGF‑β release could suppress their epithelial-mesenchymal transition (EMT)-associated metastatic nature and inactivate the induction of suppressor immune cells. To investigate this hypothesis, LLC1 cells, a mouse lung cancer cell line, were cultured with the TGF‑β release inhibitor tranilast and the motility of LLC1 cells was examined. Furthermore, to examine whether inhibition of TGF‑β release influences the induction of regulatory T (Treg) cells, spleen cells from normal mice were cultured in medium in which LLC1 cells had been cultured with tranilast. The results showed that tranilast inhibited the release of TGF‑β1 from LLC1 cells without affecting their proliferation. Inhibition of TGF‑β1 release suppressed the invasive activity of LLC1 cells, but enhanced their activity to adhere. mRNA levels of Slug and Twist were decreased in LLC1 cells, whereas levels of E‑cadherin were recovered. Treg cells were less frequently induced by medium in which LLC1 cells had been cultured with tranilast. Taken together, inhibition of TGF‑β1 release dampens the metastatic nature of LLC1 cells through the downregulation of EMT and possesses the possibility to improve antitumor immune responses through suppression of Treg cell induction. These findings provide a new rationale for development of TGF‑β‑targeted molecular immunotherapy against cancer.
Collapse
Affiliation(s)
- Yasuhiko Ohshio
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Balanis N, Wendt MK, Schiemann BJ, Wang Z, Schiemann WP, Carlin CR. Epithelial to mesenchymal transition promotes breast cancer progression via a fibronectin-dependent STAT3 signaling pathway. J Biol Chem 2013; 288:17954-67. [PMID: 23653350 DOI: 10.1074/jbc.m113.475277] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We previously established that overexpression of the EGF receptor (EGFR) is sufficient to induce tumor formation by otherwise nontransformed mammary epithelial cells, and that the initiation of epithelial-mesenchymal transition (EMT) is capable of increasing the invasion and metastasis of these cells. Using this breast cancer (BC) model, we find that in addition to EGF, adhesion to fibronectin (FN) activates signal transducer and activator of transcription 3 (STAT3) through EGFR-dependent and -independent mechanisms. Importantly, EMT facilitated a signaling switch from SRC-dependent EGFR:STAT3 signaling in pre-EMT cells to EGFR-independent FN:JAK2:STAT3 signaling in their post-EMT counterparts, thereby sensitizing these cells to JAK2 inhibition. Accordingly, human metastatic BC cells that failed to activate STAT3 downstream of EGFR did display robust STAT3 activity upon adhesion to FN. Furthermore, FN enhanced outgrowth in three-dimensional organotypic cultures via a mechanism that is dependent upon β1 integrin, Janus kinase 2 (JAK2), and STAT3 but not EGFR. Collectively, our data demonstrate that matrix-initiated signaling is sufficient to drive STAT3 activation, a reaction that is facilitated by EMT during BC metastatic progression.
Collapse
Affiliation(s)
- Nikolas Balanis
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zhu QC, Gao RY, Wu W, Qin HL. Epithelial-mesenchymal transition and its role in the pathogenesis of colorectal cancer. Asian Pac J Cancer Prev 2013; 14:2689-98. [PMID: 23803016 DOI: 10.7314/apjcp.2013.14.5.2689] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a collection of events that allows the conversion of adherent epithelial cells, tightly bound to each other within an organized tissue, into independent fibroblastic cells possessing migratory properties and the ability to invade the extracellular matrix. EMT contributes to the complex architecture of the embryo by permitting the progression of embryogenesis from a simple single-cell layer epithelium to a complex three-dimensional organism composed of both epithelial and mesenchymal cells. However, in most tissues EMT is a developmentally restricted process and fully differentiated epithelia typically maintain their epithelial phenotype. Recently, elements of EMT, specially the loss of epithelial markers and the gain of mesenchymal markers, have been observed in pathological states, including epithelial cancers. Increasing evidence has confirmed its presence in human colon during colorectal carcinogenesis. In general, chronic inflammation is considered to be one of the causes of many human cancers including colorectal cancer(CRC). Accordingly, epidemiologic and clinical studies indicate that patients affected by ulcerative colitis and Crohn's disease, the two major forms of inflammatory bowel disease, have an increased risk of developing CRC. A large body of evidence supports roles for the SMAD/STAT3 signaling pathway, the NF-kB pathway, the Ras-mitogen- activated protein kinase/Snail/Slug and microRNAs in the development of colorectal cancers via epithelial-to- mesenchymal transition. Thus, EMT appears to be closely involved in the pathogenesis of colorectal cancer, and analysis refered to it can yield novel targets for therapy.
Collapse
Affiliation(s)
- Qing-Chao Zhu
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | | | | | | |
Collapse
|
37
|
Yang L, Ren B, Li H, Yu J, Cao S, Hao X, Ren X. Enhanced antitumor effects of DC-activated CIKs to chemotherapy treatment in a single cohort of advanced non-small-cell lung cancer patients. Cancer Immunol Immunother 2013; 62:65-73. [PMID: 22744010 PMCID: PMC11028994 DOI: 10.1007/s00262-012-1311-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/14/2012] [Indexed: 11/25/2022]
Abstract
Cytokine-induced killer (CIK) cells show cytolytic activity against tumor. The purpose of this study was to evaluate the antitumor effect of dendritic cell (DC)-activated CIK cells in vitro and their clinical efficacy of DC-activated CIK cells in combination with chemotherapy (abbreviated below as chemotherapy plus DC + CIK) in patients with advanced non-small-cell lung cancer (NSCLC). A paired study was performed between 61 patients treated with chemotherapy alone (group 1) and 61 patients treated with chemotherapy plus DC + CIK cells (group 2). In group 2, 36 patients with adenocarcinoma and 18 patients with squamous cell carcinoma were analyzed for the survival rate. Compared to unstimulated CIK cells, DC-activated CIK cells significantly enhanced antitumor activity, increased the ratio of CD3(+)CD56(+) cells, promoted cell proliferation and lessened cell apoptosis. In the paired study, the 1- and 2-year overall survival rates in group 2 were 57.2 and 27.0 %, which were significantly higher than that of group 1 (37.3 and 10.1 %) (P < 0.05). There was no significant difference in the survival rate between the adenocarcinoma and squamous carcinoma patients in group 2. The present study suggests that DC-activated CIK cell has enhanced antitumor effects and chemotherapy plus DC + CIK cells improved the clinical outcomes of chemotherapy for advanced NSCLC patients.
Collapse
Affiliation(s)
- Lili Yang
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Huanhuxi Road, Tiyuanbei, Hexi District, 300060 Tianjin China
- Research Center of Lung Cancer, Tianjin, China
| | - Baozhu Ren
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Huanhuxi Road, Tiyuanbei, Hexi District, 300060 Tianjin China
- Research Center of Lung Cancer, Tianjin, China
| | - Hui Li
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Huanhuxi Road, Tiyuanbei, Hexi District, 300060 Tianjin China
- Research Center of Lung Cancer, Tianjin, China
| | - Jinpu Yu
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Huanhuxi Road, Tiyuanbei, Hexi District, 300060 Tianjin China
- Research Center of Lung Cancer, Tianjin, China
| | - Shui Cao
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Huanhuxi Road, Tiyuanbei, Hexi District, 300060 Tianjin China
- Research Center of Lung Cancer, Tianjin, China
| | - Xishan Hao
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Huanhuxi Road, Tiyuanbei, Hexi District, 300060 Tianjin China
- Research Center of Lung Cancer, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Huanhuxi Road, Tiyuanbei, Hexi District, 300060 Tianjin China
- Research Center of Lung Cancer, Tianjin, China
| |
Collapse
|
38
|
Hsu HY, Lin TY, Hwang PA, Tseng LM, Chen RH, Tsao SM, Hsu J. Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGF receptor degradation in breast cancer. Carcinogenesis 2012; 34:874-84. [DOI: 10.1093/carcin/bgs396] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
39
|
Chen J, Miao L, Jin G, Ren C, Ke Q, Qian Y, Dong M, Li H, Zhang Q, Ding Y, Yan Z, Wang J, Liu Z, Hu Z, Xu Y, Ji G, Shen H. TGFBR1 tagging SNPs and gastric cancer susceptibility: a two-stage case-control study in Chinese population. Mol Carcinog 2012; 53:109-16. [PMID: 22911926 DOI: 10.1002/mc.21954] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/16/2012] [Accepted: 08/01/2012] [Indexed: 01/08/2023]
Abstract
The transforming growth factor (TGF)-β is a potent growth inhibitor primarily responsible for cell growth, differentiation, and apoptosis, and frequently perturbed during development of tumors, including gastric cancer. TGF-β receptor type I (TGFβR1) may be a modifier of cancer risk by constitutively decreasing the TGF-β inhibitory signals during early tumorigenesis and increasing the TGF-β signals in tumor progression. In this study, we hypothesized that genetic variants of TGFBR1 may influence the risk of gastric cancer. We conducted a two-stage case-control study of gastric cancer, including 650 cases and 683 controls in the first stage and 484 cases and 348 controls in the second stage, and genotyped five tagging single nucleotide polymorphisms (SNPs) to represent common variants in the whole TGFBR1 gene. In the first stage, two SNPs rs6478974 and rs10512263 were found to be potentially associated with risk of gastric cancer (P = 3.35 × 10(-3) for rs6478974 AT vs. TT and P = 0.033 for rs10512263 CT vs. TT), which were further confirmed in the second stage with similar effects (P = 0.144 and 0.049, respectively). After combining the two stages, we found that these two SNPs were associated with a significantly increased risk of gastric cancer in dominant models [adjusted odds ratio (OR) = 1.36, 95% confidence interval (CI): 1.14-1.63 for rs6478974 AT/AA vs. TT; adjusted OR = 1.26, 95% CI: 1.05-1.50 for rs10512263 CT/CC vs. TT] or additive model (adjusted OR = 1.23, 95% CI: 1.08-1.40 for rs6478974). These findings indicate that TGFBR1 polymorphisms may be implicated with the development of gastric cancer in Han-Chinese population.
Collapse
Affiliation(s)
- Jianjian Chen
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Health Promotion, Wuxi Center for Disease Prevention and Control, Wuxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Association between TGFBR1 polymorphisms and cancer risk: a meta-analysis of 35 case-control studies. PLoS One 2012; 7:e42899. [PMID: 22905183 PMCID: PMC3414489 DOI: 10.1371/journal.pone.0042899] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/12/2012] [Indexed: 12/15/2022] Open
Abstract
Background Numerous epidemiological studies have evaluated the association between TGFBR1 polymorphisms and the risk of cancer, however, the results remain inconclusive. To derive a more precise estimation of the relation, we conducted a comprehensive meta-analysis of all available case-control studies relating the TGFBR1*6A and IVS7+24G>A polymorphisms of the TGFBR1 gene to the risk of cancer. Methods Eligible studies were identified by search of electronic databases. Overall and subgroup analyses were performed. Odds ratio (OR) and 95% confidence interval (CI) were applied to assess the associations between TGFBR1*6A and IVS7+24G>A polymorphisms and cancer risk. Results A total of 35 studies were identified, 32 with 19,767 cases and 18,516 controls for TGFBR1*6A polymorphism and 12 with 4,195 cases and 4,383 controls for IVS7+24G>A polymorphism. For TGFBR1*6A, significantly elevated cancer risk was found in all genetic models (dominant OR = 1.11, 95% CI = 1.04∼1.18; recessive: OR = 1.36, 95% CI = 1.11∼1.66; additive: OR = 1.13, 95% CI = 1.05∼1.20). In subgroup analysis based on cancer type, increased cancer risk was found in ovarian and breast cancer. For IVS7+24G>A, significant correlation with overall cancer risk (dominant: OR = 1.39, 95% CI = 1.15∼1.67; recessive: OR = 2.23, 95% CI = 1.26∼3.92; additive: OR = 1.43, 95% CI = 1.14∼1.80) was found, especially in Asian population. In the subgroup analysis stratified by cancer type, significant association was found in breast and colorectal cancer. Conclusions Our investigations demonstrate that TGFBR1*6A and IVS7+24G>A polymorphisms of TGFBR1 are associated with the susceptibility of cancer, and further functional research should be performed to explain the inconsistent results in different ethnicities and cancer types.
Collapse
|
41
|
Iwanaga R, Wang CA, Micalizzi DS, Harrell JC, Jedlicka P, Sartorius CA, Kabos P, Farabaugh SM, Bradford AP, Ford HL. Expression of Six1 in luminal breast cancers predicts poor prognosis and promotes increases in tumor initiating cells by activation of extracellular signal-regulated kinase and transforming growth factor-beta signaling pathways. Breast Cancer Res 2012; 14:R100. [PMID: 22765220 PMCID: PMC3680936 DOI: 10.1186/bcr3219] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 07/05/2012] [Indexed: 12/16/2022] Open
Abstract
Introduction Mammary-specific overexpression of Six1 in mice induces tumors that resemble human breast cancer, some having undergone epithelial to mesenchymal transition (EMT) and exhibiting stem/progenitor cell features. Six1 overexpression in human breast cancer cells promotes EMT and metastatic dissemination. We hypothesized that Six1 plays a role in the tumor initiating cell (TIC) population specifically in certain subtypes of breast cancer, and that by understanding its mechanism of action, we could potentially develop new means to target TICs. Methods We examined gene expression datasets to determine the breast cancer subtypes with Six1 overexpression, and then examined its expression in the CD24low/CD44+ putative TIC population in human luminal breast cancers xenografted through mice and in luminal breast cancer cell lines. Six1 overexpression, or knockdown, was performed in different systems to examine how Six1 levels affect TIC characteristics, using gene expression and flow cytometric analysis, tumorsphere assays, and in vivo TIC assays in immunocompromised and immune-competent mice. We examined the molecular pathways by which Six1 influences TICs using genetic/inhibitor approaches in vitro and in vivo. Finally, we examined the expression of Six1 and phosphorylated extracellular signal-regulated kinase (p-ERK) in human breast cancers. Results High levels of Six1 are associated with adverse outcomes in luminal breast cancers, particularly the luminal B subtype. Six1 levels are enriched in the CD24low/CD44+ TIC population in human luminal breast cancers xenografted through mice, and in tumorsphere cultures in MCF7 and T47D luminal breast cancer cells. When overexpressed in MCF7 cells, Six1expands the TIC population through activation of transforming growth factor-beta (TGF-β) and mitogen activated protein kinase (MEK)/ERK signaling. Inhibition of ERK signaling in MCF7-Six1 cells with MEK1/2 inhibitors, U0126 and AZD6244, restores the TIC population of luminal breast cancer cells back to that observed in control cells. Administration of AZD6244 dramatically inhibits tumor formation efficiency and metastasis in cells that express high levels of Six1 ectopically or endogenously. Finally, we demonstrate that Six1 significantly correlates with phosphorylated ERK in human breast cancers. Conclusions Six1 plays an important role in the TIC population in luminal breast cancers and induces a TIC phenotype by enhancing both TGF-β and ERK signaling. MEK1/2 kinase inhibitors are potential candidates for targeting TICs in breast tumors.
Collapse
|
42
|
TGF-β stimulates Pyk2 expression as part of an epithelial-mesenchymal transition program required for metastatic outgrowth of breast cancer. Oncogene 2012; 32:2005-15. [PMID: 22710711 DOI: 10.1038/onc.2012.230] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) programs are essential in promoting breast cancer invasion, systemic dissemination and in arousing proliferative programs in breast cancer micrometastases, a reaction that is partially dependent on focal adhesion kinase (FAK). Many functions of FAK are shared by its homolog, protein tyrosine kinase 2 (Pyk2), raising the question as to whether Pyk2 also participates in driving the metastatic outgrowth of disseminated breast cancer cells. In addressing this question, we observed Pyk2 expression to be (i) significantly upregulated in recurrent human breast cancers; (ii) differentially expressed across clonal isolates of human MDA-MB-231 breast cancer cells in a manner predictive for metastatic outgrowth, but not for invasiveness; and (iii) dramatically elevated in ex vivo cultures of breast cancer cells isolated from metastatic lesions as compared with cells that produced the primary tumor. We further show that metastatic human and murine breast cancer cells robustly upregulate their expression of Pyk2 during EMT programs stimulated by transforming growth factor-β (TGF-β). Genetic and pharmacological inhibition of Pyk2 demonstrated that the activity of this protein tyrosine kinase was dispensable for the ability of breast cancer cells to undergo invasion in response to TGF-β, and to form orthotopic mammary tumors in mice. In stark contrast, Pyk2-deficiency prevented TGF-β from stimulating the growth of breast cancer cells in 3D-organotypic cultures that recapitulated pulmonary microenvironments, as well as inhibited the metastatic outgrowth of disseminated breast cancer cells in the lungs of mice. Mechanistically, Pyk2 expression was inversely related to that of E-cadherin, such that elevated Pyk2 levels stabilized β1 integrin expression necessary to initiate the metastatic outgrowth of breast cancer cells. Thus, we have delineated novel functions for Pyk2 in mediating distinct elements of the EMT program and metastatic cascade regulated by TGF-β, particularly the initiation of secondary tumor outgrowth by disseminated cells.
Collapse
|
43
|
Salm S, Burger PE, Wilson EL. TGF-β and stem cell factor regulate cell proliferation in the proximal stem cell niche. Prostate 2012; 72:998-1005. [PMID: 22024978 PMCID: PMC3275683 DOI: 10.1002/pros.21505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/29/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND Stem cells are located in specific regulatory environments termed niches, which modulate the survival and proliferation of the cells through a variety of both mitogenic and inhibitory cytokines. In the murine prostate, stem cells are located in the proximal region of prostatic ducts. We examined the regulation of murine prostate cells in the stem cell niche by transforming growth factor beta (TGF-β) and stem cell factor (SCF). METHODS Prostate cells from the proximal and distal regions of prostatic ducts were cultured in the presence and absence of TGF-β and SCF, both on collagen-coated wells and in collagen gels. Cell growth on collagen was assessed by determining cell number. Cell growth in collagen gels was quantified by determining the number, size and complexity of prostatic ducts. The basal and luminal phenotype of the cells was determined by immunohistochemistry. RESULTS Endogenous TGF-β inhibited proliferation and promoted differentiation of proximal cells towards a luminal phenotype. It also inhibited duct-forming capacity and promoted differentiation of prostatic ducts towards a luminal phenotype. Addition of SCF enhanced proximal cell proliferation on collagen-coated wells and duct formation in collagen gels. Proliferation was further increased by ablation of endogenous TGF-β. CONCLUSION Proliferation and the basal/luminal cell composition of cells isolated from the proximal region of prostatic ducts, the stem cell niche, is regulated in part by opposing effects of SCF and endogenous TGF-β.
Collapse
Affiliation(s)
- Sarah Salm
- Department of Cell Biology, New York University School of Medicine, New York, New York
- Borough of Manhattan Community College, New York, New York
| | - Patricia E. Burger
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - E. Lynette Wilson
- Department of Cell Biology, New York University School of Medicine, New York, New York
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- New York University Cancer Institute, New York University School of Medicine, New York, New York
- Department of Urology, New York University School of Medicine, New York, New York
- Correspondence to E. Lynette Wilson, New York University School of Medicine, 550 First Avenue, NY, NY 10016, USA, , tel: 212-263-7684
| |
Collapse
|
44
|
Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-β signaling in breast cancer cells. Neoplasia 2011; 13:406-18. [PMID: 21532881 DOI: 10.1593/neo.101086] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 01/16/2023] Open
Abstract
Transforming growth factor-β (TGF-β) regulates all stages of mammary gland development, including the maintenance of tissue homeostasis and the suppression of tumorigenesis in mammary epithelial cells (MECs). Interestingly, mammary tumorigenesis converts TGF-β from a tumor suppressor to a tumor promoter through molecular mechanisms that remain incompletely understood. Changes in integrin signaling and tissue compliance promote the acquisition of malignant phenotypes in MECs in part through the activity of lysyl oxidase (LOX), which regulates desmoplastic reactions and metastasis. TGF-β also regulates the activities of tumor reactive stroma and MEC metastasis. We show here that TGF-β1 stimulated the synthesis and secretion of LOX from normal and malignant MECs in vitro and in mammary tumors produced in mice. The ability of TGF-β1 to activate Smad2/3 was unaffected by LOX inactivation in normal MECs, whereas the stimulation of p38 MAPK by TGF-β1 was blunted by inhibiting LOX activity in malignant MECs or by inducing the degradation of hydrogen peroxide in both cell types. Inactivating LOX activity impaired TGF-β1-mediated epithelial-mesenchymal transition and invasion in breast cancer cells. We further show that increasing extracellular matrix rigidity by the addition of type I collagen to three-dimensional organotypic cultures promoted the proliferation of malignant MECs, a cellular reaction that was abrogated by inhibiting the activities of TGF-β1 or LOX, and by degrading hydrogen peroxide. Our findings identify LOX as a potential mediator that couples mechanotransduction to oncogenic signaling by TGF-β1 and suggest that measures capable of inactivating LOX function may prove effective in diminishing breast cancer progression stimulated by TGF-β1.
Collapse
|
45
|
Raju R, Nanjappa V, Balakrishnan L, Radhakrishnan A, Thomas JK, Sharma J, Tian M, Palapetta SM, Subbannayya T, Sekhar NR, Muthusamy B, Goel R, Subbannayya Y, Telikicherla D, Bhattacharjee M, Pinto SM, Syed N, Srikanth MS, Sathe GJ, Ahmad S, Chavan SN, Kumar GSS, Marimuthu A, Prasad TSK, Harsha HC, Rahiman BA, Ohara O, Bader GD, Sujatha Mohan S, Schiemann WP, Pandey A. NetSlim: high-confidence curated signaling maps. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar032. [PMID: 21959865 PMCID: PMC3263596 DOI: 10.1093/database/bar032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We previously developed NetPath as a resource for comprehensive manually curated signal transduction pathways. The pathways in NetPath contain a large number of molecules and reactions which can sometimes be difficult to visualize or interpret given their complexity. To overcome this potential limitation, we have developed a set of more stringent curation and inclusion criteria for pathway reactions to generate high-confidence signaling maps. NetSlim is a new resource that contains this ‘core’ subset of reactions for each pathway for easy visualization and manipulation. The pathways in NetSlim are freely available at http://www.netpath.org/netslim. Database URL:www.netpath.org/netslim
Collapse
Affiliation(s)
- Rajesh Raju
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jing Y, Han Z, Zhang S, Liu Y, Wei L. Epithelial-Mesenchymal Transition in tumor microenvironment. Cell Biosci 2011; 1:29. [PMID: 21880137 PMCID: PMC3179439 DOI: 10.1186/2045-3701-1-29] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/31/2011] [Indexed: 02/08/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and also in the tumor invasion process. In addition, EMT also causes disruption of cell-cell adherence, loss of apico-basal polarity, matrix remodeling, increased motility and invasiveness in promoting tumor metastasis. The tumor microenvironment plays an important role in facilitating cancer metastasis and may induce the occurrence of EMT in tumor cells. A large number of inflammatory cells infiltrating the tumor site, as well as hypoxia existing in a large area of tumor, in addition many stem cells present in tumor microenvironment, such as cancer stem cells (CSCs), mesenchymal stem cells (MSCs), all of these may be the inducers of EMT in tumor cells. The signaling pathways involved in EMT are various, including TGF-β, NF-κB, Wnt, Notch, and others. In this review, we discuss the current knowledge about the role of the tumor microenvironment in EMT and the related signaling pathways as well as the interaction between them.
Collapse
Affiliation(s)
- Yingying Jing
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medicial University, Shanghai, China.
| | | | | | | | | |
Collapse
|
47
|
Preclinical efficacy of cystatin C to target the oncogenic activity of transforming growth factor Beta in breast cancer. Transl Oncol 2011; 2:174-83. [PMID: 19701502 DOI: 10.1593/tlo.09145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 04/07/2009] [Accepted: 04/20/2009] [Indexed: 11/18/2022] Open
Abstract
We previously identified cystatin C (CystC) as a novel antagonist of transforming growth factor beta (TGF-beta) signaling in normal and malignant cells. However, whether the anti-TGF-beta activities of CystC can be translated to preclinical animal models of breast cancer growth and metastasis remains unproven. Assessing the preclinical efficacy of CystC was accomplished using metastatic 4T1 breast cancer cells, whose oncogenic responses to TGF-beta were inhibited both in vitro and in vivo. Indeed, we observed CystC to prevent TGF-beta from stimulating the growth and pulmonary metastasis of 4T1 tumors in mice in part by reducing the extent of Smad2, p38 mitogen-activated protein kinase, and extracellular signal-regulated kinase 1/2 phosphorylation present in 4T1 tumors. We also found CystC to significantly antagonize angiogenesis in developing 4T1 tumors, suggesting a novel role for CystC in uncoupling TGF-beta signaling in endothelial cells (ECs). Accordingly, CystC dramatically reduced murine and human EC responsiveness to TGF-beta, including their ability to regulate the expression of 1) TGF-beta signaling components, 2) inhibitor of differentiation (ID) family members, and 3) matrix metalloproteinases and their inhibitors (TIMPs) and to undergo cell invasion and angiogenic sprouting stimulated by TGF-beta. Importantly, CystC prevented TGF-beta from stimulating vessel development in Matrigel plugs implanted into genetically normal mice. Collectively, our findings provide the first preclinical evidence that CystC is efficacious in preventing breast cancer progression and angiogenesis stimulated by the oncogenic TGF-beta signaling system and suggest that CystC-based chemotherapeutics possesses translational efficacy to one day treat and improve the clinical course of late-stage breast cancers.
Collapse
|
48
|
Tian M, Neil JR, Schiemann WP. Transforming growth factor-β and the hallmarks of cancer. Cell Signal 2011; 23:951-62. [PMID: 20940046 PMCID: PMC3076078 DOI: 10.1016/j.cellsig.2010.10.015] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/01/2010] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells.
Collapse
Affiliation(s)
- Maozhen Tian
- Division of General Medical Sciences–Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Jason R. Neil
- Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - William P. Schiemann
- Division of General Medical Sciences–Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
49
|
Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL. TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res 2011; 71:4707-19. [PMID: 21555371 DOI: 10.1158/0008-5472.can-10-4554] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Breast cancer recurrence is believed to be caused by a subpopulation of cancer cells that possess the stem cell attribute of treatment resistance. Recently, we and others have reported the generation of breast cancer stem cells (BCSC) by epithelial-mesenchymal transition (EMT), although the physiologic process by which these cells may arise in vivo remains unclear. We show here that exposure of tumor cells to TGFβ and TNFα induces EMT and, more importantly, generates cells with a stable BCSC phenotype which is shown by increased self-renewing capacity, greatly increased tumorigenicity, and increased resistance to oxaliplatin, etoposide, and paclitaxel. Furthermore, gene expression analyses found that the TGFβ/TNFα-derived BCSCs showed downregulated expression of genes encoding claudin 3, 4, and 7 and the luminal marker, cytokeratin 18. These changes indicate a shift to the claudin-low molecular subtype, a recently identified breast cancer subtype characterized by the expression of mesenchymal and stem cell-associated markers and correlated with a poor prognosis. Taken together, the data show that cytokine exposure can be used to generate stable BCSCs ex vivo, and suggest that these cells may provide a valuable tool in the identification of stem cell-directed biomarkers and therapies in breast cancer.
Collapse
Affiliation(s)
- Michael K Asiedu
- Department of Immunology and Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
50
|
The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 2011; 6:209-17. [PMID: 21107292 DOI: 10.1097/jto.0b013e3181f8a1bd] [Citation(s) in RCA: 441] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maintenance of both normal epithelial tissues and their malignant counterparts is supported by the host tissue stroma. The tumor stroma mainly consists of the basement membrane, fibroblasts, extracellular matrix, immune cells, and vasculature. Although most host cells in the stroma possess certain tumor-suppressing abilities, the stroma will change during malignancy and eventually promote growth, invasion, and metastasis. Stromal changes at the invasion front include the appearance of carcinoma-associated fibroblasts (CAFs). CAFs constitute a major portion of the reactive tumor stroma and play a crucial role in tumor progression. The main precursors of CAFs are normal fibroblasts, and the transdifferentiation of fibroblasts to CAFs is driven to a great extent by cancer-derived cytokines such as transforming growth factor-β. During recent years, the crosstalk between the cancer cells and the tumor stroma, highly responsible for the progression of tumors and their metastasis, has been increasingly unveiled. A better understanding of the host stroma contribution to cancer progression will increase our knowledge about the growth promoting signaling pathways and hopefully lead to novel therapeutic interventions targeting the tumor stroma. This review reports novel data on the essential crosstalk between cancer cells and cells of the tumor stroma, with an emphasis on the role played by CAFs. Furthermore, it presents recent literature on relevant tumor stroma- and CAF-related research in non-small cell lung cancer.
Collapse
|