1
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
2
|
Brown AP, Parameswaran S, Cai L, Elston S, Pham C, Barski A, Weirauch MT, Ji H. TET1 regulates responses to house dust mite by altering chromatin accessibility, DNA methylation, and gene expression in airway epithelial cells. RESEARCH SQUARE 2023:rs.3.rs-3726852. [PMID: 38168374 PMCID: PMC10760239 DOI: 10.21203/rs.3.rs-3726852/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Previous studies have identified TET1 as a potential key regulator of genes linked to asthma. TET1 has been shown to transcriptionally respond to house dust mite extract, an allergen known to directly cause allergic asthma development, and regulate the expression of genes involved in asthma. How TET1 regulates expression of these genes, however, is unknown. TET1 is a DNA demethylase; therefore, most prior research on TET1-based gene regulation has focused on how TET1 affects methylation. However, TET1 can also interact directly with transcription factors and histone modifiers to regulate gene expression. Understanding how TET1 regulates expression to contribute to allergic responses and asthma development thus requires a comprehensive approach. To this end, we measured mRNA expression, DNA methylation, chromatin accessibility and histone modifications in control and TET1 knockdown human bronchial epithelial cells treated or untreated with house dust mite extract. Results Throughout our analyses, we detected strong similarities between the effects of TET1 knockdown alone and the effects of HDM treatment alone. One especially striking pattern was that both TET1 knockdown and HDM treatment generally led to decreased chromatin accessibility at largely the same genomic loci. Transcription factor enrichment analyses indicated that altered chromatin accessibility following the loss of TET1 may affect, or be affected by, CTCF and CEBP binding. TET1 loss also led to changes in DNA methylation, but these changes were generally in regions where accessibility was not changing. Conclusions TET1 regulates gene expression through different mechanisms (DNA methylation and chromatin accessibility) in different parts of the genome in the airway epithelial cells, which mediates inflammatory responses to allergen. Collectively, our data suggest novel molecular mechanisms through which TET1 regulates critical pathways following allergen challenges and contributes to the development of asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Ji
- University of California Davis
| |
Collapse
|
3
|
Cha J, Choi S. Gene-Smoking Interaction Analysis for the Identification of Novel Asthma-Associated Genetic Factors. Int J Mol Sci 2023; 24:12266. [PMID: 37569643 PMCID: PMC10419280 DOI: 10.3390/ijms241512266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a complex heterogeneous disease caused by gene-environment interactions. Although numerous genome-wide association studies have been conducted, these interactions have not been systemically investigated. We sought to identify genetic factors associated with the asthma phenotype in 66,857 subjects from the Health Examination Study, Cardiovascular Disease Association Study, and Korea Association Resource Study cohorts. We investigated asthma-associated gene-environment (smoking status) interactions at the level of single nucleotide polymorphisms, genes, and gene sets. We identified two potentially novel (SETDB1 and ZNF8) and five previously reported (DM4C, DOCK8, MMP20, MYL7, and ADCY9) genes associated with increased asthma risk. Numerous gene ontology processes, including regulation of T cell differentiation in the thymus (GO:0033081), were significantly enriched for asthma risk. Functional annotation analysis confirmed the causal relationship between five genes (two potentially novel and three previously reported genes) and asthma through genome-wide functional prediction scores (combined annotation-dependent depletion, deleterious annotation of genetic variants using neural networks, and RegulomeDB). Our findings elucidate the genetic architecture of asthma and improve the understanding of its biological mechanisms. However, further studies are necessary for developing preventive treatments based on environmental factors and understanding the immune system mechanisms that contribute to the etiology of asthma.
Collapse
Affiliation(s)
- Junho Cha
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Sungkyoung Choi
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
- Department of Mathematical Data Science, College of Science and Convergence Technology, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
4
|
Lu C, Wang F, Liu Q, Deng M, Yang X, Ma P. Effect of NO 2 exposure on airway inflammation and oxidative stress in asthmatic mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131787. [PMID: 37295329 DOI: 10.1016/j.jhazmat.2023.131787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Nitrogen dioxide (NO2) is a widespread air pollutant. Epidemiological evidence indicates that NO2 is associated with an increase of incidence rate and mortality of asthma, but its mechanism is still unclear. In this study, we exposed mice to NO2 (5 ppm, 4 h per day for 30 days) intermittently to investigate the development and potential toxicological mechanisms of allergic asthma. We randomly assigned 60 male Balb/c mice to four groups: saline control, ovalbumin (OVA) sensitization, NO2 alone, and OVA+NO2 groups. The involved mechanisms were found from the perspective of airway inflammation and oxidative stress. The results showed that NO2 exposure could aggravate lung inflammation in asthmatic mice, and airway remodeling was characterized by significant thickening of the airway wall and infiltration of inflammatory cells. Moreover, NO2 would aggravate the airway hyperresponsiveness (AHR), which is characterized by significantly elevated inspiratory resistance (Ri) and expiratory resistance (Re), as well as decreased dynamic lung compliance (Cldyn). In addition, NO2 exposure promoted pro-inflammatory cytokines (IL-6 and TNF-α) and serum immunoglobulin (IgE) production. The imbalance of Th1/Th2 cell differentiation (IL-4 increased, IFN-γ reduced, IL-4/IFN-γ significantly increased) played a key role in the inflammatory response of asthma under NO2 exposure. In a nutshell, NO2 exposure could promote allergic airway inflammation and increase asthma susceptibility. The levels of ROS and MDA among asthmatic mice exposed to NO2 increased significantly, while GSH levels sharply decreased. These findings may provide better toxicological evidence for the mechanisms of allergic asthma risk due to NO2 exposure.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, China.
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven 3001, Belgium
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Miaomiao Deng
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
5
|
Gao Y, Chen L, Li J, Wen Z. A prognosis prediction chromatin regulator signature for patients with severe asthma. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:43. [PMID: 37245015 DOI: 10.1186/s13223-023-00796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/16/2023] [Indexed: 05/29/2023]
Abstract
Severe asthma imposes a physical and economic burden on both patients and society. As chromatin regulators (CRs) influence the progression of multiple diseases through epigenetic mechanisms, we aimed to study the role of CRs in patients with severe asthma. Transcriptome data (GSE143303) from 47 patients with severe asthma and 13 healthy participants was downloaded from the Gene Expression Omnibus database. Enrichment analysis was performed to investigate the functions of differentially expressed CRs between the groups. We identified 80 differentially expressed CRs; they were mainly enriched in histone modification, chromatin organization, and lysine degradation. A protein-protein interaction network was then constructed. The analyzed immune scores were different between sick and healthy individuals. Thus, CRs with a high correlation in the immune analysis, SMARCC1, SETD2, KMT2B, and CHD8, were used to construct a nomogram model. Finally, using online prediction tools, we determined that lanatoside C, cefepime, and methapyrilene may be potentially effective drugs in the treatment of severe asthma. The nomogram constructed using the four CRs, SMARCC1, SETD2, KMT2B, and CHD8, may be a useful tool for predicting the prognosis of patients with severe asthma. This study provided new insights into the role of CRs in severe asthma.
Collapse
Affiliation(s)
- Yaning Gao
- Beijing Jingmei Group General Hospital, Beijing, China.
| | - Liang Chen
- Beijing Jingmei Group General Hospital, Beijing, China
| | - Jian Li
- Beijing Jingmei Group General Hospital, Beijing, China
| | - Zhengjun Wen
- Beijing Jingmei Group General Hospital, Beijing, China
| |
Collapse
|
6
|
Konrad H, Lawniczek J, Bajramjan C, Weber L, Bajanowski T, Poetsch M. Knife wound or nosebleed-where does the blood at the crime scene come from? Int J Legal Med 2023:10.1007/s00414-023-03012-2. [PMID: 37148347 PMCID: PMC10247842 DOI: 10.1007/s00414-023-03012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Secretion analysis is a useful tool in forensic genetics, since it establishes the (cellular) origin of the DNA prior in addition to the identification of the DNA donor. This information can be crucial for the construction of the crime sequence or verification of statements of people involved in the crime. For some secretions, rapid/pretests already exist (blood, semen, urine, and saliva) or can be determined via published methylation analyses or expression analyses (blood, saliva vaginal secretions, menstrual blood, and semen). To discriminate nasal secretion/blood from other secretions (like oral mucosa/saliva, blood, vaginal secretion, menstrual blood, and seminal fluid), assays based on specific methylation patterns at several CpGs were set up in this study. Out of an initial 54 different CpG markers tested, two markers showed a specific methylation value for nasal samples: N21 and N27 with a methylation mean value of 64.4% ± 17.6% and 33.2% ± 8.7%, respectively. Although identification or discrimination was not possible for all nasal samples (due to partial overlap in methylation values to other secretions), 63% and 26% of the nasal samples could be unambiguously identified and distinguished from the other secretions using the CpG marker N21 and N27, respectively. In combination with a blood pretest/rapid test, a third marker (N10) was able to detect nasal cells in 53% of samples. Moreover, the employment of this pretest increases the proportion of identifiable or discriminable nasal secretion samples using marker N27 to 68%. In summary, our CpG assays proved to be promising tools in forensic analysis for the detection of nasal cells in samples from a crime scene.
Collapse
Affiliation(s)
- Helen Konrad
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Janina Lawniczek
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Christine Bajramjan
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Lisa Weber
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Thomas Bajanowski
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Micaela Poetsch
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany.
| |
Collapse
|
7
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Parker AC, Quinteros BI, Piccolo SR. The DNA methylation landscape of five pediatric-tumor types. PeerJ 2022; 10:e13516. [PMID: 35707123 PMCID: PMC9190670 DOI: 10.7717/peerj.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/09/2022] [Indexed: 01/17/2023] Open
Abstract
Fewer DNA mutations have been identified in pediatric tumors than in adult tumors, suggesting that alternative tumorigenic mechanisms, including aberrant DNA methylation, may play a prominent role. In one epigenetic process of regulating gene expression, methyl groups are attached at the 5-carbon of the cytosine ring, leading to 5-methylcytosine (5mC). In somatic cells, 5mC occurs mostly in CpG islands, which are often within promoter regions. In Wilms tumors and acute myeloid leukemias, increased levels of epigenetic silencing have been associated with worse patient outcomes. However, to date, researchers have studied methylation primarily in adult tumors and for specific genes-but not on a pan-pediatric cancer scale. We addressed these gaps first by aggregating methylation data from 309 noncancerous samples, establishing baseline expectations for each probe and gene. Even though these samples represent diverse, noncancerous tissue types and population ancestral groups, methylation levels were consistent for most genes. Second, we compared tumor methylation levels against the baseline values for 489 pediatric tumors representing five cancer types: Wilms tumors, clear cell sarcomas of the kidney, rhabdoid tumors, neuroblastomas, and osteosarcomas. Tumor hypomethylation was more common than hypermethylation, and as many as 41.7% of genes were hypomethylated in a given tumor, compared to a maximum of 34.2% for hypermethylated genes. However, in known oncogenes, hypermethylation was more than twice as common as in other genes. We identified 139 probes (31 genes) that were differentially methylated between at least one tumor type and baseline levels, and 32 genes that were differentially methylated across the pediatric tumor types. We evaluated whether genomic events and aberrant methylation were mutually exclusive but did not find evidence of this phenomenon.
Collapse
|
9
|
Legaki E, Arsenis C, Taka S, Papadopoulos NG. DNA methylation biomarkers in asthma and rhinitis: Are we there yet? Clin Transl Allergy 2022; 12:e12131. [PMID: 35344303 PMCID: PMC8967268 DOI: 10.1002/clt2.12131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
The study of epigenetics has improved our understanding of mechanisms underpinning gene‐environment interactions and is providing new insights in the pathophysiology of respiratory allergic diseases. We reviewed the literature on DNA methylation patterns across different tissues in asthma and/or rhinitis and attempted to elucidate differentially methylated loci that could be used to characterize asthma or rhinitis. Although nasal and bronchial epithelia are similar in their histological structure and cellular composition, genetic and epigenetic regulation may differ across tissues. Advanced methods have enabled comprehensive, high‐throughput methylation profiling of different tissues (bronchial or nasal epithelial cells, whole blood or isolated mononuclear cells), in subjects with respiratory conditions, aiming to elucidate gene regulation mechanisms and identify new biomarkers. Several genes and CpGs have been suggested as asthma biomarkers, though research on allergic rhinitis is still lacking. The most common differentially methylated loci presented in both blood and nasal samples are ACOT7, EPX, KCNH2, SIGLEC8, TNIK, FOXP1, ATPAF2, ZNF862, ADORA3, ARID3A, IL5RA, METRNL and ZFPM1. Overall, there is substantial variation among studies, (i.e. sample sizes, age groups and disease phenotype). Greater variability of analysis method detailed phenotypic characterization and age stratification should be taken into account in future studies.
Collapse
Affiliation(s)
- Evangelia Legaki
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Christos Arsenis
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Nikolaos G. Papadopoulos
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
10
|
McKennan C, Nicolae D. Estimating and accounting for unobserved covariates in high-dimensional correlated data. J Am Stat Assoc 2022; 117:225-236. [PMID: 35615339 PMCID: PMC9126075 DOI: 10.1080/01621459.2020.1769635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many high dimensional and high-throughput biological datasets have complex sample correlation structures, which include longitudinal and multiple tissue data, as well as data with multiple treatment conditions or related individuals. These data, as well as nearly all high-throughput 'omic' data, are influenced by technical and biological factors unknown to the researcher, which, if unaccounted for, can severely obfuscate estimation of and inference on the effects of interest. We therefore developed CBCV and CorrConf: provably accurate and computationally efficient methods to choose the number of and estimate latent confounding factors present in high dimensional data with correlated or nonexchangeable residuals. We demonstrate each method's superior performance compared to other state of the art methods by analyzing simulated multi-tissue gene expression data and identifying sex-associated DNA methylation sites in a real, longitudinal twin study.
Collapse
Affiliation(s)
| | - Dan Nicolae
- Department of Statistics, University of Chicago
| |
Collapse
|
11
|
Fang L, Roth M. Airway Wall Remodeling in Childhood Asthma-A Personalized Perspective from Cell Type-Specific Biology. J Pers Med 2021; 11:jpm11111229. [PMID: 34834581 PMCID: PMC8625708 DOI: 10.3390/jpm11111229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Airway wall remodeling is a pathology occurring in chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease, and fibrosis. In 2017, the American Thoracic Society released a research statement highlighting the gaps in knowledge and understanding of airway wall remodeling. The four major challenges addressed in this statement were: (i) the lack of consensus to define “airway wall remodeling” in different diseases, (ii) methodologic limitations and inappropriate models, (iii) the lack of anti-remodeling therapies, and (iv) the difficulty to define endpoints and outcomes in relevant studies. This review focuses on the importance of cell-cell interaction, especially the bronchial epithelium, in asthma-associated airway wall remodeling. The pathology of “airway wall remodeling” summarizes all structural changes of the airway wall without differentiating between different pheno- or endo-types of asthma. Indicators of airway wall remodeling have been reported in childhood asthma in the absence of any sign of inflammation; thus, the initiation event remains unknown. Recent studies have implied that the interaction between the epithelium with immune cells and sub-epithelial mesenchymal cells is modified in asthma by a yet unknown epigenetic mechanism during early childhood.
Collapse
|
12
|
Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55981-56002. [PMID: 34498177 PMCID: PMC8425320 DOI: 10.1007/s11356-021-16056-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 05/16/2023]
Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution. Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs' airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand whether certain pollutants influence HP development through such epigenetic modifications.
Collapse
Affiliation(s)
- Suranjana Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
13
|
Abstract
There has been a substantial increase in the incidence and the prevalence of allergic disorders in the recent decades, which seems to be related to rapid environmental and lifestyle changes, such as higher exposure to factors thought to exert pro-allergic effects but less contact with factors known to be associated with protection against the development of allergies. Pollution is the most remarkable example of the former, while less contact with microorganisms, lower proportion of unprocessed natural products in diet, and others resulting from urbanization and westernization of the lifestyle exemplify the latter. It is strongly believed that the effects of environmental factors on allergy susceptibility and development are mediated by epigenetic mechanisms, i.e. biologically relevant biochemical changes of the chromatin carrying transcriptionally-relevant information but not affecting the nucleotide sequence of the genome. Classical epigenetic mechanisms include DNA methylation and histone modifications, for instance acetylation or methylation. In addition, microRNA controls gene expression at the mRNA level. Such epigenetic mechanisms are involved in crucial regulatory processes in cells playing a pivotal role in allergies. Those include centrally managing cells, such as T lymphocytes, as well as specific structural and effector cells in the affected organs, responsible for the local clinical presentation of allergy, e.g. epithelial or airway smooth muscle cells in asthma. Considering that allergic disorders possess multiple clinical (phenotypes) and mechanistic (endotypes) forms, targeted, stratified treatment strategies based on detailed clinical and molecular diagnostics are required. Since conventional diagnostic or therapeutic approaches do not suffice, this gap could possibly be filled out by epigenetic approaches.
Collapse
|
14
|
Zhu T, Zhang X, Chen X, Brown AP, Weirauch MT, Guilbert TW, Khurana Hershey GK, Biagini JM, Ji H. Nasal DNA methylation differentiates severe from non-severe asthma in African-American children. Allergy 2021; 76:1836-1845. [PMID: 33175399 PMCID: PMC8110596 DOI: 10.1111/all.14655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Asthma is highly heterogeneous, and severity evaluation is key to asthma management. DNA methylation (DNAm) contributes to asthma pathogenesis. This study aimed to identify nasal epithelial DNAm differences between severe and nonsevere asthmatic children and evaluate the impact of environmental exposures. METHODS Thirty-three nonsevere and 22 severe asthmatic African American children were included in an epigenome-wide association study. Genome-wide nasal epithelial DNAm and gene expression were measured. CpG sites associated with asthma severity and environmental exposures and predictive of severe asthma were identified. DNAm was correlated with gene expression. Enrichment for transcription factor (TF) binding sites or histone modifications surrounding DNAm differences were determined. RESULTS We identified 816 differentially methylated CpG positions (DMPs) and 10 differentially methylated regions (DMRs) associated with asthma severity. Three DMPs exhibited discriminatory ability for severe asthma. Intriguingly, six DMPs were simultaneously associated with asthma, allergic asthma, total IgE, environmental IgE, and FeNO in an independent cohort of children. Twenty-seven DMPs were associated with traffic-related air pollution or secondhand smoke. DNAm at 22 DMPs was altered by diesel particles or allergen in human bronchial epithelial cells. DNAm levels at 39 DMPs were correlated with mRNA expression. Proximal to 816 DMPs, three histone marks and several TFs involved in asthma pathogenesis were enriched. CONCLUSIONS Significant differences in nasal epithelial DNAm were observed between nonsevere and severe asthma in African American children, a subset of which may be useful to predict disease severity. These CpG sites are subjected to the influences of environmental exposures and may regulate gene expression.
Collapse
Affiliation(s)
- Tao Zhu
- California National Primate Research Center, Davis, CA
| | - Xue Zhang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | | | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Theresa W. Guilbert
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gurjit K. Khurana Hershey
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Divison of Asthma Research, Cincinnati Children’s Hospital Medical Center, Davis, CA
| | - Jocelyn M. Biagini
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Divison of Asthma Research, Cincinnati Children’s Hospital Medical Center, Davis, CA
| | - Hong Ji
- California National Primate Research Center, Davis, CA
- Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
15
|
Söderhäll C, Reinius LE, Salmenperä P, Gentile M, Acevedo N, Konradsen JR, Nordlund B, Hedlin G, Scheynius A, Myllykangas S, Kere J. High-resolution targeted bisulfite sequencing reveals blood cell type-specific DNA methylation patterns in IL13 and ORMDL3. Clin Epigenetics 2021; 13:106. [PMID: 33971943 PMCID: PMC8111952 DOI: 10.1186/s13148-021-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methylation of DNA at CpG sites is an epigenetic modification and a potential modifier of disease risk, possibly mediating environmental effects. Currently, DNA methylation is commonly assessed using specific microarrays that sample methylation at a few % of all methylated sites. METHODS To understand if significant information on methylation can be added by a more comprehensive analysis of methylation, we set up a quantitative method, bisulfite oligonucleotide-selective sequencing (Bs-OS-seq), and compared the data with microarray-derived methylation data. We assessed methylation at two asthma-associated genes, IL13 and ORMDL3, in blood samples collected from children with and without asthma and fractionated white blood cell types from healthy adult controls. RESULTS Our results show that Bs-OS-seq can uncover vast amounts of methylation variation not detected by commonly used array methods. We found that high-density methylation information from even one gene can delineate the main white blood cell lineages. CONCLUSIONS We conclude that high-resolution methylation studies can yield clinically important information at selected specific loci missed by array-based methods, with potential implications for future studies of methylation-disease associations.
Collapse
Affiliation(s)
- Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, Bioclinicum J9:30, Visionsgatan 4, 171 64, Stockholm, Sweden. .,Department of Pediatric Allergy and Pulmonology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | - Lovisa E Reinius
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Nathalie Acevedo
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, 118 83, Stockholm, Sweden.,Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Bioclinicum J9:30, Visionsgatan 4, 171 64, Stockholm, Sweden.,Department of Pediatric Allergy and Pulmonology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Nordlund
- Department of Women's and Children's Health, Karolinska Institutet, Bioclinicum J9:30, Visionsgatan 4, 171 64, Stockholm, Sweden.,Department of Pediatric Allergy and Pulmonology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Hedlin
- Department of Women's and Children's Health, Karolinska Institutet, Bioclinicum J9:30, Visionsgatan 4, 171 64, Stockholm, Sweden.,Department of Pediatric Allergy and Pulmonology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, 118 83, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Sheikhpour M, Maleki M, Ebrahimi Vargoorani M, Amiri V. A review of epigenetic changes in asthma: methylation and acetylation. Clin Epigenetics 2021; 13:65. [PMID: 33781317 PMCID: PMC8008616 DOI: 10.1186/s13148-021-01049-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
Several studies show that childhood and adulthood asthma and its symptoms can be modulated through epigenetic modifications. Epigenetic changes are inheritable modifications that can modify the gene expression without changing the DNA sequence. The most common epigenetic alternations consist of DNA methylation and histone modifications. How these changes lead to asthmatic phenotype or promote the asthma features, in particular by immune pathways regulation, is an understudied topic. Since external effects, like exposure to tobacco smoke, air pollution, and drugs, influence both asthma development and the epigenome, elucidating the role of epigenetic changes in asthma is of great importance. This review presents available evidence on the epigenetic process that drives asthma genes and pathways, with a particular focus on DNA methylation, histone methylation, and acetylation. We gathered and assessed studies conducted in this field over the past two decades. Our study examined asthma in different aspects and also shed light on the limitations and the important factors involved in the outcomes of the studies. To date, most of the studies in this area have been carried out on DNA methylation. Therefore, the need for diagnostic and therapeutic applications through this molecular process calls for more research on the histone modifications in this disease.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Mobina Maleki
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ebrahimi Vargoorani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, College of Basic Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Amiri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
17
|
Asthma and air pollution: recent insights in pathogenesis and clinical implications. Curr Opin Pulm Med 2021; 26:10-19. [PMID: 31724961 DOI: 10.1097/mcp.0000000000000644] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Air pollution has adverse effects on the onset and morbidity of respiratory diseases, including asthma. In this review, we discuss recent insights into the effects of air pollution on the incidence and exacerbation of asthma. We focus on epidemiological studies that describe the association between air pollution exposure and development, mortality, persistence and exacerbations of asthma among different age groups. Moreover, we also provide an update on translational studies describing the mechanisms behind this association. RECENT FINDINGS Mechanisms linking air pollutants such as particulate matter, nitrogen dioxide (NO2) and ozone to the development and exacerbation of asthma include the induction of both eosinophilic and neutrophilic inflammation driven by stimulation of airway epithelium and increase of pro-inflammatory cytokine production, oxidative stress and DNA methylation changes. Although exposure during foetal development is often reported as a crucial timeframe, exposure to air pollution is detrimental in people of all ages, thus influencing asthma onset as well as increase in asthma prevalence, mortality, persistence and exacerbation. SUMMARY In conclusion, this review highlights the importance of reducing air pollution levels to avert the progressive increase in asthma incidence and morbidity.
Collapse
|
18
|
Alashkar Alhamwe B, Miethe S, Pogge von Strandmann E, Potaczek DP, Garn H. Epigenetic Regulation of Airway Epithelium Immune Functions in Asthma. Front Immunol 2020; 11:1747. [PMID: 32973742 PMCID: PMC7461869 DOI: 10.3389/fimmu.2020.01747] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the respiratory tract characterized by recurrent breathing problems resulting from airway obstruction and hyperresponsiveness. Human airway epithelium plays an important role in the initiation and control of the immune responses to different types of environmental factors contributing to asthma pathogenesis. Using pattern recognition receptors airway epithelium senses external stimuli, such as allergens, microbes, or pollutants, and subsequently secretes endogenous danger signaling molecules alarming and activating dendritic cells. Hence, airway epithelial cells not only mediate innate immune responses but also bridge them with adaptive immune responses involving T and B cells that play a crucial role in the pathogenesis of asthma. The effects of environmental factors on the development of asthma are mediated, at least in part, by epigenetic mechanisms. Those comprise classical epigenetics including DNA methylation and histone modifications affecting transcription, as well as microRNAs influencing translation. The common feature of such mechanisms is that they regulate gene expression without affecting the nucleotide sequence of the genomic DNA. Epigenetic mechanisms play a pivotal role in the regulation of different cell populations involved in asthma pathogenesis, with the remarkable example of T cells. Recently, however, there is increasing evidence that epigenetic mechanisms are also crucial for the regulation of airway epithelial cells, especially in the context of epigenetic transfer of environmental effects contributing to asthma pathogenesis. In this review, we summarize the accumulating evidence for this very important aspect of airway epithelial cell pathobiology.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,College of Pharmacy, International University for Science and Technology (IUST), Daraa, Syria.,Center for Tumor Biology and Immunology, Institute of Tumor Immunology, Philipps University Marburg, Marburg, Germany
| | - Sarah Miethe
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Center for Tumor Biology and Immunology, Institute of Tumor Immunology, Philipps University Marburg, Marburg, Germany
| | - Daniel P Potaczek
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,John Paul II Hospital, Kraków, Poland
| | - Holger Garn
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
19
|
Qi C, Jiang Y, Yang IV, Forno E, Wang T, Vonk JM, Gehring U, Smit HA, Milanzi EB, Carpaij OA, Berg M, Hesse L, Brouwer S, Cardwell J, Vermeulen CJ, Acosta-Pérez E, Canino G, Boutaoui N, van den Berge M, Teichmann SA, Nawijn MC, Chen W, Celedón JC, Xu CJ, Koppelman GH. Nasal DNA methylation profiling of asthma and rhinitis. J Allergy Clin Immunol 2020; 145:1655-1663. [PMID: 31953105 DOI: 10.1016/j.jaci.2019.12.911] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Epigenetic signatures in the nasal epithelium, which is a primary interface with the environment and an accessible proxy for the bronchial epithelium, might provide insights into mechanisms of allergic disease. OBJECTIVE We aimed to identify and interpret methylation signatures in nasal epithelial brushes associated with rhinitis and asthma. METHODS Nasal epithelial brushes were obtained from 455 children at the 16-year follow-up of the Dutch Prevention and Incidence of Asthma and Mite Allergy birth cohort study. Epigenome-wide association studies were performed on children with asthma, rhinitis, and asthma and/or rhinitis (AsRh) by using logistic regression, and the top results were replicated in 2 independent cohorts of African American and Puerto Rican children. Significant CpG sites were related to environmental exposures (pets, active and passive smoking, and molds) during secondary school and were correlated with gene expression by RNA-sequencing (n = 244). RESULTS The epigenome-wide association studies identified CpG sites significantly associated with rhinitis (n = 81) and AsRh (n = 75), but not with asthma. We significantly replicated 62 of 81 CpG sites with rhinitis and 60 of 75 with AsRh, as well as 1 CpG site with asthma. Methylation of cg03565274 was negatively associated with AsRh and positively associated with exposure to pets during secondary school. DNA methylation signals associated with AsRh were mainly driven by specific IgE-positive subjects. DNA methylation related to gene transcripts that were enriched for immune pathways and expressed in immune and epithelial cells. Nasal CpG sites performed well in predicting AsRh. CONCLUSIONS We identified replicable DNA methylation profiles of asthma and rhinitis in nasal brushes. Exposure to pets may affect nasal epithelial methylation in relation to asthma and rhinitis.
Collapse
Affiliation(s)
- Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yale Jiang
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Ivana V Yang
- Department of Medicine, University of Colorado, Aurora, Colo
| | - Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Ting Wang
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Judith M Vonk
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Henriëtte A Smit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edith B Milanzi
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Orestes A Carpaij
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marijn Berg
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Hesse
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sharon Brouwer
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Cornelis J Vermeulen
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Nadia Boutaoui
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Maarten van den Berge
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Martijn C Nawijn
- Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wei Chen
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Gastroenterology, Hepatology and Endocrinology, Centre for Individualised Infection Medicine, CiiM, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Gronigen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
20
|
Lin PI, Shu H, Mersha TB. Comparing DNA methylation profiles across different tissues associated with the diagnosis of pediatric asthma. Sci Rep 2020; 10:151. [PMID: 31932625 PMCID: PMC6957523 DOI: 10.1038/s41598-019-56310-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
DNA methylation (DNAm) profiles in central airway epithelial cells (AECs) may play a key role in pathological processes in asthma. The goal of the current study is to compare the diagnostic performance of DNAm markers across three tissues: AECs, nasal epithelial cells (NECs), and peripheral blood mononuclear cells (PBMCs). Additionally, we focused on the results using the machine learning algorithm in the context of multi-locus effects to evaluate the diagnostic performance of the optimal subset of CpG sites. We obtained 74 subjects with asthma and 41 controls from AECs, 15 subjects with asthma and 14 controls from NECs, 697 subjects with asthma and 97 controls from PBMCs. Epigenome-wide DNA methylation levels in AECs, NECs and PBMCs were measured using the Infinium Human Methylation 450 K BeadChip. Overlap analysis across the three different sample sources at the locus and pathway levels were studied to investigate shared or unique pathophysiological processes of asthma across tissues. Using the top 100 asthma-associated methylation markers as classifiers from each dataset, we found that both AEC- and NEC-based DNAm signatures exerted a lower classification error than the PBMC-based DNAm markers (p-value = 0.0002). The area-under-the-curve (AUC) analysis based on out-of-bag errors using the random forest classification algorithm revealed that PBMC-, NEC-, and AEC-based methylation data yielded 31 loci (AUC: 0.87), 8 loci (AUC: 0.99), and 4 loci (AUC: 0.97) from each optimal subset of tissue-specific markers, respectively. We also discovered the locus-locus interaction of DNAm levels of the CDH6 gene and RAPGEF3 gene might interact with each other to jointly predict the risk of asthma – which suggests the pivotal role of cell-cell junction in the pathological changes of asthma. Both AECs and NECs might provide better diagnostic accuracy and efficacy levels than PBMCs. Further research is warranted to evaluate how these tissue-specific DNAm markers classify and predict asthma risk.
Collapse
Affiliation(s)
- Ping-I Lin
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Huan Shu
- Department of Health Sciences, Karlstad University, Karlstad, Sweden.,Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
21
|
Solazzo G, Ferrante G, La Grutta S. DNA Methylation in Nasal Epithelium: Strengths and Limitations of an Emergent Biomarker for Childhood Asthma. Front Pediatr 2020; 8:256. [PMID: 32500051 PMCID: PMC7243704 DOI: 10.3389/fped.2020.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Asthma is one of the most widespread chronic respiratory conditions. This disease primarily develops in childhood and is influenced by different factors, mainly genetics and environmental factors. DNA methylation is an epigenetic mechanism which may represent a bridge between these two factors, providing a tool to comprehend the interaction between genetics and environment. Most epidemiological studies in this field have been conducted using blood samples, although DNA methylation marks in blood may not be reliable for drawing exhaustive conclusions about DNA methylation in the airways. Because of the role of nasal epithelium in asthma and the tissue specificity of DNA methylation, studying the relationship between DNA methylation and childhood asthma might reveal crucial information about this widespread respiratory disease. The purpose of this review is to describe current findings in this field of research. We will present a viewpoint of selected studies, consider strengths and limitations, and propose future research in this area.
Collapse
Affiliation(s)
- Giulia Solazzo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Giuliana Ferrante
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Stefania La Grutta
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| |
Collapse
|
22
|
McKennan C, Nicolae D. Accounting for unobserved covariates with varying degrees of estimability in high-dimensional biological data. Biometrika 2019; 106:823-840. [PMID: 31754283 DOI: 10.1093/biomet/asz037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 12/18/2022] Open
Abstract
An important phenomenon in high-throughput biological data is the presence of unobserved covariates that can have a significant impact on the measured response. When these covariates are also correlated with the covariate of interest, ignoring or improperly estimating them can lead to inaccurate estimates of and spurious inference on the corresponding coefficients of interest in a multivariate linear model. We first prove that existing methods to account for these unobserved covariates often inflate Type I error for the null hypothesis that a given coefficient of interest is zero. We then provide alternative estimators for the coefficients of interest that correct the inflation, and prove that our estimators are asymptotically equivalent to the ordinary least squares estimators obtained when every covariate is observed. Lastly, we use previously published DNA methylation data to show that our method can more accurately estimate the direct effect of asthma on DNA methylation levels compared to existing methods, the latter of which likely fail to recover and account for latent cell type heterogeneity.
Collapse
Affiliation(s)
- Chris McKennan
- Department of Statistics, University of Chicago, 5747 S. Ellis Avenue, Chicago, Illinois, U.S.A
| | - Dan Nicolae
- Department of Statistics, University of Chicago, 5747 S. Ellis Avenue, Chicago, Illinois, U.S.A
| |
Collapse
|
23
|
Sayols-Baixeras S, Fernández-Sanlés A, Prats-Uribe A, Subirana I, Plusquin M, Künzli N, Marrugat J, Basagaña X, Elosua R. Association between long-term air pollution exposure and DNA methylation: The REGICOR study. ENVIRONMENTAL RESEARCH 2019; 176:108550. [PMID: 31260916 DOI: 10.1016/j.envres.2019.108550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Limited evidence suggests that epigenetic mechanisms may partially mediate the adverse effects of air pollution on health. Our aims were to identify new genomic loci showing differential DNA methylation associated with long-term exposure to air pollution and to replicate loci previously identified in other studies. METHODS A two-stage epigenome-wide association study was designed: 630 individuals from the REGICOR study were included in the discovery and 454 participants of the EPIC-Italy study in the validation stage. DNA methylation was assessed using the Infinium HumanMethylation450 BeadChip. NOX, NO2, PM10, PM2.5, PMcoarse, traffic intensity and traffic load exposure were measured according to the ESCAPE protocol. A systematic review was undertaken to identify those cytosine-phosphate-guanine (CpGs) associated with air pollution in previous studies and we screened for them in the discovery study. RESULTS In the discovery stage of the epigenome-wide association study, 81 unique CpGs were associated with air pollution (p-value <10-5) but none of them were validated in the replication sample. Furthermore, we identified 15 CpGs in the systematic review showing differential methylation with a p-value fulfilling the Bonferroni criteria and 1673 CpGs fulfilling the false discovery rate criteria, all of which were related to PM2.5 or NO2. None of them was replicated in the discovery study, in which the top hits were located in an intergenic region on chromosome 1 (cg10893043, p-value = 6.79·10-5) and in the LRRC45 and PXK genes (cg05088605, p-value = 2.15·10-04; cg16560256, p-value = 2.23·10-04). CONCLUSIONS Neither new genomic loci associated with long-term air pollution were identified, nor previously identified loci were replicated. Continued efforts to test this potential association are warranted.
Collapse
Affiliation(s)
- Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital del Mar Medical Research Institute), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - Alba Fernández-Sanlés
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital del Mar Medical Research Institute), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - Albert Prats-Uribe
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital del Mar Medical Research Institute), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain; Preventive Medicine and Public Health Training Unit, Parc de Salut Mar-Universitat Pompeu Fabra-Agència de Salut Pública de Barcelona (UDMPiSP PSMar-UPF-ASPB), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - Isaac Subirana
- CIBER Epidemiology and Public Health (CIBERESP), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain; Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital del Mar Medical Research Institute), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - Michelle Plusquin
- Department of Epidemiology and Biostatics, The School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom; Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, St Mary's Campus, Imperial College, Paddington, London, W2 1PG, United Kingdom; Centre for Environmental Sciences, Hasselt University, Campus Hasselt, Martelarenlaan 42, BE3500, Hasselt, Belgium
| | - Nino Künzli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland; University of Basel, Klingelbergstrasse 61, 4056, Basel, Switzerland
| | - Jaume Marrugat
- REGICOR Research Group, IMIM (Hospital del Mar Medical Research Institute), DR Aiguader 88, 08003 Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - Xavier Basagaña
- ISGlobal (Institute for Global Health), Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain; CIBER Epidemiology and Public Health (CIBERESP), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital del Mar Medical Research Institute), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Dr Aiguader 88, 08003 Barcelona, Catalonia, Spain; Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Catalonia, Spain.
| |
Collapse
|
24
|
Edris A, den Dekker HT, Melén E, Lahousse L. Epigenome-wide association studies in asthma: A systematic review. Clin Exp Allergy 2019; 49:953-968. [PMID: 31009112 DOI: 10.1111/cea.13403] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Asthma is a common chronic respiratory airway disease influenced by environmental factors and possibly their interaction with the human genome causing epigenetic changes. Epigenome-wide association studies (EWAS) have mainly investigated DNA methylation and its association with disease or traits, exposure factors or gene expression. This systematic review aimed to identify all EWAS assessing differentially methylated sites associated with asthma in humans. DESIGN Structured systematic literature search following PRISMA guidelines, Newcastle-Ottawa Scale (NOS) for cohort studies was used for bias assessment. DATA SOURCES We searched PubMed and Embase databases from 2005 to 2019. ELIGIBILITY CRITERIA Epigenome-wide association studies testing association between differential methylation and asthma in humans. RESULTS Overall, we identified 16 EWAS studies complying with our search criteria. Twelve studies were conducted on children, and 10 were conducted on sample sizes <150 subjects. Four hundred and nineteen CpGs were reported in children studies after correction for multiple testing. In the adult studies, thousands of differentially methylated sites were identified. Differential methylation in inflammatory-related genes correlated with higher levels of gene expressions of inflammatory modulators in asthma. Differentially methylated genes associated with asthma included SMAD3, SERPINC1, PROK1, IL13, RUNX3 and TIGIT. Forty-one CpGs were replicated at least once in blood samples, and 28 CpGs were replicated in nasal samples. CONCLUSION Although many differentially methylated CpGs in genes known to be involved in asthma have been identified in EWAS to date, we conclude that further studies of larger sample sizes and analyses of differential methylation between different phenotypes are needed in order to comprehensively evaluate the role of epigenetic factors in the pathophysiology and heterogeneity of asthma, and the potential clinical utility to predict or classify patients with asthma.
Collapse
Affiliation(s)
- Ahmed Edris
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Herman T den Dekker
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands.,Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, Södersjukhuset, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Lies Lahousse
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Burleson JD, Siniard D, Yadagiri VK, Chen X, Weirauch MT, Ruff BP, Brandt EB, Hershey GKK, Ji H. TET1 contributes to allergic airway inflammation and regulates interferon and aryl hydrocarbon receptor signaling pathways in bronchial epithelial cells. Sci Rep 2019; 9:7361. [PMID: 31089182 PMCID: PMC6517446 DOI: 10.1038/s41598-019-43767-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
Abstract
Previous studies have suggested a role for Tet1 in the pathogenesis of childhood asthma. However, how Tet1 contributes to asthma remains unknown. Here we used mice deficient for Tet1 in a well-established model of allergic airway inflammation and demonstrated that loss of Tet1 increased disease severity including airway hyperresponsiveness and lung eosinophilia. Increased expression of Muc5ac, Il13, Il33, Il17a, Egfr, and Tff2 were observed in HDM-challenged Tet1-deficient mice compared to Tet1+/+ littermates. Further, transcriptomic analysis of lung RNA followed by pathway and protein network analysis showed that the IFN signaling pathway was significantly upregulated and the aryl hydrocarbon receptor (AhR) pathway was significantly downregulated in HDM-challenged Tet1-/- mice. This transcriptional regulation of the IFN and AhR pathways by Tet1 was also present in human bronchial epithelial cells at base line and following HDM challenges. Genes in these pathways were further associated with changes in DNA methylation, predicted binding of transcriptional factors with relevant functions in their promoters, and the presence of histone marks generated by histone enzymes that are known to interact with Tet1. Collectively, our data suggest that Tet1 inhibits HDM-induced allergic airway inflammation by direct regulation of the IFN and AhR pathways.
Collapse
Affiliation(s)
- J D Burleson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dylan Siniard
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pyrosequencing lab for genomic and epigenomic research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Veda K Yadagiri
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brandy P Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric B Brandt
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hong Ji
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Pyrosequencing lab for genomic and epigenomic research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA. .,California National Primate Research Center, Davis, CA, USA.
| |
Collapse
|
26
|
Sibanda E, Makaza N. Health effects of diesel engine exhaust emissions exposure (DEEE) can mimic allergic asthma and rhinitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2019; 15:31. [PMID: 31168306 PMCID: PMC6489272 DOI: 10.1186/s13223-019-0342-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/15/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Patients presenting to Accident and Emergency (A&E) facilities with dyspnoea, coughing, wheezing and nasal blockage are presumed to have allergic asthma and/or rhinitis. Occupational asthma (OA), which has similar symptoms is rarely considered. Triggers of OA include exposure to diesel engine exhaust emissions exposure (DEEEE) that are carcinogenic. We report the case of a patient who presented to an A&E facility with asthma-like symptoms, was treated for allergic asthma. Frequent exacerbations were experienced. Upon investigations it was shown that were symptoms triggered by DEEE exposure. CASE PRESENTATION A 36-year-old female bank employee was referred for the evaluation of suspected asthma. She reported a 3-month history of symptoms suggestive of asthma and rhinitis, for which she had previously required A&E treatment. There was no history of atopy. The symptoms only occurred at work or after work. Their onset had coincided with changing offices to one located proximal to a diesel-powered electricity generator. A diagnosis of asthma had been made at the A&E facility and the appropriately used inhaled fluticasone and salbutamol provided limited relief. Skin prick testing was weakly positive for seasonal pollen and house dust mite allergens. Allergen specific IgE tests for 16 regionally relevant aeroallergens were negative. Tests to exclude connective tissue diseases were positive for the anti-Ro-52/TRIM-21 autoantibody. Baseline spirometry values were markedly reduced and bronchodilator administration showed limited reversibility, FEV1 (+ 8%), PEF (+ 5%). Following a 10-day discontinuation of work exposure, the symptoms abated and FEV1 and PEF increased by 10-14% from baseline. The recent onset of asthma, in a non-atopic adult, with workday related symptoms and improvement upon discontinuation of exposure were attributed to passive occupational exposure to DEEE. The diesel generator was relocated, a short course of inhaled fluticasone and oral prednisolone was prescribed and symptoms resolved. This is the first report of the health effects of DEEE mimicking asthma and rhinitis in Zimbabwe. CONCLUSIONS Atypical presentations of adult onset asthma in the absence of a history of either atopy or allergen specific IgE antibody sensitization should trigger in-depth evaluation of occupational exposure in all cases including office workers. Serial monitoring of lung function values should be used for diagnostic and monitoring of the patients.
Collapse
Affiliation(s)
- Elopy Sibanda
- Asthma, Allergy and Immune Dysfunction Clinic, Twin Palms Medical Centre, 113 Kwame Nkrumah Avenue, Harare, Zimbabwe
- Department of Pathology, Medical School, National University of Science and Technology, Bulawayo, Zimbabwe
- Division of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Nancy Makaza
- Asthma, Allergy and Immune Dysfunction Clinic, Twin Palms Medical Centre, 113 Kwame Nkrumah Avenue, Harare, Zimbabwe
| |
Collapse
|
27
|
Hernandez-Pacheco N, Pino-Yanes M, Flores C. Genomic Predictors of Asthma Phenotypes and Treatment Response. Front Pediatr 2019; 7:6. [PMID: 30805318 PMCID: PMC6370703 DOI: 10.3389/fped.2019.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Asthma is a complex respiratory disease considered as the most common chronic condition in children. A large genetic contribution to asthma susceptibility is predicted by the clustering of asthma and allergy symptoms among relatives and the large disease heritability estimated from twin studies, ranging from 55 to 90%. Genetic basis of asthma has been extensively investigated in the past 40 years using linkage analysis and candidate-gene association studies. However, the development of dense arrays for polymorphism genotyping has enabled the transition toward genome-wide association studies (GWAS), which have led the discovery of several unanticipated asthma genes in the last 11 years. Despite this, currently known risk variants identified using many thousand samples from distinct ethnicities only explain a small proportion of asthma heritability. This review examines the main findings of the last 2 years in genomic studies of asthma using GWAS and admixture mapping studies, as well as the direction of studies fostering integrative perspectives involving omics data. Additionally, we discuss the need for assessing the whole spectrum of genetic variation in association studies of asthma susceptibility, severity, and treatment response in order to further improve our knowledge of asthma genes and predictive biomarkers. Leveraging the individual's genetic information will allow a better understanding of asthma pathogenesis and will facilitate the transition toward a more precise diagnosis and treatment.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| |
Collapse
|