1
|
Kundu D, Shin SY, Chilian WM, Dong F. The Potential of Mesenchymal Stem Cell-Derived Exosomes in Cardiac Repair. Int J Mol Sci 2024; 25:13494. [PMID: 39769256 PMCID: PMC11727646 DOI: 10.3390/ijms252413494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and effectively repairing the heart following myocardial injuries remains a significant challenge. Research has increasingly shown that exosomes derived from mesenchymal stem cells (MSC-Exo) can ameliorate myocardial injuries and improve outcomes after such injuries. The therapeutic benefits of MSC-Exo are largely due to their capacity to deliver specific cargo, including microRNAs and proteins. MSC-Exo can modulate various signaling pathways and provide several beneficial effects, including cytoprotection, inflammation modulation, and angiogenesis promotion to help repair the damaged myocardium. In this review, we summarize the cardioprotective effects of MSC-Exo in myocardial injury, the underlying molecular mechanism involved in the process, and various approaches studied to enhance their efficacy based on recent findings.
Collapse
Affiliation(s)
| | | | | | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (D.K.); (S.Y.S.); (W.M.C.)
| |
Collapse
|
2
|
Qavi I, Halder S, Tan G. Optimization of printability of bioinks with multi-response optimization (MRO) and artificial neural networks (ANN). PROGRESS IN ADDITIVE MANUFACTURING 2024. [DOI: 10.1007/s40964-024-00828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/28/2024] [Indexed: 01/06/2025]
|
3
|
Bettini A, Camelliti P, Stuckey DJ, Day RM. Injectable biodegradable microcarriers for iPSC expansion and cardiomyocyte differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404355. [PMID: 38900068 PMCID: PMC11348074 DOI: 10.1002/advs.202404355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Cell therapy is a potential novel treatment for cardiac regeneration and numerous studies have attempted to transplant cells to regenerate the myocardium lost during myocardial infarction. To date, only minimal improvements to cardiac function have been reported. This is likely to be the result of low cell retention and survival following transplantation. This study aimed to improve the delivery and engraftment of viable cells by using an injectable microcarrier that provides an implantable, biodegradable substrate for attachment and growth of cardiomyocytes derived from induced pluripotent stem cells (iPSC). We describe the fabrication and characterisation of Thermally Induced Phase Separation (TIPS) microcarriers and their surface modification to enable iPSC-derived cardiomyocyte attachment in xeno-free conditions is described. The selected formulation resulted in iPSC attachment, expansion, and retention of pluripotent phenotype. Differentiation of iPSC into cardiomyocytes on the microcarriers is investigated in comparison with culture on 2D tissue culture plastic surfaces. Microcarrier culture is shown to support culture of a mature cardiomyocyte phenotype, be compatible with injectable delivery, and reduce anoikis. The findings from this study demonstrate that TIPS microcarriers provide a supporting matrix for culturing iPSC and iPSC-derived cardiomyocytes in vitro and are suitable as an injectable cell-substrate for cardiac regeneration.
Collapse
Affiliation(s)
- Annalisa Bettini
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Patrizia Camelliti
- School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Richard M. Day
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| |
Collapse
|
4
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Zhu F, Nie G, Liu C. Engineered biomaterials in stem cell-based regenerative medicine. LIFE MEDICINE 2023; 2:lnad027. [PMID: 39872549 PMCID: PMC11749850 DOI: 10.1093/lifemedi/lnad027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/17/2023] [Indexed: 01/30/2025]
Abstract
Stem cell-based regenerative therapies, which harness the self-renewal and differentiation properties of stem cells, have been in the spotlight due to their widespread applications in treating degenerative, aging, and other, generally intractable diseases. Therapeutically effective hematopoietic stem cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells have been used in numerous basic and translational studies with exciting results. However, pre-/post-transplantation issues of poor cell survival and retention, uncontrolled differentiation, and insufficient numbers of cells engrafted into host tissues are the major challenges in stem cell-based regenerative therapies. Engineered biomaterials have adjustable biochemical and biophysical properties that significantly affect cell behaviors, such as cell engraftment, survival, migration, and differentiation outcomes, thereby enhancing the engraftment of implanted stem cells and guiding tissue regeneration. Therefore, the combination of stem cell biology with bioengineered materials is a promising strategy to improve the therapeutic outcomes of stem cell-based regenerative therapy. In this review, we summarize the advances in the modulation of behaviors of stem cells via engineered biomaterials. We then present different approaches to harnessing bioengineered materials to enhance the transplantation of stem cells. Finally, we will provide future directions in regenerative therapy using stem cells.
Collapse
Affiliation(s)
- Fei Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Stahn L, Rasińska J, Dehne T, Schreyer S, Hakus A, Gossen M, Steiner B, Hemmati-Sadeghi S. Sleeping Beauty transposon system for GDNF overexpression of entrapped stem cells in fibrin hydrogel in a rat model of Parkinson's disease. Drug Deliv Transl Res 2023; 13:1745-1765. [PMID: 36853436 PMCID: PMC10125957 DOI: 10.1007/s13346-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 03/01/2023]
Abstract
There is currently no causal treatment available for Parkinson's disease (PD). However, the use of glial cell line-derived neurotrophic factor (GDNF) to provide regenerative effects for neurons is promising. Such approaches require translational delivery systems that are functional in diseased tissue. To do so, we used a non-viral Sleeping Beauty (SB) transposon system to overexpress GDNF in adipose tissue-derived mesenchymal stromal cells (adMSCs). Entrapment of cells in fibrin hydrogel was used to boost potential neurorestorative effects. Functional GDNF-adMSCs were able to secrete 1066.8 ± 169.4 ng GDNF/120,000 cells in vitro. The GDNF-adMSCs were detectable for up to 1 month after transplantation in a mild 6-hydroxydopamine (6-OHDA) hemiparkinson male rat model. Entrapment of GDNF-adMSCs enabled GDNF secretion in surrounding tissue in a more concentrated manner, also tending to prolong GDNF secretion relatively. GDNF-adMSCs entrapped in hydrogel also led to positive immunomodulatory effects via an 83% reduction of regional IL-1β levels compared to the non-entrapped GDNF-adMSC group after 1 month. Furthermore, GDNF-adMSC-treated groups showed higher recovery of tyrosine hydroxylase (TH)-expressing cells, indicating a neuroprotective function, although this was not strong enough to show significant improvement in motor performance. Our findings establish a promising GDNF treatment system in a PD model. Entrapment of GDNF-adMSCs mediated positive immunomodulatory effects. Although the durability of the hydrogel needs to be extended to unlock its full potential for motor improvements, the neuroprotective effects of GDNF were evident and safe. Further motor behavioral tests and other disease models are necessary to evaluate this treatment option adequately.
Collapse
Affiliation(s)
- Laura Stahn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Justyna Rasińska
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Tilo Dehne
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie Schreyer
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Aileen Hakus
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Manfred Gossen
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 21502 Teltow, Germany
| | - Barbara Steiner
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
7
|
Briones JC, Espulgar WV, Koyama S, Takamatsu H, Saito M, Tamiya E. A High-Throughput Single-Cell Assay on a Valve-Based Microfluidic Platform Applied to Protein Quantification, Immune Response Monitoring, and Drug Discovery. Methods Mol Biol 2023; 2689:119-142. [PMID: 37430051 DOI: 10.1007/978-1-0716-3323-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The use of microfluidic technology in single-cell assay has shown potential in biomedical applications like protein quantification, immune response monitoring, and drug discovery. Because of the details of information that can be obtained at single-cell resolution, the single-cell assay has been applied to tackle challenging issues such as cancer treatment. Information like the levels of protein expression, cellular heterogeneity, and unique behaviors within subsets are very important in the biomedical field. For a single-cell assay system, a high-throughput platform that can do on-demand media exchange and real-time monitoring is advantageous in single-cell screening and profiling. In this work, a high-throughput valve-based device is presented, its use in single-cell assay, particularly in protein quantification and surface-marker analysis, and its potential application to immune response monitoring and drug discovery are laid down in detail.
Collapse
Affiliation(s)
- Jonathan C Briones
- Life and Medical Photonics Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Wilfred V Espulgar
- Department of Physics, College of Science, De La Salle University, Manila, Philippines
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masato Saito
- Life and Medical Photonics Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- National Institute of Advanced Industrial Science and Technology, PhotoBIO Open Innovation Laboratory, Osaka, Japan
| | - Eiichi Tamiya
- National Institute of Advanced Industrial Science and Technology, PhotoBIO Open Innovation Laboratory, Osaka, Japan.
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
| |
Collapse
|
8
|
Dynamic seeding versus microinjection of mesenchymal stem cells for acellular nerve allograft: an in vitro comparison. J Plast Reconstr Aesthet Surg 2022; 75:2821-2830. [PMID: 35570113 PMCID: PMC9391259 DOI: 10.1016/j.bjps.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/17/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-supplemented acellular nerve allografts (ANA) are a potential strategy to improve the treatment of segmental nerve defects. Prior to clinical translation, optimal cell delivery methods must be defined. While two techniques, dynamic seeding and microinjection, have been described, the seeding efficiency, cell viability, and distribution of MSCs in ANAs are yet to be compared. METHODS Sciatic nerve segments of Sprague-Dawley rats were decellularized, and MSCs were harvested from the adipose tissue of Lewis rats. Cell viability was evaluated after injection of MSCs through a 27-gauge needle at different flow rates (10, 5, and 1 µL/min). MSCs were dynamically seeded or longitudinally injected into ANAs. Cell viability, seeding efficiency, and distribution were evaluated using LIVE/DEAD and MTS assays, scanning electron microscopy, and Hoechst staining. RESULTS No statistically significant difference in cell viability after injection at different flow rates was seen. After cell delivery, 84.1 ± 3.7% and 87.8 ± 2.8% of MSCs remained viable in the dynamic seeding and microinjection group, respectively (p = 0.41). The seeding efficiency of microinjection (100.4%±5.6) was significantly higher than dynamic seeding (48.1%±8.6) on day 1 (p = 0.001). Dynamic seeding demonstrated a significantly more uniform cell distribution over the course of the ANA compared to microinjection (p = 0.02). CONCLUSION MSCs remain viable after both dynamic seeding and microinjection in ANAs. Higher seeding efficiency was observed with microinjection, but dynamic seeding resulted in a more uniform distribution. In vivo studies are required to assess the effect on gene expression profiles and functional motor outcomes.
Collapse
|
9
|
Rangatchew F, Rasmussen BS, Svalgaard JD, Haastrup E, Talman MLM, Bonde C, Fischer-Nielsen A, Drzewiecki KT, Holmgaard R, Munthe-Fog L. Efficacy of mesenchymal stem cell-delivery using perpendicular multi-needle injections to the skin: Evaluation of post-ejection cellular health and dermal delivery. Burns 2022; 49:633-645. [PMID: 35618513 DOI: 10.1016/j.burns.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Abstract
AIM Mesenchymal stem cell (MSC)-therapy is increasingly being evaluated in clinical trials. Dermal delivery is not only time consuming but also unreliable, potentially hampering the therapeutic result. Therefore, qualification of cell delivery protocols is essential. This study evaluated a clinically relevant automated multi-needle injection method for cutaneous MSC-therapy, allowing the skin to be readily and timely treated, by assessing both the cellular health post-ejection and dermal delivery. METHODS Following dispensation through the injector (31 G needles: 9- or 5-pin) the cellular health and potency (perceived- and long-term (12 h) viability, recovery, metabolism, adherence, proliferation and IDO1-expression) of adipose-derived stem cells (10-20-50 ×106 cells/ml) were assessed in vitro in addition to dermal delivery of solution in human skin. RESULTS No significant detrimental effect on the perceived cell viability, recovery, metabolism, adherence or IDO1-expression of either cell concentration was observed. However, the overall long-term viability and proliferation decreased significantly regardless of cell concentration, nonetheless marginally. An injection depth above 1.0 mm resulted in all needles piercing the skin with dermal delivery from up to 89% needles and minimal reflux to the skin surface, and the results were confirmed by ultrasound and histology. CONCLUSION The automated injector is capable of delivering dermal cell-doses with an acceptable cell quality.
Collapse
|
10
|
Yan X, Yang B, Chen Y, Song Y, Ye J, Pan Y, Zhou B, Wang Y, Mao F, Dong Y, Liu D, Yu J. Anti-Friction MSCs Delivery System Improves the Therapy for Severe Osteoarthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104758. [PMID: 34657320 DOI: 10.1002/adma.202104758] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Osteoarthritis (OA) is a musculoskeletal disorder disease affecting about 500 million people worldwide and mesenchymal sem cells (MSCs) therapy has been demonstrated as a potential strategy to treat OA. However, the shear forces during direct injection and the harsher shear condition of OA environments would lead to significant cell damage and inhibit the therapeutic efficacy. Herein, DNA supramolecular hydrogel has been applied as delivering material for MSCs to treat severe OA model, which perform extraordinary protection in MSCs against the shear force both in vitro and in vivo. It is demonstrated that the DNA supramolecular hydrogel can promote formation of quality cartilage, reduce osteophyte, and normalize subchondral bone under the high friction condition of OA, whose molecular mechanisms underlying therapeutic effects are also investigated. It can be anticipated that DNA supramolecular hydrogel would be a promising cell delivery system for multiple potential MSCs therapy.
Collapse
Affiliation(s)
- Xin Yan
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Bo Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yourong Chen
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Yifan Song
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Jing Ye
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Yufan Pan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuqing Wang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiakuo Yu
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| |
Collapse
|
11
|
Intravascular Application of Labelled Cell Spheroids: An Approach for Ischemic Peripheral Artery Disease. Int J Mol Sci 2021; 22:ijms22136831. [PMID: 34202056 PMCID: PMC8269343 DOI: 10.3390/ijms22136831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSC) are known for their vascular regeneration capacity by neoangiogenesis. Even though, several delivery approaches exist, particularly in the case of intravascular delivery, only limited number of cells reach the targeted tissue and are not able to remain on site. Applicated cells exhibit poor survival accompanied with a loss of functionality. Moreover, cell application techniques lead to cell death and impede the overall MSC function and survival. 3D cell spheroids mimic the physiological microenvironment, thus, overcoming these limitations. Therefore, in this study we aimed to evaluate and assess the feasibility of 3D MSCs spheroids for endovascular application, for treatment of ischemic peripheral vascular pathologies. Multicellular 3D MSC spheroids were generated at different cell seeding densities, labelled with ultra-small particles of iron oxide (USPIO) and investigated in vitro in terms of morphology, size distribution, mechanical stability as well as ex vivo with magnetic resonance imaging (MRI) to assess their trackability and distribution. Generated 3D spheroids were stable, viable, maintained stem cell phenotype and were easily trackable and visualized via MRI. MSC 3D spheroids are suitable candidates for endovascular delivery approaches in the context of ischemic peripheral vascular pathologies.
Collapse
|
12
|
Toftdal MS, Taebnia N, Kadumudi FB, Andresen TL, Frogne T, Winkel L, Grunnet LG, Dolatshahi-Pirouz A. Oxygen releasing hydrogels for beta cell assisted therapy. Int J Pharm 2021; 602:120595. [PMID: 33892060 DOI: 10.1016/j.ijpharm.2021.120595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Diabetes is a serious chronic disease, which globally affects more than 400 million patients. Beta cell therapy has potential to serve as an effective cure to type 1 diabetes and several studies have already shown promising results in this regard. One of the major obstacles in cell therapy, however, is the hypoxic environment that therapeutic cells are subjected to immediately after the transplantation. In this study, a new approach is presented, based on hydrogels composed of thiolated hyaluronic acid (tHA), 8-arm-Poly(ethylene glycol)-Acrylate (PEGA), and calcium peroxide (CPO) as an oxygen releasing system. Hydrogels containing 0, 7.5, and 30% CPO were prepared, and the presence of CPO was confirmed via FTIR and Alizarin Red within the network. Oxygen release kinetics were monitored over time, and the results revealed that the hydrogels containing 30% CPO could release oxygen for at least 30 h. All three combinations were found to be injectable and suitable for beta cell therapy based on their mechanical and rheological properties. Additionally, to investigate the functionality of the system, insulin secreting INS-1E reporter cell clusters were encapsulated, and their viability was evaluated, which showed that CPO incorporation enhanced cell survival for at least three days.
Collapse
Affiliation(s)
- Mette Steen Toftdal
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; Department of Stem Cell Delivery & Pharmacology, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Thomas Frogne
- Department of Stem Cell Discovery, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Louise Winkel
- Department of Stem Cell Delivery & Pharmacology, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Lars Groth Grunnet
- Department of Stem Cell Delivery & Pharmacology, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; Radboud Institute for Molecular Life Sciences, Department of Dentistry - Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525EX Nijmegen, the Netherlands.
| |
Collapse
|
13
|
Rosell-Valle C, Antúnez C, Campos F, Gallot N, García-Arranz M, García-Olmo D, Gutierrez R, Hernán R, Herrera C, Jiménez R, Leyva-Fernández L, Maldonado-Sanchez R, Muñoz-Fernández R, Nogueras S, Ortiz L, Piudo I, Ranchal I, Rodríguez-Acosta A, Segovia C, Fernández-Muñoz B. Evaluation of the effectiveness of a new cryopreservation system based on a two-compartment vial for the cryopreservation of cell therapy products. Cytotherapy 2021; 23:740-753. [PMID: 33714705 DOI: 10.1016/j.jcyt.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND AIMS Successful cell cryopreservation and banking remain a major challenge for the manufacture of cell therapy products, particularly in relation to providing a hermetic, sterile cryovial that ensures optimal viability and stability post-thaw while minimizing exposure to toxic cryoprotective agents, typically dimethyl sulfoxide (Me2SO). METHODS In the present study, the authors evaluated the effectiveness and functionality of Limbo technology (Cellulis S.L., Santoña, Spain). This system provides a hermetic vial with two compartments (one for adding cells with the cryoprotective agent solution and the other for the diluent solution) and an automated defrosting device. Limbo technology (Cellulis S.L.) allows reduction of the final amount of Me2SO, sidestepping washing and dilution steps and favoring standardization. The study was performed in several Good Manufacturing Practice laboratories manufacturing diverse cell therapy products (human mesenchymal stromal cells, hematopoietic progenitor cells, leukapheresis products, fibroblasts and induced pluripotent stem cells). Laboratories compared Limbo technology (Cellulis S.L.) with their standard cryopreservation procedure, analyzing cell recovery, viability, phenotype and functionality. RESULTS Limbo technology (Cellulis S.L.) maintained the viability and functionality of most of the cell products and preserved sterility while reducing the final concentration of Me2SO. CONCLUSIONS Results showed that use of Limbo technology (Cellulis S.L.) offers an overall safe alternative for cell banking and direct infusion of cryopreserved cell products into patients.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain.
| | - Cristina Antúnez
- Unidad de Expansión y Terapia Celular. Centro de Transfusión, Tejidos y Células, Málaga, Spain
| | - Fernando Campos
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | | | | | | | - Rosario Gutierrez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Concha Herrera
- Unidad de Terapia Celular, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Rosario Jiménez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laura Leyva-Fernández
- Unidad de Producción Celular, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | | | - Sonia Nogueras
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Lourdes Ortiz
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Inmaculada Piudo
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | - Isidora Ranchal
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | | | - Cristina Segovia
- Unidad de Expansión y Terapia Celular. Centro de Transfusión, Tejidos y Células, Málaga, Spain
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain.
| |
Collapse
|
14
|
Mathot F, Rbia N, Thaler R, Bishop AT, van Wijnen AJ, Shin AY. Introducing human adipose-derived mesenchymal stem cells to Avance Ⓡ nerve grafts and NeuraGen Ⓡ nerve guides. J Plast Reconstr Aesthet Surg 2020; 73:1473-1481. [PMID: 32418840 DOI: 10.1016/j.bjps.2020.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/15/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND When direct nerve coaptation is impossible after peripheral nerve injury, autografts, processed allografts, or conduits are used to bridge the nerve gap. The purpose of this study was to examine if human adipose-derived Mesenchymal Stromal/Stem Cells (MSCs) could be introduced to commercially available nerve graft substitutes and to determine cell distribution and the seeding efficiency of a dynamic seeding strategy. METHODS MTS assays examined the viability of human MSCs after introduction to the AvanceⓇ Nerve Graft and the NeuraGenⓇ Nerve Guide. MSCs were dynamically seeded on nerve substitutes for either 6, 12, or 24 h. Cell counts, live/dead stains, Hoechst stains, and Scanning Electron Microscopy (SEM) revealed the seeding efficiency and the distribution of MSCs after seeding. RESULTS The viability of MSCs was not affected by nerve substitutes. Dynamic seeding led to uniformly distributed MSCs over the surface of both nerve substitutes and revealed MSCs on the inner surface of the NeuraGenⓇ Nerve Guides. The maximal seeding efficiency of NeuraGenⓇ Nerve Guides (94%), obtained after 12 h was significantly higher than that of AvanceⓇ Nerve Grafts (66%) (p = 0.010). CONCLUSION Human MSCs can be dynamically seeded on AvanceⓇ Nerve Grafts and NeuraGenⓇ Nerve Guides. The optimal seeding duration was 12 h. MSCs were distributed in a uniform fashion on exposed surfaces. This study demonstrates that human MSCs can be effectively and efficiently seeded onto commercially available nerve autograft substitutes in a timely fashion and sets the stage for the clinical application of MSC-seeded nerve graft substitutes clinically.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Plastic, Reconstructive and Hand Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Roman Thaler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
15
|
Muralidhara BK, Wong M. Critical considerations in the formulation development of parenteral biologic drugs. Drug Discov Today 2020; 25:574-581. [DOI: 10.1016/j.drudis.2019.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
|
16
|
Mathot F, Rbia N, Bishop AT, Hovius SER, Van Wijnen AJ, Shin AY. Adhesion, distribution, and migration of differentiated and undifferentiated mesenchymal stem cells (MSCs) seeded on nerve allografts. J Plast Reconstr Aesthet Surg 2019; 73:81-89. [PMID: 31202698 DOI: 10.1016/j.bjps.2019.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/25/2019] [Accepted: 05/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although undifferentiated MSCs and MSCs differentiated into Schwann-like cells have been extensively compared in vitro and in vivo, studies on the ability and efficiency of differentiated MSCs for delivery into nerve allografts are lacking. As this is essential for their clinical potential, the purpose of this study was to determine the ability of MSCs differentiated into Schwann-like cells to be dynamically seeded on decellularized nerve allografts and to compare their seeding potential to that of undifferentiated MSCs. METHODS Fifty-six sciatic nerve segments from Sprague Dawley rats were decellularized, and MSCs were harvested from Lewis rat adipose tissue. Control and differentiated MSCs were dynamically seeded on the surface of decellularized allografts. Cell viability, seeding efficiencies, cell adhesion, distribution, and migration were evaluated. RESULTS The viability of both cell types was not influenced by the processed nerve allograft. Both cell types achieved maximal seeding efficiency after 12 h of dynamic seeding, albeit that differentiated MSCs had a significantly higher mean seeding efficiency than control MSCs. Dynamic seeding resulted in a uniform distribution of cells among the surface of the nerve allograft. No cells were located inside the nerve allograft after seeding. CONCLUSION Differentiated MSCs can be dynamically seeded on the surface of a processed nerve allograft, in a similar fashion as undifferentiated MSCs. Schwann-like differentiated MSCs have a significantly higher seeding efficiency after 12 h of dynamic seeding. We conclude that differentiation of MSCs into Schwann-like cells may improve the seeding strategy and the ability of nerve allografts to support axon regeneration.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA; Department of Plastic Surgery, Radboudumc, Geert Grooteplein Zuid 10, 6525GA Nijmegen, the Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA
| | - Allen T Bishop
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA
| | - Steven E R Hovius
- Department of Plastic Surgery, Radboudumc, Geert Grooteplein Zuid 10, 6525GA Nijmegen, the Netherlands; Hand and Wrist Surgery, Xpert Clinic, Jan Leentvaarlaan 14-24, 3065 DC Rotterdam, the Netherlands
| | - Andre J Van Wijnen
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA.
| |
Collapse
|
17
|
Mehrali M, Thakur A, Kadumudi FB, Pierchala MK, Cordova JAV, Shahbazi MA, Mehrali M, Pennisi CP, Orive G, Gaharwar AK, Dolatshahi-Pirouz A. Pectin Methacrylate (PEMA) and Gelatin-Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12283-12297. [PMID: 30864429 DOI: 10.1021/acsami.9b00154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The emergence of nontoxic, eco-friendly, and biocompatible polymers derived from natural sources has added a new and exciting dimension to the development of low-cost and scalable biomaterials for tissue engineering applications. Here, we have developed a mechanically strong and durable hydrogel composed of an eco-friendly biopolymer that exists within the cell walls of fruits and plants. Its trade name is pectin, and it bears many similarities with natural polysaccharides in the native extracellular matrix. Specifically, we have employed a new pathway to transform pectin into a ultraviolet (UV)-cross-linkable pectin methacrylate (PEMA) polymer. To endow this hydrogel matrix with cell differentiation and cell spreading properties, we have also incorporated thiolated gelatin into the system. Notably, we were able to fine-tune the compressive modulus of this hydrogel in the range ∼0.5 to ∼24 kPa: advantageously, our results demonstrated that the hydrogels can support growth and viability for a wide range of three-dimensionally (3D) encapsulated cells that include muscle progenitor (C2C12), neural progenitor (PC12), and human mesenchymal stem cells (hMSCs). Our results also indicate that PEMA-gelatin-encapsulated hMSCs can facilitate the formation of bonelike apatite after 5 weeks in culture. Finally, we have demonstrated that PEMA-gelatin can yield micropatterned cell-laden 3D constructs through UV light-assisted lithography. The simplicity, scalability, processability, tunability, bioactivity, and low-cost features of this new hydrogel system highlight its potential as a stem cell carrier that is capable of bridging the gap between clinic and laboratory.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Ashish Thakur
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Firoz Babu Kadumudi
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Malgorzata Karolina Pierchala
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Julio Alvin Vacacela Cordova
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
- Department of Health Science and Technology, Laboratory for Stem Cell Research , Aalborg University , Fredrik Bajers Vej 3B , 9220 , Aalborg , Denmark
| | - Mohammad-Ali Shahbazi
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Mohammad Mehrali
- Faculty of Engineering Technology, Laboratory of Thermal Engineering , University of Twente , Enschede 7500 AE , The Netherlands
| | - Cristian Pablo Pennisi
- Department of Health Science and Technology, Laboratory for Stem Cell Research , Aalborg University , Fredrik Bajers Vej 3B , 9220 , Aalborg , Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Paseo de la Universidad 7 , 01006 Vitoria-Gasteiz , Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , 01006 Vitoria-Gasteiz , Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundacion Eduardo Anitua) , 01007 Vitoria , Spain
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower , 169856 Singapore
| | | | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
- Department of Regenerative Biomaterials , Radboud University Medical Center , Philips van Leydenlaan 25 , Nijmegen 6525 EX , The Netherlands
| |
Collapse
|
18
|
Mathot F, Shin AY, Van Wijnen AJ. Targeted stimulation of MSCs in peripheral nerve repair. Gene 2019; 710:17-23. [PMID: 30849542 DOI: 10.1016/j.gene.2019.02.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) have considerable translational potential in a wide variety of clinical disciplines and are the cellular foundation of individualized treatments of auto-immune, cardiac, neurologic and musculoskeletal diseases and disorders. While the cellular mechanisms by which MSCs exert their biological effects remain to be ascertained, it has been hypothesized that MSCs are supportive of local tissue repair through secretion of essential growth factors. Therapeutic applications of MSCs in peripheral nerve repair have recently been reported. This review focuses on how MSCs can promote nerve regeneration by conversion into Schwann-like cells, and discusses differentiation methods including delivery and dosing of naive or differentiated MSCs, as well as in vitro and in vivo outcomes. While MSC-based therapies for nerve repair are still in early stages of development, current progress in the field provides encouragement that MSCs may have utility in the treatment of patients with peripheral nerve injury.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic Surgery, Radboudumc, Nijmegen, the Netherlands
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J Van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, MN, USA.
| |
Collapse
|
19
|
Serra M, Cunha B, Peixoto C, Gomes-Alves P, Alves PM. Advancing manufacture of human mesenchymal stem cells therapies: technological challenges in cell bioprocessing and characterization. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Hasany M, Thakur A, Taebnia N, Kadumudi FB, Shahbazi MA, Pierchala MK, Mohanty S, Orive G, Andresen TL, Foldager CB, Yaghmaei S, Arpanaei A, Gaharwar AK, Mehrali M, Dolatshahi-Pirouz A. Combinatorial Screening of Nanoclay-Reinforced Hydrogels: A Glimpse of the "Holy Grail" in Orthopedic Stem Cell Therapy? ACS APPLIED MATERIALS & INTERFACES 2018; 10:34924-34941. [PMID: 30226363 DOI: 10.1021/acsami.8b11436] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the promise of hydrogel-based stem cell therapies in orthopedics, a significant need still exists for the development of injectable microenvironments capable of utilizing the regenerative potential of donor cells. Indeed, the quest for biomaterials that can direct stem cells into bone without the need of external factors has been the "Holy Grail" in orthopedic stem cell therapy for decades. To address this challenge, we have utilized a combinatorial approach to screen over 63 nanoengineered hydrogels made from alginate, hyaluronic acid, and two-dimensional nanoclays. Out of these combinations, we have identified a biomaterial that can promote osteogenesis in the absence of well-established differentiation factors such as bone morphogenetic protein 2 (BMP2) or dexamethasone. Notably, in our "hit" formulations we observed a 36-fold increase in alkaline phosphate (ALP) activity and a 11-fold increase in the formation of mineralized matrix, compared to the control hydrogel. This induced osteogenesis was further supported by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy. Additionally, the Montmorillonite-reinforced hydrogels exhibited high osteointegration as evident from the relatively stronger adhesion to the bone explants as compared to the control. Overall, our results demonstrate the capability of combinatorial and nanoengineered biomaterials to induce bone regeneration through osteoinduction of stem cells in a natural and differentiation-factor-free environment.
Collapse
Affiliation(s)
- Masoud Hasany
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
- Department of Chemical and Petroleum Engineering , Sharif University of Technology , P.O. Box 11365-11155, Tehran , Iran
- Department of Industrial and Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology , P.O. Box 14965/161, Tehran , Iran
| | - Ashish Thakur
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Nayere Taebnia
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Firoz Babu Kadumudi
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Mohammad-Ali Shahbazi
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Malgorzata Karolina Pierchala
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Soumyaranjan Mohanty
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Paseo de la Universidad 7, 01006 Vitoria-Gasteiz , Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , 01006 Vitoria-Gasteiz , Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua) , 01007 Vitoria , Spain
| | - Thomas L Andresen
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Casper Bindzus Foldager
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery , Aarhus University Hospital , 8000 Aarhus , Denmark
| | - Soheila Yaghmaei
- Department of Chemical and Petroleum Engineering , Sharif University of Technology , P.O. Box 11365-11155, Tehran , Iran
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology , P.O. Box 14965/161, Tehran , Iran
| | | | - Mehdi Mehrali
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| | - Alireza Dolatshahi-Pirouz
- DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceutical , Technical University of Denmark , 2800 Kgs, Lyngby , Denmark
| |
Collapse
|
21
|
Patel M, Park S, Lee HJ, Jeong B. Polypeptide Thermogels as Three-Dimensional Scaffolds for Cells. Tissue Eng Regen Med 2018; 15:521-530. [PMID: 30603576 PMCID: PMC6171707 DOI: 10.1007/s13770-018-0148-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Thermogel is an aqueous solution that exhibits a sol-to-gel transition as the temperature increases. Stem cells, growth factors, and differentiating factors can be incorporated in situ in the matrix during the sol-to-gel transition, leading to the formation of a three-dimensional (3D) cell-culture scaffold. METHODS The uses of thermogelling polypeptides, such as collagen, Matrigel™, elastin-like polypeptides, and synthetic polypeptides, as 3D scaffolds of cells, are summarized in this paper. RESULTS The timely supply of growth factors to the cells, cell survival, and metabolite removal is to be insured in the cell culture matrix. Various growth factors were incorporated in the matrix during the sol-to-gel transition of the thermogelling polypeptide aqueous solutions, and preferential differentiation of the incorporated stem cells into specific target cells were investigated. In addition, modulus of the matrix was controlled by post-crosslinking reactions of thermogels or employing composite systems. Chemical functional groups as well as biological factors were selected appropriately for targeted differentiation of the incorporated stem cells. CONCLUSION In addition to all the advantages of thermogels including mild conditions for cell-incorporation and controlled supplies of the growth factors, polypeptide thermogels provide neutral pH environments to the cells during the degradation of the gel. Polypeptide thermogels as an injectable scaffold can be a promising system for their eventual in vivo applications in stem cell therapy.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Sohee Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| |
Collapse
|
22
|
Wahlberg B, Ghuman H, Liu JR, Modo M. Ex vivo biomechanical characterization of syringe-needle ejections for intracerebral cell delivery. Sci Rep 2018; 8:9194. [PMID: 29907825 PMCID: PMC6004017 DOI: 10.1038/s41598-018-27568-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023] Open
Abstract
Intracerebral implantation of cell suspensions is finding its clinical translation with encouraging results in patients with stroke. However, the survival of cells in the brain remains poor. Although the biological potential of neural stem cells (NSCs) is widely documented, the biomechanical effects of delivering cells through a syringe-needle remain poorly understood. We here detailed the biomechanical forces (pressure, shear stress) that cells are exposed to during ejection through different sized needles (20G, 26G, 32G) and syringes (10, 50, 250 µL) at relevant flow rates (1, 5, 10 µL/min). A comparison of 3 vehicles, Phosphate Buffered Saline (PBS), Hypothermosol (HTS), and Pluronic, indicated that less viscous vehicles are favorable for suspension with a high cell volume fraction to minimize sedimentation. Higher suspension viscosity was associated with greater shear stress. Higher flow rates with viscous vehicle, such as HTS reduced viability by ~10% and also produced more apoptotic cells (28%). At 5 µL/min ejection using a 26G needle increased neuronal differentiation for PBS and HTS suspensions. These results reveal the biological impact of biomechanical forces in the cell delivery process. Appropriate engineering strategies can be considered to mitigate these effects to ensure the efficacious translation of this promising therapy.
Collapse
Affiliation(s)
- Brendon Wahlberg
- Departments of Radiology, University of Pittsburgh, Pittsburgh, USA
| | - Harmanvir Ghuman
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Jessie R Liu
- Departments of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| | - Michel Modo
- Departments of Radiology, University of Pittsburgh, Pittsburgh, USA. .,Departments of Bioengineering, University of Pittsburgh, Pittsburgh, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA. .,Centre for Neural Basis of Cognition, Pittsburgh, PA15203, USA.
| |
Collapse
|
23
|
Bogers SH. Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know. Front Vet Sci 2018; 5:70. [PMID: 29713634 PMCID: PMC5911772 DOI: 10.3389/fvets.2018.00070] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
Biological cell-based therapies for the treatment of joint disease in veterinary patients include autologous-conditioned serum, platelet-rich plasma, and expanded or non-expanded mesenchymal stem cell products. This narrative review outlines the processing and known mechanism of action of these therapies and reviews current preclinical and clinical efficacy in joint disease in the context of the processing type and study design. The significance of variation for biological activity and consequently regulatory approval is also discussed. There is significant variation in study outcomes for canine and equine cell-based products derived from whole blood or stem cell sources such as adipose and bone marrow. Variation can be attributed to altering bio-composition due to factors including preparation technique and source. In addition, study design factors like selection of cases with early vs. late stage osteoarthritis (OA), or with intra-articular soft tissue injury, influence outcome variation. In this under-regulated field, variation raises concerns for product safety, consistency, and efficacy. Cell-based therapies used for OA meet the Food and Drug Administration’s (FDA’s) definition of a drug; however, researchers must consider their approach to veterinary cell-based research to meet future regulatory demands. This review explains the USA’s FDA guidelines as an example pathway for cell-based therapies to demonstrate safety, effectiveness, and manufacturing consistency. An understanding of the variation in production consistency, effectiveness, and regulatory concerns is essential for practitioners and researchers to determine what products are indicated for the treatment of joint disease and tactics to improve the quality of future research.
Collapse
Affiliation(s)
- Sophie Helen Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
| |
Collapse
|
24
|
Patel M, Lee HJ, Park S, Kim Y, Jeong B. Injectable thermogel for 3D culture of stem cells. Biomaterials 2018; 159:91-107. [DOI: 10.1016/j.biomaterials.2018.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/22/2017] [Accepted: 01/01/2018] [Indexed: 12/15/2022]
|
25
|
Amer MH, Rose FRAJ, Shakesheff KM, Modo M, White LJ. Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regen Med 2017; 2:23. [PMID: 29302358 PMCID: PMC5677964 DOI: 10.1038/s41536-017-0028-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However, existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types, dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation. For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for translating these findings into more effective cell-therapy interventions.
Collapse
Affiliation(s)
- Mahetab H. Amer
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | | | | | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA USA
| | - Lisa J. White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
26
|
Wang H, Zhu D, Paul A, Cai L, Enejder A, Yang F, Heilshorn SC. Covalently adaptable elastin-like protein - hyaluronic acid (ELP - HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1605609. [PMID: 33041740 PMCID: PMC7546546 DOI: 10.1002/adfm.201605609] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Shear-thinning, self-healing hydrogels are promising vehicles for therapeutic cargo delivery due to their ability to be injected using minimally invasive surgical procedures. We present an injectable hydrogel using a novel combination of dynamic covalent crosslinking with thermoresponsive engineered proteins. Ex situ at room temperature, rapid gelation occurs through dynamic covalent hydrazone bonds by simply mixing two components: hydrazine-modified elastin-like protein (ELP) and aldehyde-modified hyaluronic acid. This hydrogel provides significant mechanical protection to encapsulated human mesenchymal stem cells during syringe needle injection and rapidly recovers after injection to retain the cells homogeneously within a 3D environment. In situ, the ELP undergoes a thermal phase transition, as confirmed by Coherent anti-Stokes Raman scattering microscopy observation of dense ELP thermal aggregates. The formation of the secondary network reinforces the hydrogel and results in a 10-fold slower erosion rate compared to a control hydrogel without secondary thermal crosslinking. This improved structural integrity enables cell culture for three weeks post injection, and encapsulated cells maintain their ability to differentiate into multiple lineages, including chondrogenic, adipogenic, and osteogenic cell types. Together, these data demonstrate the promising potential of ELP-HA hydrogels for injectable stem cell transplantation and tissue regeneration.
Collapse
Affiliation(s)
- Huiyuan Wang
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Danqing Zhu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Alexandra Paul
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Lei Cai
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Annika Enejder
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
27
|
Masri MF, Lawrence K, Wall I, Hoare M. An ultra scale-down methodology to characterize aspects of the response of human cells to processing by membrane separation operations. Biotechnol Bioeng 2017; 114:1241-1251. [PMID: 28112406 PMCID: PMC5412937 DOI: 10.1002/bit.26257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/16/2016] [Accepted: 01/16/2017] [Indexed: 11/21/2022]
Abstract
Tools that allow cost‐effective screening of the susceptibility of cell lines to operating conditions which may apply during full scale processing are central to the rapid development of robust processes for cell‐based therapies. In this paper, an ultra scale‐down (USD) device has been developed for the characterization of the response of a human cell line to membrane‐based processing, using just a small quantity of cells that is often all that is available at the early discovery stage. The cell line used to develop the measurements was a clinically relevant human fibroblast cell line. The impact was evaluated by cell damage on completion of membrane processing as assessed by trypan blue exclusion and release of intracellular lactate dehydrogenase (LDH). Similar insight was gained from both methods and this allowed the extension of the use of the LDH measurements to examine cell damage as it occurs during processing by a combination of LDH appearance in the permeate and mass balancing of the overall operation. Transmission of LDH was investigated with time of operation and for the two disc speeds investigated (6,000 and 10,000 rpm or ϵmax ≈ 1.9 and 13.5 W mL−1, respectively). As expected, increased energy dissipation rate led to increased transmission as well as significant increases in rate and extent of cell damage. The method developed can be used to test the impact of varying operating conditions and cell lines on cell damage and morphological changes. Biotechnol. Bioeng. 2017;114: 1241–1251. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Fernanda Masri
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon St, London, WC1H 0AH, UK.,Centre for Commercialization of Regenerative Medicine, The Banting Institute Suite110-100 College Street, Toronto, Ontario, Canada
| | - Kate Lawrence
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon St, London, WC1H 0AH, UK.,Immunocore, Abingdon, Oxon, UK
| | - Ivan Wall
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon St, London, WC1H 0AH, UK
| | - Michael Hoare
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon St, London, WC1H 0AH, UK
| |
Collapse
|
28
|
Williams LB, Russell KA, Koenig JB, Koch TG. Aspiration, but not injection, decreases cultured equine mesenchymal stromal cell viability. BMC Vet Res 2016; 12:45. [PMID: 26952099 PMCID: PMC4780131 DOI: 10.1186/s12917-016-0671-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/03/2016] [Indexed: 01/22/2023] Open
Abstract
Background Recently, equine multipotent mesenchymal stromal cells (MSC) have received significant attention as therapy for various conditions due to their proposed regenerative and immune-modulating capacity. MSC are commonly administered to the patient through a hypodermic needle. Currently, little information is available on the effect of such injection has on equine MSC immediate and delayed viability. We hypothesize that viability of equine MSC is not correlated with needle diameter during aspiration and injection. Results Using a 3 mL syringe, manual injection of equine cord blood (CB) or bone marrow-derived (BM) MSC with no needle and needles ranging in size from 18 to 30 Ga did not affect immediate MSC viability. Similarly, 24 h post-injection, MSC delayed viability was not different between any of the tested needles as determined by a resazurin-based proliferation assay. Using a 3 mL syringe, aspiration of MSC through 20, 25, and 30 Ga needles resulted in significant decreases in immediate viability with no change in delayed viability when compared to aspiration without a needle. BM- and CB-MSC were observed to be of similar size with a diameter ± SD of 19.8 ± 2.7 and 20.4 ± 2.2 μm, respectively. In comparison, the smallest needles, (30 Ga) have an internal diameter of 160 μm. Conclusions Following injection, needle diameter did not affect immediate or delayed viability of equine MSC. Following aspiration through needles sizes 20 Ga and smaller, immediate viability, but not delayed viability, decreased. As a result, an 18 Ga or larger needle should be utilized for aspiration of cell suspensions. In contrast, needle selection for MSC injection should be based on clinical preference and experience rather than concerns over decreasing MSC viability.
Collapse
Affiliation(s)
- Lynn B Williams
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| | - Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| | - Judith B Koenig
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
29
|
Amer MH, Rose FRAJ, White LJ, Shakesheff KM. A Detailed Assessment of Varying Ejection Rate on Delivery Efficiency of Mesenchymal Stem Cells Using Narrow-Bore Needles. Stem Cells Transl Med 2016; 5:366-78. [PMID: 26826162 DOI: 10.5966/sctm.2015-0208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022] Open
Abstract
As the number of clinical trials exploring cell therapy rises, a thorough understanding of the limits of cell delivery is essential. We used an extensive toolset comprising various standard and multiplex assays for the assessment of cell delivery postejection. Primary human mesenchymal stem cell (hMSC) suspensions were drawn up into 100-µl Hamilton syringes with 30- and 34-gauge needles attached, before being ejected at rates ranging from 10 to 300 µl/minute. Effects of ejection rate, including changes in viability, apoptosis, senescence, and other key aspects of cellular health, were evaluated. Ejections at slower flow rates resulted in a lower percentage of the cell dose being delivered, and apoptosis measurements of samples ejected at 10 µl/minute were significantly higher than control samples. Immunophenotyping also revealed significant downregulation of CD105 expression in samples ejected at 10 µl/minute (p < .05). Differentiation of ejected hMSCs was investigated using qualitative markers of adipogenesis, osteogenesis, and chondrogenesis, which revealed that slower ejection rates exerted a considerable effect upon the differentiation capacity of ejected cells, thereby possibly influencing the success of cell-based therapies. The findings of this study demonstrate that ejection rate has substantial impact on the percentage of cell dose delivered and cellular health postejection.
Collapse
Affiliation(s)
- Mahetab H Amer
- School of Pharmacy, Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling, University of Nottingham, Nottingham, United Kingdom
| | - Felicity R A J Rose
- School of Pharmacy, Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling, University of Nottingham, Nottingham, United Kingdom
| | - Lisa J White
- School of Pharmacy, Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling, University of Nottingham, Nottingham, United Kingdom
| | - Kevin M Shakesheff
- School of Pharmacy, Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
30
|
Onishi K, Jones DL, Riester SM, Lewallen EA, Lewallen DG, Sellon JL, Dietz AB, Qu W, van Wijnen AJ, Smith J. Human Adipose-Derived Mesenchymal Stromal/Stem Cells Remain Viable and Metabolically Active Following Needle Passage. PM R 2016; 8:844-54. [PMID: 26826615 DOI: 10.1016/j.pmrj.2016.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/10/2016] [Accepted: 01/20/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To assess the biological effects of passage through clinically relevant needles on the viability and metabolic activity of culture-expanded, human adipose tissue-derived mesenchymal stromal/stem cells (AMSCs). DESIGN Prospective observational pilot study. SETTING Academic medical center. PARTICIPANTS Patient-derived clinical-grade culture expanded AMSCs. INTERVENTIONS AMSCs were passed through syringes without a needle attached (control), with an 18-gauge (25.4-mm) needle attached and with a 30-gauge (19-mm) needle attached at a constant injection flow rate and constant cell concentrations. Each injection condition was completed in triplicate. MAIN OUTCOME MEASURES Cell number and viability, proliferative capacity, metabolic activity, and acute gene expression as measured by cell counts, mitochondrial activity, and quantitative real time reverse-transcription polymerase chain reaction on day 0 (immediately), day 1, and day 4 after injection. RESULTS AMSC viability was not significantly affected by injection, and cells proliferated normally regardless of study group. Postinjection, AMSCs robustly expressed both proliferation markers and extracellular matrix proteins. Stress-response mRNAs were markedly but transiently increased independently of needle size within the first day in culture postinjection. CONCLUSIONS Human, culture-expanded AMSCs maintain their viability, proliferative capacity, and metabolic function following passage through needles as small as 30-gauge at constant flow rates of 4 mL/min, despite an early, nonspecific stress/cytoprotective response. These initial findings suggest that culture-expanded AMSCs should tolerate the injection process during most cell-based therapeutic interventions.
Collapse
Affiliation(s)
- Kentaro Onishi
- Department of Physical Medicine & Rehabilitation, Mayo Clinic Sports Medicine Center, Mayo Clinic, Rochester, MN(∗)
| | - Dakota L Jones
- Department of Biomedical Engineering and Physiology, Mayo Graduate School, Mayo Clinic, Rochester, MN; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN(†)
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN(‡)
| | - Eric A Lewallen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN(§)
| | - David G Lewallen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN(‖)
| | - Jacob L Sellon
- Department of Physical Medicine & Rehabilitation, Mayo Clinic Sports Medicine Center, Mayo Clinic, Rochester, MN(¶)
| | - Allan B Dietz
- Department of Biochemistry & Molecular Biology, Mayo Graduate School, Mayo Clinic, Rochester, MN; Department of Laboratory Medicine & Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN(#)
| | - Wenchun Qu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN; Department of Anesthesiology Division of Pain Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN(∗∗)
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Medical Sciences Building, Rm S3-69, Mayo Clinic, 200 1st St, SW, Rochester, MN 55905; Department of Biomedical Engineering and Physiology, Mayo Graduate School, Mayo Clinic, Rochester, MN; Department of Biochemistry & Molecular Biology, Mayo Graduate School, Mayo Clinic, Rochester, MN(††).
| | - Jay Smith
- Department of Physical Medicine & Rehabilitation, W14, Mayo Building, Mayo Clinic, 200 1st St, SW, Rochester, MN 55905; Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN; Department of Anatomy, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN(‡‡).
| |
Collapse
|
31
|
Rossetti T, Nicholls F, Modo M. Intracerebral Cell Implantation: Preparation and Characterization of Cell Suspensions. Cell Transplant 2015; 25:645-64. [PMID: 26720923 DOI: 10.3727/096368915x690350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intracerebral cell transplantation is increasingly finding a clinical translation. However, the number of cells surviving after implantation is low (5-10%) compared to the number of cells injected. Although significant efforts have been made with regard to the investigation of apoptosis of cells after implantation, very little optimization of cell preparation and administration has been undertaken. Moreover, there is a general neglect of the biophysical aspects of cell injection. Cell transplantation can only be an efficient therapeutic approach if an optimal transfer of cells from the dish to the brain can be ensured. We therefore focused on the in vitro aspects of cell preparation of a clinical-grade human neural stem cell (NSC) line for intracerebral cell implantation. NSCs were suspended in five different vehicles: phosphate-buffered saline (PBS), Dulbecco's modified Eagle medium (DMEM), artificial cerebral spinal fluid (aCSF), HypoThermosol, and Pluronic. Suspension accuracy, consistency, and cell settling were determined for different cell volume fractions in addition to cell viability, cell membrane damage, and clumping. Maintenance of cells in suspension was evaluated while being stored for 8 h on ice, at room temperature, or physiological normothermia. Significant differences between suspension vehicles and cellular volume fractions were evident. HypoThermosol and Pluronic performed best, with PBS, aCSF, and DMEM exhibiting less consistency, especially in maintaining a suspension and preserving viability under different storage conditions. These results provide the basis to further investigate these preparation parameters during the intracerebral delivery of NSCs to provide an optimized delivery process that can ensure an efficient clinical translation.
Collapse
Affiliation(s)
- Tiziana Rossetti
- Departments of Radiology and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
32
|
Rescue of neonatal cardiac dysfunction in mice by administration of cardiac progenitor cells in utero. Nat Commun 2015; 6:8825. [PMID: 26593099 PMCID: PMC4673493 DOI: 10.1038/ncomms9825] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
Striated preferentially expressed gene (Speg) is a member of the myosin light chain kinase family. We previously showed that disruption of the Speg gene locus in mice leads to a dilated cardiomyopathy with immature-appearing cardiomyocytes. Here we show that cardiomyopathy of Speg−/− mice arises as a consequence of defects in cardiac progenitor cell (CPC) function, and that neonatal cardiac dysfunction can be rescued by in utero injections of wild-type CPCs into Speg−/− foetal hearts. CPCs harvested from Speg−/− mice display defects in clone formation, growth and differentiation into cardiomyocytes in vitro, which are associated with cardiac dysfunction in vivo. In utero administration of wild-type CPCs into the hearts of Speg−/− mice results in CPC engraftment, differentiation and myocardial maturation, which rescues Speg−/− mice from neonatal heart failure and increases the number of live births by fivefold. We propose that in utero administration of CPCs may have future implications for treatment of neonatal heart diseases. The protein Speg is expressed in the developing mouse heart, where its absence leads to neonatal cardiac disease. Here the authors trace the cardiomyopathy of Speg KO mice back to defects in cardiac progenitor cells (CPCs) and rescue it with injections of wild type CPCs into the foetal heart.
Collapse
|
33
|
Massensini AR, Ghuman H, Saldin LT, Medberry CJ, Keane TJ, Nicholls FJ, Velankar SS, Badylak SF, Modo M. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomater 2015; 27:116-130. [PMID: 26318805 PMCID: PMC4609617 DOI: 10.1016/j.actbio.2015.08.040] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/13/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023]
Abstract
Biomaterials composed of mammalian extracellular matrix (ECM) promote constructive tissue remodeling with minimal scar tissue formation in many anatomical sites. However, the optimal shape and form of ECM scaffold for each clinical application can vary markedly. ECM hydrogels have been shown to promote chemotaxis and differentiation of neuronal stem cells, but minimally invasive delivery of such scaffold materials to the central nervous system (CNS) would require an injectable form. These ECM materials can be manufactured to exist in fluid phase at room temperature, while forming hydrogels at body temperature in a concentration-dependent fashion. Implantation into the lesion cavity after a stroke could hence provide a means to support endogenous repair mechanisms. Herein, we characterize the rheological properties of an ECM hydrogel composed of urinary bladder matrix (UBM) that influence its delivery and in vivo interaction with host tissue. There was a notable concentration-dependence in viscosity, stiffness, and elasticity; all characteristics important for minimally invasive intracerebral delivery. An efficient MRI-guided injection with drainage of fluid from the cavity is described to assess in situ hydrogel formation and ECM retention at different concentrations (0, 1, 2, 3, 4, and 8mg/mL). Only ECM concentrations >3mg/mL gelled within the stroke cavity. Lower concentrations were not retained within the cavity, but extensive permeation of the liquid phase ECM into the peri-infarct area was evident. The concentration of ECM hydrogel is hence an important factor affecting gelation, host-biomaterial interface, as well intra-lesion distribution. STATEMENT OF SIGNIFICANCE Extracellular matrix (ECM) hydrogel promotes constructive tissue remodeling in many tissues. Minimally invasive delivery of such scaffold materials to the central nervous system (CNS) would require an injectable form that exists in fluid phase at room temperature, while forming hydrogels at body temperature in a concentration-dependent fashion. We here report the rheological characterization of an injectable ECM hydrogel and its concentration-dependent delivery into a lesion cavity formed after a stroke based on MRI-guidance. The concentration of ECM determined its retention within the cavity or permeation into tissue and hence influenced its interaction with the host brain. This study demonstrates the importance of understanding the structure-function relationship of biomaterials to guide particular clinical applications.
Collapse
Affiliation(s)
- Andre R Massensini
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Radiology, Pittsburgh, PA, USA; Universidade Federal de Minas Gerais, Department of Physiology and Biophysics, Belo Horizonte, Brazil
| | - Harmanvir Ghuman
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA
| | - Lindsey T Saldin
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA
| | - Christopher J Medberry
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA
| | - Timothy J Keane
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA
| | - Francesca J Nicholls
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Radiology, Pittsburgh, PA, USA; King's College London, Department of Neuroscience, London, UK
| | - Sachin S Velankar
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Chemical Engineering, Pittsburgh, PA, USA
| | - Stephen F Badylak
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA; University of Pittsburgh, Department of Surgery, Pittsburgh, PA, USA
| | - Michel Modo
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA; University of Pittsburgh, Department of Radiology, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Amer MH, White LJ, Shakesheff KM. The effect of injection using narrow-bore needles on mammalian cells: administration and formulation considerations for cell therapies. ACTA ACUST UNITED AC 2015; 67:640-50. [PMID: 25623928 PMCID: PMC4964945 DOI: 10.1111/jphp.12362] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/09/2014] [Indexed: 12/12/2022]
Abstract
Objectives This study focuses on the effect of the injection administration process on a range of cell characteristics. Methods Effects of different ejection rates, needle sizes and cell suspension densities were assessed in terms of viability, membrane integrity, apoptosis and senescence of NIH 3T3 fibroblasts. For ratiometric measurements, a multiplex assay was used to verify cell viability, cytotoxicity and apoptosis independent of cell number. Co‐delivery with alginate hydrogels and viscosity‐modifying excipients was also assessed. Key findings Ejections at 150 μl/min resulted in the highest percentage of dose being delivered as viable cells among ejection rates tested. The difference in proportions of apoptotic cells became apparent 48 h after ejection, with proportions being higher in samples ejected at slower rates. Co‐delivery with alginate hydrogels demonstrated a protective action on the cell payload. Conclusions This study demonstrates the importance of careful consideration of administration protocols required for successful delivery of cell suspensions, according to their nature and cellular responses post‐ejection.
Collapse
Affiliation(s)
- Mahetab H Amer
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
35
|
Ang HY, Irvine SA, Avrahami R, Sarig U, Bronshtein T, Zussman E, Boey FYC, Machluf M, Venkatraman SS. Characterization of a bioactive fiber scaffold with entrapped HUVECs in coaxial electrospun core-shell fiber. BIOMATTER 2014; 4:e28238. [PMID: 24553126 DOI: 10.4161/biom.28238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human umbilical vein endothelial cells (HUVECs) were successfully entrapped in polyethylene oxide (PEO) core /polycaprolactone (PCL) shell electrospun fibers thus creating a "bioactive fiber." The viability and release of biomolecules from the entrapped cells in the bioactive fibers were characterized. A key modification to the core solution was the inclusion of 50% fetal bovine serum (FBS), which improved cell viability substantially. The fluorescein diacetate (FDA) staining revealed that the entrapped cells were intact and viable immediately after the electrospinning process. A long-term cell viability assay using AlamarBlue® showed that cells were viable for over two weeks. Secreted Interleukin-8 (IL-8) was monitored as a candidate released protein, which can also act as an indicator of HUVEC stress. These results demonstrated that HUVECs could be entrapped within the electrospun scaffold with the potential of controllable cell deposition and the creation of a bioactive fibrous scaffold with extended functionality.
Collapse
Affiliation(s)
- Hui Ying Ang
- School of Materials and Science Engineering; Division of Materials Technology; Nanyang Technological University; Singapore
| | - Scott Alexander Irvine
- School of Materials and Science Engineering; Division of Materials Technology; Nanyang Technological University; Singapore
| | - Ron Avrahami
- Faculty of Mechanical Engineering; Technion - Israel Institute of Technology; Haifa, Israel
| | - Udi Sarig
- School of Materials and Science Engineering; Division of Materials Technology; Nanyang Technological University; Singapore
| | - Tomer Bronshtein
- Faculty of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa, Israel
| | - Eyal Zussman
- Faculty of Mechanical Engineering; Technion - Israel Institute of Technology; Haifa, Israel
| | - Freddy Yin Chiang Boey
- School of Materials and Science Engineering; Division of Materials Technology; Nanyang Technological University; Singapore
| | - Marcelle Machluf
- Faculty of Biotechnology and Food Engineering; Technion - Israel Institute of Technology; Haifa, Israel
| | - Subbu S Venkatraman
- School of Materials and Science Engineering; Division of Materials Technology; Nanyang Technological University; Singapore
| |
Collapse
|
36
|
O'Cearbhaill ED, Ng KS, Karp JM. Emerging medical devices for minimally invasive cell therapy. Mayo Clin Proc 2014; 89:259-73. [PMID: 24485137 DOI: 10.1016/j.mayocp.2013.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022]
Abstract
The past decade has seen the first wave of cell-based therapeutics undergo clinical trials with varying degrees of success. Although attention is increasingly focused on clinical trial design, owing to spiraling regulatory costs, tools used in delivering cells and sustaining the cells' viability and functions in vivo warrant careful scrutiny. While the clinical administration of cell-based therapeutics often requires additional safeguarding and targeted delivery compared with traditional therapeutics, there is significant opportunity for minimally invasive device-assisted cell therapy to provide the physician with new regenerative options at the point of care. Herein we detail exciting recent advances in medical devices that will aid in the safe and efficacious delivery of cell-based therapeutics.
Collapse
Affiliation(s)
- Eoin D O'Cearbhaill
- Department of Medicine, Center for Regenerative Therapeutics, and Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA; School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Kelvin S Ng
- Department of Medicine, Center for Regenerative Therapeutics, and Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA
| | - Jeffrey M Karp
- Department of Medicine, Center for Regenerative Therapeutics, and Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA.
| |
Collapse
|
37
|
Centeno CJ, Freeman MD. Percutaneous injection of autologous, culture-expanded mesenchymal stem cells into carpometacarpal hand joints: a case series with an untreated comparison group. Wien Med Wochenschr 2013; 164:83-7. [PMID: 23949564 DOI: 10.1007/s10354-013-0222-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/07/2013] [Indexed: 01/02/2023]
Abstract
In the present study, we describe six patients who received autologous mesenchymal stem cell (MSC) therapy for symptomatic carpometacarpal (CMC) joint and hand osteoarthritis (OA). Six patients who received injections of adult autologous culture expanded MSCs in their thumb CMC joints were followed for 1 year posttreatment, and matched with four procedure candidates who remained untreated. We observed positive outcomes in the treatment group for both symptoms and function related to the OA, compared with a reported worsening among the untreated controls. While these results should be interpreted with caution because of the small number of treated subjects and lack of placebo control and randomization, we find sufficient evidence for further investigation of MSC therapy as an alternative to more invasive surgery in patients with OA of the hand.
Collapse
|
38
|
Mamidi MK, Singh G, Husin JM, Nathan KG, Sasidharan G, Zakaria Z, Bhonde R, Majumdar AS, Das AK. Impact of passing mesenchymal stem cells through smaller bore size needles for subsequent use in patients for clinical or cosmetic indications. J Transl Med 2012; 10:229. [PMID: 23171323 PMCID: PMC3543333 DOI: 10.1186/1479-5876-10-229] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 10/18/2012] [Indexed: 12/21/2022] Open
Abstract
Background Numerous preclinical and clinical studies have investigated the regenerative potential and the trophic support of mesenchymal stem cells (MSCs) following their injection into a target organ. Clinicians favor the use of smallest bore needles possible for delivering MSCs into vascular organs like heart, liver and spleen. There has been a concern that small needle bore sizes may be detrimental to the health of these cells and reduce the survival and plasticity of MSCs. Methods In this report, we aimed to investigate the smallest possible bore size needle which would support the safe delivery of MSCs into various tissues for different clinical or cosmetic applications. To accomplish this we injected cells via needle sizes 24, 25 and 26 G attached to 1 ml syringe in the laboratory and collected the cells aseptically. Control cells were ejected via 1 ml syringe without any needle. Thereafter, the needle ejected cells were cultured and characterized for their morphology, attachment, viability, phenotypic expression, differentiation potential, cryopreservation and in vivo migration abilities. In the second phase of the study, cells were injected via 26 G needle attached to 1 ml syringe for 10 times. Results Similar phenotypic and functional characteristics were observed between ejected and control group of cells. MSCs maintained their cellular and functional properties after single and multiple injections. Conclusions This study proves that 26 G bore size needles can be safely used to inject MSCs for clinical/therapeutics purposes.
Collapse
Affiliation(s)
- Murali Krishna Mamidi
- Stempeutics Research Malaysia Sdn. Bhd, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Medberry CJ, Crapo PM, Siu BF, Carruthers CA, Wolf MT, Nagarkar SP, Agrawal V, Jones KE, Kelly J, Johnson SA, Velankar SS, Watkins SC, Modo M, Badylak SF. Hydrogels derived from central nervous system extracellular matrix. Biomaterials 2012; 34:1033-40. [PMID: 23158935 DOI: 10.1016/j.biomaterials.2012.10.062] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/25/2012] [Indexed: 02/07/2023]
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair.
Collapse
|
40
|
Huang C, Ogawa R. Effect of Hydrostatic Pressure on Bone Regeneration Using Human Mesenchymal Stem Cells. Tissue Eng Part A 2012; 18:2106-13. [DOI: 10.1089/ten.tea.2012.0064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Chenyu Huang
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
- Department of Plastic Surgery, Meitan General Hospital, Beijing, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
41
|
Auletta JJ, Bartholomew AM, Maziarz RT, Deans RJ, Miller RH, Lazarus HM, Cohen JA. The potential of mesenchymal stromal cells as a novel cellular therapy for multiple sclerosis. Immunotherapy 2012; 4:529-47. [PMID: 22642335 PMCID: PMC3381871 DOI: 10.2217/imt.12.41] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the CNS for which only partially effective therapies exist. Intense research defining the underlying immune pathophysiology is advancing both the understanding of MS as well as revealing potential targets for disease intervention. Mesenchymal stromal cell (MSC) therapy has the potential to modulate aberrant immune responses causing demyelination and axonal injury associated with MS, as well as to repair and restore damaged CNS tissue and cells. This article reviews the pathophysiology underlying MS, as well as providing a cutting-edge perspective into the field of MSC therapy based upon the experience of authors intrinsically involved in MS and MSC basic and translational science research.
Collapse
Affiliation(s)
- Jeffery J Auletta
- National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Mohebbi-Kalhori D, Rukhlova M, Ajji A, Bureau M, Moreno MJ. A novel automated cell-seeding device for tissue engineering of tubular scaffolds: design and functional validation. J Tissue Eng Regen Med 2011; 6:710-20. [PMID: 21948700 DOI: 10.1002/term.476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 06/20/2011] [Accepted: 07/05/2011] [Indexed: 11/12/2022]
Abstract
Obtaining an efficient, uniform and reproducible cell seeding of porous tubular scaffolds constitutes a major challenge for the successful development of tissue-engineered vascular grafts. In this study, a novel automated cell-seeding device utilizing direct cell deposition, patterning techniques and scaffold rotation was designed to improve the cell viability, uniformity and seeding efficiency of tubular constructs. Quantification methods and imaging techniques were used to evaluate these parameters on the luminal and abluminal sides of fibrous polymer scaffolds. With the automated seeding method, a high cell-seeding efficiency (~89%), viability (~85%) and uniformity (~85-92%) were achieved for both aortic smooth muscle cells (AoSMCs) and aortic endothelial cells (AoECs). The duration of the seeding process was < 8 min. Initial cell density, cell suspension in matrix-containing media, duration of seeding process and scaffold rotation were found to affect the seeding efficiency. After few days of culture, a uniform longitudinal and circumferential cell distribution was achieved without affecting cell viability. Both cell types were viable and spread along the fibres after 28 h and 6 days of static incubation. This new automated cell-seeding method for tubular scaffolds is efficient, reliable and meets all the requirements for clinical applicability.
Collapse
Affiliation(s)
- Davod Mohebbi-Kalhori
- Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON K1A 0R6, Canada.,Industrial Materials Institute, National Research Council of Canada, 75 Boulevard de Mortagne, Boucherville, QC J4B 6Y4, Canada.,Chemical Engineering Departement, École Polytechnique de Montréal, C. P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| | - Marina Rukhlova
- Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON K1A 0R6, Canada
| | - Abdellah Ajji
- Chemical Engineering Departement, École Polytechnique de Montréal, C. P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| | - Martin Bureau
- Industrial Materials Institute, National Research Council of Canada, 75 Boulevard de Mortagne, Boucherville, QC J4B 6Y4, Canada.,Biomedical Science and Technology Research Group (GRSTB/FRSQ), École Polytechnique, C. P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| | - Maria J Moreno
- Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
43
|
Bayoussef Z, Dixon JE, Stolnik S, Shakesheff KM. Aggregation promotes cell viability, proliferation, and differentiation in an in vitro model of injection cell therapy. J Tissue Eng Regen Med 2011; 6:e61-73. [PMID: 21932267 DOI: 10.1002/term.482] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 02/23/2011] [Accepted: 07/11/2011] [Indexed: 11/11/2022]
Abstract
Many cell therapy approaches aim to deliver high-density single-cell suspensions to diseased or injured sites in the body. Long term clinical success will in part be dependent on the cells that remain viable and that assume correct functionality post-administration. The research presented in this paper focuses on the potential of cell aggregate delivery to generate a more supportive environment for cells than single cell suspensions. An in vitro model of injection delivery of C2C12 myoblast cells showed a significant difference in cell function and phenotype between adhesive collagen and non-adhesive alginate, indicating that in vitro assays based on this approach can discriminate between cell-cell/cell-matrix interactions and could be valuable when assessing cell therapy systems. Contrary to single cells, aggregates maintain viability, cellular activity, and phenotype beyond that of single cells, even in non-adhesive matrices, enabling delivery of higher cell densities with enhanced proliferative and differentiation capacity.
Collapse
Affiliation(s)
- Zahia Bayoussef
- Tissue Engineering, Wolfson Centre for Stem Cells, Tissue Engineering, Modelling (STEM), Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | |
Collapse
|
44
|
Brindley D, Moorthy K, Lee JH, Mason C, Kim HW, Wall I. Bioprocess forces and their impact on cell behavior: implications for bone regeneration therapy. J Tissue Eng 2011; 2011:620247. [PMID: 21904661 PMCID: PMC3166560 DOI: 10.4061/2011/620247] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/17/2011] [Indexed: 12/15/2022] Open
Abstract
Bioprocess forces such as shear stress experienced during routine cell culture are considered to be harmful to cells. However, the impact of physical forces on cell behavior is an area of growing interest within the tissue engineering community, and it is widely acknowledged that mechanical stimulation including shear stress can enhance osteogenic differentiation. This paper considers the effects of bioprocess shear stress on cell responses such as survival and proliferation in several contexts, including suspension-adapted cells used for recombinant protein and monoclonal antibody manufacture, adherent cells for therapy in suspension, and adherent cells attached to their growth substrates. The enhanced osteogenic differentiation that fluid flow shear stress is widely found to induce is discussed, along with the tissue engineering of mineralized tissue using perfusion bioreactors. Recent evidence that bioprocess forces produced during capillary transfer or pipetting of cell suspensions can enhance osteogenic responses is also discussed.
Collapse
Affiliation(s)
- David Brindley
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | | | | | | | |
Collapse
|
45
|
Schwarz C, Leicht U, Drosse I, Ulrich V, Luibl V, Schieker M, Röcken M. Characterization of adipose-derived equine and canine mesenchymal stem cells after incubation in agarose-hydrogel. Vet Res Commun 2011; 35:487-99. [DOI: 10.1007/s11259-011-9492-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2011] [Indexed: 12/25/2022]
|
46
|
Acosta-Martinez J, Papantoniou I, Lawrence K, Ward S, Hoare M. Ultra scale-down stress analysis of the bioprocessing of whole human cells as a basis for cancer vaccines. Biotechnol Bioeng 2010; 107:953-63. [DOI: 10.1002/bit.22888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Realizing the potential of therapeutic stem cells with effective delivery. Ther Deliv 2010; 1:11-5. [PMID: 22816115 DOI: 10.4155/tde.10.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Microencapsulation to reduce mechanical loss of microspheres: implications in myocardial cell therapy. Eur J Cardiothorac Surg 2010; 39:241-7. [PMID: 20494590 DOI: 10.1016/j.ejcts.2010.03.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Previous regenerative studies have demonstrated massive cell losses after intramyocardial cellular delivery. Therefore, efforts at reducing mechanical losses may prove more successful in optimising cellular therapy. In this study, we hypothesized that escalating mesenchymal stem cells (MSCs) dose will not produce corresponding improvement in cardiac function due to washout of the small cells in microcirculation. Using microspheres similar in size to MSCs, that are encapsulated in alginate-poly-l-lysine-alginate (APA), we tested the hypothesis that size is an important factor in early losses. METHODS In experiment I, five groups of rats (n=9 each) underwent coronary ligation; group I had no treatment; the other groups received escalating 0.5 × 10(6), 1.5 × 10(6), 3 × 10(6) and 5 × 10(6) of MSCs each. Echocardiogram was performed at baseline, 2 days and 7 weeks after surgery. In experiment II, cell-sized microspheres (10 μm) were encapsulated in APA microcapsules. In group I (n=16), rats received bare microspheres, group II (n=16) microspheres within 200 μm microcapsules and in group III (n=16), microspheres within 400 μm microcapsules. After 20 min, hearts were quantified for the amount retained. RESULTS Myocardial function did not improve further with escalating cell doses beyond an initial response at 1.5 × 10(6) cells. Encapsulated microspheres in 200 μm and 400 μm microcapsules demonstrated a fourfold increase in retention rate compared with 10 μm microspheres. CONCLUSION We concluded that suboptimal functional improvement in this animal model starts at 1.5 × 10(6) cells and does not respond to escalating cell doses. Improving mechanical retention is possible by increasing the size of the injectate. Microencapsulation could be used to encapsulate donor cells and facilitate functional improvement in cellular heart failure therapy.
Collapse
|
49
|
Zoro B, Owen S, Drake R, Mason C, Hoare M. Regenerative medicine bioprocessing: Concentration and behavior of adherent cell suspensions and pastes. Biotechnol Bioeng 2009; 103:1236-47. [DOI: 10.1002/bit.22356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|