1
|
Namata F, Sanz Del Olmo N, Molina N, Malkoch M. Synthesis and Characterization of Amino-Functional Polyester Dendrimers Based On Bis-MPA with Enhanced Hydrolytic Stability and Inherent Antibacterial Properties. Biomacromolecules 2023; 24:858-867. [PMID: 36689269 PMCID: PMC9930107 DOI: 10.1021/acs.biomac.2c01286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polyester dendrimers based on 2,2 bis(hydroxymethyl)propionic acid have been reported to be degradable, non-toxic, and exhibit good antimicrobial activity when decorated with cationic charges. However, these systems exhibit rapid depolymerization, from the outer layer inwards in physiological neutral pHs, which potentially restricts their use in biomedical applications. In this study, we present a new generation of amine functional bis-MPA polyester dendrimers with increased hydrolytic stability as well as antibacterial activity for Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) planktonic bacteria strains. These new derivatives show generally good cytocompatibility for the concentrations they are active toward bacteria, in monocyte/macrophage-like cells (Raw 264.7), and human dermal fibroblasts. Fluoride - promoted esterification chemistry, anhydride chemistry, and click reactions were utilized to produce a library from generations 1-3 and with cationic peripheral groups ranging from 6 to 24 groups, respectively. The dendrimers were successfully purified using conventional purification techniques as well as characterized by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, nuclear magnetic resonance, and size exclusion chromatography. As proof of synthetic versatility, dendritic-linear-dendritic block copolymer were successfully synthesized to display cysteamine peripheral functionalities as well as the scaffolding ability with biomedically relevant lipoic acid and methoxy polyethylene glycol.
Collapse
Affiliation(s)
- Faridah Namata
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Natalia Sanz Del Olmo
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Noemi Molina
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Michael Malkoch
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| |
Collapse
|
2
|
Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology 2022; 20:262. [PMID: 35672712 PMCID: PMC9171489 DOI: 10.1186/s12951-022-01477-8] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/23/2022] [Indexed: 12/31/2022] Open
Abstract
Interest in nanomaterials and especially nanoparticles has exploded in the past decades primarily due to their novel or enhanced physical and chemical properties compared to bulk material. These extraordinary properties have created a multitude of innovative applications in the fields of medicine and pharma, electronics, agriculture, chemical catalysis, food industry, and many others. More recently, nanoparticles are also being synthesized ‘biologically’ through the use of plant- or microorganism-mediated processes, as an environmentally friendly alternative to the expensive, energy-intensive, and potentially toxic physical and chemical synthesis methods. This transdisciplinary approach to nanoparticle synthesis requires that biologists and biotechnologists understand and learn to use the complex methodology needed to properly characterize these processes. This review targets a bio-oriented audience and summarizes the physico–chemical properties of nanoparticles, and methods used for their characterization. It highlights why nanomaterials are different compared to micro- or bulk materials. We try to provide a comprehensive overview of the different classes of nanoparticles and their novel or enhanced physicochemical properties including mechanical, thermal, magnetic, electronic, optical, and catalytic properties. A comprehensive list of the common methods and techniques used for the characterization and analysis of these properties is presented together with a large list of examples for biogenic nanoparticles that have been previously synthesized and characterized, including their application in the fields of medicine, electronics, agriculture, and food production. We hope that this makes the many different methods more accessible to the readers, and to help with identifying the proper methodology for any given nanoscience problem.
Collapse
|
3
|
Niu C, Liu Z, Chen M, Yang S, Wang GW. Unexpected Formation of Pyrazoline-Fused Metallofullerenes from the Multicomponent Cascade Reaction of Sc 3N@ Ih-C 80 with Tetrazines, Water, and Oxygen. Org Lett 2022; 24:3493-3498. [PMID: 35543417 DOI: 10.1021/acs.orglett.2c01097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The multicomponent cascade reaction of Sc3N@Ih-C80 with 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazines, water, and oxygen unexpectedly affords the pyrazoline-fused Sc3N@Ih-C80 derivatives. The obtained endohedral metallofullerene derivatives have been characterized by various spectral means, and their structures have been unambiguously established by single-crystal X-ray crystallography. A possible reaction mechanism via a complicated sequence of Diels-Alder reaction, retro Diels-Alder reaction, hydration, rearrangement, and dehydrogenation processes is proposed for the formation of pyrazoline-fused metallofullerenes.
Collapse
Affiliation(s)
- Chuang Niu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhan Liu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
4
|
Waller J, DeStefano K, Chiu B, Jang I, Cole Y, Agyemang C, Miao T, Shah J, Martin C, Umair M. An update on nanoparticle usage in breast cancer imaging. NANO SELECT 2022. [DOI: 10.1002/nano.202100320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Joseph Waller
- Drexel University College of Medicine Philadelphia USA
| | | | | | | | - Yonesha Cole
- Drexel University College of Medicine Philadelphia USA
| | | | - Tyler Miao
- University of California Los Angeles USA
| | - Jaffer Shah
- Medical Research Center Kateb University Kabul Afghanistan
- New York State Department of Health New York USA
| | | | | |
Collapse
|
5
|
Chemical shielding of H 2O and HF encapsulated inside a C 60 cage. Commun Chem 2021; 4:135. [PMID: 36697850 PMCID: PMC9814403 DOI: 10.1038/s42004-021-00569-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/24/2021] [Indexed: 01/28/2023] Open
Abstract
Molecular surgery provides the opportunity to study relatively large molecules encapsulated within a fullerene cage. Here we determine the location of an H2O molecule isolated within an adsorbed buckminsterfullerene cage, and compare this to the intrafullerene position of HF. Using normal incidence X-ray standing wave (NIXSW) analysis, coupled with density functional theory and molecular dynamics simulations, we show that both H2O and HF are located at an off-centre position within the fullerene cage, caused by substantial intra-cage electrostatic fields generated by surface adsorption of the fullerene. The atomistic and electronic structure simulations also reveal significant internal rotational motion consistent with the NIXSW data. Despite this substantial intra-cage interaction, we find that neither HF or H2O contribute to the endofullerene frontier orbitals, confirming the chemical isolation of the encapsulated molecules. We also show that our experimental NIXSW measurements and theoretical data are best described by a mixed adsorption site model.
Collapse
|
6
|
Huang J, Guo J, Zou X, Zhu J, Wu S, Zhang T. Bioinspired Heteromultivalent Chitosan- α-Fe₂O₃/Gadofullerene Hybrid Composite for Enhanced Antibiotic-Resistant Bacterial Pneumonia. J Biomed Nanotechnol 2021; 17:1217-1228. [PMID: 34167634 DOI: 10.1166/jbn.2021.3093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, we have designed and developed a heteromultivalent chitosan base α-Fe₂O₃/Gadofullerene (GdF) hybrid composite through a simple chemical precipitation method. Unlike other methods, the addition of external stabilizing agents to generate GdF nanoparticles (NPs) was not necessary herein. The prepared chitosan-α-Fe₂O₃/GdF hybrid nanocomposites were characterized using UV, FT-IR, XRD and morphological microscopic analyses. The results showed that α-Fe₂O₃ and GdF hybrid nanocomposites were successfully grown on the surface of chitosan. The FT-IR vibration peaks showed the formation of Fe₂O₃ NPs, and the vibration peak for Fe-O was 568 cm-1. The broad absorption peak observed in the range of 250-350 nm and a sharp absorption peak at 219 nm represents the UV absorption of the synthesized hybrid composites. XRD pattern showed sharp peaks of crystallinity and purity of α-Fe₂O₃ nanoparticles. Finally, the synthesized chitosan-α-Fe₂O₃/GdF hybrid composites were screened for their antibacterial resistance against the Escherichia coli, Pseudomonas aeruginosa, Bacilus subtilis, and Staphylococcus aereus. In addition, in vitro biocompatibility results exhibited that developed hybrid samples have provided high cell compatibility with fibroblast (L929) cell line. The in vivo bio inspired nanotherapeutics have the potential action to effective inhibition ability on antibiotic-resistant P. aeruginosa, which has been main factor of inducing pneumonia. In conclusion, we expect biomimicking systems combined with the effective antibacterial agent could be the suitable next generation therapeutic potential factors for prevention and treatment of antibiotic-resistant pneumonia.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Jiquan Guo
- Department of Pulmonary and Critical Care Medicine, Guangdon Provincial Peoples Hospital/Guangdon Academy of Medical Sciences/Guangdon Provincial Geriatrics Institute, Guangzhou 510000, PR China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Jiaxin Zhu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Shaozhu Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| |
Collapse
|
7
|
Semenov KN, Ivanova DA, Ageev SV, Petrov AV, Podolsky NE, Volochaeva EM, Fedorova EM, Meshcheriakov AA, Zakharov EE, Murin IV, Sharoyko VV. Evaluation of the C 60 biodistribution in mice in a micellar ExtraOx form and in an oil solution. Sci Rep 2021; 11:8362. [PMID: 33863918 PMCID: PMC8052328 DOI: 10.1038/s41598-021-87014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
The article is devoted to the study of the pharmacokinetics of fullerene C60 in oil and micellar forms, analysis of its content in blood, liver, lungs, kidneys, heart, brain, adrenal glands, thymus, testicles, and spleen. The highest accumulation of C60 was found in the liver and adrenal glands. As a result of the studies carried out, it was shown that the bioavailability of C60 in the micellar form is higher than that in an oil solution.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022. .,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504. .,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya ulitsa, Saint Petersburg, Russia, 197758.
| | - Daria A Ivanova
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022.,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Nikita E Podolsky
- Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | | | | | - Anatolii A Meshcheriakov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022.,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Egor E Zakharov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022. .,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504. .,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya ulitsa, Saint Petersburg, Russia, 197758.
| |
Collapse
|
8
|
Janjua MRSA. Theoretical Framework for Encapsulation of Inorganic B12N12 Nanoclusters with Alkaline Earth Metals for Efficient Hydrogen Adsorption: A Step Forward toward Hydrogen Storage Materials. Inorg Chem 2021; 60:2816-2828. [DOI: 10.1021/acs.inorgchem.0c03730] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Bao H, Wu Y, Jiang Y, Zhang H, Wang Z. Redox Modulation of the Reactivity and Regioselectivity in Diels-Alder Reaction of Metallofullerene La@C 82 with Cyclopentadiene. Chem Asian J 2021; 16:80-86. [PMID: 33217157 DOI: 10.1002/asia.202001267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/12/2020] [Indexed: 11/10/2022]
Abstract
Modulation of the reactivity of metallofullerenes is critical for production of metallofullerene derivatives with desired properties and functionalities. In this study, we investigate the effects of reduction and oxidation on the reactivity and regioselectivity in Diels-Alder reaction of metallofullerene La@C82 by means of density functional theory calculations. Because of the enhanced electron-deficiency characteristic upon oxidation, the oxidized metallofullerene exhibits higher thermodynamic and kinetic reactivity as compared with neutral La@C82 . The regioselectivity in the reaction of La@C82 with cylcopentadiene is remarkably changed after oxidation of the metallofullerene, which is explained in terms of the changes in the geometrical structure and the electronic structure of the metallofullerene. Quantitative analysis based on the activation-strain model demonstrates that the low activation energy barrier for the reaction of the cation La@C82 + with cyclopentadiene originates from small strain energy and large interaction energy between the reactants. Energy decomposition analysis on the transition states of the reactions reveals that the exchange-repulsion interaction energy is one of the critical factors that determine the kinetic reactivity of the metallofullerene. This study not only provides new theoretical insights on how to modulate the reactivity of metallofullerenes, but also offers guideline for future experimental synthesis of new metallofullerene derivatives.
Collapse
Affiliation(s)
- Hanling Bao
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Yabei Wu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Yuhang Jiang
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Hao Zhang
- Research Institute of Chemical Defense, Beijing, 100083, P. R. China
| | - Zhiyong Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| |
Collapse
|
10
|
Fabrication of gold nanohybrids modified with antibody and functional dendrimers for targeted photothermal theranostics. NANO SELECT 2020. [DOI: 10.1002/nano.202000218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
11
|
Li Z, Jiang Y, Wu Y, Wang Z. Activation of the Unreactive Bond in C
70
Fullerene toward Diels‐Alder Reaction by Encapsulation of a Lithium Atom. Chem Asian J 2020; 15:3096-3103. [DOI: 10.1002/asia.202000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Zisheng Li
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Yuhang Jiang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Yabei Wu
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Zhiyong Wang
- Department of Chemistry Renmin University of China Beijing 100872 China
| |
Collapse
|
12
|
Shrestha R, Teesdale-Spittle PH, Lewis AR, Rendle PM. Gadolinium Complexes Attached to Poly Ethoxy Ethyl Glycinamide (PEE-G) Dendrons: Magnetic Resonance Imaging Contrast Agents with Increased Relaxivity. Chempluschem 2020; 85:1881-1892. [PMID: 32845091 DOI: 10.1002/cplu.202000409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/01/2020] [Indexed: 12/16/2022]
Abstract
A range of poly ethoxy ethyl glycinamide (PEE-G) dendron scaffolds with gadolinium (III) complexes attached were synthesized with a focus on product purity and high Gd(III) loading. The nuclear magnetic resonance relaxivity of these products was measured and compared with commercially available low-molecular-weight magnetic resonance imaging contrast agents. Over twice the relaxivity based on Gd(III) concentration, and up to 20-fold increase in relaxivity were observed based on molecular concentration. Relaxivity properties were observed to increase with both increasing molecular weight and number of Gd(III) complexes attached, however a plateau was reached for molecular weight increase. T1 and T2 relaxivity properties were also investigated at two different magnetic fields. Transverse relaxivity is unaffected by magnetic field strength whereas increase in longitudinal relaxivity was not as pronounced at the higher field.
Collapse
Affiliation(s)
- Rinu Shrestha
- Victoria University of Wellington, PO Box 33 436, Petone, 5046, New Zealand
| | | | - Andrew R Lewis
- Victoria University of Wellington, PO Box 33 436, Petone, 5046, New Zealand.,Callaghan Innovation, PO Box 31 310, Lower Hutt, 5010, New Zealand
| | - Phillip M Rendle
- Victoria University of Wellington, PO Box 33 436, Petone, 5046, New Zealand
| |
Collapse
|
13
|
Alipour M, Kargar K. Anionic behavior and single-molecule crystal in fullerene confinements: A contribution from DFT energy decomposition and cooperativity analyses. J Comput Chem 2020; 41:1912-1920. [PMID: 32506442 DOI: 10.1002/jcc.26362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 11/09/2022]
Abstract
The recently proposed systems of various anions (A) confined inside C60 , A- @ C60 , which in turn behave as large and stable anions, (A @ C60 )- , can find potential applications in various fields. On the other hand, it has earlier been shown that from the dihalogens (X2 ) encapsulated C60 , X2 @ C60 , only F2 @ C60 can be introduced as a system in which the cage acts as a cation C60 + and interacts with an endohedral anion, F2 - , forming the F2 - @ C60 + as a single-molecule crystal compound. In this work, two density functional theory energy decomposition analysis (EDA) schemes, where in one of them the noninteracting kinetic, electrostatic, and exchange-correlation energies come into play while another scheme, called as EDA-SBL, includes the steric, electrostatic, and quantum effects as essential ingredients (S. Liu, J. Chem. Phys. 2007, 126, 244103), are utilized to find out what energetic components govern the unique characteristics of the (A @ C60 )- and X2 @ C60 confinements. It is shown that the noninteracting kinetic energy and steric energies have important contributions to the total interaction energies for the considered systems. However, there are other confinements for which the electrostatic and exchange-correlation contributions play also imperative roles. Furthermore, we find reasonable correlations between interaction energies and their components as well as the energetic components themselves, leading to an alternative EDA scheme including the noninteracting kinetic, steric, and electrostatic energies for investigations on other endohedral fullerenes. Extending our analyses to large size confinements, Cl- @ Cn with n up to 90 as illustrative examples, the quantitative cooperativity concept is also explored, where the positive and negative cooperativity profiles unveil a specific size of the anionic confinements to form the most stable large anion.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Kimia Kargar
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
14
|
Semivrazhskaya O, Aroua S, Yulikov M, Romero-Rivera A, Stevenson S, Garcia-Borràs M, Osuna S, Yamakoshi Y. Regioselective Synthesis and Characterization of Tris- and Tetra-Prato Adducts of M 3N@C 80 (M = Y, Gd). J Am Chem Soc 2020; 142:12954-12965. [PMID: 32586092 DOI: 10.1021/jacs.9b13768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tris- and tetra-adducts of M3N@Ih-C80 metallofullerenes were synthesized and characterized for the first time. The 1,3-dipolar cycloaddition (Prato reaction) of Y3N@Ih-C80 and Gd3N@Ih-C80 with an excess of N-ethylglycine and formaldehyde provided tris- and tetra-fulleropyrrolidine adducts in a regioselective manner. Purification by HPLC and analyses of the isolated peaks by NMR, MS, and vis-NIR spectra revealed that the major products were four tris- and one tetra-isomers for both Y3N@Ih-C80 and Gd3N@Ih-C80. Considering the large number of possible isomers (e.g., at least 1140 isomers for the tris-adduct), the limited number of isomers obtained indicated that the reactions proceeded with high regioselectivity. NMR analyses of the Y3N@Ih-C80 adducts found that the tris-adducts were all-[6,6]- or [6,6][6,6][5,6]-isomers and that some showed mutual isomerization or remained intact at room temperature. The tetra-adduct obtained as a major product was all-[6,6] and stable. For the structural elucidation of Gd3N@Ih-C80 tris- and tetra-adducts, density functional theory (DFT) calculations were performed to estimate the relative stabilities of tris- and tetra-adducts formed upon Prato functionalization of the most pyramidalized regions of the fullerene structure. The most stable structures corresponded to additions on the most pyramidalized (i.e., strained) bonds. Taking together the experimental vis-NIR spectra, NMR assignments, and the computed relative DFT stabilities of the potential tris- and tetra-adducts, the structures of the isolated adducts were elucidated. Electron resonance (ESR) measurements measurements of pristine, bis-, and tris-adducts of Gd3N@C80 suggested that the rotation of the endohedral metal cluster slowed upon increase of the addition numbers to C80 cage, which is favored for accommodating the Gd atoms of the relatively large Gd3N cluster inner space at the sp3 addition sites. This is presumably related to the high regioselectivity in the Prato addition reaction driven by the strain release of the Gd3N@C80 fullerene structure.
Collapse
Affiliation(s)
- Olesya Semivrazhskaya
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Safwan Aroua
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Maxim Yulikov
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Adrian Romero-Rivera
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Maria Aurelia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Steven Stevenson
- Department of Chemistry, Purdue University Fort Wayne, Fort Wayne, Indiana 46805, United States
| | - Marc Garcia-Borràs
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Maria Aurelia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Sílvia Osuna
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Maria Aurelia Capmany 69, 17003 Girona, Catalonia, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Yoko Yamakoshi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Affram K, Smith T, Helsper S, Rosenberg JT, Han B, Trevino J, Agyare E. Comparative study on contrast enhancement of Magnevist and Magnevist-loaded nanoparticles in pancreatic cancer PDX model monitored by MRI. Cancer Nanotechnol 2020; 11. [PMID: 32714466 PMCID: PMC7380684 DOI: 10.1186/s12645-020-00061-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: The aim of this study was to compare contrast enhancement of Magnevist® (gadopentate dimeglumine (Mag)) to that of PEGylated Magnevist®-loaded liposomal nanoparticles (Mag-Lnps) in pancreatic cancer patient-derived xenograft (PDX) mouse model via magnetic resonance imaging (MRI). Methods: Mag-Lnps formulated by thin-film hydration and extrusion was characterized for the particle size and zeta potential. A 21.1 T vertical magnet was used for all MRI. The magnet was equipped with a Bruker Advance console and ParaVision 6.1 acquisitions software. Mag-Lnps phantoms were prepared and imaged with a 10-mm birdcage coil. For in vivo imaging, animals were sedated and injected with a single dose (4 mg/kg) of Mag or Mag-Lnps with Mag equivalent dose. Using a 33-mm inner diameter birdcage coil, T1 maps were acquired, and signal to noise ratio (SNR) measured for 2 h. Results: Mag-Lnps phantoms showed a remarkable augmentation in contrast with Mag increment. However, in in vivo imaging, no significant difference in contrast was observed between Mag and MRI. While Mag-Lnps was observed to have fairly high tumor/muscle (T/M) ratio in the first 30 min, free Mag exhibited higher T/M ratio over the time-period between 30 and 120 min. Overall, there was no statistically significant difference between Mag and Mag-Lnp in rating MR image quality. Low payload of Mag entrapment by Lnps and restricted access of water (protons) to Mag-Lnps may have affected the performance of Mag-Lnps as an effective contrast agent. Conclusion: This study showed no significance difference in MRI contrast between Mag and Mag-Lnp pancreatic cancer PDX mouse models.
Collapse
Affiliation(s)
- Kevin Affram
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, 1415 South Martin Luther King Blvd, Tallahassee, FL 32307, USA.,Present Address: Food and Drug Administration, Silver Spring, MD, USA
| | - Taylor Smith
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, 1415 South Martin Luther King Blvd, Tallahassee, FL 32307, USA
| | - Shannon Helsper
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA.,Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Bo Han
- Keck School of Medicine University of Southern California, Los Angeles, USA
| | - Jose Trevino
- Department of Surgery, University of Florida Medical Center, Gainesville, FL, USA
| | - Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, 1415 South Martin Luther King Blvd, Tallahassee, FL 32307, USA
| |
Collapse
|
16
|
Rodríguez-Galván A, Rivera M, García-López P, Medina LA, Basiuk VA. Gadolinium-containing carbon nanomaterials for magnetic resonance imaging: Trends and challenges. J Cell Mol Med 2020; 24:3779-3794. [PMID: 32154648 PMCID: PMC7171414 DOI: 10.1111/jcmm.15065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Gadolinium-containing carbon nanomaterials are a new class of contrast agent for magnetic resonance imaging. They are characterized by a superior proton relaxivity to any current commercial gadolinium contrast agent and offer the possibility to design multifunctional contrasts. Intense efforts have been made to develop these nanomaterials because of their potential for better results than the available gadolinium contrast agents. The aim of the present work is to provide a review of the advances in research on gadolinium-containing carbon nanomaterials and their advantages over conventional gadolinium contrast agents. Due to their enhanced proton relaxivity, they can provide a reliable imaging contrast for cells, tissues or organs with much smaller doses than currently used in clinical practice, thus leading to reduced toxicity (as shown by cytotoxicity and biodistribution studies). Their active targeting capability allows for improved MRI of molecular or cellular targets, overcoming the limited labelling capability of available contrast agents (restricted to physiological irregularities during pathological conditions). Their potential of multifunctionality encompasses multimodal imaging and the combination of imaging and therapy.
Collapse
Affiliation(s)
- Andrés Rodríguez-Galván
- Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Instituto Nacional de Cancerología, Ciudad de Méxi, Mexico.,Carrera de Biología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Margarita Rivera
- Instituto de Física, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico
| | - Patricia García-López
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Luis A Medina
- Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Instituto Nacional de Cancerología, Ciudad de Méxi, Mexico.,Instituto de Física, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico
| | - Vladimir A Basiuk
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
17
|
Emerging Trends in Nanotheranostics. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
19
|
The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part II). Mol Diagn Ther 2019; 23:27-51. [PMID: 30387041 DOI: 10.1007/s40291-018-0367-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present era of precision medicine sees "cancer" as a consequence of molecular derangements occurring at the commencement of the disease process, with morphological changes happening much later in the process of tumourigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound (US) and magnetic resonance imaging (MRI) play an integral role in the detection of disease at the macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumourigenesis. MFI has the potential to play a key role in heralding the transition from the concept of "one-size-fits-all" treatment to "precision medicine". Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called "radiogenomics", which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning and artificial intelligence, the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, the majority of these require validation before clinical translation is possible. In this two part review, we discuss the systematic collaboration across structural, anatomical and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.
Collapse
|
20
|
Jin P, Li Y, Magagula S, Chen Z. Exohedral functionalization of endohedral metallofullerenes: Interplay between inside and outside. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Guan M, Zhou Y, Liu S, Chen D, Ge J, Deng R, Li X, Yu T, Xu H, Sun D, Zhao J, Zou T, Wang C, Shu C. Photo-triggered gadofullerene: enhanced cancer therapy by combining tumor vascular disruption and stimulation of anti-tumor immune responses. Biomaterials 2019; 213:119218. [PMID: 31136911 DOI: 10.1016/j.biomaterials.2019.05.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Efficient treatment of primary tumor and preventing cancer metastasis present intriguing alternatives to cancer therapy. Herein, for the first time, we reported the photo-triggered nano-gadofullerene (Gd@C82-Ala, abbreviated Gd-Ala) induced malignant tumor vascular disruption by shortening the light interval between Gd-Ala administration and light illumination, where oxygen in blood vessels was employed efficiently to produce cytotoxic reactive oxygen species (ROS). The produced ROS could not only destroy the tumor cells but also devastate the vascular endothelial cells corresponding to the loss of intercellular junctions and vessels disruption. Notably, the irradiated Gd-Ala could enhance dendritic cells (DCs) maturation, which further secreted tumor necrosis factor-α (TNF-α) and interleukin-12 (IL)-12, and then activated T lymphocytes by up-regulation of cluster of differentiation CD4+ and CD8+ T lymphocytes. Furthermore, the down-regulation of matrix metalloprotein 2 (MMP2) and MMP9 also reduce the rate of tumor metastasis. This work explored a new biomedical application of gadofullerene, thereby providing a smart carbon nanomaterial candidate for tumor ablation and inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Mirong Guan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuai Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Daiqin Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ruijun Deng
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xue Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tong Yu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Di Sun
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiajia Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Toujun Zou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Chunying Shu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
22
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 859] [Impact Index Per Article: 171.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
23
|
Bologna F, Mattioli EJ, Bottoni A, Zerbetto F, Calvaresi M. Interactions between Endohedral Metallofullerenes and Proteins: The Gd@C 60-Lysozyme Model. ACS OMEGA 2018; 3:13782-13789. [PMID: 31458078 PMCID: PMC6644377 DOI: 10.1021/acsomega.8b01888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/09/2018] [Indexed: 06/10/2023]
Abstract
Endohedral metallofullerenes (EMFs) have great potential as radioisotope carriers for nuclear medicine and as contrast agents for X-ray and magnetic resonance imaging. EMFs have still important restrictions for their use due to low solubility in physiological environments, low biocompatibility, nonspecific cellular uptake, and a strong dependence of their peculiar properties on physiological parameters, such as pH and salt content. Conjugation of the EMFs with proteins can overcome many of these limitations. Here we investigated the thermodynamics of binding of a model EMF (Gd@C60) with a protein (lysozyme) that is known to act as a host for the empty fullerene. As a rule, even if the shape of an EMF is exactly the same as that of the related fullerene, the interactions with a protein are significantly different. The estimated interaction energy (ΔG binding) between Gd@C60 and lysozyme is -18.7 kcal mol-1, suggesting the possibility of using proteins as supramolecular carriers for EMFs. π-π stacking, hydrophobic interactions, surfactant-like interactions, and electrostatic interactions govern the formation of the hybrid between Gd@C60 and lysozyme. The comparison of the energy contributions to the binding between C60 or Gd@C60 and lysozyme suggests that, although shape complementarity remains the driving force of the binding, the presence of electron transfer from the gadolinium atom to the carbon cage induces a charge distribution on the fullerene cage that strongly affects its interaction with the protein.
Collapse
Affiliation(s)
- Fabio Bologna
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Andrea Bottoni
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
24
|
Davis Della T, Suresh CH. Anion-encapsulating fullerenes behave as large anions: a DFT study. Phys Chem Chem Phys 2018; 20:24885-24893. [PMID: 30232483 DOI: 10.1039/c8cp03615b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
M06L/6-311++G(d,p)//M06L/6-31G(d,p) level density functional theory studies show that the endohedral reaction of C60 with X- (X = F, Cl, Br, OH, NH2, NO2, CN, and ClO) is exothermic by 37.8-65.2 kcal mol-1. The exothermic character of the reaction is drastically reduced in polar and nonpolar solvents due to the lack of direct solvation influence on the encapsulated anion. In all X-@C60, the occupied frontier molecular orbitals (FMOs) are located on X- while the energy levels of FMOs centered on C60 are very similar to those of the C60- radical anion. Molecular electrostatic potential (MESP) analysis of X-@C60 revealed that the negative character of the MESP minimum (Vmin) on the carbon cage increases by ∼72 fold compared to C60, which is very similar to the enhancement in the negative MESP observed on the C60- radical anion. The MESP data and quantum theory of atoms in molecules (QTAIM) analysis of charge, electron delocalization index, and Laplacian of bond critical point (bcp) support significant electron sharing from the anion to the carbon atoms of the fullerene cage, which makes the cage behave like a very large anion in a closed shell configuration. The data are also supportive of a multicenter charge-shift type of bonding interaction between the anion and the carbon cage. The anionic nature of the fullerene cage has been verified in the cases of larger systems such as Cl-@C70, Cl-@C84, and Cl-@C90. The binding of a counter cation K+ with X-@C60 is found to be highly exothermic (∼72 kcal mol-1) and very similar to the binding of K+ with the C60- radical anion (72.9 kcal mol-1), which suggests that C60 in X-@C60 behaves as a closed shell anion.
Collapse
Affiliation(s)
- Therese Davis Della
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695 019, India.
| | | |
Collapse
|
25
|
Patel NR, Piroyan A, Ganta S, Morse AB, Candiloro KM, Solon AL, Nack AH, Galati CA, Bora C, Maglaty MA, O'Brien SW, Litwin S, Davis B, Connolly DC, Coleman TP. In Vitro and In Vivo evaluation of a novel folate-targeted theranostic nanoemulsion of docetaxel for imaging and improved anticancer activity against ovarian cancers. Cancer Biol Ther 2018; 19:554-564. [PMID: 29737910 DOI: 10.1080/15384047.2017.1395118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ovarian cancer ranks fifth in cancer related deaths for women in USA. The high mortality rate associated with ovarian cancer is due to diagnosis at later stages of disease and the high recurrence rate of 60-80%. Recurrent ovarian cancers are more likely to present as multidrug resistance (MDR) leading to unfavorable response from 2nd and 3rd line chemotherapy. Nanoemulsions (NEs) are emerging as an attractive drug delivery system to overcome MDR challenges. NEs can also minimize exposure of therapeutic cargo to normal tissues potentially reducing side effects. In >80% of ovarian cancers, Folate Receptor-α (FR-α) is expressed at 10- to 100-fold higher levels than on non-pathological tissues. Therefore, folate (FA) is being evaluated as an active targeting moiety for FR-α+ ovarian cancer. To improve therapeutic outcome with reduced toxicity, we developed NMI-500, a FA targeted gadolinium (Gd) annotated NE loaded with docetaxel (DTX). NMI-500 has been developed as theranostic agents as Gd will enable physician to acquire real time pharmacodynamics data on NE + DTX accumulation in target lesions. In present study, characterization for key translational metrics of NMI-500 showed size distribution in range of 120 to 150 nm and zeta potential around -45 mV. Active targeting of FA was evaluated against FR-α+ KB cells and results demonstrated significant improvement in cell association which was surface ligand density dependent. We found that NMI-500 was able to inhibit tumor growth in a spontaneous transgenic ovarian cancer model with improved safety profile and this growth inhibition could be longitudinally followed by MRI. These results indicate NMI-500 warrants advancement to clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - April L Solon
- a Nemucore Medical Innovations, Inc. , Wellesley , MA
| | | | | | - Collete Bora
- a Nemucore Medical Innovations, Inc. , Wellesley , MA
| | - Marisa A Maglaty
- b Molecular Therapeutics Program, Fox Chase Cancer Center , 333 Cottman Avenue, Philadelphia , PA
| | - Shane W O'Brien
- b Molecular Therapeutics Program, Fox Chase Cancer Center , 333 Cottman Avenue, Philadelphia , PA
| | - Samuel Litwin
- b Molecular Therapeutics Program, Fox Chase Cancer Center , 333 Cottman Avenue, Philadelphia , PA.,c Biostatistics Facility, Fox Chase Cancer Center , 333 Cottman Avenue, Philadelphia , PA
| | - Barbara Davis
- a Nemucore Medical Innovations, Inc. , Wellesley , MA
| | - Denise C Connolly
- b Molecular Therapeutics Program, Fox Chase Cancer Center , 333 Cottman Avenue, Philadelphia , PA
| | | |
Collapse
|
26
|
Yang S, Wei T, Jin F. When metal clusters meet carbon cages: endohedral clusterfullerenes. Chem Soc Rev 2018; 46:5005-5058. [PMID: 28681052 DOI: 10.1039/c6cs00498a] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fullerenes have the characteristic of a hollow interior, and this unique feature triggers intuitive inspiration to entrap atoms, ions or clusters inside the carbon cage in the form of endohedral fullerenes. In particular, upon entrapping an otherwise unstable metal cluster into a carbon cage, the so-called endohedral clusterfullerenes fulfil the mutual stabilization of the inner metal cluster and the outer fullerene cage with a specific isomeric structure which is often unstable as an empty fullerene. A variety of metal clusters have been reported to form endohedral clusterfullerenes, including metal nitrides, carbides, oxides, sulfides, cyanides and so on, making endohedral clusterfullerenes the most variable and intriguing branch of endohedral fullerenes. In this review article, we present an exhaustive review on all types of endohedral clusterfullerenes reported to date, including their discoveries, syntheses, separations, molecular structures and properties as well as their potential applications in versatile fields such as biomedicine, energy conversion, and so on. At the end, we present an outlook on the prospect of endohedral clusterfullerenes.
Collapse
Affiliation(s)
- Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, China.
| | | | | |
Collapse
|
27
|
Litti L, Rivato N, Fracasso G, Bontempi P, Nicolato E, Marzola P, Venzo A, Colombatti M, Gobbo M, Meneghetti M. A SERRS/MRI multimodal contrast agent based on naked Au nanoparticles functionalized with a Gd(iii) loaded PEG polymer for tumor imaging and localized hyperthermia. NANOSCALE 2018; 10:1272-1278. [PMID: 29292448 DOI: 10.1039/c7nr07398d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multimodal contrast agents offer new interesting diagnostic possibilities, summing the benefits of multiple imaging techniques. Magnetic resonance and optical imaging are complementary techniques. The first allows total body screening, even though it suffers from low spatial resolution and needs high loadings, whereas the second shows lower penetration, but bright signals, and a higher spatial resolution and needs lower loadings. We present a plasmonic nanosystem as a MRI (magnetic resonance imaging) and SERRS (surface enhanced resonance Raman scattering) multimodal contrast agent. Naked gold nanoparticles, obtained by laser ablation synthesis in solution, are organized as a highly efficient SERRS substrate with a naphthalocyanine reporter and functionalized with a MRI contrast agent with a newly synthesized 3DOTA-PEG polymer, with a high GdIII loading. As a proof of concept, in vivo and ex vivo MRI and SERRS experiments are also performed. The plasmonic property of the nanosystem is then exploited to show its usefulness for localized hyperthermia.
Collapse
Affiliation(s)
- Lucio Litti
- Department of Chemical Science, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sharma AK, Gupta L, Sahu H, Qayum A, Singh SK, Nakhate KT, Ajazuddin, Gupta U. Chitosan Engineered PAMAM Dendrimers as Nanoconstructs for the Enhanced Anti-Cancer Potential and Improved In vivo Brain Pharmacokinetics of Temozolomide. Pharm Res 2018; 35:9. [DOI: 10.1007/s11095-017-2324-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/25/2017] [Indexed: 01/26/2023]
|
29
|
Thompson HR, Masri HC, Stevenson S. Aminopropanol–xylene to chemically purify Gd3N@C88 metallofullerene. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Narayanan KB, Han SS. Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures. Adv Colloid Interface Sci 2017; 248:1-19. [PMID: 28916111 DOI: 10.1016/j.cis.2017.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 10/18/2022]
Abstract
Viral nanotechnology utilizes virus nanoparticles (VNPs) and virus-like nanoparticles (VLPs) of plant viruses as highly versatile platforms for materials synthesis and molecular entrapment that can be used in the nanotechnological fields, such as in next-generation nanoelectronics, nanocatalysis, biosensing and optics, and biomedical applications, such as for targeting, therapeutic delivery, and non-invasive in vivo imaging with high specificity and selectivity. In particular, plant virus capsids provide biotemplates for the production of novel nanostructured materials with organic/inorganic moieties incorporated in a very precise and controlled manner. Interestingly, capsid proteins of spherical plant viruses can self-assemble into well-organized icosahedral three-dimensional (3D) nanoscale multivalent architectures with high monodispersity and structural symmetry. Using viral genetic and protein engineering of icosahedral viruses with a variety of sizes, the interior, exterior and the interfaces between coat protein (CP) subunits can be manipulated to fabricate materials with a wide range of desirable properties allowing for biomineralization, encapsulation, infusion, controlled self-assembly, and multivalent ligand display of nanoparticles or molecules for varied applications. In this review, we discuss the various functional nanomaterials/nanostructures developed using the VNPs and VLPs of different icosahedral plant viruses and their nano(bio)technological and nanomedical applications.
Collapse
|
31
|
Lu ZR. Magnetic resonance molecular imaging for non-invasive precision cancer diagnosis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 3:67-73. [PMID: 30272041 PMCID: PMC6158012 DOI: 10.1016/j.cobme.2017.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive clinical imaging modality for high-resolution imaging of soft tissues. Magnetic resonance molecular imaging (MRMI) has the potential to provide high-resolution delineation of cancer for precision medicine. However, its clinical application is hampered by the low sensitivity of contrast enhanced MRI and the lack of safe and effective targeted MRI contrast agents. Significant progress has recently been made in the design and development of novel clinically translatable targeted MRI contrast agents for MRMI of cancer. The challenges and strategies for designing the safe and effective targeted MRI contrast agents are discussed here. Some of the recent progresses in MRMI are also highlighted. These progresses provide a new paradiagm for the design and development of safe and effective MRI contrast agents for clinical translation and pave the pave for clinical application of MRMI in precision management of cancer.
Collapse
Affiliation(s)
- Zheng-Rong Lu
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| |
Collapse
|
32
|
Wang Z, Omachi H, Shinohara H. Non-Chromatographic Purification of Endohedral Metallofullerenes. Molecules 2017; 22:E718. [PMID: 28468241 PMCID: PMC6154004 DOI: 10.3390/molecules22050718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/23/2022] Open
Abstract
The purification of endohedral metallofullerenes by high performance liquid chromatography is very time-consuming and expensive. A number of rapid and inexpensive non-chromatographic methods have thus been developed for large-scale purification of metallofullerenes. In this review, we summarize recent advances in non-chromatographic purification methods of metallofullerenes. Lewis acid-based complexation is one of the most efficient and powerful methods for separation of metallofullerenes from empty fullerenes. The first oxidation potential of metallofullerenes is a critical factor that affects the separation efficiency of the Lewis acid-based method. Supramolecular methods are effective for separation of fullerenes and metallofullerenes that are different in size and shape. Chemical/electrochemical reduction and exohedral functionalization are also utilized to separate and purify metallofullerenes on a large scale.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan.
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Haruka Omachi
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan.
| | - Hisanori Shinohara
- Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
33
|
Hashikawa Y, Murata M, Wakamiya A, Murata Y. Orientation of a Water Molecule: Effects on Electronic Nature of the C 59N Cage. J Org Chem 2017; 82:4465-4469. [PMID: 28383266 DOI: 10.1021/acs.joc.7b00453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A hydrogen-bonding network is a key impelling force for an assembly in bulk water. The fullerene cage can incarcerate a water molecule without hydrogen-bonding. Herein, we focused on spin system H2O@C59N·. The 1H NMR relaxation time of entrapped H2O was significantly reduced by the paramagnetic effect. Interestingly, the electron affinity and ionization energy were suggested to vary depending on the orientation of entrapped H2O owing to the degree of the partial charge transfer from entrapped H2O to C59N·.
Collapse
Affiliation(s)
- Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Michihisa Murata
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| |
Collapse
|
34
|
Gao Z, Nakanishi Y, Noda S, Omachi H, Shinohara H, Kimura H, Nagasaki Y. Development of Gd 3N@C 80 encapsulated redox nanoparticles for high-performance magnetic resonance imaging. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1036-1050. [PMID: 28132586 DOI: 10.1080/09205063.2017.1288774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As novel magnetic resonance imaging (MRI) contrast agent, gadofullerene encapsulated redox nanoparticles (Gd3NPs) were prepared by encapsulation of Gd3N@C80 in the core of core-shell-type polymer micelles composed of original polyamine with a reactive oxygen species (ROS)-scavenging ability. Because Gd3NPs possess biocompatible PEG shell with a smaller size (ca. 50 nm), they had high colloidal stability in a physiological environment, and showed low cytotoxicity. Specific accumulation of Gd3NPs in a tumor was confirmed in tumor-bearing mice after systemic administration. The tumor/muscle (T/M) ratio of the Gd ion reached five at 7.5 h after the administration. T1-weighted MRI signal enhancement of the T/M ratio increased by 8% at 6 h postinjection of Gd3NPs (Gd dose:14.35 μmol/kg). Although Gd3NPs showed a tendency for extended blood circulation, they did not have severe adverse effects, probably due to the confinement of Gd in a hydrophobic fullerene in addition to the ROS-scavenging capacity of these nanoparticles. In sharp contrast, systemic administration of Gd-chelate nanoparticles (GdCNPs) to mice disrupts liver function, increases leukocyte counts, and destroys spleen and skin tissues. Leaking of Gd ions from GdCNPs may cause such adverse effects. Based on these results, we expect that Gd3NPs is high-performance MRI contrast agents for tumor diagnosis.
Collapse
Affiliation(s)
- Zhenyu Gao
- a Department of Materials Science , Graduate School of Pure and Applied Sciences, University of Tsukuba , Tsukuba , Japan.,b Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences , University of Tsukuba , Tsukuba , Japan
| | - Yusuke Nakanishi
- c Department of Chemistry & Institute for Advanced Research , Nagoya University , Nagoya , Japan
| | - Shoko Noda
- c Department of Chemistry & Institute for Advanced Research , Nagoya University , Nagoya , Japan
| | - Haruka Omachi
- c Department of Chemistry & Institute for Advanced Research , Nagoya University , Nagoya , Japan
| | - Hisanori Shinohara
- c Department of Chemistry & Institute for Advanced Research , Nagoya University , Nagoya , Japan
| | - Hiroyuki Kimura
- d Department of Analytical and Bioinorganic Chemistry , Kyoto Pharmaceutical University , Kyoto , Japan
| | - Yukio Nagasaki
- a Department of Materials Science , Graduate School of Pure and Applied Sciences, University of Tsukuba , Tsukuba , Japan.,b Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences , University of Tsukuba , Tsukuba , Japan.,e Satellite Laboratory, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
35
|
|
36
|
Zhang S, Zheng Y, Fu DY, Li W, Wu Y, Li B, Wu L. Biocompatible supramolecular dendrimers bearing a gadolinium-substituted polyanionic core for MRI contrast agents. J Mater Chem B 2017; 5:4035-4043. [DOI: 10.1039/c6tb03263j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two hybrid supramolecular complexes comprising magnetic core and dendritic periphery were prepared, which exhibited uniform size, definite molecular weight and chemical composition, and were applicable as enhanced contrast agents.
Collapse
Affiliation(s)
- Simin Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Yanmei Zheng
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| |
Collapse
|
37
|
Zu G, Kuang Y, Dong J, Cao Y, Wang K, Liu M, Luo L, Pei R. Multi-arm star-branched polymer as an efficient contrast agent for tumor-targeted magnetic resonance imaging. J Mater Chem B 2017; 5:5001-5008. [DOI: 10.1039/c7tb01202k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Contrast agents with high efficiency and safety are excellent candidates as magnetic resonance imaging probes.
Collapse
Affiliation(s)
- Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Ye Kuang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Jingjin Dong
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Kewei Wang
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Liqiang Luo
- Department of Chemistry
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| |
Collapse
|
38
|
Singh J, Lopes D, Gomika Udugamasooriya D. Development of a large peptoid-DOTA combinatorial library. Biopolymers 2016; 106:673-84. [PMID: 27257968 PMCID: PMC5035194 DOI: 10.1002/bip.22883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/15/2016] [Accepted: 05/31/2016] [Indexed: 01/03/2023]
Abstract
Conventional one-bead one-compound (OBOC) library synthesis is typically used to identify molecules with therapeutic value. The design and synthesis of OBOC libraries that contain molecules with imaging or even potentially therapeutic and diagnostic capacities (e.g. theranostic agents) has been overlooked. The development of a therapeutically active molecule with a built-in imaging component for a certain target is a daunting task, and structure-based rational design might not be the best approach. We hypothesize to develop a combinatorial library with potentially therapeutic and imaging components fused together in each molecule. Such molecules in the library can be used to screen, identify, and validate as direct theranostic candidates against targets of interest. As the first step in achieving that aim, we developed an on-bead library of 153,600 Peptoid-DOTA compounds in which the peptoids are the target-recognizing and potentially therapeutic components and the DOTA is the imaging component. We attached the DOTA scaffold to TentaGel beads using one of the four arms of DOTA, and we built a diversified 6-mer peptoid library on the remaining three arms. We evaluated both the synthesis and the mass spectrometric sequencing capacities of the test compounds and of the final library. The compounds displayed unique ionization patterns including direct breakages of the DOTA scaffold into two units, allowing clear decoding of the sequences. Our approach provides a facile synthesis method for the complete on-bead development of large peptidomimetic-DOTA libraries for screening against biological targets for the identification of potential theranostic agents in the future. © 2016 The Authors. Biopolymers Published by Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 673-684, 2016.
Collapse
Affiliation(s)
- Jaspal Singh
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204
| | - Daniel Lopes
- Advanced Imaging Research Center, UT-Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390
| | - D Gomika Udugamasooriya
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204.
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, TX, 77030-4009.
- Advanced Imaging Research Center, UT-Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390.
- Department of Biochemistry, UT-Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390.
| |
Collapse
|
39
|
Guan M, Li J, Jia Q, Ge J, Chen D, Zhou Y, Wang P, Zou T, Zhen M, Wang C, Shu C. A Versatile and Clearable Nanocarbon Theranostic Based on Carbon Dots and Gadolinium Metallofullerene Nanocrystals. Adv Healthc Mater 2016; 5:2283-94. [PMID: 27385651 DOI: 10.1002/adhm.201600402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/22/2016] [Indexed: 01/13/2023]
Abstract
Nanocarbons such as carbon nanotubes, graphene derivatives, and carbon nanohorns have illustrated their potential uses as cancer theranostics owing to their intrinsic fluorescence or NIR absorbance as well as superior cargo loading capacity. However, some problems still need to be addressed, such as the fates and long-term toxicology of different nanocarbons in vivo and the improvement of their performance in various biomedical imaging-guided cancer therapy systems. Herein, a versatile and clearable nanocarbon theranostic based on carbon dots (CDs) and gadolinium metallofullerene nanocrystals (GFNCs) is first developed, in which GFNCs enhance the tumor accumulation of CDs, and CDs enhance the relaxivity of GFNCs, leading to an efficient multimodal imaging-guided photodynamic therapy in vivo without obvious long-term toxicity. Furthermore, biochemical analysis reveals that the novel nanotheranostic can harmlessly eliminate from the body in a reasonable period of time after exerting diagnostic and therapeutic function.
Collapse
Affiliation(s)
- Mirong Guan
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Jie Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Qingyan Jia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry (TIPC); Chinese Academy of Sciences; Beijing 100190 China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry (TIPC); Chinese Academy of Sciences; Beijing 100190 China
| | - Daiqin Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Yue Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry (TIPC); Chinese Academy of Sciences; Beijing 100190 China
| | - Toujun Zou
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Mingming Zhen
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Chunying Shu
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| |
Collapse
|
40
|
Matloubi Moghaddam F, Ghanbari B, Behzadi M, Baghersad MH. Synthesis of Tetrahydrothiopyrano[2,3-b]indole [60]Fullerene Derivatives via Hetero-Diels-Alder Reaction of C60and α,β-Unsaturated Indole-2-thiones. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Firouz Matloubi Moghaddam
- Laboratory of Organic Synthesis and Natural Product, Department of Chemistry; Sharif University of Technology; P.O. Box 11155-9516 Tehran Iran
| | - Bahram Ghanbari
- Laboratory of Organic Synthesis and Natural Product, Department of Chemistry; Sharif University of Technology; P.O. Box 11155-9516 Tehran Iran
| | - Masoumeh Behzadi
- Laboratory of Organic Synthesis and Natural Product, Department of Chemistry; Sharif University of Technology; P.O. Box 11155-9516 Tehran Iran
| | | |
Collapse
|
41
|
Dehaini D, Fang RH, Zhang L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med 2016; 1:30-46. [PMID: 29313005 PMCID: PMC5689512 DOI: 10.1002/btm2.10004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/02/2023] Open
Abstract
Nanoparticle‐based drug delivery and imaging platforms have become increasingly popular over the past several decades. Among different design parameters that can affect their performance, the incorporation of targeting functionality onto nanoparticle surfaces has been a widely studied subject. Targeted formulations have the ability to improve efficacy and function by positively modulating tissue localization. Many methods exist for creating targeted nanoformulations, including the use of custom biomolecules such as antibodies or aptamers. More recently, a great amount of focus has been placed on biomimetic targeting strategies that leverage targeting interactions found directly in nature. Such strategies, which have been painstakingly selected over time by the process of evolution to maximize functionality, oftentimes enable scientists to forgo the specialized discovery processes associated with many traditional ligands and help to accelerate development of novel nanoparticle formulations. In this review, we categorize and discuss in‐depth recent works in this growing field of bioinspired research.
Collapse
Affiliation(s)
- Diana Dehaini
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Ronnie H Fang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Liangfang Zhang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| |
Collapse
|
42
|
Abella L, Mulet-Gas M, Rodríguez-Fortea A, Poblet JM. La3N@C92: An Endohedral Metallofullerene Governed by Kinetic Factors? Inorg Chem 2016; 55:3302-6. [PMID: 27002381 DOI: 10.1021/acs.inorgchem.5b02414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Different structures have been proposed so far for the C92 isomer that encapsulates M3N (M = La, Ce, Pr). We show here that the electrochemical properties of the predicted most abundant (thermodynamic) isomer for La3N@C92 does not agree with experiment. After a systematic search within the huge number of possible C92 isomers, we propose other candidates with larger electrochemical gaps for La3N@C92 before its structure could be finally determined by X-ray crystallography. We do not discard that the thermodynamic isomer could be detected in future experiments though.
Collapse
Affiliation(s)
- Laura Abella
- Departament de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Marc Mulet-Gas
- Departament de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Antonio Rodríguez-Fortea
- Departament de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Josep M Poblet
- Departament de Quı́mica Fı́sica i Inorgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
43
|
|
44
|
Maly J, Stanek O, Frolik J, Maly M, Ennen F, Appelhans D, Semeradtova A, Wrobel D, Stofik M, Knapova T, Kuchar M, Stastna LC, Cermak J, Sebo P, Maly P. Biocompatible Size-Defined Dendrimer-Albumin Binding Protein Hybrid Materials as a Versatile Platform for Biomedical Applications. Macromol Biosci 2016; 16:553-66. [PMID: 26748571 DOI: 10.1002/mabi.201500332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/23/2015] [Indexed: 12/14/2022]
Abstract
For the design of a biohybrid structure as a ligand-tailored drug delivery system (DDS), it is highly sophisticated to fabricate a DDS based on smoothly controllable conjugation steps. This article reports on the synthesis and the characterization of biohybrid conjugates based on noncovalent conjugation between a multivalent biotinylated and PEGylated poly(amido amine) (PAMAM) dendrimer and a tetrameric streptavidin-small protein binding scaffold. This protein binding scaffold (SA-ABDwt) possesses nM affinity toward human serum albumin (HSA). Thus, well-defined biohybrid structures, finalized by binding of one or two HSA molecules, are available at each conjugation step in a controlled molar ratio. Overall, these biohybrid assemblies can be used for (i) a controlled modification of dendrimers with the HSA molecules to increase their blood-circulation half-life and passive accumulation in tumor; (ii) rendering dendrimers a specific affinity to various ligands based on mutated ABD domain, thus replacing tedious dendrimer-antibody covalent coupling and purification procedures.
Collapse
Affiliation(s)
- Jan Maly
- Department of Biology, Faculty of Science, University of J.E. Purkinje, 400 96, Ústí nad Labem, Czech Republic
| | - Ondrej Stanek
- Institute of Biotechnology CAS, v. v. i, Pru˚myslová 595, Vestec, ,252 42, Jesenice u Prahy, Czech Republic
| | - Jan Frolik
- Department of Biology, Faculty of Science, University of J.E. Purkinje, 400 96, Ústí nad Labem, Czech Republic
| | - Marek Maly
- Department of Biology, Faculty of Science, University of J.E. Purkinje, 400 96, Ústí nad Labem, Czech Republic
| | - Franka Ennen
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069, Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069, Dresden, Germany
| | - Alena Semeradtova
- Department of Biology, Faculty of Science, University of J.E. Purkinje, 400 96, Ústí nad Labem, Czech Republic
| | - Dominika Wrobel
- Department of Biology, Faculty of Science, University of J.E. Purkinje, 400 96, Ústí nad Labem, Czech Republic
| | - Marcel Stofik
- Department of Biology, Faculty of Science, University of J.E. Purkinje, 400 96, Ústí nad Labem, Czech Republic
| | - Tereza Knapova
- Department of Biology, Faculty of Science, University of J.E. Purkinje, 400 96, Ústí nad Labem, Czech Republic
| | - Milan Kuchar
- Institute of Biotechnology CAS, v. v. i, Pru˚myslová 595, Vestec, ,252 42, Jesenice u Prahy, Czech Republic
| | - Lucie Cervenkova Stastna
- Institute of Chemical Process Fundamentals CAS, v. v. i, Rozvojová 135, 165 02, Prague, Czech Republic
| | - Jan Cermak
- Institute of Chemical Process Fundamentals CAS, v. v. i, Rozvojová 135, 165 02, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology CAS, v. v. i, Vídeˇnská 1083, 142 20, Prague, Czech Republic
| | - Petr Maly
- Institute of Biotechnology CAS, v. v. i, Pru˚myslová 595, Vestec, ,252 42, Jesenice u Prahy, Czech Republic
| |
Collapse
|
45
|
Li C, Cui R, Feng L, Li J, Huang H, Yao H, Guo X, Dong J, Xing G, Liu Z, Sun B. Synthesis of a UCNPs@SiO2@gadofullerene nanocomposite and its application in UCL/MR bimodal imaging. RSC Adv 2016. [DOI: 10.1039/c6ra21295f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel bimodal imaging agent (GdF–UCNPs) has been designed through conjugating the water-soluble polyhydroxy Gd@C82-PCBM with silica coated UCNPs.
Collapse
|
46
|
Rühlig K, Mothes R, Aliabadi A, Kataev V, Büchner B, Buschbeck R, Rüffer T, Lang H. CuII bis(oxamato) end-grafted poly(amidoamine) dendrimers. Dalton Trans 2016; 45:7960-79. [DOI: 10.1039/c5dt03416g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
“Magneto-dendrimers” comprising up to ten endgrafted {Cu3(3,4-bopb)(pmdta)2}2− complex fragments have been synthesized to determine their magnetic properties.
Collapse
Affiliation(s)
- Karoline Rühlig
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Chemistry
- Inorganic Chemistry
- 09107 Chemnitz
| | - Robert Mothes
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Chemistry
- Inorganic Chemistry
- 09107 Chemnitz
| | - Azar Aliabadi
- Leibniz Institute for Solid State and Materials Research IFW Dresden
- 01069 Dresden
- Germany
| | - Vladislav Kataev
- Leibniz Institute for Solid State and Materials Research IFW Dresden
- 01069 Dresden
- Germany
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research IFW Dresden
- 01069 Dresden
- Germany
| | - Roy Buschbeck
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Chemistry
- Inorganic Chemistry
- 09107 Chemnitz
| | - Tobias Rüffer
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Chemistry
- Inorganic Chemistry
- 09107 Chemnitz
| | - Heinrich Lang
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Chemistry
- Inorganic Chemistry
- 09107 Chemnitz
| |
Collapse
|
47
|
Li J, Cui R, Chang Y, Guo X, Gu W, Huang H, Chen K, Lin G, Dong J, Xing G, Sun B. Adaption of the structure of carbon nanohybrids toward high-relaxivity for a new MRI contrast agent. RSC Adv 2016. [DOI: 10.1039/c6ra06733f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The structure and physicochemical properties of the carbon nanohybrids, rather than the Gd concentration, determined their higher relaxivity.
Collapse
|
48
|
Xiong Z, Wang Y, Zhu J, He Y, Qu J, Effenberg C, Xia J, Appelhans D, Shi X. Gd-Chelated poly(propylene imine) dendrimers with densely organized maltose shells for enhanced MR imaging applications. Biomater Sci 2016; 4:1622-1629. [PMID: 27722500 DOI: 10.1039/c6bm00532b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gd-Chelated fourth generation poly(propylene imine) dendrimers with densely organized maltose shells can be designed for enhanced MR imaging applications.
Collapse
Affiliation(s)
- Zhijuan Xiong
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Yue Wang
- Department of Radiology
- Shanghai Songjiang District Central Hospital
- Shanghai 201600
- People's Republic of China
| | - Jingyi Zhu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Yao He
- Department of Radiology
- Shanghai Songjiang District Central Hospital
- Shanghai 201600
- People's Republic of China
| | - Jiao Qu
- Department of Radiology
- Shanghai Songjiang District Central Hospital
- Shanghai 201600
- People's Republic of China
| | | | - Jindong Xia
- Department of Radiology
- Shanghai Songjiang District Central Hospital
- Shanghai 201600
- People's Republic of China
| | | | - Xiangyang Shi
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| |
Collapse
|
49
|
Younis M, Darcos V, Paniagua C, Ronjat P, Lemaire L, Nottelet B, Garric X, Bakkour Y, El Nakat JH, Coudane J. MRI-visible polymer based on poly(methyl methacrylate) for imaging applications. RSC Adv 2016. [DOI: 10.1039/c5ra23646k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macromolecular contrast agents are very attractive to afford efficient magnetic resonance imaging (MRI) visualization of implantable medical devices.
Collapse
Affiliation(s)
- Mira Younis
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Vincent Darcos
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Cédric Paniagua
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pauline Ronjat
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Laurent Lemaire
- Micro et Nanomédecines Biomimétiques-MINT
- INSERM UMR-S1066
- Université Angers
- 49933 Angers Cedex 9
- France
| | - Benjamin Nottelet
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Xavier Garric
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Youssef Bakkour
- Laboratory of Applied Chemistry
- Faculty of Science III
- Lebanese University
- Tripoli
- Lebanon
| | | | - Jean Coudane
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
50
|
Zhao B, Huang P, Rong P, Wang Y, Gao M, Huang H, Sun K, Chen X, Li W. Facile synthesis of ternary CdMnS QD-based hollow nanospheres as fluorescent/magnetic probes for bioimaging. J Mater Chem B 2016; 4:1208-1212. [DOI: 10.1039/c5tb01963j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescent/magnetic dual-functional CdMnS hollow nanospheres with bright tunable emission and strong MR signal were synthesized via a facile Ostwald-ripening process with promising applications in bioimaging.
Collapse
Affiliation(s)
- Bingxia Zhao
- State Key Lab of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Peng Huang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Pengfei Rong
- Department of Radiology
- The Third Xiangya Hospital
- Central South University
- Changsha
- P. R. China
| | - Yu Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Mengyu Gao
- State Key Lab of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Haiyan Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education)
- Center for Comparative Biomedicine
- Institute of Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Kang Sun
- State Key Lab of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|