1
|
Zhong B, Dai Y, Chen L, Xu X, Lan Y, Deng L, Ren L, Luo N, Ning L. ncRS: A resource of non-coding RNAs in sepsis. Comput Biol Med 2024; 172:108256. [PMID: 38489989 DOI: 10.1016/j.compbiomed.2024.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/10/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Sepsis, a life-threatening condition triggered by the body's response to infection, presents a significant global healthcare challenge characterized by disarrayed host responses, widespread inflammation, organ impairment, and heightened mortality rates. This study introduces the ncRS database (http://www.ncrdb.cn), a meticulously curated repository housing 1144 experimentally validated non-coding RNAs (ncRNAs) intricately linked with sepsis. ncRS offers comprehensive RNA data, exhaustive experimental insights, and integrated annotations from diverse databases. This resource empowers researchers and clinicians to decipher ncRNAs' roles in sepsis pathogenesis, potentially identifying vital biomarkers for early diagnosis and prognosis, thus facilitating personalized treatments.
Collapse
Affiliation(s)
- Baocai Zhong
- School of Computer and Software, Chengdu Neusoft University, Chengdu, China
| | - Yongfang Dai
- School of Computer and Software, Chengdu Neusoft University, Chengdu, China
| | - Li Chen
- School of Computer and Software, Chengdu Neusoft University, Chengdu, China.
| | - Xinying Xu
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Yuxi Lan
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Leyao Deng
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Nanchao Luo
- School of Computer Science and Technology, A Ba Teachers University, Wenchuan, China.
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.
| |
Collapse
|
2
|
Alipourfard I, Darvishi M, Khalighfard A, Ghazi F, Mobed A. Nanomaterial-based methods for sepsis management. Enzyme Microb Technol 2024; 174:110380. [PMID: 38147783 DOI: 10.1016/j.enzmictec.2023.110380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Sepsis is a serious disease caused by an impaired host immune response to infection, resulting in organ dysfunction, tissue damage and is responsible for high in-hospital mortality (approximately 20%). Recently, WHO documented sepsis as a global health priority. Nevertheless, there is still no effective and specific therapy for clinically detecting sepsis. Nanomaterial-based approaches have appeared as promising tools for identifying bacterial infections. In this review, recent biosensors are introduced and summarized as nanomaterial-based platforms for sepsis management and severe complications. Biosensors can be used as tools for the diagnosis and treatment of sepsis and as nanocarriers for drug delivery. In general, diagnostic methods for sepsis-associated bacteria, biosensors developed for this purpose are presented in detail, and their strengths and weaknesses are discussed. In other words, readers of this article will gain a comprehensive understanding of biosensors and their applications in sepsis management.
Collapse
Affiliation(s)
- Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Arghavan Khalighfard
- Department of Nursing and Midwifery٫ Faculty of Midwifery٬ Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran
| | - Ahmad Mobed
- Infectious and Tropical Diseases Research Center, Clinical Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Beltrán-García J, Casabó-Vallés G, Osca-Verdegal R, Navarrete-López P, Rodriguez-Gimillo M, Nacher-Sendra E, Ferrando-Sánchez C, García-López E, Pallardó FV, Carbonell N, Mena-Mollá S, García-Giménez JL. Alterations in leukocyte DNA methylome are associated to immunosuppression in severe clinical phenotypes of septic patients. Front Immunol 2024; 14:1333705. [PMID: 38235139 PMCID: PMC10791922 DOI: 10.3389/fimmu.2023.1333705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Sepsis patients experience a complex interplay of host pro- and anti-inflammatory processes which compromise the clinical outcome. Despite considering the latest clinical and scientific research, our comprehension of the immunosuppressive events in septic episodes remains incomplete. Additionally, a lack of data exists regarding the role of epigenetics in modulating immunosuppression, subsequently impacting patient survival. Methods To advance the current understanding of the mechanisms underlying immunosuppression, in this study we explored the dynamics of DNA methylation using the Infinium Methylation EPIC v1.0 BeadChip Kit in leukocytes from patients suffering from sepsis, septic shock, and critically ill patients as controls, within the first 24 h after admission in the Intensive Care Unit of a tertiary hospital. Results and discussion Employing two distinct analysis approaches (DMRcate and mCSEA) in comparing septic shock and critically ill patients, we identified 1,256 differentially methylated regions (DMRs) intricately linked to critical immune system pathways. The examination of the top 100 differentially methylated positions (DMPs) between septic shock and critically ill patients facilitated a clear demarcation among the three patient groups. Notably, the top 6,657 DMPs exhibited associations with organ dysfunction and lactate levels. Among the individual genes displaying significant differential methylation, IL10, TREM1, IL1B, and TNFAIP8 emerged with the most pronounced methylation alterations across the diverse patient groups when subjected to DNA bisulfite pyrosequencing analysis. These findings underscore the dynamic nature of DNA methylation profiles, highlighting the most pronounced alterations in patients with septic shock, and revealing their close association with the disease.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Germán Casabó-Vallés
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- EpiDisease S. L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Salk Institute for Biological Studies, San Diego, CA, United States
| | - Paula Navarrete-López
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Rodriguez-Gimillo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Hospital Clínico Universitario de Valencia (HCUV), Valencia, Spain
| | - Elena Nacher-Sendra
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Carolina Ferrando-Sánchez
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Hospital Clínico Universitario de Valencia (HCUV), Valencia, Spain
| | - Eva García-López
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- EpiDisease S. L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Hospital Clínico Universitario de Valencia (HCUV), Valencia, Spain
| | - Salvador Mena-Mollá
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
4
|
Wang J, Cai J, Yue L, Zhou X, Hu C, Zhu H. Identification of Potential Biomarkers of Septic Shock Based on Pathway and Transcriptome Analyses of Immune-Related Genes. Genet Res (Camb) 2023; 2023:9991613. [PMID: 37575977 PMCID: PMC10423089 DOI: 10.1155/2023/9991613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Immunoregulation is crucial to septic shock (SS) but has not been clearly explained. Our aim was to explore potential biomarkers for SS by pathway and transcriptional analyses of immune-related genes to improve early detection. GSE57065 and GSE95233 microarray data were used to screen differentially expressed genes (DEGs) in SS. Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses of DEGs were performed, and correlations between immune cell and pathway enrichment scores were analyzed. The predictive value of candidate genes was evaluated by receiver operating characteristic (ROC) curves. GSE66099, GSE4607, and GSE13904 datasets were used for external validation. Blood samples from six patients and six controls were collected for validation by qRT-PCR and western blotting. In total, 550 DEGs in SS were identified; these genes were involved in the immune response, inflammation, and infection. Immune-related pathways and levels of infiltration of CD4 + TCM, CD8 + T cells, and preadipocytes differed between SS cases and controls. Seventeen genes were identified as potential biomarkers of SS (areas under ROC curves >0.9). The downregulation of CD8A, CD247, CD3G, LCK, and HLA-DRA in SS was experimentally confirmed. We identified several immune-related biomarkers in SS that may improve early identification of disease risk.
Collapse
Affiliation(s)
- Jie Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Jie Cai
- Department of Critical Care Medicine, HUST Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong 518052, China
| | - Linlin Yue
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Xixi Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
5
|
Hao S, Huang M, Xu X, Wang X, Song Y, Jiang W, Huo L, Gu J. Identification and validation of a novel mitochondrion-related gene signature for diagnosis and immune infiltration in sepsis. Front Immunol 2023; 14:1196306. [PMID: 37398680 PMCID: PMC10310918 DOI: 10.3389/fimmu.2023.1196306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background Owing to the complex pathophysiological features and heterogeneity of sepsis, current diagnostic methods are not sufficiently precise or timely, causing a delay in treatment. It has been suggested that mitochondrial dysfunction plays a critical role in sepsis. However, the role and mechanism of mitochondria-related genes in the diagnostic and immune microenvironment of sepsis have not been sufficiently investigated. Methods Mitochondria-related differentially expressed genes (DEGs) were identified between human sepsis and normal samples from GSE65682 dataset. Least absolute shrinkage and selection operator (LASSO) regression and the Support Vector Machine (SVM) analyses were carried out to locate potential diagnostic biomarkers. Gene ontology and gene set enrichment analyses were conducted to identify the key signaling pathways associated with these biomarker genes. Furthermore, correlation of these genes with the proportion of infiltrating immune cells was estimated using CIBERSORT. The expression and diagnostic value of the diagnostic genes were evaluated using GSE9960 and GSE134347 datasets and septic patients. Furthermore, we established an in vitro sepsis model using lipopolysaccharide (1 µg/mL)-stimulated CP-M191 cells. Mitochondrial morphology and function were evaluated in PBMCs from septic patients and CP-M191 cells, respectively. Results In this study, 647 mitochondrion-related DEGs were obtained. Machine learning confirmed six critical mitochondrion-related DEGs, including PID1, CS, CYP1B1, FLVCR1, IFIT2, and MAPK14. We then developed a diagnostic model using the six genes, and receiver operating characteristic (ROC) curves indicated that the novel diagnostic model based on the above six critical genes screened sepsis samples from normal samples with area under the curve (AUC) = 1.000, which was further demonstrated in the GSE9960 and GSE134347 datasets and our cohort. Importantly, we also found that the expression of these genes was associated with different kinds of immune cells. In addition, mitochondrial dysfunction was mainly manifested by the promotion of mitochondrial fragmentation (p<0.05), impaired mitochondrial respiration (p<0.05), decreased mitochondrial membrane potential (p<0.05), and increased reactive oxygen species (ROS) generation (p<0.05) in human sepsis and LPS-simulated in vitro sepsis models. Conclusion We constructed a novel diagnostic model containing six MRGs, which has the potential to be an innovative tool for the early diagnosis of sepsis.
Collapse
Affiliation(s)
- Shuai Hao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miao Huang
- Nursing School, Chongqing Medical University, Chongqing, China
| | - Xiaofan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xulin Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuqing Song
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wendi Jiang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liqun Huo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Vanhorebeek I, Van den Berghe G. The epigenetic legacy of ICU feeding and its consequences. Curr Opin Crit Care 2023; 29:114-122. [PMID: 36794929 PMCID: PMC9994844 DOI: 10.1097/mcc.0000000000001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
PURPOSE OF REVIEW Many critically ill patients face physical, mental or neurocognitive impairments up to years later, the etiology remaining largely unexplained. Aberrant epigenetic changes have been linked to abnormal development and diseases resulting from adverse environmental exposures like major stress or inadequate nutrition. Theoretically, severe stress and artificial nutritional management of critical illness thus could induce epigenetic changes explaining long-term problems. We review supporting evidence. RECENT FINDINGS Epigenetic abnormalities are found in various critical illness types, affecting DNA-methylation, histone-modification and noncoding RNAs. They at least partly arise de novo after ICU-admission. Many affect genes with functions relevant for and several associate with long-term impairments. As such, de novo DNA-methylation changes in critically ill children statistically explained part of their disturbed long-term physical/neurocognitive development. These methylation changes were in part evoked by early-parenteral-nutrition (early-PN) and statistically explained harm by early-PN on long-term neurocognitive development. Finally, long-term epigenetic abnormalities beyond hospital-discharge have been identified, affecting pathways highly relevant for long-term outcomes. SUMMARY Epigenetic abnormalities induced by critical illness or its nutritional management provide a plausible molecular basis for their adverse effects on long-term outcomes. Identifying treatments to further attenuate these abnormalities opens perspectives to reduce the debilitating legacy of critical illness.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
7
|
Yuechen Z, Shaosong X, Zhouxing Z, Fuli G, Wei H. A summary of the current diagnostic methods for, and exploration of the value of microRNAs as biomarkers in, sepsis-associated encephalopathy. Front Neurosci 2023; 17:1125888. [PMID: 37008225 PMCID: PMC10060640 DOI: 10.3389/fnins.2023.1125888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is an acute neurological deficit caused by severe sepsis without signs of direct brain infection, characterized by the systemic inflammation and disturbance of the blood-brain barrier. SAE is associated with a poor prognosis and high mortality in patients with sepsis. Survivors may exhibit long-term or permanent sequelae, including behavioral changes, cognitive impairment, and decreased quality of life. Early detection of SAE can help ameliorate long-term sequelae and reduce mortality. Half of the patients with sepsis suffer from SAE in the intensive care unit, but its physiopathological mechanism remains unknown. Therefore, the diagnosis of SAE remains a challenge. The current clinical diagnosis of SAE is a diagnosis of exclusion; this makes the process complex and time-consuming and delays early intervention by clinicians. Furthermore, the scoring scales and laboratory indicators involved have many problems, including insufficient specificity or sensitivity. Thus, a new biomarker with excellent sensitivity and specificity is urgently needed to guide the diagnosis of SAE. MicroRNAs have attracted attention as putative diagnostic and therapeutic targets for neurodegenerative diseases. They exist in various body fluids and are highly stable. Based on the outstanding performance of microRNAs as biomarkers for other neurodegenerative diseases, it is reasonable to infer that microRNAs will be excellent biomarkers for SAE. This review explores the current diagnostic methods for sepsis-associated encephalopathy (SAE). We also explore the role that microRNAs could play in SAE diagnosis and if they can be used to make the SAE diagnosis faster and more specific. We believe that our review makes a significant contribution to the literature because it summarizes some of the important diagnostic methods for SAE, highlighting their advantages and disadvantages in clinical use, and could benefit the field as it highlights the potential of miRNAs as SAE diagnostic markers.
Collapse
Affiliation(s)
| | - Xi Shaosong
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Hu Wei
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Nishitani S, Isozaki M, Yao A, Higashino Y, Yamauchi T, Kidoguchi M, Kawajiri S, Tsunetoshi K, Neish H, Imoto H, Arishima H, Kodera T, Fujisawa TX, Nomura S, Kikuta K, Shinozaki G, Tomoda A. Cross-tissue correlations of genome-wide DNA methylation in Japanese live human brain and blood, saliva, and buccal epithelial tissues. Transl Psychiatry 2023; 13:72. [PMID: 36843037 PMCID: PMC9968710 DOI: 10.1038/s41398-023-02370-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/28/2023] Open
Abstract
Neuroepigenetics considers genetic sequences and the interplay with environmental influences to elucidate vulnerability risk for various neurological and psychiatric disorders. However, evaluating DNA methylation of brain tissue is challenging owing to the issue of tissue specificity. Consequently, peripheral surrogate tissues were used, resulting in limited progress compared with other epigenetic studies, such as cancer research. Therefore, we developed databases to establish correlations between the brain and peripheral tissues in the same individuals. Four tissues, resected brain tissue, blood, saliva, and buccal mucosa (buccal), were collected from 19 patients (aged 13-73 years) who underwent neurosurgery. Moreover, their genome-wide DNA methylation was assessed using the Infinium HumanMethylationEPIC BeadChip arrays to determine the cross-tissue correlation of each combination. These correlation analyses were conducted with all methylation sites and with variable CpGs, and with when these were adjusted for cellular proportions. For the averaged data for each CpG across individuals, the saliva-brain correlation (r = 0.90) was higher than that for blood-brain (r = 0.87) and buccal-brain (r = 0.88) comparisons. Among individual CpGs, blood had the highest proportion of CpGs correlated to the brain at nominally significant levels (19.0%), followed by saliva (14.4%) and buccal (9.8%). These results were similar to the previous IMAGE-CpG results; however, cross-database correlations of the correlation coefficients revealed a relatively low (brain vs. blood: r = 0.27, saliva: r = 0.18, and buccal: r = 0.24). To the best of our knowledge, this is the fifth study in the literature initiating the development of databases for correlations between the brain and peripheral tissues in the same individuals. We present the first database developed from an Asian population, specifically Japanese samples (AMAZE-CpG), which would contribute to interpreting individual epigenetic study results from various Asian populations.
Collapse
Affiliation(s)
- Shota Nishitani
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan.
- Life Science Innovation Center, School of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Makoto Isozaki
- Department of Neurosurgery, University of Fukui, Fukui, Japan
| | - Akiko Yao
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
| | | | | | | | | | | | - Hiroyuki Neish
- Department of Neurosurgery, University of Fukui, Fukui, Japan
- Department of Neurosurgery, Sugita Genpaku Memorial Obama Municipal Hospital, Obama, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | | | - Toshiaki Kodera
- Department of Neurosurgery, University of Fukui, Fukui, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
- Life Science Innovation Center, School of Medical Sciences, University of Fukui, Fukui, Japan
| | - Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | | | - Gen Shinozaki
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan.
- Life Science Innovation Center, School of Medical Sciences, University of Fukui, Fukui, Japan.
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| |
Collapse
|
9
|
Histone Citrullination Mediates a Protective Role in Endothelium and Modulates Inflammation. Cells 2022; 11:cells11244070. [PMID: 36552833 PMCID: PMC9777278 DOI: 10.3390/cells11244070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
NETosis is a key host immune process against a pathogenic infection during innate immune activation, consisting of a neutrophil "explosion" and, consequently, NET formation, containing mainly DNA, histones, and other nuclear proteins. During sepsis, an exacerbated immune host response to an infection occurs, activating the innate immunity and NETosis events, which requires histone H3 citrullination. Our group compared the circulating histone levels with those citrullinated H3 levels in plasma samples of septic patients. In addition, we demonstrated that citrullinated histones were less cytotoxic for endothelial cells than histones without this post-translational modification. Citrullinated histones did not affect cell viability and did not activate oxidative stress. Nevertheless, citrullinated histones induced an inflammatory response, as well as regulatory endothelial mechanisms. Furthermore, septic patients showed elevated levels of circulating citrullinated histone H3, indicating that the histone citrullination is produced during the first stages of sepsis, probably due to the NETosis process.
Collapse
|
10
|
Liu S, Zhang YL, Zhang LY, Zhao GJ, Lu ZQ. FCGR2C: An emerging immune gene for predicting sepsis outcome. Front Immunol 2022; 13:1028785. [PMID: 36532072 PMCID: PMC9757160 DOI: 10.3389/fimmu.2022.1028785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Background Sepsis is a life-threatening disease associated with immunosuppression. Immunosuppression could ultimately increase sepsis mortality. This study aimed to identify the prognostic biomarkers related to immunity in sepsis. Methods Public datasets of sepsis downloaded from the Gene Expression Omnibus (GEO) database were divided into the discovery cohort and the first validation cohort. We used R software to screen differentially expressed genes (DEGs) and analyzed DEGs' functional enrichment in the discovery dataset. Immune-related genes (IRGs) were filtered from the GeneCards website. A Lasso regression model was used to screen candidate prognostic genes from the intersection of DEGs and IRGs. Then, the candidate prognostic genes with significant differences were identified as prognostic genes in the first validation cohort. We further validated the expression of the prognostic genes in the second validation cohort of 81 septic patients recruited from our hospital. In addition, we used four immune infiltration methods (MCP-counter, ssGSEA, ImmuCellAI, and CIBERSORT) to analyze immune cell composition in sepsis. We also explored the correlation between the prognostic biomarker and immune cells. Results First, 140 genes were identified as prognostic-related immune genes from the intersection of DEGs and IRGs. We screened 18 candidate prognostic genes in the discovery cohort with the lasso regression model. Second, in the first validation cohort, we identified 4 genes (CFHR2, FCGR2C, GFI1, and TICAM1) as prognostic immune genes. Subsequently, we found that FCGR2C was the only gene differentially expressed between survivors and non-survivors in 81 septic patients. In the discovery and first validation cohorts, the AUC values of FCGR2C were 0.73 and 0.67, respectively. FCGR2C (AUC=0.84) had more value than SOFA (AUC=0.80) and APACHE II (AUC=0.69) in evaluating the prognosis of septic patients in our recruitment cohort. Moreover, FCGR2C may be closely related to many immune cells and functions, such as B cells, NK cells, neutrophils, cytolytic activity, and inflammatory promotion. Finally, enrichment analysis showed that FCGR2C was enriched in the phagosome signaling pathway. Conclusion FCGR2C could be an immune biomarker associated with prognosis, which may be a new direction of immunotherapy to reduce sepsis mortality.
Collapse
Affiliation(s)
- Si Liu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Special Medical Department, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yao Lu Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Yao Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Ju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Guang Ju Zhao, ; Zhong Qiu Lu,
| | - Zhong Qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Guang Ju Zhao, ; Zhong Qiu Lu,
| |
Collapse
|
11
|
Comprehensive characterization of costimulatory molecule gene for diagnosis, prognosis and recognition of immune microenvironment features in sepsis. Clin Immunol 2022; 245:109179. [DOI: 10.1016/j.clim.2022.109179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/06/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
|
12
|
Chen Z, Zeng L, Liu G, Ou Y, Lu C, Yang B, Zuo L. Construction of Autophagy-Related Gene Classifier for Early Diagnosis, Prognosis and Predicting Immune Microenvironment Features in Sepsis by Machine Learning Algorithms. J Inflamm Res 2022; 15:6165-6186. [PMID: 36386585 PMCID: PMC9653048 DOI: 10.2147/jir.s386714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Background The immune system plays a fundamental role in the pathophysiology of sepsis, and autophagy and autophagy-related molecules are crucial in innate and adaptive immune responses; however, the potential roles of autophagy-related genes (ARGs) in sepsis are not comprehensively understood. Methods A systematic search was conducted in ArrayExpress and Gene Expression Omnibus (GEO) cohorts from July 2005 to May 2022. Machine learning approaches, including modified Lasso penalized regression, support vector machine, and artificial neural network, were applied to identify hub ARGs, thereby developing a prediction model termed ARG classifier. Diagnostic and prognostic performance of the model was comprehensively analyzed using multi-transcriptome data. Subsequently, we systematically correlated the ARG classifier/hub ARGs with immunological characteristics of multiple aspects, including immune cell infiltration, immune and molecular pathways, cytokine levels, and immune-related genes. Further, we collected clinical specimens to preliminarily investigate ARG expression levels and to assess the diagnostic performance of ARG classifier. Results A total of ten GEO and three ArrayExpress datasets were included in this study. Based on machine learning algorithms, eight key ARGs (ATG4C, BAX, BIRC5, ERBB2, FKBP1B, HIF1A, NCKAP1, and NFKB1) were integrated to establish ARG classifier. The model exhibited excellent diagnostic values (AUC > 0.85) in multiple datasets and multiple points in time and superiorly distinguished sepsis from other critical illnesses. ARG classifier showed significant correlations with clinical characteristics or endotypes and performed better in predicting mortality (AUC = 0.70) than other clinical characteristics. Additionally, the identified hub ARGs were significantly associated with immune cell infiltration (B, T, NK, dendritic, T regulatory, and myeloid-derived suppressor cells), immune and molecular pathways (inflammation-promoting pathways, HLA, cytolytic activity, apoptosis, type-II IFN response, complement and coagulation cascades), levels of several cytokines (PDGFRB, IL-10, IFNG, and TNF), which indicated that ARG classifier/hub ARGs adequately reflected the immune microenvironment during sepsis. Finally, using clinical specimens, the expression levels of key ARGs in patients with sepsis were found to differ significantly from those of control patients, and ARG classifier exhibited superior diagnostic performance, compared to procalcitonin and C-reactive protein. Conclusion Collectively, a diagnostic and prognostic model (ARG classifier) based on eight ARGs was developed which may assist clinicians in diagnosis of sepsis and recognizing patient at high risk to guide personalized treatment. Additionally, the ARG classifier effectively reflected the immune microenvironment diversity of sepsis and may facilitate personalized counseling for specific therapy.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
- Correspondence: Zhen Chen; Liuer Zuo, Department of Intensive care Unit, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China, Email ;
| | - Liming Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
| | - Genglong Liu
- Department of Pathology, Guangzhou Medical University, Guangzhou, Guangdong Province, 511495, People’s Republic of China
- Baishideng Publishing Group Inc, Pleasanton, CA, 94566, USA
| | - Yangpeng Ou
- Department of Oncology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, Guangdong Province, 516000, People’s Republic of China
| | - Chuangang Lu
- Department of Thoracic Surgery, Sanya Central Hospital, Sanya, Hainan Province, 572000, People’s Republic of China
| | - Ben Yang
- Department of Burn Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, 516000, People’s Republic of China
| | - Liuer Zuo
- Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China
- Correspondence: Zhen Chen; Liuer Zuo, Department of Intensive care Unit, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong Province, 528308, People’s Republic of China, Email ;
| |
Collapse
|
13
|
Beltrán-García J, Osca-Verdegal R, Jávega B, Herrera G, O’Connor JE, García-López E, Casabó-Vallés G, Rodriguez-Gimillo M, Ferreres J, Carbonell N, Pallardó FV, García-Giménez JL. Characterization of Early Peripheral Immune Responses in Patients with Sepsis and Septic Shock. Biomedicines 2022; 10:525. [PMID: 35327327 PMCID: PMC8945007 DOI: 10.3390/biomedicines10030525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Sepsis is a life-threatening condition caused by an abnormal host response to infection that produces altered physiological responses causing tissue damage and can result in organ dysfunction and, in some cases, death. Although sepsis is characterized by a malfunction of the immune system leading to an altered immune response and immunosuppression, the high complexity of the pathophysiology of sepsis requires further investigation to characterize the immune response in sepsis and septic shock. (2) Methods: This study analyzes the immune-related responses occurring during the early stages of sepsis by comparing the amounts of cytokines, immune modulators and other endothelial mediators of a control group and three types of severe patients: critically ill non-septic patients, septic and septic shock patients. (3) Results: We showed that in the early stages of sepsis the innate immune system attempts to counteract infection, probably via neutrophils. Conversely, the adaptive immune system is not yet fully activated, either in septic or in septic shock patients. In addition, immunosuppressive responses and pro-coagulation signals are active in patients with septic shock. (4) Conclusions: The highest levels of IL-6 and pyroptosis-related cytokines (IL-18 and IL-1α) were found in septic shock patients, which correlated with D-dimer. Moreover, endothelial function may be affected as shown by the overexpression of adhesion molecules such as s-ICAM1 and E-Selectin during septic shock.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Rebeca Osca-Verdegal
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - Guadalupe Herrera
- Flow Cytometry Unit, IIS INCLIVA, Fundación Investigación Hospital Clínico Valencia, 46010 Valencia, Spain;
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - Eva García-López
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, 46980 Paterna, Spain;
| | - Germán Casabó-Vallés
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, 46980 Paterna, Spain;
| | - María Rodriguez-Gimillo
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), 46010 Valencia, Spain
| | - José Ferreres
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), 46010 Valencia, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), 46010 Valencia, Spain
| | - Federico V. Pallardó
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
14
|
Malavika M, Sanju S, Poorna MR, Vishnu Priya V, Sidharthan N, Varma P, Mony U. Role of myeloid derived suppressor cells in sepsis. Int Immunopharmacol 2022; 104:108452. [PMID: 34996010 DOI: 10.1016/j.intimp.2021.108452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/05/2022]
Abstract
Sepsis is a serious and menacing organ dysfunction that occur due to dysregulated response of the host towards the infection. This organ dysfunction may lead to sepsis with intense cellular, metabolic and circulatory dysregulation, multiple organ failure and high mortality. Lymphopenia is observed in two-third of sepsis patients and a significant depletion of lymphocytes occurs in non-survivors compared to sepsis survivors. Myeloid derived suppressor cells (MDSCs) gave new insights into sepsis-associated lymphopenia. If MDSC expansion and its tissue-infiltration persist, it can induce significant pathophysiology including lymphopenia, host immunosuppression and immune-paralysis that contributes to worsened patient outcomes. This review focuses on MDSCs and its subsets, the role of MDSCs in infection, sepsis and septic shock.
Collapse
Affiliation(s)
- M Malavika
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - S Sanju
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - M R Poorna
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Neeraj Sidharthan
- Department of Clinical Hematology and Stem Cell Transplant, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Praveen Varma
- Department of Cardiovascular and Thoracic Surgery, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
15
|
Comparative Analysis of Chromatin-Delivered Biomarkers in the Monitoring of Sepsis and Septic Shock: A Pilot Study. Int J Mol Sci 2021; 22:ijms22189935. [PMID: 34576097 PMCID: PMC8465401 DOI: 10.3390/ijms22189935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis management remains one of the most important challenges in modern clinical practice. Rapid progression from sepsis to septic shock is practically unpredictable, hence the critical need for sepsis biomarkers that can help clinicians in the management of patients to reduce the probability of a fatal outcome. Circulating nucleoproteins released during the inflammatory response to infection, including neutrophil extracellular traps, nucleosomes, and histones, and nuclear proteins like HMGB1, have been proposed as markers of disease progression since they are related to inflammation, oxidative stress, endothelial damage, and impairment of the coagulation response, among other pathological features. The aim of this work was to evaluate the actual potential for decision making/outcome prediction of the most commonly proposed chromatin-related biomarkers (i.e., nucleosomes, citrullinated H3, and HMGB1). To do this, we compared different ELISA measuring methods for quantifying plasma nucleoproteins in a cohort of critically ill patients diagnosed with sepsis or septic shock compared to nonseptic patients admitted to the intensive care unit (ICU), as well as to healthy subjects. Our results show that all studied biomarkers can be used to monitor sepsis progression, although they vary in their effectiveness to separate sepsis and septic shock patients. Our data suggest that HMGB1/citrullinated H3 determination in plasma is potentially the most promising clinical tool for the monitoring and stratification of septic patients.
Collapse
|
16
|
Mechanisms of Ataxia Telangiectasia Mutated (ATM) Control in the DNA Damage Response to Oxidative Stress, Epigenetic Regulation, and Persistent Innate Immune Suppression Following Sepsis. Antioxidants (Basel) 2021; 10:antiox10071146. [PMID: 34356379 PMCID: PMC8301080 DOI: 10.3390/antiox10071146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cells have evolved extensive signaling mechanisms to maintain redox homeostasis. While basal levels of oxidants are critical for normal signaling, a tipping point is reached when the level of oxidant species exceed cellular antioxidant capabilities. Myriad pathological conditions are characterized by elevated oxidative stress, which can cause alterations in cellular operations and damage to cellular components including nucleic acids. Maintenance of nuclear chromatin are critically important for host survival and eukaryotic organisms possess an elaborately orchestrated response to initiate repair of such DNA damage. Recent evidence indicates links between the cellular antioxidant response, the DNA damage response (DDR), and the epigenetic status of the cell under conditions of elevated oxidative stress. In this emerging model, the cellular response to excessive oxidants may include redox sensors that regulate both the DDR and an orchestrated change to the epigenome in a tightly controlled program that both protects and regulates the nuclear genome. Herein we use sepsis as a model of an inflammatory pathophysiological condition that results in elevated oxidative stress, upregulation of the DDR, and epigenetic reprogramming of hematopoietic stem cells (HSCs) to discuss new evidence for interplay between the antioxidant response, the DNA damage response, and epigenetic status.
Collapse
|
17
|
Falcão-Holanda RB, Brunialti MKC, Jasiulionis MG, Salomão R. Epigenetic Regulation in Sepsis, Role in Pathophysiology and Therapeutic Perspective. Front Med (Lausanne) 2021; 8:685333. [PMID: 34322502 PMCID: PMC8312749 DOI: 10.3389/fmed.2021.685333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is characterized by an initial hyperinflammatory response, with intense cell activation and cytokine storm. In parallel, a prolonged compensatory anti-inflammatory response, known as immunological tolerance, can lead to immunosuppression. Clinically, this condition is associated with multiple organ failure, resulting in the patient's death. The mechanisms underlying the pathophysiology of sepsis are not yet fully understood, but evidence is strong showing that epigenetic changes, including DNA methylation and post-translational modifications of histones, modulate the inflammatory response of sepsis. During the onset of infection, host cells undergo epigenetic changes that favor pathogen survival. Besides, epigenetic changes in essential genes also orchestrate the patient's inflammatory response. In this review, we gathered studies on sepsis and epigenetics to show the central role of epigenetic mechanisms in various aspects of the pathogenesis of sepsis and the potential of epigenetic interventions for its treatment.
Collapse
Affiliation(s)
- Renata Brito Falcão-Holanda
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Milena Karina Colo Brunialti
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Reinaldo Salomão
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Kühne M, Kretzer C, Lindemann H, Godmann M, Heinze T, Werz O, Heinzel T. Biocompatible valproic acid-coupled nanoparticles attenuate lipopolysaccharide-induced inflammation. Int J Pharm 2021; 601:120567. [PMID: 33812975 DOI: 10.1016/j.ijpharm.2021.120567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
Inflammatory diseases like sepsis are associated with dysregulated gene expression, often caused by an imbalance of epigenetic regulators, such as histone acetyltransferases (HATs) and histone deacetylases (HDACs), and consequently, altered epigenetic chromatin signatures or aberrant posttranslational modifications of signalling proteins and transcription factors. Thus, HDAC inhibitors (HDACi) are a promising class of anti-inflammatory drugs. Recently, an efficient drug delivery system carrying the class I/IIa selective HDACi valproic acid (VPA) was developed to circumvent common disadvantages of free drug administration, e.g. short half-life and side effects. The cellulose-based sulphated VPA-coupled (CV-S) nanoparticles (NPs) are rapidly taken up by cells, do not cause any toxic effects and are fully biocompatible. Importantly, VPA is intracellularly cleaved from the NPs and HDACi activity could be proven. Here, we demonstrate that CV-S NPs exhibit overall anti-inflammatory effects in primary human macrophages and are able to attenuate the lipopolysaccharide-induced inflammatory response. CV-S NPs show superior potential to free VPA to suppress the TLR-MyD88-NF-κB signalling axis, leading to decreased TNF-α expression and secretion.
Collapse
Affiliation(s)
- Marie Kühne
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Henry Lindemann
- Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Friedrich Schiller University of Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Maren Godmann
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Thomas Heinze
- Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Friedrich Schiller University of Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany.
| |
Collapse
|
19
|
Lorente-Pozo S, Navarrete P, Garzón MJ, Lara-Cantón I, Beltrán-García J, Osca-Verdegal R, Mena-Mollá S, García-López E, Vento M, Pallardó FV, García-Giménez JL. DNA Methylation Analysis to Unravel Altered Genetic Pathways Underlying Early Onset and Late Onset Neonatal Sepsis. A Pilot Study. Front Immunol 2021; 12:622599. [PMID: 33659006 PMCID: PMC7917190 DOI: 10.3389/fimmu.2021.622599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Neonatal sepsis is a systemic condition widely affecting preterm infants and characterized by pro-inflammatory and anti-inflammatory responses. However, its pathophysiology is not yet fully understood. Epigenetics regulates the immune system, and its alteration leads to the impaired immune response underlying sepsis. DNA methylation may contribute to sepsis-induced immunosuppression which, if persistent, will cause long-term adverse effects in neonates. Objective: To analyze the methylome of preterm infants in order to determine whether there are DNA methylation marks that may shed light on the pathophysiology of neonatal sepsis. Design: Prospective observational cohort study performed in the neonatal intensive care unit (NICU) of a tertiary care center. Patients: Eligible infants were premature ≤32 weeks admitted to the NICU with clinical suspicion of sepsis. The methylome analysis was performed in DNA from blood using Infinium Human Methylation EPIC microarrays to uncover methylation marks. Results: Methylation differential analysis revealed an alteration of methylation levels in genomic regions involved in inflammatory pathways which participate in both the innate and the adaptive immune response. Moreover, differences between early and late onset sepsis as compared to normal controls were assessed. Conclusions: DNA methylation marks can serve as a biomarker for neonatal sepsis and even contribute to differentiating between early and late onset sepsis.
Collapse
Affiliation(s)
- Sheila Lorente-Pozo
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.,Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Paula Navarrete
- EpiDisease S.L. (Spin-off From the CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna, Spain
| | - María José Garzón
- EpiDisease S.L. (Spin-off From the CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna, Spain
| | - Inmaculada Lara-Cantón
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.,Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Jesús Beltrán-García
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.,Department Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia-INCLIVA, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.,Department Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia-INCLIVA, Valencia, Spain
| | - Salvador Mena-Mollá
- EpiDisease S.L. (Spin-off From the CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna, Spain.,Department Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia-INCLIVA, Valencia, Spain
| | - Eva García-López
- EpiDisease S.L. (Spin-off From the CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna, Spain
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.,Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Federico V Pallardó
- EpiDisease S.L. (Spin-off From the CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.,Department Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia-INCLIVA, Valencia, Spain
| | - José Luis García-Giménez
- EpiDisease S.L. (Spin-off From the CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.,Department Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia-INCLIVA, Valencia, Spain
| |
Collapse
|
20
|
Fatmi A, Rebiahi SA, Chabni N, Zerrouki H, Azzaoui H, Elhabiri Y, Benmansour S, Ibáñez-Cabellos JS, Smahi MCE, Aribi M, García-Giménez JL, Pallardó FV. miRNA-23b as a biomarker of culture-positive neonatal sepsis. Mol Med 2020; 26:94. [PMID: 33032520 PMCID: PMC7542968 DOI: 10.1186/s10020-020-00217-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neonatal sepsis remains an important cause of morbidity and mortality. The ability to quickly and accurately diagnose neonatal sepsis based on clinical assessments and laboratory blood tests remains difficult, where haemoculture is the gold standard for detecting bacterial sepsis in blood culture. It is also very difficult to study because neonatal samples are lacking. METHODS Forty-eight newborns suspected of sepsis admitted to the Neonatology Department of the Mother-Child Specialized Hospital of Tlemcen. From each newborn, a minimum of 1-2 ml of blood was drawn by standard sterile procedures for blood culture. The miRNA-23b level in haemoculture was evaluated by RT-qPCR. RESULTS miR-23b levels increased in premature and full-term newborns in early onset sepsis (p < 0.001 and p < 0.005 respectively), but lowered in late onset sepsis in full-term neonates (p < 0.05) compared to the respective negative controls. miR-23b levels also increased in late sepsis in the negative versus early sepsis negative controls (p < 0.05). miR-23b levels significantly lowered in the newborns who died from both sepsis types (p < 0.0001 and p < 0.05 respectively). In early sepsis, miR-23b and death strongly and negatively correlated (correlation coefficient = - 0.96, p = 0.0019). In late sepsis, miRNA-23b and number of survivors (correlation coefficient = 0.70, p = 0.506) positively correlated. CONCLUSIONS Lowering miR-23b levels is an important factor that favours sepsis development, which would confirm their vital protective role, and strongly suggest that they act as a good marker in molecular diagnosis and patient monitoring.
Collapse
Affiliation(s)
- Ahlam Fatmi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - Sid Ahmed Rebiahi
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Nafissa Chabni
- Faculty of Medicine, Tlemcen Medical Centre University, 13000, Tlemcen, Algeria
| | - Hanane Zerrouki
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Hafsa Azzaoui
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - Yamina Elhabiri
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Souheila Benmansour
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria.,Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria.,Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain. .,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain. .,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain.
| |
Collapse
|