1
|
Muhammad W, Liang M, Wang B, Xie J, Ahmed W, Gao C. NAC-Grafted ROS-Scavenging Polymer Nanoparticles for Modulation of Acute Lung Injury Microenvironment In Vivo. Biomacromolecules 2025; 26:528-540. [PMID: 39729531 DOI: 10.1021/acs.biomac.4c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
N-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI. The NAC-grafted polymer nanoparticles (NPT@NPs) were prepared as a drug delivery system, which could effectively scavenge free radicals and reduce inflammation in vitro. The administration of NPT@NPs exhibited notable efficacy in ameliorating pulmonary edema, attenuating the presence of inflammatory cells, suppressing myeloperoxidase expression, diminishing the levels of pro-inflammatory cytokines, and reversing cell apoptosis in an ALI model induced by lipopolysaccharide (LPS). The NPT@NPs demonstrated significantly better efficacy compared to the free NAC in mitigating the deleterious effects of LPS on pulmonary tissue, thereby providing more effective protection against pulmonary inflammation.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Liang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Beiduo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Kumar BK, Kumar GS. Development and characterization of palbociclib-loaded PLGA nanobubbles for targeted cancer therapy. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:81-99. [PMID: 39270837 DOI: 10.1016/j.pharma.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE The objective of this study was to develop and optimize palbociclib-loaded nanobubbles for targeted breast cancer therapy. MATERIALS AND METHODS Biocompatible poly(DL-lactide-co-glycolide) was used to create nanobubbles loaded with palbociclib. The formulation process was meticulously crafted using a three-level Box-Behnken design and a double emulsion solvent evaporation method to precisely tailor the nanobubbles' properties. RESULTS The Derringer's desirability method optimized variables by transforming responses into a desirability scale, resulting in a global desirability value. Optimal settings, A: 526.97mg, B: 250mg,C: 2.0% w/v, D: 6101rpm, achieved a D value of 0.949. Palbociclib nanobubbles demonstrated a smaller particle size (31.78±2.12) than plain nanobubbles (38.56±3.56). PDI values indicated a uniform size distribution. The zeta potential remained consistent, with values of -31.34±3.36 for plain and -31.56±3.12 for drug-loaded nanobubbles. Encapsulation efficiency was 70.12%, highlighting effective drug encapsulation. Palbociclib release was significantly higher from nanobubbles in pH 7.4, especially with ultrasound, releasing almost 99.34% of the drug. Hemolytic activity assays confirmed safety for injection. Fluorescent intensity analysis revealed a two-fold increase in cellular uptake of palbociclib facilitated by ultrasound. The MTT assay demonstrated enhanced cytotoxicity of palbociclib-loaded nanobubbles, especially with ultrasound, emphasizing their potential for improved therapeutic efficacy. The IC50 values for palbociclib, without ultrasound, and with ultrasound were 98.3μM, 72.34μM, and 61.34μM, respectively. CONCLUSION The significant findings of this study emphasize the potential of palbociclib-loaded nanobubbles as a promising therapeutic system for improved breast cancer treatment.
Collapse
Affiliation(s)
- Boddu Kishore Kumar
- GITAM School of Pharmacy, GITAM Deemed to be University, 502329 Hyderabad, Telangana, India
| | - Gubbiyappa Shiva Kumar
- GITAM School of Pharmacy, GITAM Deemed to be University, 502329 Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Liu Y, Craig DQM, Parhizkar M. Controlled release of doxorubicin from Poly-(D,L-lactide-co-glycolide) (PLGA) nanoparticles prepared by coaxial electrospraying. Int J Pharm 2024; 666:124724. [PMID: 39312984 DOI: 10.1016/j.ijpharm.2024.124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Enhancing the efficacy and reducing the toxicity of chemotherapeutic agents like doxorubicin (DOX) is crucial in cancer treatment. Core-shell nanoparticles (NPs) fabricated by coaxial electrospraying offer controlled release of anticancer agents with the polymer shell protecting drug molecules from rapid degradation, prolonging therapeutic effect. This study developed DOX-loaded poly(lactic-co-glycolic acid) (PLGA) NPs. NPs were fabricated with matrix or core-shell structure via single needle or coaxial electrospraying, respectively. Core-shell NPs exhibited high encapsulation efficiency (>80 %) with controlled DOX distribution. Compared to matrix NPs, core-shell NPs demonstrated slower sustained release (69 % in 144 h) after reduced initial burst (22 % in 8 h). Release kinetics followed a diffusion mechanism when compared to free drug and matrix DOX-loaded NPs. In vitro assays showed core-shell NPs' enhanced cytotoxicity against breast cancer cells MCF-7, with higher uptake observed by fluorescence microscopy and flow cytometry. The IC50 for core-shell NPs displayed a significant drop (0.115 μg/mL) compared to matrix NPs (0.235 μg/mL) and free DOX (1.482 μg/mL) after 72 h. Coaxial electrospraying enables the production of therapeutically advantageous core-shell NPs, offering controlled drug release with high encapsulation efficiency, potentially improving clinical anticancer chemotherapy.
Collapse
Affiliation(s)
- Yinan Liu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | - Maryam Parhizkar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
4
|
Manral K, Singh A, Singh Y. Nanotechnology as a potential treatment for diabetes and its complications: A review. Diabetes Metab Syndr 2024; 18:103159. [PMID: 39612615 DOI: 10.1016/j.dsx.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIM Diabetes mellitus is a chronic metabolic disorder that causes multiple complications in various organs, such as the kidney, liver and cardiovascular system. These complications are the main causes of morbidity and mortality in patients with diabetes. Nanotechnology offers new opportunities for the therapy of diabetes and its multiple complications through site-specific and precise drug delivery. This review summarizes the various studies demonstrating the potential applications of different nanoparticles in diabetes-associated complications. METHOD A literature search was conducted using PubMed, Google Scholar and Scopus databases, focusing on the role of nanoparticles in the improved delivery of various hypoglycemic agents for the treatment of microvascular and macrovascular diabetic complications. RESULTS Numerous studies have shown that nanoparticles, such as nanoliposomes, polymeric micelles, dendrimers and metallic nanoparticles, improve the delivery of various hypoglycemic agents. Moreover, nanoparticles have been found to be safer, with improved pharmacokinetic and pharmacodynamic profiles. CONCLUSION This review outlines the significant role of nanotechnology in diabetes and related complications and its superiority over conventional drug delivery.
Collapse
Affiliation(s)
- Kanika Manral
- Department of Pharmaceutical Sciences, Faculty of Technology Sir J.C Bose Technical Campus Bhimtal, Kumaun University Nainital, 263136, India.
| | - Anita Singh
- Department of Pharmaceutical Sciences, Faculty of Technology Sir J.C Bose Technical Campus Bhimtal, Kumaun University Nainital, 263136, India.
| | - Yuvraj Singh
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Medchal, Hyderabad, 500078, India.
| |
Collapse
|
5
|
Żmuda A, Kamińska W, Bartel M, Głowacka K, Chotkowski M, Medyńska K, Wiktorska K, Mazur M. Physicochemical characterization and potential cancer therapy applications of hydrogel beads loaded with doxorubicin and GaOOH nanoparticles. Sci Rep 2024; 14:20822. [PMID: 39242631 PMCID: PMC11379898 DOI: 10.1038/s41598-024-67709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 09/09/2024] Open
Abstract
A new type of hybrid polymer particles capable of carrying the cytostatic drug doxorubicin and labeled with a gallium compound was prepared. These microparticles consist of a core and a hydrogel shell, which serves as the structural matrix. The shell can be employed to immobilize gallium oxide hydroxide (GaOOH) nanoparticles and the drug, resulting in hybrid beads with sizes of approximately 3.81 ± 0.09 μm. The microparticles exhibit the ability to incorporate a remarkably large amount of doxorubicin, approximately 0.96 mg per 1 mg of the polymeric carrier. Additionally, GaOOH nanoparticles can be deposited within the hydrogel layer at an amount of 0.64 mg per 1 mg of the carrier. These nanoparticles, resembling rice grains with an average size of 593 nm by 155 nm, are located on the surface of the polymer carrier. In vitro studies on breast and colon cancer cell lines revealed a pronounced cytotoxic effect of the hybrid polymer particles loaded with doxorubicin, indicating their potential for cancer therapies. Furthermore, investigations on doping the hybrid particles with the Ga-68 radioisotope demonstrated their potential application in positron emission tomography (PET) imaging. The proposed structures present a promising theranostic platform, where particles could be employed in anticancer therapies while monitoring their accumulation in the body using PET.
Collapse
Affiliation(s)
- Aleksandra Żmuda
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Weronika Kamińska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Marta Bartel
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Karolina Głowacka
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Maciej Chotkowski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Katarzyna Medyńska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Katarzyna Wiktorska
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
Masclef JB, Acs EMN, Koehnke J, Prunet J, Schmidt BVKJ. PEGose Block Poly(lactic acid) Nanoparticles for Cargo Delivery. Macromolecules 2024; 57:6013-6023. [PMID: 39005948 PMCID: PMC11238580 DOI: 10.1021/acs.macromol.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
Hydrophilic polymers have found ubiquitous use in drug delivery and novel polymer materials to advance drug delivery systems are highly sought after. Herein, an amylose mimic (PEGose) was combined with poly(lactic acid) (PLA) in an amphiphilic block copolymer to form PEG-free nanoparticles as an alternative to PEG-based nanomedicines. The block copolymer self-assembled into 150-200 nm particles with a narrow dispersity in aqueous environment. The formed nanoparticles were capable of encapsulation, the sustained release of both hydrophilic and hydrophobic dyes. Moreover, the nanoparticles were found to be remarkably stable and had a very low cytotoxicity and a high propensity to penetrate cells. These results highlight the potential of PEGose-b-PLA to be used in drug delivery with a new hydrophilic building block.
Collapse
Affiliation(s)
- Jean-Baptiste Masclef
- School
of Chemistry, University of Glasgow, Joseph Black Building, G12 8QQ Glasgow, U.K.
| | - Emmanuelle M. N. Acs
- School
of Chemistry, University of Glasgow, Joseph Black Building, G12 8QQ Glasgow, U.K.
| | - Jesko Koehnke
- School
of Chemistry, University of Glasgow, Joseph Black Building, G12 8QQ Glasgow, U.K.
- Institute
of Food Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Joëlle Prunet
- School
of Chemistry, University of Glasgow, Joseph Black Building, G12 8QQ Glasgow, U.K.
| | | |
Collapse
|
7
|
Mahmud MM, Pandey N, Winkles JA, Woodworth GF, Kim AJ. Toward the scale-up production of polymeric nanotherapeutics for cancer clinical trials. NANO TODAY 2024; 56:102314. [PMID: 38854931 PMCID: PMC11155436 DOI: 10.1016/j.nantod.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nanotherapeutics have gained significant attention for the treatment of numerous cancers, primarily because they can accumulate in and/or selectively target tumors leading to improved pharmacodynamics of encapsulated drugs. The flexibility to engineer the nanotherapeutic characteristics including size, morphology, drug release profiles, and surface properties make nanotherapeutics a unique platform for cancer drug formulation. Polymeric nanotherapeutics including micelles and dendrimers represent a large number of formulation strategies developed over the last decade. However, compared to liposomes and lipid-based nanotherapeutics, polymeric nanotherapeutics have had limited clinical translation from the laboratory. One of the key limitations of polymeric nanotherapeutics formulations for clinical translation has been the reproducibility in preparing consistent and homogeneous large-scale batches. In this review, we describe polymeric nanotherapeutics and discuss the most common laboratory and scale-up formulation methods, specifically those proposed for clinical cancer therapies. We also provide an overview of the major challenges and opportunities for scaling polymeric nanotherapeutics to clinical-grade formulations. Finally, we will review the regulatory requirements and challenges in advancing nanotherapeutics to the clinic.
Collapse
Affiliation(s)
- Md Musavvir Mahmud
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A. Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anthony J. Kim
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Voznyuk AA, Makarets YA, Advakhova DY, Khafizov KA, Lugovoi ME, Zakharova VA, Senatov FS, Koudan EV. Biodegradable Local Chemotherapy Platform with Prolonged and Controlled Release of Doxorubicin for the Prevention of Local Tumor Recurrence. ACS APPLIED BIO MATERIALS 2024; 7:2472-2487. [PMID: 38480461 DOI: 10.1021/acsabm.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Local recurrence after surgical and therapeutic treatment remains a significant clinical problem in oncology. Recurrence may be due to imperfections in existing therapies, particularly chemotherapy. To improve antitumor activity and prevent local cancer recurrence while keeping toxicity at acceptable levels, we have developed and demonstrated a biodegradable local chemotherapy platform that provides controlled and prolonged drug release. The platform consists of a polycaprolactone (PCL) substrate, which provides the structural integrity of the platform and the predominant unidirectional drug release, and a thin multilayer coating (∼200 nm) containing doxorubicin (DOX). The coating is an electrostatic complex obtained by the layer-by-layer (LbL) assembly and consists of natural polyelectrolytes [poly-γ-glutamic acid (γ-PGA) and chitosan (CS) or poly-l-lysine (PLL)]. To improve the release stability, an ionic conjugate of DOX and γ-PGA was prepared and incorporated into the multilayer coating. By varying the structure of the coating by adding empty (without DOX) bilayers, we were able to control the kinetics of drug release. The resulting platforms contained equal numbers of empty bilayers and DOX-loaded bilayers (15 + 15 or 30 + 30 bilayers) with a maximum loading of 566 ng/cm2. The platforms demonstrated prolonged and fairly uniform drug release for more than 5 months while retaining antitumor activity in vitro on ovarian cancer cells (SKOV-3). The empty platforms (without DOX) showed good cytocompatibility and no cytotoxicity to human fibroblasts and SKOV-3 cells. This study presents the development of a local chemotherapy platform consisting of a PCL-based substrate which provides structural stability and a biodegradable polyelectrolyte layered coating which combines layers containing a polyanion ionic complex with DOX with empty bilayers to ensure prolonged and controlled drug release. Our results may provide a basis for improving the efficacy of chemotherapy using drug delivery systems.
Collapse
Affiliation(s)
- Amina A Voznyuk
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Yulia A Makarets
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Darya Yu Advakhova
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Krestina A Khafizov
- Haute École de la Province de Namur, Henri Blès st. 192, Namur 5000, Belgium
| | - Maksim E Lugovoi
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Vasilina A Zakharova
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Fedor S Senatov
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Elizaveta V Koudan
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| |
Collapse
|
9
|
Glaive AS, Cœur CL, Guigner JM, Amiel C, Volet G. Amphiphilic Heterograft Copolymers Bearing Biocompatible/Biodegradable Grafts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2050-2063. [PMID: 38243903 DOI: 10.1021/acs.langmuir.3c02772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The amphiphilic heterograft copolymers bearing biocompatible/biodegradable grafts [poly(2-methyl-2-oxazoline-co-2-pentyl-2-oxazoline)-g-poly(d-l-lactic acid)/poly(2-ethyl-2-oxazoline)] were synthesized successfully by the combination of cationic ring-opening polymerization and click chemistry via the ⟨"grafting to"⟩ approach. The challenge of this synthesis was to graft together hydrophobic and hydrophilic chains on a hydrophilic platform based on PMeOx. The efficiency of grafting depends on the chemical nature of the grafts and of the length of the macromolecular chains. The self-assembly of these polymers in aqueous media was investigated by DLS, cryo-TEM, and SANS. The results demonstrated that different morphologies were obtained from nanospheres and vesicles to filaments depending on the hydrophilic weight ratio in the heterograft copolymer varying from 0.38 until 0.84. As poly(2-ethyl-2-oxazoline) is known to be thermoresponsive, the influence of temperature rise on the nanoassembly stability was studied in water and in a physiological medium. SANS and DLS measurements during a temperature ramp allowed to show that nanoassemblies start to self-assemble in "raspberry like" primary structures at 50 °C, and these structures grow and get denser as the temperature is increased further. These amphiphilic heterograft copolymers may include hydrophobic drugs and should find important applications for biomedical applications which require stealth properties.
Collapse
Affiliation(s)
- Aline-Sarah Glaive
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
| | - Clémence Le Cœur
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR CEA Saclay, Gif sur Yvette 91191, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, IRD, CNRS UMR7590, MNHN; 4 place Jussieu, Paris 75252, France
| | - Catherine Amiel
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
| | - Gisèle Volet
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
- Université d'Evry Val d'Essonne, Rue du Père Jarlan, Evry cedex 91025, France
| |
Collapse
|
10
|
Saren BN, Mahajan S, Aalhate M, Kumar R, Chatterjee E, Maji I, Gupta U, Guru SK, Singh PK. Fucoidan-mediated targeted delivery of dasatinib-loaded nanoparticles amplifies apoptosis and endows cytotoxic potential in triple-negative breast cancer. Colloids Surf B Biointerfaces 2024; 233:113631. [PMID: 37979483 DOI: 10.1016/j.colsurfb.2023.113631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
Dasatinib (DST) is a tyrosine kinase inhibitor with established antiproliferative activity in Triple-negative breast cancer. Conventional treatment strategies with DST have several pitfalls related to the development of resistance, lower cellular uptake and unwanted adverse effects. To address these issues, we have prepared P-selectin-targeted nanoparticles of DST with fucoidan (FUC) as a ligand. Poly lactide-co-glycolide nanoparticles of DST were coated with chitosan (CH) and FUC via electrostatic interaction (DST-CH-FUC-NPs). The mean particle size of 210.36 ± 0.66 nm and a polydispersity index of 0.234 ± 0.013 was observed for DST-CH-FUC-NPs. TEM and FTIR analysis proved CH coating followed by an FUC layer on nanoparticles. DST-CH-FUC-NPs showed a sustained release profile up to 120 h and 2.9 times less hemolytic potential than free DST suspension. DST-CH-FUC-NPs demonstrated 8-fold higher cytotoxicity compared to free DST in MDA-MB-231 cells. Rhodamine-CH-FUC- NPs showed 19 times and 3 times higher cellular uptake than free Rhodamine and Rhodamine-CH-NPs, respectively. DST-CH-FUC-NPs also displayed increased ROS production and mitochondrial membrane potential damage. Apoptosis study revealed a 7.5-fold higher apoptosis index for DST-CH-FUC-NPs than free DST. Subsequently, the DST-CH-FUC-NPs showed increased inhibition of cell migration, where approximately 5 % wound closure was noted. Further, DST-CH-FUC-NPs confirmed higher disruption of lysosomal membrane integrity, which is well correlated with apoptosis results. In addition, developed NPs were nontoxic on MCF 10 A normal cells. All these findings suggest that fabricated DST-CH-FUC-NPs are promising biocompatible carriers for tumor-targeted delivery and enhanced efficacy of dasatinib.
Collapse
Affiliation(s)
- Brojendra Nath Saren
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Essha Chatterjee
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India.
| |
Collapse
|
11
|
Song J, Cheng M, Xie Y, Li K, Zang X. Efficient tumor synergistic chemoimmunotherapy by self-augmented ROS-responsive immunomodulatory polymeric nanodrug. J Nanobiotechnology 2023; 21:93. [PMID: 36927803 PMCID: PMC10018933 DOI: 10.1186/s12951-023-01842-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Immunotherapy has emerged as a promising therapeutic strategy for cancer therapy. However, the therapeutic efficacy has been distracted due to poor immunogenicity and immunosuppressive tumor microenvironment. In this study, a self-augmented reactive oxygen species (ROS) responsive nanocarrier with immunogenic inducer paclitaxel (PTX) and indoleamine 2,3-dixoygenase 1 (IDO1) blocker 1-methyl-D, L-tryptophan (1-MT) co-entrapment was developed for tumor rejection. The carrier was composed of poly (ethylene glycol) (PEG) as hydrophilic segments, enzyme cleavable 1-MT ester and ROS-sensitive peroxalate conjugation as hydrophobic blocks. The copolymer could self-assemble into prodrug-based nanoparticles with PTX, realizing a positive feedback loop of ROS-accelerated PTX release and PTX induced ROS generation. Our nanoparticles presented efficient immunogenic cell death (ICD) which provoked antitumor immune responses with high effector T cells infiltration. Meanwhile immunosuppressive tumor microenvironment was simultaneously modulated with reduced regulatory T cells (Tregs) and M2-tumor associated macrophages (M2-TAMs) infiltration mediated by IDO inhibition. The combination of PTX and 1-MT achieved significant primary tumor regression and reduction of lung metastasis in 4T1 tumor bearing mice. Therefore, the above results demonstrated co-delivery of immunogenic inducer and IDO inhibitor using the ROS amplifying nanoplatform with potent potential for tumor chemoimmunotherapy.
Collapse
Affiliation(s)
- Jinxiao Song
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Mingyang Cheng
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Yi Xie
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Kangkang Li
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China.
| |
Collapse
|
12
|
Encapsulation of Doxorubicin in Carboxymethyl-β-cyclodextrin in aqueous medium mediated by pH-modulated Electrostatics Interactions. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
13
|
Doxorubicin and tamoxifen loaded graphene oxide nanoparticle functionalized with chitosan and folic acid for anticancer drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Dey SK, Pradhan A, Roy T, Das S, Chattopadhyay D, Maiti Choudhury S. Biogenic polymer-encapsulated diosgenin nanoparticles: Biodistribution, pharmacokinetics, cellular internalization, and anticancer potential in breast cancer cells and tumor xenograft. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Heidari S, Akhlaghi M, Sadeghi M, Kheirabadi AM, Beiki D, Ardekani AE, Rouhollah A, Saeidzadeh P, Soleyman R. Development of 64Cu-DOX/DOX-loaded chitosan-BSA multilayered hollow microcapsules for selective lung drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Ibrahim A, Khalil IA, El-Sherbiny IM. Development and evaluation of core-shell nanocarrier system for enhancing the cytotoxicity of doxorubicin/ metformin combination against breast cancer cell line. J Pharm Sci 2022; 111:2581-2591. [PMID: 35613685 DOI: 10.1016/j.xphs.2022.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most invasive and life-threatening cancer in women. The treatment options are usually a combination of mastectomy, radiation therapy, hormonal therapy and chemotherapy. As a standard practice, doxorubicin (DOX) is one of the commonly used drugs for breast cancer treatment. However, DOX is known to have many harmful adverse effects including its cardiotoxicity. Hence, recent reports used metformin (MET), an anti-diabetic drug, as an adjuvant therapy to decrease the severity of DOX's adverse effects and to improve its ultimate therapeutic outcome. The current study is aimed at co-loading and enhancing the encapsulation efficiency of the hydrophilic DOX and MET in poly(lactic-co-glycolic acid) (PLGA) nanocapsules (NCs) with oil core for breast cancer treatment. The NCs were developed by single emulsification-solvent diffusion technique, and were optimized through using two types of oils, pluronics and PLGA (50:50) of different molecular weights followed by various physicochemical characterizations. The obtained DOX/MET-loaded NCs showed the size and polydispersity index (PDI) of 203.0 ± 3.4 nm and 0.081 ± 0.03, respectively with a surface charge of -2.15 ± 0.2 mV. The entrapment efficiency of DOX and MET were about 93.7% ± 2.9 and 70% ± 1.6, respectively. The developed PLGA core-shell NCs successfully sustained the DOX/MET release for more than 30 days. The in-vitro results showed a significant enhancement in DOX cytotoxic effect as well as a duplication in its apoptotic effect upon addition of MET for both free DOX/MET combination and DOX/MET-loaded PLGA NCs against MCF-7. Besides, flow cytometry demonstrated that the DOX/MET-loaded NCs possess their antitumor effect by preventing DNA replication and cell division. This study provides a promising facile, rapid and reproducible single emulsification-solvent diffusion technique for improving the encapsulation and release of hydrophilic drugs in nanocapsules for biomedical applications.
Collapse
Affiliation(s)
- Alaa Ibrahim
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, October Gardens, 6th of October City, 12578, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Sciences, Zewail City of Science and Technology, October Gardens, 6th of October City, 12578, Giza, Egypt.
| |
Collapse
|
17
|
Lung cancer targeting efficiency of Silibinin loaded Poly Caprolactone /Pluronic F68 Inhalable nanoparticles: In vitro and In vivo study. PLoS One 2022; 17:e0267257. [PMID: 35560136 PMCID: PMC9106168 DOI: 10.1371/journal.pone.0267257] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Silibinin (SB) is shown to have an anticancer properties. However, its clinical therapeutic effects have been restricted due to its low water solubility and poor absorption after oral administration. The aim of this study was to develop SB-loaded PCL/Pluronic F68 nanoparticles for pulmonary delivery in the treatment of lung cancer. A modified solvent displacement process was used to make nanoparticles, which were then lyophilized to make inhalation powder, Nanoparticles were characterized with DSC, FTIR,SEM and In vitro release study. Further, a validated HPLC method was developed to investigate the Biodistribution study, pharmacokinetic parameters. Poly Caprolactone PCL / Pluronic F68 NPs showed the sustained release effect up to 48 h with an emitted (Mass median Aerodynamic diameter)MMAD and (Geometric size distribution)GSD were found to be 4.235 ±0.124 and 1.958±1.23 respectively. More specifically, the SB Loaded PCL/Pluronic F 68 NPs demonstrated long circulation and successful lung tumor-targeting potential due to their cancer-targeting capabilities. SB Loaded PCL/Pluronic F68 NPs significantly inhibited tumour growth in lung cancer-induced rats after inhalable administration. In a pharmacokinetics study, PCL/ Pluronic F68 NPs substantially improved SB bioavailability, with a more than 4-fold rise in AUC when compared to IV administration. These findings indicate that SB-loaded PCL/PluronicF68 nanoparticles may be a successful lung cancer therapy delivery system.
Collapse
|
18
|
Design of Smart Nanomedicines for Effective Cancer Treatment. Int J Pharm 2022; 621:121791. [PMID: 35525473 DOI: 10.1016/j.ijpharm.2022.121791] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a novel field of study that involves the use of nanomaterials to address challenges and issues that are associated with conventional therapeutics for cancer treatment including, but not limited to, low bioavailability, low water-solubility, narrow therapeutic window, nonspecific distribution, and multiple side effects of the drugs. Multiple strategies have been exploited to reduce the nonspecific distribution, and thus the side effect of the active pharmaceutical ingredients (API), including active and passive targeting strategies and externally controllable release of the therapeutic cargo. Site-specific release of the drug prevents it from impacting healthy cells, thereby significantly reducing side effects. API release triggers can be either externally applied, as in ultrasound-mediated activation, or induced by the tumor. To rationally design such nanomedicines, a thorough understanding of the differences between the tumor microenvironment versus that of healthy tissues must be pared with extensive knowledge of stimuli-responsive biomaterials. Herein, we describe the characteristics that differentiate tumor tissues from normal tissues. Then, we introduce smart materials that are commonly used for the development of smart nanomedicines to be triggered by stimuli such as changes in pH, temperature, and enzymatic activity. The most recent advances and their impact on the field of cancer therapy are further discussed.
Collapse
|
19
|
Anees M, Tiwari S, Mehrotra N, Kharbanda S, Singh H. Development and Evaluation of PLA Based Hybrid Block Copolymeric Nanoparticles for Systemic Delivery of Pirarubicin as an Anti-Cancer Agent. Int J Pharm 2022; 620:121761. [PMID: 35472512 DOI: 10.1016/j.ijpharm.2022.121761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Pirarubicin (PIRA) is a semi-synthetic anthracycline derivative that is reported to have lesser toxicity and better clinical outcomes as compared to its parental form doxorubicin (DOX). However, long term use of PIRA causes bone marrow suppression and severe cardiotoxicity to the recipients. Herein, we have developed a biodegradable polymeric nano platform consisting of amphiphilic di-block copolymer methoxy polyethylene glycol-polylactic acid and a hydrophobic penta-block copolymer polylactic acid-pluronic L-61-polylactic acid as a hybrid system to prepare PIRA (& DOX) encapsulated nanoparticles (NPs) with an aim to reduce its off targeted toxicity and enhance therapeutic efficacy for cancer therapy. Prepared PIRA/DOX NPs showed uniform particle size distribution, high encapsulation efficiency and sustained drug release profile. Cytotoxicity evaluation of PIRA NPs against TNBC cells and mammospheres showed its superior anti-cancer activity over DOX NPs. Anti-cancer efficacy of PIRA/DOX NPs was found significantly enhanced in presence of penta-block copolymer which confirmed chemo-sensitising ability of pluronic L-61. Most importantly, encapsulation of PIRA/DOX in the NPs reduced their off targeted toxicity and increased the maximum tolerated dose in BALB/c mice. Moreover, treatment of EAC tumor harbouring mice with PIRA NPs resulted in higher tumor regression as compared with the groups treated with free PIRA, free DOX or DOX NPs. Altogether, the results conclude that prepared PIRA NPs exhibits an excellent anti-cancer therapeutic efficacy and has a strong potential for cancer therapy.
Collapse
Affiliation(s)
- Mohd Anees
- Centre for Biomedical Engineering, Indian institute of Technology Delhi, New Delhi-110016, INDIA
| | - Sachchidanand Tiwari
- Centre for Biomedical Engineering, Indian institute of Technology Delhi, New Delhi-110016, INDIA
| | - Neha Mehrotra
- Centre for Biomedical Engineering, Indian institute of Technology Delhi, New Delhi-110016, INDIA
| | - Surender Kharbanda
- Dana Farber Cancer Institute, Harvard Medical School, Boston 02115, MA, USA
| | - Harpal Singh
- Centre for Biomedical Engineering, Indian institute of Technology Delhi, New Delhi-110016, INDIA; All India Institute of Medical Sciences, New Delhi-110029, INDIA.
| |
Collapse
|
20
|
Cunha A, Gaubert A, Verget J, Thiolat ML, Barthélémy P, Latxague L, Dehay B. Trehalose-Based Nucleolipids as Nanocarriers for Autophagy Modulation: An In Vitro Study. Pharmaceutics 2022; 14:857. [PMID: 35456691 PMCID: PMC9026460 DOI: 10.3390/pharmaceutics14040857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 01/03/2023] Open
Abstract
The Autophagy Lysosomal Pathway is one of the most important mechanisms for removing dysfunctional cellular components. Increasing evidence suggests that alterations in this pathway play a pathogenic role in Parkinson's disease, making it a point of particular vulnerability. Numerous studies have proposed nanotechnologies as a promising approach for delivering active substances within the central nervous system to treat and diagnose neurodegenerative diseases. In this context, the aim was to propose the development of a new pharmaceutical technology for the treatment of neurodegenerative diseases. We designed a trehalose-based nanosystem by combining both a small natural autophagy enhancer molecule named trehalose and an amphiphilic nucleolipid conjugate. To improve nucleolipid protection and cellular uptake, these conjugates were formulated by rapid mixing in either solid lipid nanoparticles (Ø = 120.4 ± 1.4 nm) or incorporated into poly(lactic-co-glycolic acid) nanoparticles (Ø = 167.2 ± 2.4 nm). In vitro biological assays demonstrated a safe and an efficient cellular uptake associated with autophagy induction. Overall, these nucleolipid-based formulations represent a promising new pharmaceutical tool to deliver trehalose and restore the autophagy impaired function.
Collapse
Affiliation(s)
- Anthony Cunha
- Univ. Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle et Artificielle, ChemBioPharm, 146 rue Léo Saignat, F-33076 Bordeaux, France; (A.C.); (A.G.); (J.V.); (P.B.); (L.L.)
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France;
| | - Alexandra Gaubert
- Univ. Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle et Artificielle, ChemBioPharm, 146 rue Léo Saignat, F-33076 Bordeaux, France; (A.C.); (A.G.); (J.V.); (P.B.); (L.L.)
| | - Julien Verget
- Univ. Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle et Artificielle, ChemBioPharm, 146 rue Léo Saignat, F-33076 Bordeaux, France; (A.C.); (A.G.); (J.V.); (P.B.); (L.L.)
| | | | - Philippe Barthélémy
- Univ. Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle et Artificielle, ChemBioPharm, 146 rue Léo Saignat, F-33076 Bordeaux, France; (A.C.); (A.G.); (J.V.); (P.B.); (L.L.)
| | - Laurent Latxague
- Univ. Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA, ARN: Régulations Naturelle et Artificielle, ChemBioPharm, 146 rue Léo Saignat, F-33076 Bordeaux, France; (A.C.); (A.G.); (J.V.); (P.B.); (L.L.)
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France;
| |
Collapse
|
21
|
Ramalho MJ, Bravo M, Loureiro JA, Lima J, Pereira MC. Transferrin-modified nanoparticles for targeted delivery of Asiatic acid to glioblastoma cells. Life Sci 2022; 296:120435. [PMID: 35247437 DOI: 10.1016/j.lfs.2022.120435] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 01/16/2023]
Abstract
AIMS Glioblastoma (GBM) is the most common and deadliest type of brain cancer, and the current therapeutic options are not curative, imposing the need for novel strategies. Asiatic acid (AA) is a natural compound and has been explored due to its anti-glioma activity and lower toxicity to healthy tissues compared with conventional chemotherapeutic agents. However, its poor water-solubility is an obstacle for clinical application. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were proposed in this work for Asiatic acid (AA) delivery. MAIN METHODS A central composite design was implemented to optimize the NPs, and their surface was further modified with transferrin (Tf), for targeted delivery to GBM cells. The anti-glioma activity of the NPs was studied in vitro using human GBM cells and immortalized human astrocytes. KEY FINDINGS The NPs exhibited a mean size smaller than 200 nm, with low polydispersity and negative zeta potential, indicating their suitability for brain tumor delivery. The NPs also exhibited high encapsulation efficiency and maintained a slow and controlled release of AA for 20 days. In vitro cell studies showed that NPs were able to maintain the anti-glioma activity of the natural compound and that the surface modification with Tf molecules was able to increase the cellular uptake in GBM cells, enhancing their selectivity and decreasing toxicity in healthy cells. SIGNIFICANCE Overall, this work provided guidance for designing brain-targeting delivery systems of natural compounds.
Collapse
Affiliation(s)
- Maria João Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria Bravo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Jorge Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-10 135 Porto, Portugal.
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
22
|
Arshad M, Mahjabeen I, Raza A, Javaid S, Fazal Ul Haq M, Alam M, Khurshid A. In-Vitro Co-delivery of Decarbazine and Photosense using Poly lactic-co-glycolic acid nanocarrier for combinational therapy. Photodiagnosis Photodyn Ther 2022; 37:102737. [PMID: 35077876 DOI: 10.1016/j.pdpdt.2022.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
PLGA (Poly lactic-co-glycolic acid) nanoparticles are in new trend for drug delivery due to their good biodegradability properties. In this study, we have synthesized the PLGA nanoparticles by solvent evaporation method and loaded the decarbazine (DTIC, 5-3,3-(dimethyl-ltriazeno)imidazole-4-carboxamide) and photosense (AlPc4) drug alone as well as combined with two different concentrations i-e 25 nM and 250 nM. No cytotoxicity (viability ∼ 100 %) was observed for different treatment arms either alone or in co-delivery of nano-formulation for Rhabdomyosarcoma (RD) cell culture which showed the biocompatibility of carrier. On comparison, the Photodynamic therapy (PDT) alone showed more significant cell death then the combinational therapy (PDT + chemotherapy) at 2 joule /cm2 and 5 joule /cm2. Lower doses co-delivery showed light dose dependent toxicity to culture i.e., 0 % death @ 2 joule /cm2, ∼ 40 % death @ 5 joule /cm2. Gene expressions of four apoptosis related genes (CASP3, CASP9, PARP1 and P53) were quantified by RT-PCR which shows down regulation for all the treatment arms indicating the absence of apoptosis for the cell death during PDT and combinational therapy. It was concluded that apoptosis related genes were down-regulated and morphological changes i.e., swelling and disruption suggest that the mode of cell death was necrosis.
Collapse
Affiliation(s)
- Maryam Arshad
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Abida Raza
- National Institute for Lasers & Optronics, Nilore, Islamabad, Pakistan
| | - Sumbal Javaid
- Department of Animal Sciences, Quaid-e-Azam University, Islamabad, Pakistan
| | - Maria Fazal Ul Haq
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Masroor Alam
- Department of Virology and Immunology, National Institute of Health (NIH), Islamabad, Pakistan
| | - Ahmat Khurshid
- Nanophotomedicine Laboratory, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
| |
Collapse
|
23
|
Pasupathy R, Pandian P, Selvamuthukumar S. Nanobubbles: A Novel Targeted Drug Delivery System. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Lin YC, Fang TY, Kao HY, Tseng WC. Nanoassembly of UCST polypeptide for NIR-modulated drug release. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Jeon SI, Kim MS, Kim HJ, Kim YI, Jae HJ, Ahn CH. Biodegradable poly(lactide-co-glycolide) microspheres encapsulating hydrophobic contrast agents for transarterial chemoembolization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:409-425. [PMID: 34613885 DOI: 10.1080/09205063.2021.1990472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Transarterial chemoembolization (TACE) is a therapeutic approach to address hepatocellular carcinoma by obstructing the blood supply to the tumor using embolic agents and improving the local delivery of anticancer agents. Size-calibrated polymeric microspheres (MSs) termed drug-eluting beads (DEBs) are the most prevalent solid embolic materials; however, their limitations include insufficient X-ray visibility or biodegradability. In this study, size-controlled polymeric MSs with inherent radiopacity and biodegradability were created, and their embolic effect was assessed. Poly(lactide-co-glycolide) MSs (PLGA MSs) incorporating a hydrophobic X-ray contrast agent and an anticancer drug were produced by the w/o/w emulsion process. Their sizes were exactly calibrated to 71.40 ± 32.18 and 142.66 ± 59.92 μm in diameter, respectively, which were confirmed to have sizes similar to the clinically available DEBs. The iodine content of PLGA MSs was calculated as 144 mgI/g, and the loading quantity of the drug was 1.33%. Manufactured PLGA MSs were gradually degraded for 10 weeks and consistently released the anticancer drug. Following the PLGA MSs injection into the renal artery of New Zealand white rabbit test subjects, their deliverability to the targeted vessel through the microcatheter was confirmed. Injected PLGA MSs were clearly imaged through the real-time X-ray device without blending any contrast agents. The embolic effect of the PLGA MSs was ultimately established by the atrophy of an embolized kidney after 8 weeks. Consequently, the designed PLGA MS is anticipated to be an encouraging prospect to address hepatocellular carcinoma.
Collapse
Affiliation(s)
- Seong Ik Jeon
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Moo Song Kim
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyung Jun Kim
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | | | - Hwan Jun Jae
- Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheol-Hee Ahn
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Phan KS, Ha PT, Do HN, Nguyen TA, Bui TQ, Pham HN, Le MH, Le TTH. Dual Loading of Doxorubicin and Magnetic Iron Oxide into PLA-TPGS Nanoparticles: Design, in vitro Drug Release Kinetics, and Biological Effects on Cancer Cells. ChemMedChem 2021; 16:3615-3625. [PMID: 34523806 DOI: 10.1002/cmdc.202100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/10/2021] [Indexed: 11/12/2022]
Abstract
The multifunctional nano drug delivery system (MNDDS) has much revolutionized in cancer treatment, aiming to eliminate many disadvantages of conventional formulations. This paper herein proposes and demonstrates MNDDS inspired by poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymer co-loaded Doxorubicin and magnetic iron oxide nanoparticles (MIONs) with a 1 : 1 (w/w) optimal ratio. In vitro drug release kinetics of Doxorubicin from this nanosystem fitted best to the Weibull kinetic model and can be described by the classical Fickian diffusion mechanism under acidic pH conditions. The combination of MIONs and Doxorubicin in the PLA-TPGS copolymer has maintained the fluorescence properties of Doxorubicin and good cell penetration, especially inside the nucleus and its vicinity. Moreover, different cell cycle profiles were observed in HeLa cell lines treated with MNDDSs.
Collapse
Affiliation(s)
- Ke Son Phan
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam.,Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Phuong Thu Ha
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Huu Nghi Do
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Trung Anh Nguyen
- Hanoi Medical University, 1 Ton That Tung, Dong Da District, Hanoi, Vietnam
| | - Thuc Quang Bui
- Hanoi Medical University, 1 Ton That Tung, Dong Da District, Hanoi, Vietnam
| | - Hong Nam Pham
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Mai Huong Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Thi Thu Huong Le
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam.,Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam District, Hanoi, Vietnam
| |
Collapse
|
27
|
Polymeric Lipid Hybrid Nanoparticles (PLNs) as Emerging Drug Delivery Platform-A Comprehensive Review of Their Properties, Preparation Methods, and Therapeutic Applications. Pharmaceutics 2021; 13:pharmaceutics13081291. [PMID: 34452251 PMCID: PMC8399620 DOI: 10.3390/pharmaceutics13081291] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Polymeric lipid hybrid nanoparticles (PLNs) are core–shell nanoparticles made up of a polymeric kernel and lipid/lipid–PEG shells that have the physical stability and biocompatibility of both polymeric nanoparticles and liposomes. PLNs have emerged as a highly potent and promising nanocarrier for a variety of biomedical uses, including drug delivery and biomedical imaging, owing to recent developments in nanomedicine. In contrast with other forms of drug delivery systems, PLNs have been regarded as seamless and stable because they are simple to prepare and exhibit excellent stability. Natural, semi-synthetic, and synthetic polymers have been used to make these nanocarriers. Due to their small scale, PLNs can be used in a number of applications, including anticancer therapy, gene delivery, vaccine delivery, and bioimaging. These nanoparticles are also self-assembled in a reproducible and predictable manner using a single or two-step nanoprecipitation process, making them significantly scalable. All of these positive attributes therefore make PLNs an attractive nanocarrier to study. This review delves into the fundamentals and applications of PLNs as well as their formulation parameters, several drug delivery strategies, and recent advancements in clinical trials, giving a comprehensive insight into the pharmacokinetic and biopharmaceutical aspects of these hybrid nanoparticles.
Collapse
|
28
|
Maraldi M, Lisi M, Moretti G, Sponchioni M, Moscatelli D. Health care-associated infections: Controlled delivery of cationic antiseptics from polymeric excipients. Int J Pharm 2021; 607:120956. [PMID: 34333024 DOI: 10.1016/j.ijpharm.2021.120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Nowadays, the treatment of health care-associated infections represents a serious issue, due to the increasing number of bacterial strains resistant to traditional antibiotics. The use of antiseptics like quaternary ammonium salts and biguanides is a viable alternative to face these life-threatening infections. However, their inherent toxicity as well as the necessity of providing a sustained release to avoid the formation of pathogen biofilms are compelling obstacles towards their assessment in the hospitals. Within this framework, the role of polymeric drug delivery systems is fundamental to overcome the aforementioned problems. Biocompatibility, biodegradability and excipient-drug interactions are crucial properties determining the efficacy of the formulation. In this work, we provide an in-depth analysis of the polymer drug delivery systems that have been developed or are under development for the sustained release of positively charged antiseptics, highlighting the crucial characteristics that allowed to achieve the most relevant therapeutic effects. We reported and compared natural occurring polymers and synthetic carriers to show their pros and cons and applicability in the treatment of health care-associated infections. Then, the discussion is focused on a particularly relevant class of materials adopted for the scope, represented by polyesters, which gave rise, due to their biodegradability, to the field of resorbable drug delivery devices. Finally, a specific analysis on the effect of the polymer functionalization over the formulation performances for the different types of polymeric carriers is presented.
Collapse
Affiliation(s)
- Matteo Maraldi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Marco Lisi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Giacomo Moretti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy.
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
29
|
Motawea A, Ahmed DAM, El-Mansy AA, Saleh NM. Crucial Role of PLGA Nanoparticles in Mitigating the Amiodarone-Induced Pulmonary Toxicity. Int J Nanomedicine 2021; 16:4713-4737. [PMID: 34267519 PMCID: PMC8276877 DOI: 10.2147/ijn.s314074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amiodarone (AMD) is a widely used anti-arrhythmic drug, but its administration could be associated with varying degrees of pulmonary toxicity. In attempting to circumvent this issue, AMD-loaded polymeric nanoparticles (AMD-loaded NPs) had been designed. MATERIALS AND METHODS AMD was loaded in NPs by the nanoprecipitation method using two stabilizers: bovine serum albumin and Kolliphor® P 188. The physicochemical properties of the AMD-loaded NPs were determined. Among the prepared NPs, two ones were selected for further investigation of spectral and thermal analysis as well as morphological properties. Additionally, in vitro release patterns were studied and kinetically analyzed at different pH values. In vitro cytotoxicity of an optimized formula (NP4) was quantified using A549 and Hep-2 cell lines. In vivo assessment of the pulmonary toxicity on Sprague Dawley rats via histopathological and immunohistochemical evaluations was applied. RESULTS The developed NPs achieved a size not more than 190 nm with an encapsulation efficiency of more than 88%. Satisfactory values of loading capacity and yield were also attained. The spectral and thermal analysis demonstrated homogeneous entrapment of AMD inside the polymeric matrix of NPs. Morphology revealed uniform, core-shell structured, and sphere-shaped particles with a smooth surface. Furthermore, the AMD-loaded NPs exhibited a pH-dependent and diffusion-controlled release over a significant period without an initial burst effect. NP4 demonstrated a superior cytoprotective efficiency by diminishing cell death and significantly increasing the IC50 by more than threefold above the pure AMD. Also, NP4 ameliorated AMD-induced pulmonary damage in rats. Significant downregulation of inflammatory mediators and free radicle production were noticed in the NP4-treated rats. CONCLUSION The AMD-loaded NPs could ameliorate the pulmonary injury induced by the pure drug moieties. Cytoprotective, anti-fibrotic, anti-inflammatory, and antioxidant properties were presented by the optimized NPs (NP4). Future studies may be built on these findings for diminishing AMD-induced off-target toxicities.
Collapse
Affiliation(s)
- Amira Motawea
- Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Ahmed A El-Mansy
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Histology, Horus University, Dumyat al Jadidah, Egypt
| | - Noha Mohamed Saleh
- Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
30
|
Adhikari C. Polymer nanoparticles-preparations, applications and future insights: a concise review. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1939715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chandan Adhikari
- School of Basic Science and Humanities, Institute of Engineering & Management, Kolkata, India
| |
Collapse
|
31
|
Arnold F, Muzzio N, Patnaik SS, Finol EA, Romero G. Pentagalloyl Glucose-Laden Poly(lactide- co-glycolide) Nanoparticles for the Biomechanical Extracellular Matrix Stabilization of an In Vitro Abdominal Aortic Aneurysm Model. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25771-25782. [PMID: 34030437 DOI: 10.1021/acsami.1c05344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The suppression of abdominal aortic aneurysm (AAA) growth by nonsurgical therapy is currently not an option, and AAA is considered an irreversible destructive disease. The formation and development of AAA is associated with the progressive deterioration of the aortic wall. Infiltrated macrophages and resident vascular smooth muscle cells oversecrete matrix metalloproteinases (MMPs), which cause the loss of crucial aortic extracellular matrix (ECM) components, thus weakening the aortic wall. Stabilization of the aortic ECM could enable the development of novel therapeutic options for preventing and reducing AAA progression. In the present work, we studied the biochemical and biomechanical interactions of pentagalloyl glucose (PGG) on mouse C2C12 myoblast cells. PGG is a naturally occurring ECM-stabilizing polyphenolic compound that has been studied in various applications, including vascular health, with promising results. With its known limitations of systemic administration, we also studied the administration of PGG when encapsulated within poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs). Treatment with collagenase and elastase enzymes was used to mimic a pathway of degenerative effects seen in the pathogenesis of human AAA. PGG and PLGA(PGG) NPs were added to enzyme-treated cells in either a suppressive or preventative scenario. Biomolecular interactions were analyzed through cell viability, cell adhesion, reactive oxygen species (ROS) production, and MMP-2 and MMP-9 secretion. Biomechanical properties were studied through atomic force microscopy and quartz crystal microbalance with dissipation. Our results suggest that PGG or PLGA(PGG) NPs caused minor to no cytotoxic effects on the C2C12 cells. Both PGG and PLGA(PGG) NPs showed reduction in ROS and MMP-2 secretion if administered after enzymatic ECM degradation. A quantitative comparison of Young's moduli showed a significant recovery in the elastic properties of the cells treated with PGG or PLGA(PGG) NPs after enzymatic ECM degradation. This work provides preliminary support for the use of a pharmacological therapy for AAA treatment.
Collapse
Affiliation(s)
- Frances Arnold
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Sourav S Patnaik
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ender A Finol
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
32
|
Development of a silk fibroin-based multitask aerosolized nanopowder formula for efficient wound healing. Int J Biol Macromol 2021; 182:413-424. [PMID: 33798572 DOI: 10.1016/j.ijbiomac.2021.03.178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/10/2021] [Accepted: 03/27/2021] [Indexed: 12/28/2022]
Abstract
Most of the spray products in the market for wound healing applications are loaded with antibiotics that exert their antibacterial effect within the inflammatory stage of wound healing without demonstrating any effect in the subsequent proliferation stage. This study introduces a new aerosolized nanopowder (ANP) formula that not only exhibits antibacterial effect but also antioxidant and enhanced cell proliferation effects. Within the introduced ANP formula, Avicenna marina (Am) extract and neomycin (NM) antibiotic have been loaded within silk-fibroin nanoparticles (FB NPs). The Am has been extracted via different solvent systems, and investigated for its antioxidant and antibacterial activity as well as its ability to enhance cell proliferation. The physicochemical properties, size, zeta-potential and morphology of the prepared Am/FB NPs, NM/FB NPs and ANP formula were investigated. Besides, the ANP formula exhibited good antibacterial activities against Staphylococcus aureus, Methicillin resistant S. aureus, Pseudomonas aeruginosa and Resistant P. aeruginosa. Scratch wound healing assay on human fibroblast monolayers demonstrated 100% wound closure after 24 h upon using the ANP formula as compared to 70% wound closure for positive control (NM). The wound healing ability of the ANP formula has been further confirmed by histopathological evaluation of the wound site and depicted a marked increase in fibroblast proliferation and reduction of inflammatory cells after 15 days with a complete wound closure as compared to controls. The obtained results prove the beneficial effects of the Am extract on wound healing and introduce the developed multitask nanopowder formula as a potential wound healing spray.
Collapse
|
33
|
López-Muñoz R, Treviño ME, Castellanos F, Morales G, Rodríguez-Fernández O, Saavedra S, Licea-Claverie A, Saade H, Enríquez-Medrano FJ, López RG. Loading of doxorubicin on poly(methyl methacrylate-co-methacrylic acid) nanoparticles and release study. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1107-1124. [PMID: 33691605 DOI: 10.1080/09205063.2021.1900652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nanoparticles (NP) of 12.7 nm in diameter of the poly(methyl methacrylate (MMA)-co-methacrylic acid (MAA)) copolymer were prepared. 13C-NMR results showed a MMA:MAA molar ratio of 0.64:0.36 in the copolymer, which is similar to the poly(MMA-co-MAA) commercially known as the FDA approved Eudragit S100 (0.67:0.33). The NP prepared in this study were loaded at pH 5 with varying amounts (from 0.54 to 6.91%) of doxorubicin (DOX), an antineoplastic drug. 1H-NMR results indicated the electrostatic interactions between the ionized carboxylic groups of the MAA units in the copolymer and the proton of the glycosidic amine in DOX. Measurements by QLS and TEM indicated that the loading destabilizes the NP, and that for increase stability, they aggregate in a reversible way, forming aggregates with a diameter up to 99.5 nm at a DOX load of 6.91%. The analysis of drug release data at pH 7.4 showed that loaded NP with at least 4.38% DOX release the drug very slowly and follows the Higuchi model; the former suggests that they could remain for long periods in the bloodstream to reach and destroy cancer cells.
Collapse
Affiliation(s)
| | | | | | - Graciela Morales
- Centro de Investigación en Química Aplicada, Saltillo, CH, México
| | | | - Santiago Saavedra
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Nuevo León, México
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, BC, Mexico
| | - Hened Saade
- Centro de Investigación en Química Aplicada, Saltillo, CH, México
| | | | | |
Collapse
|
34
|
Jhan YY, Palou Zuniga G, Singh KA, Gaharwar AK, Alge DL, Bishop CJ. Polymer-Coated Extracellular Vesicles for Selective Codelivery of Chemotherapeutics and siRNA to Cancer Cells. ACS APPLIED BIO MATERIALS 2021; 4:1294-1306. [PMID: 35014481 DOI: 10.1021/acsabm.0c01153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Combination therapies involving small-interfering RNA (siRNA)-mediated gene silencing and small-molecule drugs are of high interest for cancer treatment. Among the current gene delivery carriers, cell-derived extracellular vesicles (EVs) are particularly promising candidates due to their high biocompatibility, low immunogenicity, in vivo stability, and inherent targeting ability. Here, we developed a multifunctional EV platform capable of selective codelivery of siRNA and doxorubicin (DOX) to cancer cells. siRNA was first loaded into engineered lipid-hybridized EVs (eEVs) to serve as a core. Subsequently, DOX was incorporated into a polyelectrolyte shell surrounding eEVs, which was deposited by layer-by-layer (LbL) assembly. This approach resulted in the production of a stable EV-polymer complex (LbL-eEV) with a diameter of 140.2 ± 9.0 nm and zeta potential of +22.1 ± 0.5 mV. Experiments were performed to assess cellular uptake, cytotoxicity, and gene silencing efficacy in lung adenocarcinoma cells (A549), with noncancerous fibroblast cells (CCL-210) used as a control. The results demonstrated that the LbL-eEV complex can traffic through cells and release siRNA in the cytoplasm, while delivered DOX enters nuclei to induce programmed cell death. Moreover, the inherent selectivity of the particles for cancer cells resulted in effective gene silencing and cancer killing efficiency with reduced cytotoxicity to normal cells. Synchronous delivery of siRNA and DOX was also verified by flow cytometry analysis of single cells. In summary, these data provide a proof of concept for engineering EVs to deliver multiple therapeutics and suggest that LbL-eEVs are a promising drug delivery platform for targeting cancer.
Collapse
Affiliation(s)
- Yong-Yu Jhan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3424, United States
| | - Guillermo Palou Zuniga
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3424, United States
| | - Kanwar Abhay Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3424, United States
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3424, United States.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3424, United States
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3424, United States.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3424, United States
| | - Corey J Bishop
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3424, United States
| |
Collapse
|
35
|
Escareño N, Hassan N, Kogan MJ, Juárez J, Topete A, Daneri-Navarro A. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells. J Colloid Interface Sci 2021; 591:440-450. [PMID: 33631531 DOI: 10.1016/j.jcis.2021.02.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/28/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022]
Abstract
Nanoparticle-based drug delivery systems, in combination with high-affinity disease-specific targeting ligands, provide a sophisticated landscape in cancer theranostics. Due to their high diversity and specificity to target cells, antibodies are extensively used to provide bioactivity to a plethora of nanoparticulate systems. However, controlled and reproducible assembly of nanoparticles (NPs) with these targeting ligands remains a challenge. In this context, determinants such as ligand density and orientation, play a significant role in antibody bioactivity; nevertheless, these factors are complicated to control in traditional bulk labeling methods. Here, we propose a microfluidic-assisted methodology using a polydimethylsiloxane (PDMS) Y-shaped microreactor for the covalent conjugation of Trastuzumab (TZB), a recombinant antibody targeting HER2 (human epidermal growth factor receptor 2), to doxorubicin-loaded PLGA/Chitosan NPs (PLGA/DOX/Ch NPs) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysulfosuccinimide (sNHS) mediated bioconjugation reactions. Our labeling approach led to smaller and less disperse nanoparticle-antibody conjugates providing differential performance when compared to bulk-labeled NPs in terms of drug release kinetics (fitted and analyzed with DDSolver), cell uptake/labeling, and cytotoxic activity on HER2 + breast cancer cells in vitro. By controlling NP-antibody interactions in a laminar regime, we managed to optimize NP labeling with antibodies resulting in ordered coronas with optimal orientation and density for bioactivity, providing a cheap and reproducible, one-step method for labeling NPs with globular targeting moieties.
Collapse
Affiliation(s)
- Noé Escareño
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Natalia Hassan
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, San Joaquín 2409, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile.
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santos Dumont 964, Independencia, Santiago, Chile.
| | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo, Sonora 83000, Mexico
| | - Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico.
| | - Adrián Daneri-Navarro
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico.
| |
Collapse
|
36
|
Jan N, Madni A, Rahim MA, Khan NU, Jamshaid T, Khan A, Jabar A, Khan S, Shah H. In vitro anti-leukemic assessment and sustained release behaviour of cytarabine loaded biodegradable polymer based nanoparticles. Life Sci 2020; 267:118971. [PMID: 33385406 DOI: 10.1016/j.lfs.2020.118971] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
AIMS The study aimed to develop, characterize, and evaluate poly (ɛ-caprolactone) (PCL) based nanoparticles for the sustained release behaviour of cytarabine and to investigate the in vitro anti-cancer influence on KG-1 leukemic cell line. MATERIALS AND METHODS Nanoprecipitation method was used for the preparation of cytarabine loaded PCL nanoparticles. The developed nanoparticles were characterized for physicochemical properties and the anti-leukemic effect on the KG-1 cell line was evaluated. KEY FINDINGS A total number of five formulations were prepared with size range from 120.5 ± 1.18 to 341.5 ± 3.02, entrapment efficiency (41.31 ± 0.49 to 62.28 ± 0.39%), spherical morphology, negative zeta potentials, considerable particle size distribution, compatibility between the drug and excipients and thermal stability. X-ray diffraction analysis confirmed the successful incorporation of cytarabine in PCL polymer. In vitro drug release in phosphate buffer saline (pH 7.4) showed initial burst release followed by sustained release up to 48 h. The sustained release behaviour efficiently increased the toxicity of cytarabine-loaded PCL nanoparticles to KG-1 (leukemic) and MCF-7 (breast cancer) cell lines in time dependent manner with lower IC50 values than that of drug solution. The flow cytometry study revealed the better apoptotic activity of cytarabine loaded PCL nanoparticle against treated KG-1 cell line. The western blot analysis confirmed the upregulation of cleaved caspase-3 and downregulation of Bcl-2 protein. SIGNIFICANCE The experimental results suggest that cytarabine loaded PCL nanoparticles is an efficient carrier to prevent the dose associated toxicity while providing sustained release pattern to ensure maximum anti-cancer influence.
Collapse
Affiliation(s)
- Nasrullah Jan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan.
| | - Muhammad Abdur Rahim
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Naveed Ullah Khan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Abdul Jabar
- College of Pharmacy, University of Sargodha, Sargodha 40100, Punjab, Pakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
37
|
Sharma N, Singhal M, Kumari RM, Gupta N, Manchanda R, Syed A, Bahkali AH, Nimesh S. Diosgenin Loaded Polymeric Nanoparticles with Potential Anticancer Efficacy. Biomolecules 2020; 10:E1679. [PMID: 33339083 PMCID: PMC7765552 DOI: 10.3390/biom10121679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
This study aims to determine the anticancer efficacy of diosgenin encapsulated poly-glycerol malate co-dodecanedioate (PGMD) nanoparticles. Diosgenin loaded PGMD nanoparticles (variants 7:3 and 6:4) were synthesized by the nanoprecipitation method. The synthesis of PGMD nanoparticles was systematically optimized employing the Box-Behnken design and taking into account the influence of various independent variables such as concentrations of each PGMD, diosgenin and PF-68 on the responses such as size and PDI of the particles. Mathematical modeling was done using the Quadratic second order modeling method and response surface analysis was undertaken to elucidate the factor-response relationship. The obtained size of PGMD 7:3 and PGMD 6:4 nanoparticles were 133.6 nm and 121.4 nm, respectively, as measured through dynamic light scattering (DLS). The entrapment efficiency was in the range of 77-83%. The in vitro drug release studies showed diffusion and dissolution controlled drug release pattern following Korsmeyer-Peppas kinetic model. Furthermore, in vitro morphological and cytotoxic studies were performed to evaluate the toxicity of synthesized drug loaded nanoparticles in model cell lines. The IC50 after 48 h was observed to be 27.14 µM, 15.15 µM and 13.91 µM for free diosgenin, PGMD 7:3 and PGMD 6:4 nanoparticles, respectively, when administered in A549 lung carcinoma cell lines.
Collapse
Affiliation(s)
- Nikita Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| | - Monisha Singhal
- Department of Biotechnology, IIS (Deemed to be University), Jaipur 302020, India; (M.S.); (N.G.)
| | - R. Mankamna Kumari
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| | - Nidhi Gupta
- Department of Biotechnology, IIS (Deemed to be University), Jaipur 302020, India; (M.S.); (N.G.)
| | - Romila Manchanda
- School of Basic and Applied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| |
Collapse
|
38
|
Structural and Biomedical Properties of Common Additively Manufactured Biomaterials: A Concise Review. METALS 2020. [DOI: 10.3390/met10121677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials are in high demand due to the increasing geriatric population and a high prevalence of cardiovascular and orthopedic disorders. The combination of additive manufacturing (AM) and biomaterials is promising, especially towards patient-specific applications. With AM, unique and complex structures can be manufactured. Furthermore, the direct link to computer-aided design and digital scans allows for a direct replicable product. However, the appropriate selection of biomaterials and corresponding AM methods can be challenging but is a key factor for success. This article provides a concise material selection guide for the AM biomedical field. After providing a general description of biomaterial classes—biotolerant, bioinert, bioactive, and biodegradable—we give an overview of common ceramic, polymeric, and metallic biomaterials that can be produced by AM and review their biomedical and mechanical properties. As the field of load-bearing metallic implants experiences rapid growth, we dedicate a large portion of this review to this field and portray interesting future research directions. This article provides a general overview of the field, but it also provides possibilities for deepening the knowledge in specific aspects as it comprises comprehensive tables including materials, applications, AM techniques, and references.
Collapse
|
39
|
Heshmati Aghda N, Lara EJ, Patel P, Betancourt T. High Throughput Preparation of Poly(Lactic-Co-Glycolic Acid) Nanoparticles Using Fiber Fluidic Reactor. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3075. [PMID: 32660141 PMCID: PMC7411994 DOI: 10.3390/ma13143075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/30/2020] [Indexed: 12/28/2022]
Abstract
Polymeric nanoparticles (NPs) have a variety of biomedical, biotechnology, agricultural and environmental applications. As such, a great need has risen for the fabrication of these NPs in large scales. In this study, we used a high throughput fiber reactor for the preparation of poly(lactic-co-glycolic acid) (PLGA) NPs via nanoprecipitation. The fiber reactor provided a high surface area for the controlled interaction of an organic phase containing the PLGA solution with an aqueous phase, containing poly(vinyl alcohol) (PVA) as a stabilizer. This interaction led to the self-assembly of the polymer into the form of NPs. We studied operational parameters to identify the factors that have the greatest influence on the properties of the resulting PLGA NPs. We found that the concentration of the PLGA solution is the factor that has the greatest effect on NP size, polydispersity index (PDI), and production rate. Increasing PLGA concentration increased NP sizes significantly, while at the same time decreasing the PDI value. The second factor that was found to affect NP properties was the concentration of PVA solution, which resulted in increased NP sizes and decreased production rates. Flowrates of the feed streams also affected NP size to a lesser extent, while changing the operational temperature did not change the product's features. In general, the results demonstrate that fiber reactors are a suitable method for the large-scale, continuous preparation of polymeric NPs suitable for biomedical applications.
Collapse
Affiliation(s)
- Niloofar Heshmati Aghda
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA;
| | - Emilio J. Lara
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.J.L.); (P.P.)
| | - Pulinkumar Patel
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.J.L.); (P.P.)
| | - Tania Betancourt
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA;
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA; (E.J.L.); (P.P.)
| |
Collapse
|
40
|
Ouyang J, Yang M, Gong T, Ou J, Tan Y, Zhang Z, Li S. Doxorubicin-loading core-shell pectin nanocell: A novel nanovehicle for anticancer agent delivery with multidrug resistance reversal. PLoS One 2020; 15:e0235090. [PMID: 32569270 PMCID: PMC7307773 DOI: 10.1371/journal.pone.0235090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022] Open
Abstract
Tumor is a prevalent great threat to public health worldwide and multidrug resistance (MDR) of tumor is a leading cause of chemotherapy failure. Nanomedicine has shown prospects in overcoming the problem. Doxorubicin (DOX), a broad-spectrum anticancer drug, showed limited efficacy due to MDR. Herein, a doxorubicin containing pectin nanocell (DOX-PEC-NC) of core-shell structure, a pectin nanoparticle encapsulated with liposome-like membrane was developed. The DOX-PEC-NC, spheroid in shape and sized around 150 nm, exerted better sustained release behavior than doxorubicin loading pectin nanoparticle (DOX-PEC-NP) or liposome (DOX-LIP). In vitro anticancer study showed marked accumulation of doxorubicin in different tumor cells as well as reversal of MDR in HepG2/ADR cells and MCF-7/ADR cells caused by treatment of DOX-PEC-NC. In H22 tumor-bearing mice, DOX-PEC-NC showed higher anticancer efficacy and lower toxicity than doxorubicin. DOX-PEC-NC can improve anticancer activity and reduce side effect of doxorubicin due to increased intracellular accumulation and reversal of MDR in tumor cells, which may be a promising nanoscale drug delivery vehicle for chemotherapeutic agents.
Collapse
Affiliation(s)
- Jiabi Ouyang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Mohui Yang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Tian Gong
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinlai Ou
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yani Tan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhen Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Sha Li
- College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou, China
- * E-mail:
| |
Collapse
|
41
|
Scheeren LE, Nogueira-Librelotto DR, Macedo LB, de Vargas JM, Mitjans M, Vinardell MP, Rolim CMB. Transferrin-conjugated doxorubicin-loaded PLGA nanoparticles with pH-responsive behavior: a synergistic approach for cancer therapy. JOURNAL OF NANOPARTICLE RESEARCH 2020; 22:72. [PMID: 0 DOI: 10.1007/s11051-020-04798-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
|
42
|
Kang RK, Mishr N, Rai VK. Guar Gum Micro-particles for Targeted Co-delivery of Doxorubicin and Metformin HCL for Improved Specificity and Efficacy Against Colon Cancer: In Vitro and In Vivo Studies. AAPS PharmSciTech 2020; 21:48. [PMID: 31900731 DOI: 10.1208/s12249-019-1589-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023] Open
Abstract
Doxorubicin and Metformin HCL is a known chemotherapeutic combination that wipes out tumors and prevents their recurrence. However, limited site specificity confines its application. Here we report Doxorubicin and Metformin HCL-loaded guar gum micro-particles prepared by emulsification cum-solidification method. Developed micro-particles were characterized as spherical shape particles with smooth surface and micro size diameter. Encapsulation of drugs in combination was confirmed by their characteristic functional groups (FT-IR), change in phase transition temperature (DSC) and X-ray diffraction pattern (XRD). Particles were observed to be stable at 25 and 5°C. The in vitro Doxorubicin and Metformin HCL release study in simulated gastric (SGF), intestinal (SIF) and colonic fluid (SCF) confirms restricted release in SGF (9.3 and 9.6%, respectively, in 2 h) and SIF (10.8 and 14.7%, respectively, in the next 3 h) and highest release in SCF (about 68 and 73.3%, respectively) in colon. Developed micro-particles showed 78% recovery in tumor volume and considerable improvement in histological changes. X-ray images confirmed good target ability of micro-particles to colon. In conclusion, the specially designed, stable micro-particles are able to target drug combination to colon and improve efficacy by ensuring maximum drug release in colon as compared with Doxorubicin and Metformin HCL combination.
Collapse
|
43
|
Kumar K, Moitra P, Bashir M, Kondaiah P, Bhattacharya S. Natural tripeptide capped pH-sensitive gold nanoparticles for efficacious doxorubicin delivery both in vitro and in vivo. NANOSCALE 2020; 12:1067-1074. [PMID: 31845927 DOI: 10.1039/c9nr08475d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanobiotechnology has been gaining ever-increasing interest for the successful implementation of chemotherapy based treatment of cancer. Gold nanoparticles (AuNPs) capped with a natural pH-responsive short tripeptide (Lys-Phe-Gly or KFG) sequence are presented herein for significant intracellular delivery of an anti-cancer drug, doxorubicin (DOX). A particularly increased apoptotic response has been observed for DOX treatments mediated by KFG-AuNPs when compared with drug alone treatments in various cell lines (BT-474, HeLa, HEK 293 T and U251). Furthermore, KFG-AuNP mediated DOX treatment significantly decreases cell proliferation and tumor growth in a BT-474 cell xenograft model in nude mice. In addition, KFG-AuNPs demonstrate efficacious drug delivery in DOX-resistant HeLa cells (HeLa-DOXR).
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
44
|
Escudero A, Carregal-Romero S, Miguel-Coello AB, Ruíz-Cabello J. Engineered polymeric nanovehicles for drug delivery. FRONTIERS OF NANOSCIENCE 2020:201-232. [DOI: 10.1016/b978-0-08-102828-5.00008-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019; 69:24-42. [PMID: 31870939 DOI: 10.1016/j.semcancer.2019.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
Cancer is known as one of the most common diseases that are associated with high mobility and mortality in the world. Despite several efforts, current cancer treatment modalities often are highly toxic and lack efficacy and specificity. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems which are highly selective for tumors and allow a slow release of active anticancer agents. Different Nanoparticles (NPs) such as the silicon-based nano-materials, polymers, liposomes and metal NPs have been designed to deliver anti-cancer drugs to tumor sites. Among different drug delivery systems, carbohydrate-functionalized nanomaterials, specially based on their multi-valent binding capacities and desirable bio-compatibility, have attracted considerable attention as an excellent candidate for controlled release of therapeutic agents. In addition, these carbohydrate functionalized nano-carriers are more compatible with construction of the intracellular delivery platforms like the carbohydrate-modified metal NPs, quantum dots, and magnetic nano-materials. In this review, we discuss recent research in the field of multifunctional glycol-nanoparticles (GNPs) intended for cancer drug delivery applications.
Collapse
|
46
|
Khafaji M, Zamani M, Vossoughi M, Iraji zad A. Doxorubicin/Cisplatin-Loaded Superparamagnetic Nanoparticles As A Stimuli-Responsive Co-Delivery System For Chemo-Photothermal Therapy. Int J Nanomedicine 2019; 14:8769-8786. [PMID: 31806971 PMCID: PMC6844268 DOI: 10.2147/ijn.s226254] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION To date, numerous iron-based nanostructures have been designed for cancer therapy applications. Although some of them were promising for clinical applications, few efforts have been made to maximize the therapeutic index of these carriers. Herein, PEGylated silica-coated iron oxide nanoparticles (PS-IONs) were introduced as multipurpose stimuli-responsive co-delivery nanocarriers for a combination of dual-drug chemotherapy and photothermal therapy. METHODS Superparamagnetic iron oxide nanoparticles were synthesized via the sonochemical method and coated by a thin layer of silica. The nanostructures were then further modified with a layer of di-carboxylate polyethylene glycol (6 kDa) and carboxylate-methoxy polyethylene glycol (6 kDa) to improve their stability, biocompatibility, and drug loading capability. Doxorubicin (DOX) and cisplatin (CDDP) were loaded on the PS-IONs through the interactions between the drug molecules and polyethylene glycol. RESULTS The PS-IONs demonstrated excellent cellular uptake, cytocompatibility, and hemocompatibility at the practical dosage. Furthermore, in addition to being an appropriate MRI agent, PS-IONs demonstrated superb photothermal property in 0.5 W/cm2 of 808 nm laser irradiation. The release of both drugs was effectively triggered by pH and NIR irradiation. As a result of the intracellular combination chemotherapy and 10 min of safe power laser irradiation, the highest cytotoxicity for iron-based nanocarriers (97.3±0.8%) was achieved. CONCLUSION The results of this study indicate the great potential of PS-IONs as a multifunctional targeted co-delivery system for cancer theranostic application and the advantage of employing proper combination therapy for cancer eradication.
Collapse
Affiliation(s)
- Mona Khafaji
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran14588-89694, Iran
| | - Masoud Zamani
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Azam Iraji zad
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran14588-89694, Iran
- Department of Physics, Sharif University of Technology, Tehran14588, Iran
| |
Collapse
|
47
|
Wang R, Zhang C, Li J, Huang J, Opoku-Damoah Y, Sun B, Zhou J, Di L, Ding Y. Laser-triggered polymeric lipoproteins for precision tumor penetrating theranostics. Biomaterials 2019; 221:119413. [DOI: 10.1016/j.biomaterials.2019.119413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 02/03/2023]
|
48
|
Pieper S, Onafuye H, Mulac D, Cinatl J, Wass MN, Michaelis M, Langer K. Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2062-2072. [PMID: 31728254 PMCID: PMC6839550 DOI: 10.3762/bjnano.10.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/02/2019] [Indexed: 05/30/2023]
Abstract
Background: Nanoparticles are under investigation as carrier systems for anticancer drugs. The expression of efflux transporters such as the ATP-binding cassette (ABC) transporter ABCB1 is an important resistance mechanism in therapy-refractory cancer cells. Drug encapsulation into nanoparticles has been shown to bypass efflux-mediated drug resistance, but there are also conflicting results. To investigate whether easy-to-prepare nanoparticles made of well-tolerated polymers may circumvent transporter-mediated drug efflux, we prepared poly(lactic-co-glycolic acid) (PLGA), polylactic acid (PLA), and PEGylated PLGA (PLGA-PEG) nanoparticles loaded with the ABCB1 substrate doxorubicin by solvent displacement and emulsion diffusion approaches and assessed their anticancer efficiency in neuroblastoma cells, including ABCB1-expressing cell lines, in comparison to doxorubicin solution. Results: The resulting nanoparticles covered a size range between 73 and 246 nm. PLGA-PEG nanoparticle preparation by solvent displacement led to the smallest nanoparticles. In PLGA nanoparticles, the drug load could be optimised using solvent displacement at pH 7 reaching 53 µg doxorubicin/mg nanoparticle. These PLGA nanoparticles displayed sustained doxorubicin release kinetics compared to the more burst-like kinetics of the other preparations. In neuroblastoma cells, doxorubicin-loaded PLGA-PEG nanoparticles (presumably due to their small size) and PLGA nanoparticles prepared by solvent displacement at pH 7 (presumably due to their high drug load and superior drug release kinetics) exerted the strongest anticancer effects. However, nanoparticle-encapsulated doxorubicin did not display increased efficacy in ABCB1-expressing cells relative to doxorubicin solution. Conclusion: Doxorubicin-loaded nanoparticles made by different methods from different materials displayed substantial discrepancies in their anticancer activity at the cellular level. Optimised preparation methods resulted in PLGA nanoparticles characterised by increased drug load, controlled drug release, and high anticancer efficacy. The design of drug-loaded nanoparticles with optimised anticancer activity at the cellular level is an important step in the development of improved nanoparticle preparations for anticancer therapy. Further research is required to understand under which circumstances nanoparticles can be used to overcome efflux-mediated resistance in cancer cells.
Collapse
Affiliation(s)
- Sebastian Pieper
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Hannah Onafuye
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Goethe-University, Paul Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Mark N Wass
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| |
Collapse
|
49
|
Ahmadi F, Bahmyari M, Akbarizadeh A, Alipour S. Doxorubicin-verapamil dual loaded PLGA nanoparticles for overcoming P-glycoprotein mediated resistance in cancer: Effect of verapamil concentration. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Chauhan R, Balgemann R, Greb C, Nunn BM, Ueda S, Noma H, McDonald K, Kaplan HJ, Tamiya S, O'Toole MG. Production of dasatinib encapsulated spray-dried poly (lactic-co-glycolic acid) particles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|