1
|
Bauer RN, Xie Y, Beaudin S, Wiltshire L, Wattie J, Muñoz C, Alsaji N, Oliveria JP, Ju X, MacLean J, Sommer DD, Keith PK, Satia I, Cusack RP, O'Byrne PM, Sperinde G, Hokom M, Li O, Banerjee P, Chen C, Staton T, Sehmi R, Gauvreau GM. Evaluation of the reproducibility of responses to nasal allergen challenge and effects of inhaled nasal corticosteroids. Clin Exp Allergy 2023; 53:1187-1197. [PMID: 37794659 DOI: 10.1111/cea.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Similar immune responses in the nasal and bronchial mucosa implies that nasal allergen challenge (NAC) is a suitable early phase experimental model for drug development targeting allergic rhinitis (AR) and asthma. We assessed NAC reproducibility and the effects of intranasal corticosteroids (INCS) on symptoms, physiology, and inflammatory mediators. METHODS 20 participants with mild atopic asthma and AR underwent three single blinded nasal challenges each separated by three weeks (NCT03431961). Cohort A (n = 10) underwent a control saline challenge, followed by two allergen challenges. Cohort B (n = 10) underwent a NAC with no treatment intervention, followed by NAC with 14 days pre-treatment with saline nasal spray (placebo), then NAC with 14 days pre-treatment with INCS (220 μg triamcinolone acetonide twice daily). Nasosorption, nasal lavage, blood samples, forced expiratory volume 1 (FEV1), total nasal symptom score (TNSS), peak nasal inspiratory flow (PNIF) were collected up to 24 h after NAC. Total and active tryptase were measured as early-phase allergy biomarkers (≤30 min) and IL-13 and eosinophil cell counts as late-phase allergy biomarkers (3-7 h) in serum and nasal samples. Period-period reproducibility was assessed by intraclass correlation coefficients (ICC), and sample size estimates were performed using effect sizes measured after INCS. RESULTS NAC significantly induced acute increases in nasosorption tryptase and TNSS and reduced PNIF, and induced late increases in nasosorption IL-13 with sustained reductions in PNIF. Reproducibility across NACs varied for symptoms and biomarkers, with total tryptase 5 min post NAC having the highest reproducibility (ICC = 0.91). Treatment with INCS inhibited NAC-induced IL-13 while blunting changes in TNSS and PNIF. For a similar crossover study, 7 participants per treatment arm are needed to detect treatment effects comparable to INCS for TNSS. CONCLUSION NAC-induced biomarkers and symptoms are reproducible and responsive to INCS. NAC is suitable for assessing pharmacodynamic activity and proof of mechanism for drugs targeting allergic inflammation.
Collapse
Affiliation(s)
- Rebecca N Bauer
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Yanqing Xie
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suzanne Beaudin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lesley Wiltshire
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Wattie
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Caroline Muñoz
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Nadia Alsaji
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John Paul Oliveria
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Xiaotian Ju
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan MacLean
- Department of Surgery, Otolaryngology-Head & Neck Surgery Division, McMaster University, Hamilton, Ontario, Canada
| | - Doron D Sommer
- Department of Surgery, Otolaryngology-Head & Neck Surgery Division, McMaster University, Hamilton, Ontario, Canada
| | - Paul K Keith
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Imran Satia
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ruth P Cusack
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gizette Sperinde
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Martha Hokom
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Olga Li
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Prajna Banerjee
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Chen Chen
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Tracy Staton
- Translational Medicine, Genentech Inc, South San Francisco, California, USA
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Ghilardi N, Pappu R, Arron JR, Chan AC. 30 Years of Biotherapeutics Development-What Have We Learned? Annu Rev Immunol 2021; 38:249-287. [PMID: 32340579 DOI: 10.1146/annurev-immunol-101619-031510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the birth of biotechnology, hundreds of biotherapeutics have been developed and approved by the US Food and Drug Administration (FDA) for human use. These novel medicines not only bring significant benefit to patients but also represent precision tools to interrogate human disease biology. Accordingly, much has been learned from the successes and failures of hundreds of high-quality clinical trials. In this review, we discuss general and broadly applicable themes that have emerged from this collective experience. We base our discussion on insights gained from exploring some of the most important target classes, including interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), IL-6, IL-12/23, IL-17, IL-4/13, IL-5, immunoglobulin E (IgE), integrins and B cells. We also describe current challenges and speculate about how emerging technological capabilities may enable the discovery and development of the next generation of biotherapeutics.
Collapse
Affiliation(s)
- Nico Ghilardi
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Rajita Pappu
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Joseph R Arron
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Andrew C Chan
- Research-Biology, Genentech, South San Francisco, California 94080, USA;
| |
Collapse
|
3
|
Balestrini A, Joseph V, Dourado M, Reese RM, Shields SD, Rougé L, Bravo DD, Chernov-Rogan T, Austin CD, Chen H, Wang L, Villemure E, Shore DGM, Verma VA, Hu B, Chen Y, Leong L, Bjornson C, Hötzel K, Gogineni A, Lee WP, Suto E, Wu X, Liu J, Zhang J, Gandham V, Wang J, Payandeh J, Ciferri C, Estevez A, Arthur CP, Kortmann J, Wong RL, Heredia JE, Doerr J, Jung M, Vander Heiden JA, Roose-Girma M, Tam L, Barck KH, Carano RAD, Ding HT, Brillantes B, Tam C, Yang X, Gao SS, Ly JQ, Liu L, Chen L, Liederer BM, Lin JH, Magnuson S, Chen J, Hackos DH, Elstrott J, Rohou A, Safina BS, Volgraf M, Bauer RN, Riol-Blanco L. A TRPA1 inhibitor suppresses neurogenic inflammation and airway contraction for asthma treatment. J Exp Med 2021; 218:211821. [PMID: 33620419 PMCID: PMC7918756 DOI: 10.1084/jem.20201637] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/19/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
Despite the development of effective therapies, a substantial proportion of asthmatics continue to have uncontrolled symptoms, airflow limitation, and exacerbations. Transient receptor potential cation channel member A1 (TRPA1) agonists are elevated in human asthmatic airways, and in rodents, TRPA1 is involved in the induction of airway inflammation and hyperreactivity. Here, the discovery and early clinical development of GDC-0334, a highly potent, selective, and orally bioavailable TRPA1 antagonist, is described. GDC-0334 inhibited TRPA1 function on airway smooth muscle and sensory neurons, decreasing edema, dermal blood flow (DBF), cough, and allergic airway inflammation in several preclinical species. In a healthy volunteer Phase 1 study, treatment with GDC-0334 reduced TRPA1 agonist-induced DBF, pain, and itch, demonstrating GDC-0334 target engagement in humans. These data provide therapeutic rationale for evaluating TRPA1 inhibition as a clinical therapy for asthma.
Collapse
Affiliation(s)
- Alessia Balestrini
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA
| | - Victory Joseph
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Michelle Dourado
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Rebecca M Reese
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Shannon D Shields
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Lionel Rougé
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA
| | - Daniel D Bravo
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA
| | - Tania Chernov-Rogan
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA
| | - Cary D Austin
- Department of Pathology, Genentech, Inc., South San Francisco, CA
| | - Huifen Chen
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Lan Wang
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Elisia Villemure
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Daniel G M Shore
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Vishal A Verma
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Baihua Hu
- Pharmaron-Beijing Co. Ltd., BDA, Beijing, People's Republic of China
| | - Yong Chen
- Pharmaron-Beijing Co. Ltd., BDA, Beijing, People's Republic of China
| | - Laurie Leong
- Department of Pathology, Genentech, Inc., South San Francisco, CA
| | - Chris Bjornson
- Department of Pathology, Genentech, Inc., South San Francisco, CA
| | - Kathy Hötzel
- Department of Pathology, Genentech, Inc., South San Francisco, CA
| | - Alvin Gogineni
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA
| | - Eric Suto
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA
| | - John Liu
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA
| | - Juan Zhang
- Department of Translational Immunology, Genentech, Inc., South San Francisco, CA
| | - Vineela Gandham
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Jianyong Wang
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA
| | - Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA
| | - Claudio Ciferri
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA
| | - Alberto Estevez
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA
| | | | - Jens Kortmann
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA
| | - Ryan L Wong
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA
| | - Jose E Heredia
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA
| | - Jonas Doerr
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - Min Jung
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA
| | | | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - Kai H Barck
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Richard A D Carano
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Han Ting Ding
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, CA
| | - Bobby Brillantes
- Department of Biomolecular Resources, Genentech, Inc., South San Francisco, CA
| | - Christine Tam
- Department of Biomolecular Resources, Genentech, Inc., South San Francisco, CA
| | - Xiaoying Yang
- Department of Product Development Biometric Biostatistics, Genentech, Inc., South San Francisco, CA
| | - Simon S Gao
- Department of Clinical Imaging, Genentech, Inc., South San Francisco, CA
| | - Justin Q Ly
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA
| | - Liling Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA
| | - Bianca M Liederer
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA
| | - Joseph H Lin
- Department of Early Clinical Development, Genentech, Inc., South San Francisco, CA
| | - Steven Magnuson
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA
| | - David H Hackos
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Justin Elstrott
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA
| | - Alexis Rohou
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA
| | - Brian S Safina
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Matthew Volgraf
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA
| | - Rebecca N Bauer
- Department of OMNI-Biomarker Development, Genentech, Inc., South San Francisco, CA
| | - Lorena Riol-Blanco
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA
| |
Collapse
|
4
|
Maun HR, Jackman JK, Choy DF, Loyet KM, Staton TL, Jia G, Dressen A, Hackney JA, Bremer M, Walters BT, Vij R, Chen X, Trivedi NN, Morando A, Lipari MT, Franke Y, Wu X, Zhang J, Liu J, Wu P, Chang D, Orozco LD, Christensen E, Wong M, Corpuz R, Hang JQ, Lutman J, Sukumaran S, Wu Y, Ubhayakar S, Liang X, Schwartz LB, Babina M, Woodruff PG, Fahy JV, Ahuja R, Caughey GH, Kusi A, Dennis MS, Eigenbrot C, Kirchhofer D, Austin CD, Wu LC, Koerber JT, Lee WP, Yaspan BL, Alatsis KR, Arron JR, Lazarus RA, Yi T. An Allosteric Anti-tryptase Antibody for the Treatment of Mast Cell-Mediated Severe Asthma. Cell 2020; 179:417-431.e19. [PMID: 31585081 DOI: 10.1016/j.cell.2019.09.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/09/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active β-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human β-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a β-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.
Collapse
Affiliation(s)
- Henry R Maun
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet K Jackman
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David F Choy
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tracy L Staton
- Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Guiquan Jia
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Amy Dressen
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Meire Bremer
- Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin T Walters
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rajesh Vij
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiaocheng Chen
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Neil N Trivedi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Ashley Morando
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Michael T Lipari
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yvonne Franke
- Depratment of Biomolecular Resources, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Juan Zhang
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Liu
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ping Wu
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Diana Chang
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Luz D Orozco
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Erin Christensen
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Manda Wong
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Racquel Corpuz
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Julie Q Hang
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeff Lutman
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Siddharth Sukumaran
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yan Wu
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Savita Ubhayakar
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiaorong Liang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Magda Babina
- Department of Dermatology and Allergy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John V Fahy
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rahul Ahuja
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - George H Caughey
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Aija Kusi
- Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark S Dennis
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Charles Eigenbrot
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lawren C Wu
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brian L Yaspan
- Department of Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kathila R Alatsis
- Department of Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Robert A Lazarus
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Tangsheng Yi
- Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
5
|
Choy DF, Arron JR. Beyond type 2 cytokines in asthma - new insights from old clinical trials. Expert Opin Ther Targets 2020; 24:463-475. [PMID: 32223656 DOI: 10.1080/14728222.2020.1744567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Human asthma is a heterogeneous disorder on molecular, pathological, and clinical levels. The paradigm of asthma as an allergic process driven by type 2 cytokines and mediators has led to targeted biologic therapies resulting in some clinical benefit in patient subsets. However, some patient subsets and clinical manifestations do not benefit from these interventions, thus redefining unmet needs. Clinical studies of type 2 directed therapies have identified new targets under investigation in clinical development; these include epithelial alarmins, non-type 2 cytokines, cytokine receptor signaling, mast cells and neuroinflammation.Areas covered: We consider lessons learned concerning asthma pathogenesis from observational studies and clinical trials of biologic agents that target type 2 mediators. We also provide a perspective on emerging therapeutic hypotheses to target processes independent of or orthogonal to type 2 inflammation in asthma.Expert opinion: Type 2 inflammation is continuous, not discrete, and is likely a modifier of underlying dysregulated airway physiology. Non-type 2 inflammatory mediators (e.g., IL17, IL6, IFNs), microbiome, alarmins (e.g., TSLP, IL33), mast cells and sensory neurons may represent orthogonal targets to type 2 mediators. There is a need to better match targets and outcome measures in biologically defined patient populations to appropriately test hypotheses in the clinic.
Collapse
|
6
|
Agusti A. Lessons from a Life: The Manuel Tapia Lecture 2018. Arch Bronconeumol 2019; 55:177-180. [PMID: 30396689 DOI: 10.1016/j.arbres.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Alvar Agusti
- Institut Clínic Respiratori, Hospital Clínic, Barcelona, España; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España; Universidad de Barcelona, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, España.
| |
Collapse
|
7
|
Pavord ID. Biologics and chronic obstructive pulmonary disease. J Allergy Clin Immunol 2018; 141:1983-1991. [PMID: 29729941 DOI: 10.1016/j.jaci.2018.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
The presence of airway inflammation in patients with chronic obstructive pulmonary disease (COPD) provides a rationale for biological agents targeting specific inflammatory pathways. This approach has been strikingly effective in patients with other chronic inflammatory diseases, such as rheumatoid arthritis, psoriasis, and asthma. However, there are important and unresolved challenges in COPD, including our incomplete understanding of heterogeneity of the lower airway inflammatory response and how these contribute to the clinical expression of disease. As a result, progress has been slow, and there have been many failures. One notable exception is the targeting of eosinophilic airway inflammation with anti-IL-5, which has an acknowledged and important role in the treatment of severe eosinophilic asthma. Recent phase III studies have shown a reduction in exacerbations of around 20% in patients with COPD and clear evidence of a blood eosinophil count-dependent beneficial effect. The demonstration of clinical efficacy linked to a clinically accessible biomarker raises the possibility of precision biomarker-directed use of biological agents in patients with COPD. The hope is that this will be an exemplar for the future development of biological agents in patients with COPD.
Collapse
Affiliation(s)
- Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, Oxford, United Kingdom.
| |
Collapse
|
8
|
Sécher T, Guilleminault L, Reckamp K, Amanam I, Plantier L, Heuzé-Vourc'h N. Therapeutic antibodies: A new era in the treatment of respiratory diseases? Pharmacol Ther 2018; 189:149-172. [PMID: 29730443 DOI: 10.1016/j.pharmthera.2018.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Respiratory diseases affect millions of people worldwide, and account for significant levels of disability and mortality. The treatment of lung cancer and asthma with therapeutic antibodies (Abs) is a breakthrough that opens up new paradigms for the management of respiratory diseases. Antibodies are becoming increasingly important in respiratory medicine; dozens of Abs have received marketing approval, and many more are currently in clinical development. Most of these Abs target asthma, lung cancer and respiratory infections, while very few target chronic obstructive pulmonary disease - one of the most common non-communicable causes of death - and idiopathic pulmonary fibrosis. Here, we review Abs approved for or in clinical development for the treatment of respiratory diseases. We notably highlight their molecular mechanisms, strengths, and likely future trends.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France
| | - L Guilleminault
- Pôle des Voies respiratoires, Hôpital Larrey, CHU de Toulouse, F-31059 Toulouse, France; STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm, UPS, F-31013 Toulouse, France
| | - K Reckamp
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - I Amanam
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - L Plantier
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France; CHRU de Tours, Service de Pneumologie, F-37000 Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France.
| |
Collapse
|
9
|
Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, Cullinan P, Custovic A, Ducharme FM, Fahy JV, Frey U, Gibson P, Heaney LG, Holt PG, Humbert M, Lloyd CM, Marks G, Martinez FD, Sly PD, von Mutius E, Wenzel S, Zar HJ, Bush A. After asthma: redefining airways diseases. Lancet 2018; 391:350-400. [PMID: 28911920 DOI: 10.1016/s0140-6736(17)30879-6] [Citation(s) in RCA: 722] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 02/26/2017] [Accepted: 03/07/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ian D Pavord
- Respiratory Medicine Unit, Nuffield Department of Medicine and NIHR Oxford Biomedical Research Centre, University of Oxford, UK.
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain; CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Gary P Anderson
- Lung Health Research Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Elisabeth Bel
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Netherlands
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium; Departments of Epidemiology and Respiratory Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Paul Cullinan
- National Heart and Lung Institute, Imperial College, London, UK
| | | | - Francine M Ducharme
- Departments of Paediatrics and Social and Preventive Medicine, University of Montreal, Montreal, QC, Canada
| | - John V Fahy
- Cardiovascular Research Institute, and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter Gibson
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, Newcastle, NSW, Australia; Priority Research Centre for Asthma and Respiratory Disease, The University of Newcastle, Newcastle, NSW, Australia
| | - Liam G Heaney
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Marc Humbert
- L'Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Paris, France; Service de Pneumologie, Hôpital Bicêtre, Paris, France; INSERM UMR-S 999, Hôpital Marie Lannelongue, Paris, France
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College, London, UK
| | - Guy Marks
- Department of Respiratory Medicine, South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, The University of Arizona, Tuscon, AZ, USA
| | - Peter D Sly
- Department of Children's Health and Environment, Children's Health Queensland, Brisbane, QLD, Australia; Centre for Children's Health Research, Brisbane, QLD, Australia
| | - Erika von Mutius
- Dr. von Haunersches Kinderspital, Ludwig Maximilians Universität, Munich, Germany
| | - Sally Wenzel
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross Children's Hospital and Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Andy Bush
- Department of Paediatrics, Imperial College, London, UK; Department of Paediatric Respiratory Medicine, Imperial College, London, UK
| |
Collapse
|
10
|
Paganin F, Mangiapan G, Proust A, Prudhomme A, Attia J, Marchand-Adam S, Pellet F, Milhe F, Melloni B, Bernady A, Raspaud C, Nocent C, Berger P, Guilleminault L. Lung function parameters in omalizumab responder patients: An interesting tool? Allergy 2017; 72:1953-1961. [PMID: 28517027 DOI: 10.1111/all.13202] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Omalizumab, an anti-IgE antibody, is used to treat patients with severe allergic asthma. The evolution of lung function parameters over time and the difference between omalizumab responder and nonresponder patients remain inconclusive. The objective of this real-life study was to compare the changes in forced expiratory volume in 1 second (FEV1) of omalizumab responders and nonresponders at 6 months. METHODS A multicenter analysis was performed in 10 secondary and tertiary institutions. Lung function parameters (forced vital capacity (FVC), pre- and postbronchodilator FEV1, residual volume (RV), and total lung capacity (TLC) were determined at baseline and at 6 months. Omalizumab response was assessed at the 6-month visit. In the omalizumab responder patients, lung function parameters were also obtained at 12, 18, and 24 months. RESULTS Mean prebronchodilator FEV1 showed improvement in responders at 6 months, while a decrease was observed in nonresponders (+0.2±0.4 L and -0.1±0.4 L, respectively, P<.01). After an improvement at 6 months, pre- and postbronchodilator FEV1 remained stable at 12, 18, and 24 months. The FEV1/FVC remained unchanged over time, but the proportion of patients with an FEV1/FVC ratio <0.7 decreased at 6, 12, 18, and 24 months (55.2%, 54.0%, 54.0%, and 44.8%, respectively, P<.05). Mean RV values decreased at 6 months but increased at 12 months and 24 months (P<.05). Residual volume/total lung capacity (RV/TLC) ratio decreased at 6 months and remained unchanged at 24 months. CONCLUSION After omalizumab initiation, FEV1 improved at 6 months in responder patients and then remained stable for 2 years. RV and RV/TLC improved at 6 months.
Collapse
Affiliation(s)
- F. Paganin
- INSERM U 600, UMR 6212; Université de la Méditerranée.; Marseille France
- Université de la Réunion; St Denis France
| | - G. Mangiapan
- Service de Pneumologie; CHIC de Créteil; Créteil France
| | - A. Proust
- Service de Pneumologie; CHU de Nimes; Tarbes France
| | - A. Prudhomme
- Service de Pneumologie; CHG de Bigorre; Tarbes France
| | - J. Attia
- Cabinet de Pneumologie; Bastia France
| | | | - F. Pellet
- Cabinet de Pneumologie; Bordeaux France
| | - F. Milhe
- Service de Pneumologie; Polyclinique des Fleurs; Ollioules France
| | - B. Melloni
- Service de Pneumologie; CHU de Limoges; Limoges France
| | - A. Bernady
- Service de Pneumologie; Centre médical Toki Eder; Cambo les Bains France
| | - C. Raspaud
- Service de Pneumologie; Clinique Pasteur; Toulouse France
| | - C. Nocent
- Service de Pneumologie et d'allergologie; CH de la côte Basque; Bayonne France
| | - P. Berger
- Centre de Recherche Cardio-thoracique de Bordeaux; Univ. Bordeaux, U1045, CIC1401; Bordeaux France
- Centre de Recherche Cardio-thoracique de Bordeaux; INSERM, U1045, CIC1401; Bordeaux France
- Service d'Exploration Fonctionnelle Respiratoire; CHU de Bordeaux, CIC1401; Pessac France
| | - L. Guilleminault
- Université de la Réunion; St Denis France
- Service de Pneumologie; CHU Reunion/GHSR; Saint-Pierre France
- INSERM; UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI); Sainte-Clotilde France
| |
Collapse
|
11
|
Godar M, Blanchetot C, de Haard H, Lambrecht BN, Brusselle G. Personalized medicine with biologics for severe type 2 asthma: current status and future prospects. MAbs 2017; 10:34-45. [PMID: 29035619 PMCID: PMC5800381 DOI: 10.1080/19420862.2017.1392425] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Asthma affects more than 300 million people worldwide and poses a large socioeconomic burden, particularly in the 5% to 10% of severe asthmatics. So far, each entry of new biologics in clinical trials has led to high expectations for treating all severe asthma forms, but the outcome has only been successful if the biologic, as add-on treatment, targeted specific patient subgroups. Indeed, we now realize that asthma is a heterogeneous disease with multiple phenotypes, based on distinct pathophysiological mechanisms, called endotypes. Thus, asthma therapy is gradually moving to a personalized medicine approach, tailored to individual's asthma endotypes identified through biomarkers. Here, we review the clinical efficacy of antibody-related therapeutics undergoing clinical trials, or those already approved, for the treatment of severe type 2 asthma. Biologics targeting type 2 cytokines have shown consistent efficacy, especially in patients with evidence of type 2 inflammation, suggesting that the future of asthma biologics is promising.
Collapse
Affiliation(s)
- Marie Godar
- a argenx BVBA , Zwijnaarde , Belgium.,b VIB-UGent Center for Inflammation Research , Ghent , Belgium.,c Department of Internal Medicine , Ghent University , Ghent , Belgium
| | | | | | - Bart N Lambrecht
- b VIB-UGent Center for Inflammation Research , Ghent , Belgium.,c Department of Internal Medicine , Ghent University , Ghent , Belgium.,d Department of Pulmonary Medicine , ErasmusMC , Rotterdam , The Netherlands.,f Department of Epidemiology and Respiratory Medicine , ErasmusMC , Rotterdam , The Netherlands
| | - Guy Brusselle
- e Department of Respiratory Medicine , Ghent University Hospital , Ghent , Belgium.,f Department of Epidemiology and Respiratory Medicine , ErasmusMC , Rotterdam , The Netherlands
| |
Collapse
|
12
|
Agustí A, Bafadhel M, Beasley R, Bel EH, Faner R, Gibson PG, Louis R, McDonald VM, Sterk PJ, Thomas M, Vogelmeier C, Pavord ID. Precision medicine in airway diseases: moving to clinical practice. Eur Respir J 2017; 50:50/4/1701655. [PMID: 29051276 DOI: 10.1183/13993003.01655-2017] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
On February 21, 2017, a European Respiratory Society research seminar held in Barcelona discussed how to best apply precision medicine to chronic airway diseases such as asthma and chronic obstructive pulmonary disease. It is now clear that both are complex and heterogeneous diseases, that often overlap and that both require individualised assessment and treatment. This paper summarises the presentations and discussions that took place during the seminar. Specifically, we discussed the need for a new taxonomy of human diseases, the role of different players in this scenario (exposome, genes, endotypes, phenotypes, biomarkers and treatable traits) and a number of unanswered key questions in the field. We also addressed how to deploy airway precision medicine in clinical practice today, both in primary and specialised care. Finally, we debated the type of research needed to move the field forward.
Collapse
Affiliation(s)
- Alvar Agustí
- Respiratory Institute, Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Spain
| | - Mona Bafadhel
- Dept of Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Elisabeth H Bel
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Rosa Faner
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Spain
| | - Peter G Gibson
- The Centre of Excellence in Severe Asthma, Priority Research Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Renaud Louis
- Pneumology Dept, CHU Liege, GIGA I3 research group, University of Liege, Liege, Belgium
| | - Vanessa M McDonald
- The Centre of Excellence in Severe Asthma, Priority Research Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Peter J Sterk
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Mike Thomas
- Primary Care and Population Sciences, University of Southampton, Aldermoor Health Centre, Southampton, UK
| | - Claus Vogelmeier
- University of Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Ian D Pavord
- Dept of Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, University of Oxford and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | |
Collapse
|
13
|
Martin Alonso A, Fainardi V, Saglani S. Severe therapy resistant asthma in children: translational approaches to uncover sub-phenotypes. Expert Rev Respir Med 2017; 11:867-874. [PMID: 28826280 DOI: 10.1080/17476348.2017.1368391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Paediatric severe therapy resistant asthma (STRA) affects a very small proportion of all children with asthma, but results in significant morbidity, has a high risk of mortality and utilises approximately half of all healthcare resources for childhood asthma. children with STRA need add-on 'beyond guidelines' therapies because of poor control despite maximal conventional treatments and optimisation of basic asthma management. however, STRA is heterogeneous with marked phenotypic variation between patients and mechanisms from adult severe asthma cannot be extrapolated to children. Areas covered: This review will cover our current knowledge of paediatric STRA pathophysiology, with examples of translational approaches that have been used to define sub-phenotypes including; 1. pre-clinical age-appropriate models using clinically relevant allergens, 2. in vitro techniques incorporating complex co-cultures of structural and inflammatory cells, and 3. techniques that allow detailed cellular immunophenotyping of small airway samples will be discussed. Studies using these approaches that have demonstrated the importance of the innate mediator IL-33 and vitamin D deficiency in severe steroid resistant disease will also be discussed. Expert commentary: These experimental approaches allow investigation of age and disease specific molecular pathways and the development of personalised therapies that can be stratified and targeted to sub-phenotypes of paediatric STRA.
Collapse
Affiliation(s)
- Aldara Martin Alonso
- a Inflammation, Repair and Development , NHLI, Imperial College London , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton Hospital , London , UK
| | - Valentina Fainardi
- a Inflammation, Repair and Development , NHLI, Imperial College London , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton Hospital , London , UK
| | - Sejal Saglani
- a Inflammation, Repair and Development , NHLI, Imperial College London , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton Hospital , London , UK
| |
Collapse
|
14
|
Hart KM, Choy DF, Bradding P, Wynn TA, Arron JR. Accurately measuring and modeling Th2 and Th17 endotypes in severe asthma. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:91. [PMID: 28275636 DOI: 10.21037/atm.2017.02.07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kevin M Hart
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David F Choy
- Genentech, Inc. South San Francisco, CA 94080, USA
| | - Peter Bradding
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE3 9QP, UK
| | - Thomas A Wynn
- Program in Tissue Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
15
|
Berker M, Frank LJ, Geßner AL, Grassl N, Holtermann AV, Höppner S, Kraef C, Leclaire MD, Maier P, Messerer DAC, Möhrmann L, Nieke JP, Schoch D, Soll D, Woopen CMP. Allergies - A T cells perspective in the era beyond the T H1/T H2 paradigm. Clin Immunol 2016; 174:73-83. [PMID: 27847316 DOI: 10.1016/j.clim.2016.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022]
Abstract
Allergic diseases have emerged as a major health care burden, especially in the western hemisphere. They are defined by overshooting reactions of an aberrant immune system to harmless exogenous stimuli. The TH1/TH2 paradigm assumes that a dominance of TH2 cell activation and an inadequate TH1 cell response are responsible for the development of allergies. However, the characterization of additional T helper cell subpopulations such as TH9, TH17, TH22, THGM-CSF and their interplay with regulatory T cells suggest further layers of complexity. This review summarizes state-of-the-art knowledge on T cell diversity and their induction, while revisiting the TH1/TH2 paradigm. With respect to these numerous contributors, it offers a new perspective on the pathogenesis of asthma, allergic rhinitis (AR) and atopic dermatitis (AD) incorporating recent discoveries in the field of T cell plasticity.
Collapse
Affiliation(s)
- Moritz Berker
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Larissa Johanna Frank
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Anja Lidwina Geßner
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Niklas Grassl
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Anne Verena Holtermann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Stefanie Höppner
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Christian Kraef
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany.
| | - Martin Dominik Leclaire
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Pia Maier
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | | | - Lino Möhrmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Jan Philipp Nieke
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Diana Schoch
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Dominik Soll
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | | |
Collapse
|