1
|
González A, Badiola I, Fullaondo A, Rodríguez J, Odriozola A. Personalised medicine based on host genetics and microbiota applied to colorectal cancer. ADVANCES IN GENETICS 2024; 112:411-485. [PMID: 39396842 DOI: 10.1016/bs.adgen.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | | | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
2
|
Zakari S, Niels NK, Olagunju GV, Nnaji PC, Ogunniyi O, Tebamifor M, Israel EN, Atawodi SE, Ogunlana OO. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: a systematic review. Front Oncol 2024; 14:1405267. [PMID: 39132504 PMCID: PMC11313249 DOI: 10.3389/fonc.2024.1405267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a global health challenge, necessitating continuous advancements in diagnostic and treatment strategies. This review focuses on the utility of non-invasive biomarkers in cancer diagnosis and treatment, their role in early detection, disease monitoring, and personalized therapeutic interventions. Through a systematic review of the literature, we identified 45 relevant studies that highlight the potential of these biomarkers across various cancer types, such as breast, prostate, lung, and colorectal cancers. The non-invasive biomarkers discussed include liquid biopsies, epigenetic markers, non-coding RNAs, exosomal cargo, and metabolites. Notably, liquid biopsies, particularly those based on circulating tumour DNA (ctDNA), have emerged as the most promising method for early, non-invasive cancer detection due to their ability to provide comprehensive genetic and epigenetic information from easily accessible blood samples. This review demonstrates how non-invasive biomarkers can facilitate early cancer detection, accurate subtyping, and tailored treatment strategies, thereby improving patient outcomes. It underscores the transformative potential of non-invasive biomarkers in oncology, highlighting their application for enhancing early detection, survival rates, and treatment precision in cancer care. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023474749 PROSPERO, identifier CRD42023474749.
Collapse
Affiliation(s)
- Suleiman Zakari
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, College of Medicine, Federal University of Health Sciences Otukpo, Otukpo, Benue State, Nigeria
| | - Nguedia K. Niels
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Biotechnology Centre, University of Yaounde I, Yaounde, Cameroon
| | - Grace V. Olagunju
- Department of Molecular Biology, New Mexico State University, Las Cruces, NM, United States
| | - Precious C. Nnaji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwabusayo Ogunniyi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Mercy Tebamifor
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Emmanuel N. Israel
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Sunday E. Atawodi
- Department of Biochemistry, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
3
|
Yuan T, Edelmann D, Kather JN, Fan Z, Tagscherer KE, Roth W, Bewerunge-Hudler M, Brobeil A, Kloor M, Bläker H, Burwinkel B, Brenner H, Hoffmeister M. CpG-biomarkers in tumor tissue and prediction models for the survival of colorectal cancer: A systematic review and external validation study. Crit Rev Oncol Hematol 2024; 193:104199. [PMID: 37952858 DOI: 10.1016/j.critrevonc.2023.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
The research aimed to identify previously published CpG-methylation-based prognostic biomarkers and prediction models for colorectal cancer (CRC) prognosis and validate them in a large external cohort. A systematic search was conducted, analyzing 298 unique CpGs and 12 CpG-based prognostic models from 28 studies. After adjustment for clinical variables, 48 CpGs and five prognostic models were confirmed to be associated with survival. However, the discrimination ability of the models was insufficient, with area under the receiver operating characteristic curves ranging from 0.53 to 0.62. Calibration accuracy was mostly poor, and no significant added prognostic value beyond traditional clinical variables was observed. All prognostic models were rated at high risk of bias. While a fraction of CpGs showed potential clinical utility and generalizability, the CpG-based prognostic models performed poorly and lacked clinical relevance.
Collapse
Affiliation(s)
- Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Ziwen Fan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin E Tagscherer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | | | - Alexander Brobeil
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Potential lncRNA Biomarkers for HBV-Related Hepatocellular Carcinoma Diagnosis Revealed by Analysis on Coexpression Network. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9972011. [PMID: 34692847 PMCID: PMC8536424 DOI: 10.1155/2021/9972011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
Background Increasing evidence demonstrated that long noncoding RNA (lncRNA) could affect inflammatory tumor immune microenvironment by modulating gene expression and could be used as a biomarker for HBC-related hepatocellular carcinoma (HCC) but still needs further research. The aim of the present study was to determine an lncRNA signature for the diagnosis of HBV-related HCC. Methods HBV-related HCC expression profiles (GSE55092, GSE19665, and GSE84402) were abstracted from the GEO (Gene Expression Omnibus) data resource, and R package limma and RobustRankAggreg were employed to identify common differentially expressed genes (DEGs). Using machine learning, optimal diagnostic lncRNA molecular markers for HBV-related HCC were identified. The expression of candidate lncRNAs was cross-validated in GSE121248, and an ROC (receiver operating characteristic) curve of lncRNA biomarkers was carried out. Additionally, a coexpression network and functional annotation was built, after which a PPI (protein-protein interaction) network along with module analysis were conducted with the Cytoscape open source software. Result A total of 38 DElncRNAs and 543 DEmRNAs were identified with a fold change larger than 2.0 and a P value < 0.05. By machine learning, AL356056.2, AL445524.1, TRIM52-AS1, AC093642.1, EHMT2-AS1, AC003991.1, AC008040.1, LINC00844, and LINC01018 were screened out as optional diagnostic lncRNA biosignatures for HBV-related HCC. The AUC (areas under the curve) of the SVM (support vector machine) model and random forest model were 0.957 and 0.904, respectively, and the specificity and sensitivity were 95.7 and 100% and 94.3 and 86.5%, respectively. The results of functional enrichment analysis showed that the integrated coexpressed DEmRNAs shared common cascades in the p53 signaling pathway, retinol metabolism, PI3K-Akt signaling cascade, and chemical carcinogenesis. The integrated DEmRNA PPI network complex was found to be comprised of 87 nodes, and two vital modules with a high degree were selected with the MCODE app. Conclusion The present study identified nine potential diagnostic biomarkers for HBV-related HCC, all of which could potentially modulated gene expression related to inflammatory conditions in the tumor immune microenvironment. The functional annotation of the target DEmRNAs yielded novel evidence in evaluating the precise functions of lncRNA in HBV-related HCC.
Collapse
|
5
|
Gong YZ, Ma H, Ruan GT, Zhu LC, Liao XW, Wang S, Yan L, Huang W, Huang KT, Xie H, Zhu GZ, Wang XK, Liao C, Gao F. Diagnosis and prognostic value of C-X-C motif chemokine ligand 1 in colon adenocarcinoma based on The Cancer Genome Atlas and Guangxi cohort. J Cancer 2021; 12:5506-5518. [PMID: 34405013 PMCID: PMC8364656 DOI: 10.7150/jca.51524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/06/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: The objective was to identify and validate C-X-C motif chemokine ligand 1(CXCL1) for diagnosis and prognosis in colon adenocarcinoma (COAD). Methods: Our current study had enrolled one The Cancer Genome Atlas (TCGA) cohort and two Guangxi cohorts to identify and verify the diagnostic and prognostic values of CXCL1 in COAD. Functional enrichment was performed by gene set enrichment analysis (GSEA). Results: In TCGA cohort, the expression of CXCL1 was significantly up-regulated in tumor tissues and decreased as the tumor stage developed. The receiver operating characteristic (ROC) curve showed that CXCL1 had a high diagnostic value for COAD. The result of Kaplan-Meier survival analysis showed that CXCL1 gene expression (P=0.045) was significantly correlated with overall survival (OS) of COAD. Results of Guangxi cohort also verified the diagnostic value of CXCL1 in COAD, and sub-group survival analyses also suggested that patients with high CXCL1 expression were related to a favorable OS (Corrected P=0.005). GSEA revealed that CXCL1 high expression phenotype was related to cytokine activity, cell apoptosis, P53 regulation pathway, and regulation of autophagy in COAD. Conclusions: In this study, we found that CXCL1 gene might be a potential diagnostic biomarker for COAD, and might serve as a prognostic biomarker for specific subgroup of COAD.
Collapse
Affiliation(s)
- Yi-Zhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui Ma
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guo-Tian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Li-Chen Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shuai Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ling Yan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Huang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ke-Tuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hailun Xie
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
6
|
A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers (Basel) 2021; 13:cancers13092025. [PMID: 33922197 PMCID: PMC8122718 DOI: 10.3390/cancers13092025] [Citation(s) in RCA: 364] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
This review article contains a concise consideration of genetic and environmental risk factors for colorectal cancer. Known risk factors associated with colorectal cancer include familial and hereditary factors and lifestyle-related and ecological factors. Lifestyle factors are significant because of the potential for improving our understanding of the disease. Physical inactivity, obesity, smoking and alcohol consumption can also be addressed through therapeutic interventions. We also made efforts to systematize available literature and data on epidemiology, diagnosis, type and nature of symptoms and disease stages. Further study of colorectal cancer and progress made globally is crucial to inform future strategies in controlling the disease's burden through population-based preventative initiatives.
Collapse
|
7
|
Novel Epigenetic Eight-Gene Signature Predictive of Poor Prognosis and MSI-Like Phenotype in Human Metastatic Colorectal Carcinomas. Cancers (Basel) 2021; 13:cancers13010158. [PMID: 33466447 PMCID: PMC7796477 DOI: 10.3390/cancers13010158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The global methylation profile of two human metastatic colorectal carcinoma subgroups with significantly different outcomes (primary-resistant versus drug-sensitive tumors) was analyzed and compared with the gene expression and methylation data from The Cancer Genome Atlas COlon ADenocarcinoma (TCGA COAD) metastatic colorectal carcinoma dataset with the aim to identify a prognostic signature of functionally methylated genes. A novel epigenetic eight-gene signature, with hypermethylation of the promoter regions, was identified and validated for its capacity to predict poor outcome, which had a CpG-island methylator phenotype (CIMP)-high status and microsatellite instability (MSI)-like phenotype. Abstract Epigenetics is involved in tumor progression and drug resistance in human colorectal carcinoma (CRC). This study addressed the hypothesis that the DNA methylation profiling may predict the clinical behavior of metastatic CRCs (mCRCs). The global methylation profile of two human mCRC subgroups with significantly different outcome was analyzed and compared with gene expression and methylation data from The Cancer Genome Atlas COlon ADenocarcinoma (TCGA COAD) and the NCBI GENE expression Omnibus repository (GEO) GSE48684 mCRCs datasets to identify a prognostic signature of functionally methylated genes. A novel epigenetic signature of eight hypermethylated genes was characterized that was able to identify mCRCs with poor prognosis, which had a CpG-island methylator phenotype (CIMP)-high and microsatellite instability (MSI)-like phenotype. Interestingly, methylation events were enriched in genes located on the q-arm of chromosomes 13 and 20, two chromosomal regions with gain/loss alterations associated with adenoma-to-carcinoma progression. Finally, the expression of the eight-genes signature and MSI-enriching genes was confirmed in oxaliplatin- and irinotecan-resistant CRC cell lines. These data reveal that the hypermethylation of specific genes may provide prognostic information that is able to identify a subgroup of mCRCs with poor prognosis.
Collapse
|
8
|
Laugsand EA, Brenne SS, Skorpen F. DNA methylation markers detected in blood, stool, urine, and tissue in colorectal cancer: a systematic review of paired samples. Int J Colorectal Dis 2021; 36:239-251. [PMID: 33030559 PMCID: PMC7801356 DOI: 10.1007/s00384-020-03757-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE Methylated cell-free DNA in liquid biopsies are promising non-invasive biomarkers for colorectal cancer (CRC). Optimal markers would have high sensitivity and specificity for early detection of CRC and could be detected in more than one type of material from the patient. We systematically reviewed the literature on DNA methylation markers of colorectal cancer, detected in more than one type of material, regarding their potential as contributors to a panel for screening and follow-up of CRC. METHODS The databases MEDLINE, Web of Science, and Embase were systematically searched. Data extraction and review was performed by two authors independently. Agreement between methylation status in tissue and other materials (blood/stool/urine) was analyzed using the McNemar test and Cohen's kappa. RESULTS From the 51 included studies, we identified seven single markers with sensitivity ≥ 75% and specificity ≥ 90% for CRC. We also identified one promising plasma panel and two stool panels. The correspondence of methylation status was evaluated as very good for four markers, but only marginal for most of the other markers investigated (12 of 21). CONCLUSION The included studies reported only some of the variables and markers of interest and included few patients. Hence, a meta-analysis was not possible at this point. Larger, prospective studies must be designed to study the discordant detection of markers in tissue and liquid biopsies. When reporting their findings, such studies should use a standardized format.
Collapse
Affiliation(s)
- Eivor Alette Laugsand
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital trust, N-7600, Levanger, Norway.
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| | - Siv Sellæg Brenne
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital trust, N-7600, Levanger, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - Frank Skorpen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| |
Collapse
|
9
|
Dong Z, Dai L, Zhang Y, Fang C, Shi G, Chen Y, Li J, Wang Q, Fu J, Yu Y, Wang W, Cheng L, Liu Y, Lin Y, Wang Y, Wang Q, Wang H, Zhang H, Zhang Y, Su X, Zhang S, Wang F, Qiu M, Zhou Z, Deng H. Hypomethylation of GDNF family receptor alpha 1 promotes epithelial-mesenchymal transition and predicts metastasis of colorectal cancer. PLoS Genet 2020; 16:e1009159. [PMID: 33175846 PMCID: PMC7682896 DOI: 10.1371/journal.pgen.1009159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Tumor metastasis is the major cause of poor prognosis and mortality in colorectal cancer (CRC). However, early diagnosis of highly metastatic CRC is currently difficult. In the present study, we screened for a novel biomarker, GDNF family receptor alpha 1 (GFRA1) based on the expression and methylation data in CRC patients from The Cancer Genome Altlas (TCGA), followed by further analysis of the correlation between the GFRA1 expression, methylation, and prognosis of patients. Our results show DNA hypomethylation-mediated upregulation of GFRA1 in invasive CRC, and it was found to be correlated with poor prognosis of CRC patients. Furthermore, GFRA1 methylation-modified sequences were found to have potential as methylation diagnostic markers of highly metastatic CRC. The targeted demethylation of GFRA1 by dCas9-TET1CD and gRNA promoted CRC metastasis in vivo and in vitro. Mechanistically, demethylation of GFRA1 induces epithelial-mesenchymal transition (EMT) by promoting AKT phosphorylation and increasing c-Jun expression in CRC cells. Collectively, our findings indicate that GFRA1 hypomethylation can promote CRC invasion via inducing EMT, and thus, GFRA1 methylation can be used as a biomarker for the early diagnosis of highly metastasis CRC. Abnormal DNA methylation, one of important characteristics in tumor cells, is exploited as biomarkers for cancer diagnosis and prognosis prediction. Early diagnosis of highly metastatic CRC will be helpful for the clinical management, thus prolongs patient survival. However, it is currently difficult to make early diagnosis of highly metastatic CRC in clinical practice. Currently, we screened a novel biomarker gene, GFRA1, which associated with the invasion and poor prognosis of CRC. The targeted demethylation of GFRA1 exerted a significant promoting effect on CRC metastasis, and GFRA1 methylation-modified sequences are valuable diagnostic biomarker for CRC metastasis risk assessment. Mechanically, demethylation of GFRA1 induced epithelial-mesenchymal transition (EMT) by upregulating AKT phosphorylation and c-Jun expression in CRC cells. Our results demonstrate the promoting effect of GFRA1 demethylation on CRC invasion and GFRA1 methylation may be a potential prognostic marker for predicting metastasis of CRC.
Collapse
Affiliation(s)
- Zhexu Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Yong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, the People’s Republic of China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Ye Chen
- Department of Medical Oncology, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, the People’s Republic of China
| | - Junshu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Qin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Jiamei Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Yan Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Wenshuang Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Yi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Yi Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Yuan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Huiling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Hantao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Shuang Zhang
- Department of biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
| | - Feng Wang
- Department of Medical Oncology, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, the People’s Republic of China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, the People’s Republic of China
| | - Meng Qiu
- Department of Medical Oncology, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, the People’s Republic of China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, the People’s Republic of China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, the People’s Republic of China
- * E-mail:
| |
Collapse
|
10
|
Ding S, Xu S, Fang J, Jiang H. The Protective Effect of Polyphenols for Colorectal Cancer. Front Immunol 2020; 11:1407. [PMID: 32754151 PMCID: PMC7366338 DOI: 10.3389/fimmu.2020.01407] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers that threaten people in many countries. It is a multi-factorial chronic disease caused by a combination of genetic and environmental factors, but it is mainly related to lifestyle factors, including diet. Plentiful plant foods and beverages are abundant in polyphenols with antioxidant, anti-atherosclerotic, anti-inflammatory, and anticancer properties. These compounds participate in host nutrition and disease pathology regulation in different ways. Polyphenolic compounds have been used to prevent and inhibit the development and prognosis of cancer, and examples include green tea polyphenol (-)epigallocatechin-3-O-gallate (EGCG), curcumin, and resveratrol. Of course, there are more known and unknown polyphenol compounds that need to be further explored for their anticancer properties. This article focuses on the fact that polyphenols affect the progression of CRC by controlling intestinal inflammation, epigenetics, and the intestinal microbe in the aspects of prevention, treatment, and prognosis.
Collapse
Affiliation(s)
- Sujuan Ding
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Sheng Xu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jun Fang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hongmei Jiang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Value of Serum NEUROG1 Methylation for the Detection of Advanced Adenomas and Colorectal Cancer. Diagnostics (Basel) 2020; 10:diagnostics10070437. [PMID: 32605302 PMCID: PMC7399835 DOI: 10.3390/diagnostics10070437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Aberrant DNA methylation detected in liquid biopsies is a promising approach for colorectal cancer (CRC) detection, including premalignant advanced adenomas (AA). We evaluated the diagnostic capability of serum NEUROG1 methylation for the detection of AA and CRC. A CpG island in NEUROG1 promoter was assessed by bisulfite pyrosequencing in a case-control cohort to select optimal CpGs. Selected sites were evaluated through a nested methylation-specific qPCR custom assay in a screening cohort of 504 asymptomatic family-risk individuals. Individuals with no colorectal findings and benign pathologies showed low serum NEUROG1 methylation, similar to non-advanced adenomas. Contrarily, individuals bearing AA or CRC (advanced neoplasia—AN), exhibited increased NEUROG1 methylation. Using >1.3518% as NEUROG1 cut-off (90.60% specificity), 33.33% of AN and 32.08% of AA were identified, detecting 50% CRC cases. Nonetheless, the combination of NEUROG1 with fecal immunochemical test (FIT), together with age and gender through a multivariate logistic regression resulted in an AUC = 0.810 for AN, and 0.796 for AA, detecting all cancer cases and 35–47% AA (specificity 98–95%). The combination of NEUROG1 methylation with FIT, age and gender demonstrated a convenient performance for the detection of CRC and AA, providing a valuable tool for CRC screening programs in asymptomatic individuals.
Collapse
|
12
|
Wang J, Wang WA, Zhang A, Liu HB. Molecular mechanism of methyltransferase-like protein family: Relationship with gastric cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:428-434. [DOI: 10.11569/wcjd.v28.i11.428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Methyltransferase-like proteins (METTL) are part of a large protein family, which is characterized by the presence of an S-adenosylmethionine (SAM; a common substrate for methylation reactions) binding domain. Although members of this protein family have been shown or predicted as methyltransferases of RNA, DNA, or proteins, most methyltransferases are still poorly characterized. Identifying the complexes where these potential enzymes work can help to understand their function and substrate specificity. The METTL protein family is closely related to the occurrence and development of gastric cancer (GC), and its relationship with GC is of great importance in the diagnosis, treatment, and prognosis of GC. Here we give a systematic and comprehensive review of the mechanism of METTL protein family and its relationship with GC, with an aim to provide important resources for further research on these potential new methyltransferases and the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Jing Wang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Wen-An Wang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - An Zhang
- Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hong-Bin Liu
- People's Liberation Army Joint Logistics Support Unit 940 Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
13
|
Mukund K, Syulyukina N, Ramamoorthy S, Subramaniam S. Right and left-sided colon cancers - specificity of molecular mechanisms in tumorigenesis and progression. BMC Cancer 2020; 20:317. [PMID: 32293332 PMCID: PMC7161305 DOI: 10.1186/s12885-020-06784-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Given the differences in embryonic origin, vascular and nervous supplies, microbiotic burden, and main physiological functions of left and right colons, tumor location is increasingly suggested to dictate tumor behavior affecting pathology, progression and prognosis. Right-sided colon cancers arise in the cecum, ascending colon, hepatic flexure and/or transverse colon, while left-sided colon cancers arise in the splenic flexure, descending, and/or sigmoid colon. In contrast to prior reports, we attempt to delineate programs of tumorigenesis independently for each side. Methods Four hundred and eleven samples were extracted from The Cancer Genome Atlas-COAD cohort, based on a conservative sample inclusion criterion. Each side was independently analyzed with respect to their respective normal tissue, at the level of transcription, post-transcription, miRNA control and methylation in both a stage specific and stage-agnostic manner. Results Our results indicate a suppression of enzymes involved in various stages of carcinogen breakdown including CYP2C8, CYP4F12, GSTA1, and UGT1A within right colon tumors. This implies its reduced capacity to detoxify carcinogens, contributing to a genotoxic tumor environment, and subsequently a more aggressive phenotype. Additionally, we highlight a crucial nexus between calcium homeostasis (sensing, mobilization and absorption) and immune/GPCR signaling within left-sided tumors, possibly contributing to its reduced proliferative and metastatic potential. Interestingly, two genes SLC6A4 and HOXB13 show opposing regulatory trends within right and left tumors. Post-transcriptional regulation mediated by both RNA-binding proteins (e.g. NKRF (in left) and MSI2 (in right)) and miRNAs (e.g. miR-29a (in left); miR-155, miR181-d, miR-576 and miR23a (in right)) appear to exhibit side-specificity in control of their target transcripts and is pronounced in right colon tumors. Additionally, methylation results depict location-specific differences, with increased hypomethylation in open seas within left tumors, and increased hypermethylation of CpG islands within right tumors. Conclusions Differences in molecular mechanisms captured here highlight distinctions in tumorigenesis and progression between left and right colon tumors, which will serve as the basis for future studies, influencing the efficacies of existing and future diagnostic, prognostic and therapeutic interventions.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Natalia Syulyukina
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Sonia Ramamoorthy
- Division of Colon and Rectal Surgery, Moores Cancer Center, University of California San Diego Health System, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. .,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Hsu CH, Hsiao CW, Sun CA, Wu WC, Yang T, Hu JM, Huang CH, Liao YC, Chen CY, Lin FH, Chou YC. Novel methylation gene panel in adjacent normal tissues predicts poor prognosis of colorectal cancer in Taiwan. World J Gastroenterol 2020; 26:154-167. [PMID: 31988582 PMCID: PMC6962436 DOI: 10.3748/wjg.v26.i2.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/14/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is evident that current clinical criteria are suboptimal to accurately estimate patient prognosis. Studies have identified epigenetic aberrant changes as novel prognostic factors for colorectal cancer (CRC).
AIM To estimate whether a methylation gene panel in different clinical stages can reflect a different prognosis.
METHODS We enrolled 120 CRC patients from Tri-Service General Hospital in Taiwan and used the candidate gene approach to select six genes involved in carcinogenesis pathways. Patients were divided into two groups based on the methylation status of the six evaluated genes, namely, the < 3 aberrancy group and ≥ 3 aberrancy group. Various tumor stages were divided into two subgroups (local and advanced stages) on the basis of the pathological type of the following tissues: Tumor and adjacent normal tissues (matched normal). We assessed DNA methylation in tumors and adjacent normal tissues from CRC patients and analyzed the association between DNA methylation with different cancer stages and the prognostic outcome including time to progression (TTP) and overall survival.
RESULTS We observed a significantly increasing trend of hazard ratio as the number of hypermethylated genes increased both in normal tissue and tumor tissue. The 5-year TTP survival curves showed a significant difference between the ≥ 3 aberrancy group and the < 3 aberrancy group. Compared with the < 3 aberrancy group, a significantly shorter TTP was observed in the ≥ 3 aberrancy group. We further analyzed the interaction between CRC prognosis and different cancer stages (local and advanced) according to the methylation status of the selected genes in both types of tissues. There was a significantly shorter 5-year TTP for tumors at advanced stages with the promoter methylation status of selected genes than for those with local stages. We found an interaction between cancer stages and the promoter methylation status of selected genes in both types of tissues.
CONCLUSION Our data provide a significant association between the methylation markers in normal tissues with advanced stage and prognosis of CRC. We recommend using these novel markers to assist in clinical decision-making.
Collapse
Affiliation(s)
- Chih-Hsiung Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Teaching Office, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Wen Hsiao
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
- Big Data Research Center, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Wen-Chih Wu
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
- Department of Surgery, Suao and Yuanshan Branches of Taipei Veterans General Hospital, Yilan County 264, Taiwan
| | - Tsan Yang
- Department of Health Business Administration, Meiho University, Pingtung County 912, Taiwan
| | - Je-Ming Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Adjunct Instructor, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Chi-Hua Huang
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Chan Liao
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Chao-Yang Chen
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Adjunct Instructor, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Ching Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
15
|
Yu M, Hazelton WD, Luebeck GE, Grady WM. Epigenetic Aging: More Than Just a Clock When It Comes to Cancer. Cancer Res 2019; 80:367-374. [PMID: 31694907 DOI: 10.1158/0008-5472.can-19-0924] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/26/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
The incidence of cancer, adjusted for secular trends, is directly related to age, and advanced chronologic age is one of the most significant risk factors for cancer. Organismal aging is associated with changes at the molecular, cellular, and tissue levels and is affected by both genetic and environmental factors. The specific mechanisms through which these age-associated molecular changes contribute to the increased risk of aging-related disease, such as cancer, are incompletely understood. DNA methylation, a prominent epigenetic mark, also changes over a lifetime as part of an "epigenetic aging" process. Here, we give an update and review of epigenetic aging, in particular, the phenomena of epigenetic drift and epigenetic clock, with regard to its implication in cancer etiology. We discuss the discovery of the DNA methylation-based biomarkers for biological tissue age and the construction of various epigenetic age estimators for human clinical outcomes and health/life span. Recent studies in various types of cancer point to the significance of epigenetic aging in tumorigenesis and its potential use for cancer risk prediction. Future studies are needed to assess the potential clinical impact of strategies focused on lowering cancer risk by preventing premature aging or promoting healthy aging.
Collapse
Affiliation(s)
- Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - William D Hazelton
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Georg E Luebeck
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington.,GI Cancer Prevention Program, Seattle Cancer Care Alliance, Seattle, Washington
| |
Collapse
|
16
|
Specific glioblastoma multiforme prognostic-subtype distinctions based on DNA methylation patterns. Cancer Gene Ther 2019; 27:702-714. [PMID: 31619751 DOI: 10.1038/s41417-019-0142-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
DNA methylation is an important regulator of gene expression, and plays a significant role in carcinogenesis in the brain. Here, we explored specific prognosis-subtypes based on DNA methylation status using 138 Glioblastoma Multiforme (GBM) samples from The Cancer Genome Atlas (TCGA) database. The methylation profiles of 11,637 CpG sites that significantly correlated with survival in the training set were employed for consensus clustering. We identified three GBM molecular subtypes, and their survival curves were distinct from each other. Furthermore, ten feature CpG sites were obtained on conducting a weighted gene co-expression network analysis (WGCNA) of the CpG sites. We were able to classify the samples into high- and low-methylation groups, and classified the prognosis information of the samples after cluster analysis of the training set samples using the hierarchical clustering algorithm. Similar results were obtained in the test set and clinical GBM specimens. Finally, we found that a positive relationship existed between methylation level and sensitivity to temozolomide (or radiotherapy) or anti-migration ability of GBM cells. Taken together, these results suggest that the model constructed in this study could help explain the heterogeneity of previous molecular subgroups in GBM and can provide guidance to clinicians regarding the prognosis of GBM.
Collapse
|
17
|
Beltrán-García J, Osca-Verdegal R, Mena-Mollá S, García-Giménez JL. Epigenetic IVD Tests for Personalized Precision Medicine in Cancer. Front Genet 2019; 10:621. [PMID: 31316555 PMCID: PMC6611494 DOI: 10.3389/fgene.2019.00621] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Epigenetic alterations play a key role in the initiation and progression of cancer. Therefore, it is possible to use epigenetic marks as biomarkers for predictive and precision medicine in cancer. Precision medicine is poised to impact clinical practice, patients, and healthcare systems. The objective of this review is to provide an overview of the epigenetic testing landscape in cancer by examining commercially available epigenetic-based in vitro diagnostic tests for colon, breast, cervical, glioblastoma, lung cancers, and for cancers of unknown origin. We compile current commercial epigenetic tests based on epigenetic biomarkers (i.e., DNA methylation, miRNAs, and histones) that can actually be implemented into clinical practice.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,Department of Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain
| | - Rebeca Osca-Verdegal
- INCLIVA Biomedical Research Institute, Valencia, Spain.,Department of Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain
| | - Salvador Mena-Mollá
- Department of Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain.,EpiDisease S.L. Spin-Off of CIBERER (ISCIII), Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,Department of Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain.,EpiDisease S.L. Spin-Off of CIBERER (ISCIII), Valencia, Spain
| |
Collapse
|
18
|
Hong JT, Kim ER. Current state and future direction of screening tool for colorectal cancer. World J Meta-Anal 2019; 7:184-208. [DOI: 10.13105/wjma.v7.i5.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
As the second-most-common cause of cancer death, colorectal cancer (CRC) has been recognized as one of the biggest health concerns in advanced countries. The 5-year survival rate for patients with early-stage CRC is significantly better than that for patients with CRC detected at a late stage. The primary target for CRC screening and prevention is advanced neoplasia, which includes both CRC itself, as well as benign but histologically advanced adenomas that are at increased risk for progression to malignancy. Prevention of CRC through detection of advanced adenomas is important. It is, therefore, necessary to develop more efficient detection methods to enable earlier detection and therefore better prognosis. Although a number of CRC diagnostic methods are currently used for early detection, including stool-based tests, traditional colonoscopy, etc., they have not shown optimal results due to several limitations. Hence, development of more reliable screening methods is required in order to detect the disease at an early stage. New screening tools also need to be able to accurately diagnose CRC and advanced adenoma, help guide treatment, and predict the prognosis along with being relatively simple and non-invasive. As part of such efforts, many proposals for the early detection of colorectal neoplasms have been introduced. For example, metabolomics, referring to the scientific study of the metabolism of living organisms, has been shown to be a possible approach for discovering CRC-related biomarkers. In addition, a growing number of high-performance screening methodologies could facilitate biomarker identification. In the present, evidence-based review, the authors summarize the current state as recognized by the recent guideline recommendation from the American Cancer Society, US Preventive Services Task Force and the United States Multi-Society Task Force and discuss future direction of screening tools for colorectal cancer. Further, we highlight the most interesting publications on new screening tools, like molecular biomarkers and metabolomics, and discuss these in detail.
Collapse
Affiliation(s)
- Ji Taek Hong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, South Korea
| | - Eun Ran Kim
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| |
Collapse
|
19
|
Abstract
Over the last years, epigenetic changes, including DNA methylation and histone modifications detected in early tumorigenesis and cancer progression, have been proposed as biomarkers for cancer detection, tumor prognosis, and prediction to treatment response. Importantly for the clinical use of DNA methylation biomarkers, specific methylation signatures can be detected in many body fluids including serum/plasma samples. Several of these potential epigenetic biomarkers detected in women's cancers, colorectal cancers, prostate, pancreatic, gastric, and lung cancers are discussed. Studies conducted in breast cancer, for example, found that aberrant methylation detection of several genes in serum DNA and genome-wide epigenetic change could be used for early breast cancer diagnosis and prediction of breast cancer risk. In colorectal cancers, numerous studies have been conducted to identify specific methylation markers important for CRC detection and in fact clinical assays evaluating the methylation status of SEPT19 gene and vimentin, became commercially available. Furthermore, some epigenetic changes detected in gastric washes have been suggested as potential circulating noninvasive biomarkers for the early detection of gastric cancers. For the early detection of prostate cancer, few epigenetic markers have shown a better sensitivity and specificity than serum PSA, indicating that the inclusion of these markers together with current screening tools, could improve early diagnosis and may reduce unnecessary repeat biopsies. Similarly, in pancreatic cancers, abnormal DNA methylation of several genes including NPTX2, have been suggested as a diagnostic biomarker. Epigenetic dysregulation was also observed in several tumor suppressor genes and miRNAs in lung cancer patients, suggesting the important role of these changes in cancer initiation and progression. In conclusion, epigenetic changes detected in biological fluids could play an essential role in the early detection of several cancer types and this may have a great impact for the cancer precision medicine field.
Collapse
|
20
|
Rezapour S, Hosseinzadeh E, Marofi F, Hassanzadeh A. Epigenetic-based therapy for colorectal cancer: Prospect and involved mechanisms. J Cell Physiol 2019; 234:19366-19383. [PMID: 31020647 DOI: 10.1002/jcp.28658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Epigenetic modifications are heritable variations in gene expression not encoded by the DNA sequence. According to reports, a large number of studies have been performed to characterize epigenetic modification during normal development and also in cancer. Epigenetics can be regarded more widely to contain all of the changes in expression of genes that make by adjusted interactions between the regulatory portions of DNA or messenger RNAs that lead to indirect variation in the DNA sequence. In the last decade, epigenetic modification importance in colorectal cancer (CRC) pathogenesis was demonstrated powerfully. Although developments in CRC therapy have been made in the last years, much work is required as it remains the second leading cause of cancer death. Nowadays, epigenetic programs and genetic change have pivotal roles in the CRC incidence as well as progression. While our knowledge about epigenetic mechanism in CRC is not comprehensive, selective histone modifications and resultant chromatin conformation together with DNA methylation most likely regulate CRC pathogenesis that involved genes expression. Undoubtedly, the advanced understanding of epigenetic-based gene expression regulation in the CRC is essential to make epigenetic drugs for CRC therapy. The major aim of this review is to deliver a summary of valuable results that represent evidence of principle for epigenetic-based therapeutic approaches employment in CRC with a focus on the advantages of epigenetic-based therapy in the inhibition of the CRC metastasis and proliferation.
Collapse
Affiliation(s)
- Saleheh Rezapour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Division of Hematology, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Division of Hematology, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Kel A, Boyarskikh U, Stegmaier P, Leskov LS, Sokolov AV, Yevshin I, Mandrik N, Stelmashenko D, Koschmann J, Kel-Margoulis O, Krull M, Martínez-Cardús A, Moran S, Esteller M, Kolpakov F, Filipenko M, Wingender E. Walking pathways with positive feedback loops reveal DNA methylation biomarkers of colorectal cancer. BMC Bioinformatics 2019; 20:119. [PMID: 30999858 PMCID: PMC6471696 DOI: 10.1186/s12859-019-2687-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The search for molecular biomarkers of early-onset colorectal cancer (CRC) is an important but still quite challenging and unsolved task. Detection of CpG methylation in human DNA obtained from blood or stool has been proposed as a promising approach to a noninvasive early diagnosis of CRC. Thousands of abnormally methylated CpG positions in CRC genomes are often located in non-coding parts of genes. Novel bioinformatic methods are thus urgently needed for multi-omics data analysis to reveal causative biomarkers with a potential driver role in early stages of cancer. METHODS We have developed a method for finding potential causal relationships between epigenetic changes (DNA methylations) in gene regulatory regions that affect transcription factor binding sites (TFBS) and gene expression changes. This method also considers the topology of the involved signal transduction pathways and searches for positive feedback loops that may cause the carcinogenic aberrations in gene expression. We call this method "Walking pathways", since it searches for potential rewiring mechanisms in cancer pathways due to dynamic changes in the DNA methylation status of important gene regulatory regions ("epigenomic walking"). RESULTS In this paper, we analysed an extensive collection of full genome gene-expression data (RNA-seq) and DNA methylation data of genomic CpG islands (using Illumina methylation arrays) generated from a sample of tumor and normal gut epithelial tissues of 300 patients with colorectal cancer (at different stages of the disease) (data generated in the EU-supported SysCol project). Identification of potential epigenetic biomarkers of DNA methylation was performed using the fully automatic multi-omics analysis web service "My Genome Enhancer" (MGE) (my-genome-enhancer.com). MGE uses the database on gene regulation TRANSFAC®, the signal transduction pathways database TRANSPATH®, and software that employs AI (artificial intelligence) methods for the analysis of cancer-specific enhancers. CONCLUSIONS The identified biomarkers underwent experimental testing on an independent set of blood samples from patients with colorectal cancer. As a result, using advanced methods of statistics and machine learning, a minimum set of 6 biomarkers was selected, which together achieve the best cancer detection potential. The markers include hypermethylated positions in regulatory regions of the following genes: CALCA, ENO1, MYC, PDX1, TCF7, ZNF43.
Collapse
Affiliation(s)
- Alexander Kel
- Institute of Chemical Biology and Fundamental Medicine, SBRAN, Novosibirsk, 630090, Russia. .,Biosoft.ru, Ltd, Novosibirsk, 630090, Russia. .,geneXplain GmbH, 38302, Wolfenbüttel, Germany.
| | - Ulyana Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, SBRAN, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | | | | | | - Anna Martínez-Cardús
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| | - Sebastian Moran
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029, Madrid, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08010, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Fedor Kolpakov
- Biosoft.ru, Ltd, Novosibirsk, 630090, Russia.,Institute of Computational Technologies SB RAS, Novosibirsk, 630090, Russia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, SBRAN, Novosibirsk, 630090, Russia
| | - Edgar Wingender
- geneXplain GmbH, 38302, Wolfenbüttel, Germany.,Institute of Bioinformatics, University Medical Center Göttingen (UMG), Göttingen, 37077, Germany
| |
Collapse
|
22
|
Cui X, Cao L, Huang Y, Bai D, Huang S, Lin M, Yang Q, Lu TJ, Xu F, Li F. In vitro diagnosis of DNA methylation biomarkers with digital PCR in breast tumors. Analyst 2019; 143:3011-3020. [PMID: 29693662 DOI: 10.1039/c8an00205c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liquid biopsy of cancers using DNA methylation biomarkers has received significant interest, where the quantification of multiple biomarkers is generally needed for improving the sensitivity and specificity of cancer diagnosis. However, the inefficiency of the traditional quantitative polymerase chain reaction (qPCR)-based MethyLight assay for detecting the extremely low concentration of methylated DNA fragments in body fluids limits its clinical applications. Here, we developed an ultrasensitive microwell chip digital polymerase chain reaction (dPCR)-based MethyLight assay. Using the synthesized samples, the developed MethyLight assay can achieve 103-104-fold lower limit of detection and 1-16-fold lower limit of quantification than the traditional MethyLight assay. Four hypermethylated alleles (RARβ2, BRCA1, GSTP1 and RASSF1A) related to breast cancer in twenty-three clinical samples were tested using the microwell chip dPCR-based MethyLight assay. The results showed that the dPCR assay achieves ∼2 times enhancement in the cancer detection rate over the traditional quantitative PCR. Furthermore, the dPCR can detect the healthy and benign samples, which are undetectable using the traditional MethyLight assay. In multiple gene analysis, we achieved the highest detection rate of 93.3% (in the "OR" format of RARβ2 and GSTP1). Lastly, the estimated cut-off values in the dPCR assay were: <1, ∼1 to 100 and >100 (copies per μL) referring to the healthy, benign and malignant breast cancers, respectively. Therefore, the developed microwell chip dPCR-based MethyLight assay could provide a powerful tool for cancer biopsy diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Xingye Cui
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Blanchard TG, Czinn SJ, Banerjee V, Sharda N, Bafford AC, Mubariz F, Morozov D, Passaniti A, Ahmed H, Banerjee A. Identification of Cross Talk between FoxM1 and RASSF1A as a Therapeutic Target of Colon Cancer. Cancers (Basel) 2019; 11:cancers11020199. [PMID: 30744076 PMCID: PMC6406751 DOI: 10.3390/cancers11020199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
Metastatic colorectal cancer (mCRC) is characterized by the expression of cellular oncogenes, the loss of tumor suppressor gene function. Therefore, identifying integrated signaling between onco-suppressor genes may facilitate the development of effective therapy for mCRC. To investigate these pathways we utilized cell lines and patient derived organoid models for analysis of gene/protein expression, gene silencing, overexpression, and immunohistochemical analyses. An inverse relationship in expression of oncogenic FoxM1 and tumor suppressor RASSF1A was observed in various stages of CRC. This inverse correlation was also observed in mCRC cells lines (T84, Colo 205) treated with Akt inhibitor. Inhibition of FoxM1 expression in mCRC cells as well as in our ex vivo model resulted in increased RASSF1A expression. Reduced levels of RASSF1A expression were found in normal cells (RWPE-1, HBEpc, MCF10A, EC) stimulated with exogenous VEGF165. Downregulation of FoxM1 also coincided with increased YAP phosphorylation, indicative of tumor suppression. Conversely, downregulation of RASSF1A coincided with FoxM1 overexpression. These studies have identified for the first time an integrated signaling pathway between FoxM1 and RASSF1A in mCRC progression, which may facilitate the development of novel therapeutic options for advanced colon cancer therapy.
Collapse
Affiliation(s)
- Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Vivekjyoti Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Neha Sharda
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Andrea C Bafford
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Fahad Mubariz
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Dennis Morozov
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Antonino Passaniti
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
24
|
Xu S, Yue Y, Zhang S, Zhou C, Cheng X, Xie X, Wang X, Lu W. STON2 negatively modulates stem-like properties in ovarian cancer cells via DNMT1/MUC1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:305. [PMID: 30518424 PMCID: PMC6282299 DOI: 10.1186/s13046-018-0977-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022]
Abstract
Background Cancer stem cells (CSCs) possess abilities of self-renewal and differentiation, have oncogenic potential and are regarded to be the source of cancer recurrence. However, the mechanism by which CSCs maintain their stemness remains largely unclear. Methods In this study, the cell line-derived ovarian CSCs (OCSCs), 3AO and Caov3, were enriched in serum-free medium (SFM). Differentially expressed proteins were compared between the OCSC subpopulation and parental cells using liquid chromatography (LC)-mass spectrometry (MS)/MS label-free quantitative proteomics. Sphere-forming ability assays, flow cytometry, quantitative real-time polymerase chain reaction (qPCR), western blotting, and in vivo xenograft experiments were performed to evaluate stemness. RNA-sequencing (RNA-seq) and pyrosequencing were used to reveal the mechanism by which STON2 negatively modulates the stem-like properties of ovarian cancer cells. Results Among the 74 most differentially expressed proteins, stonin 2 (STON2) was confirmed to be down-regulated in the OCSC subpopulation. We show that STON2 negatively modulates the stem-like properties of ovarian cancer cells, which are characterized by sphere formation, a CD44+CD24− ratio, and by CSC- and epithelial mesenchymal transition (EMT)-related markers. STON2 knockdown also accelerated tumorigenesis in NOD/SCID mice. Further investigation revealed a downstream target, mucin 1 (MUC1), as up-regulated upon the down regulation of STON2. A decrease in both DNA methyltransferase 1 (DNMT1) expression and methylation in the promoter region of MUC1 was associated with subsequently elevated MUC1 expression, as detected in STON2 knockdown in 3AO and Caov3 cells. Direct DNMT1 knockdown simultaneously elevated MUC1 expression. The functional significance of this STON2-DNMT1/MUC1 pathway is supported by the observation that STON2 overexpression suppresses MUC1-induced sphere formation of OCSCs. The paired expression of STON2 and MUC1 in ovarian cancer specimens was also detected revealing the prognostic value of STON2 expression to be highly dependent on MUC1 expression. Conclusions Our results imply that STON2 may negatively regulate stemness in ovarian cancer cells via DNMT1-MUC1 mediated epigenetic modification. STON2 is therefore involved in OCSC biology and may represent a therapeutic target for innovative treatments aimed at ovarian cancer eradication. Electronic supplementary material The online version of this article (10.1186/s13046-018-0977-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yongfang Yue
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Songfa Zhang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Caiyun Zhou
- Department of Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xing Xie
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xinyu Wang
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Weiguo Lu
- Department of Gynecologic Oncology; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
25
|
Wang J, Duan Y, Meng QH, Gong R, Guo C, Zhao Y, Zhang Y. Integrated analysis of DNA methylation profiling and gene expression profiling identifies novel markers in lung cancer in Xuanwei, China. PLoS One 2018; 13:e0203155. [PMID: 30286088 PMCID: PMC6171826 DOI: 10.1371/journal.pone.0203155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aberrant DNA methylation occurs frequently in cancer. The aim of this study was to identify novel methylation markers in lung cancer in Xuanwei, China, through integrated genome-wide DNA methylation and gene expression studies. METHODS Differentially methylated regions (DMRs) and differentially expressed genes (DEGs) were detected on 10 paired lung cancer tissues and noncancerous lung tissues by methylated DNA immunoprecipitation combined with microarray (MeDIP-chip) and gene expression microarray analyses, respectively. Integrated analysis of DMRs and DEGs was performed to screen out candidate methylation-related genes. Both methylation and expression changes of the candidate genes were further validated and analyzed. RESULTS Compared with normal lung tissues, lung cancer tissues expressed a total of 6,899 DMRs, including 5,788 hypermethylated regions and 1,111 hypomethylated regions. Integrated analysis of DMRs and DEGs identified 45 tumor-specific candidate genes: 38 genes whose DMRs were hypermethylated and expression was downregulated, and 7 genes whose DMRs were hypomethylated and expression was upregulated. The methylation and expression validation results identified 4 candidate genes (STXBP6, BCL6B, FZD10, and HSPB6) that were significantly hypermethylated and downregulated in most of the tumor tissues compared with the noncancerous lung tissues. CONCLUSIONS This integrated analysis of genome-wide DNA methylation and gene expression in lung cancer in Xuanwei revealed several genes regulated by promoter methylation that have not been described in lung cancer before. These results provide new insight into the carcinogenesis of lung cancer in Xuanwei and represent promising new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Yong Duan
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Qing-He Meng
- Department of Laboratory Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rong Gong
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Chong Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Ying Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Yanliang Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Experimental Diagnosis, Kunming, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
- * E-mail:
| |
Collapse
|
26
|
Vedeld HM, Goel A, Lind GE. Epigenetic biomarkers in gastrointestinal cancers: The current state and clinical perspectives. Semin Cancer Biol 2018; 51:36-49. [PMID: 29253542 PMCID: PMC7286571 DOI: 10.1016/j.semcancer.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Each year, almost 4.1 million people are diagnosed with gastrointestinal (GI) cancers. Due to late detection of this disease, the mortality is high, causing approximately 3 million cancer-related deaths annually, worldwide. Although the incidence and survival differs according to organ site, earlier detection and improved prognostication have the potential to reduce overall mortality burden from these cancers. Epigenetic changes, including aberrant promoter DNA methylation, are common events in both cancer initiation and progression. Furthermore, such changes may be identified non-invasively with the use of PCR based methods, in bodily fluids of cancer patients. These features make aberrant DNA methylation a promising substrate for the development of disease biomarkers for early detection, prognosis and for predicting response to therapy. In this article, we will provide an update and current clinical perspectives for DNA methylation alterations in patients with colorectal, gastric, pancreatic, liver and esophageal cancers, and discuss their potential role as cancer biomarkers.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ajay Goel
- Center for Gastrointestinal Research, and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Mojtabanezhad Shariatpanahi A, Yassi M, Nouraie M, Sahebkar A, Varshoee Tabrizi F, Kerachian MA. The importance of stool DNA methylation in colorectal cancer diagnosis: A meta-analysis. PLoS One 2018; 13:e0200735. [PMID: 30024936 PMCID: PMC6053185 DOI: 10.1371/journal.pone.0200735] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
A large number of tumor-related methylated genes have been suggested to be of diagnostic and prognostic values for CRC when analyzed in patients' stool samples; however, reported sensitivities and specificities have been inconsistent and widely varied. This meta-analysis was conducted to assess the detection accuracy of stool DNA methylation assay in CRC, early stages of CRC (advanced adenoma, non-advanced adenomas) and hyperplastic polyps, separately. We searched MEDLINE, Web of Science, Scopus and Google Scholar databases until May 1, 2016. From 469 publications obtained in the initial literature search, 38 studies were included in the final analysis involving 4867 individuals. The true positive, false positive, true negative and false negative of a stool-based DNA methylation biomarker using all single-gene tests considering a certain gene; regardless of a specific gene were pooled and studied in different categories. The sensitivity of different genes in detecting different stages of CRC ranged from 0% to 100% and the specificities ranged from 73% to 100%. Our results elucidated that SFRP1 and SFRP2 methylation possessed promising accuracy for detection of not only CRC (DOR: 31.67; 95%CI, 12.31-81.49 and DOR: 35.36; 95%CI, 18.71-66.84, respectively) but also the early stages of cancer, adenoma (DOR: 19.72; 95%CI, 6.68-58.25 and DOR: 13.20; 95%CI, 6.01-28.00, respectively). Besides, NDRG4 could be also considered as a significant diagnostic marker gene in CRC (DOR: 24.37; 95%CI, 10.11-58.73) and VIM in adenoma (DOR: 15.21; 95%CI, 2.72-85.10). In conclusion, stool DNA hypermethylation assay based on the candidate genes SFRP1, SFRP2, NDRG4 and VIM could offer potential diagnostic value for CRC based on the findings of this meta-analysis.
Collapse
Affiliation(s)
| | - Maryam Yassi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Mehdi Nouraie
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Amin Kerachian
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- * E-mail: ,
| |
Collapse
|
28
|
Nikolouzakis TK, Vassilopoulou L, Fragkiadaki P, Sapsakos TM, Papadakis GZ, Spandidos DA, Tsatsakis AM, Tsiaoussis J. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review). Oncol Rep 2018; 39:2455-2472. [PMID: 29565457 PMCID: PMC5983921 DOI: 10.3892/or.2018.6330] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is among the most common cancers. In fact, it is placed in the third place among the most diagnosed cancer in men, after lung and prostate cancer, and in the second one for the most diagnosed cancer in women, following breast cancer. Moreover, its high mortality rates classifies it among the leading causes of cancer‑related death worldwide. Thus, in order to help clinicians to optimize their practice, it is crucial to introduce more effective tools that will improve not only early diagnosis, but also prediction of the most likely progression of the disease and response to chemotherapy. In that way, they will be able to decrease both morbidity and mortality of their patients. In accordance with that, colon cancer research has described numerous biomarkers for diagnostic, prognostic and predictive purposes that either alone or as part of a panel would help improve patient's clinical management. This review aims to describe the most accepted biomarkers among those proposed for use in CRC divided based on the clinical specimen that is examined (tissue, faeces or blood) along with their restrictions. Lastly, new insight in CRC monitoring will be discussed presenting promising emerging biomarkers (telomerase activity, telomere length and micronuclei frequency).
Collapse
Affiliation(s)
| | - Loukia Vassilopoulou
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Crete, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Crete, Greece
| | - Theodoros Mariolis Sapsakos
- Laboratory of Anatomy and Histology, Nursing School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Z. Papadakis
- Foundation for Research and Technology Hellas (FORTH), Institute of Computer Sciences (ICS), Computational Biomedicine Laboratory (CBML), 71003 Heraklion, Crete, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Aristides M. Tsatsakis
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Crete, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
29
|
Ortega A, Tarazón E, Gil-Cayuela C, Martínez-Dolz L, Lago F, González-Juanatey JR, Sandoval J, Portolés M, Roselló-Lletí E, Rivera M. ASB1 differential methylation in ischaemic cardiomyopathy: relationship with left ventricular performance in end-stage heart failure patients. ESC Heart Fail 2018; 5:732-737. [PMID: 29667349 PMCID: PMC6073036 DOI: 10.1002/ehf2.12289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 01/11/2018] [Accepted: 03/10/2018] [Indexed: 12/15/2022] Open
Abstract
Aims Ischaemic cardiomyopathy (ICM) leads to impaired contraction and ventricular dysfunction, causing high rates of morbidity and mortality. Epigenomics allows the identification of epigenetic signatures in human diseases. We analyse the differential epigenetic patterns of the ASB gene family in ICM patients and relate these alterations to their haemodynamic and functional status. Methods and results Epigenomic analysis was carried out using 16 left ventricular (LV) tissue samples, eight from ICM patients undergoing heart transplantation and eight from control (CNT) subjects without cardiac disease. We increased the sample size up to 13 ICM and 10 CNT for RNA sequencing and to 14 ICM for pyrosequencing analyses. We found a hypermethylated profile (cg11189868) in the ASB1 gene that showed a differential methylation of 0.26Δβ (P = 0.016). This result was validated by a pyrosequencing technique (0.23Δβ, P = 0.048). Notably, the methylation pattern was strongly related to LV ejection fraction (r = −0.849, P = 0.008), stroke volume (r = −0.929, P = 0.001), and end‐systolic and diastolic LV diameters (r = −0.743, P = 0.035 for both). ASB1 showed a down‐regulation in messenger RNA levels (−1.2‐fold, P = 0.039). Conclusions Our findings link a specific ASB1 methylation pattern to LV structure and performance in end‐stage ICM, opening new therapeutic opportunities and providing new insights regarding which is the functionally relevant genome in the ischaemic failing myocardium.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Estefanía Tarazón
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Carolina Gil-Cayuela
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Luis Martínez-Dolz
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan Sandoval
- Epigenomic Unit, Health Research Institute La Fe, Valencia, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Avd. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| |
Collapse
|
30
|
Singh MP, Rai S, Suyal S, Singh SK, Singh NK, Agarwal A, Srivastava S. Genetic and epigenetic markers in colorectal cancer screening: recent advances. Expert Rev Mol Diagn 2017; 17:665-685. [PMID: 28562109 DOI: 10.1080/14737159.2017.1337511] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a heterogenous disease which develops from benign intraepithelial lesions known as adenomas to malignant carcinomas. Acquired alterations in Wnt signaling, TGFβ, MAPK pathway genes and clonal propagation of altered cells are responsible for this transformation. Detection of adenomas or early stage cancer in asymptomatic patients and better prognostic and predictive markers is important for improving the clinical management of CRC. Area covered: In this review, the authors have evaluated the potential of genetic and epigenetic alterations as markers for early detection, prognosis and therapeutic predictive potential in the context of CRC. We have discussed molecular heterogeneity present in CRC and its correlation to prognosis and response to therapy. Expert commentary: Molecular marker based CRC screening methods still fail to gain trust of clinicians. Invasive screening methods, molecular heterogeneity, chemoresistance and low quality test samples are some key challenges which need to be addressed in the present context. New sequencing technologies and integrated omics data analysis of individual or population cohort results in GWAS. MPE studies following a GWAS could be future line of research to establish accurate correlations between CRC and its risk factors. This strategy would identify most reliable biomarkers for CRC screening and management.
Collapse
Affiliation(s)
- Manish Pratap Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Sandhya Rai
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Shradha Suyal
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Sunil Kumar Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Nand Kumar Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Akash Agarwal
- b Department of Surgical Oncology , Dr. Ram Manohar Lohia Institute of Medical Sciences (DRMLIMS) , Lucknow , India
| | - Sameer Srivastava
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| |
Collapse
|
31
|
De Luca M, Pels K, Moleirinho S, Curtale G. The epigenetic landscape of innate immunity. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.1.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|