1
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
2
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Zand H, Pourvali K. The Function of the Immune System, Beyond Strategies Based on Cell-Autonomous Mechanisms, Determines Cancer Development: Immune Response and Cancer Development. Adv Biol (Weinh) 2024; 8:e2300528. [PMID: 38221702 DOI: 10.1002/adbi.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Indexed: 01/16/2024]
Abstract
Although cancer remains a challenging disease to treat, early detection and removal of primary tumors through surgery or chemotherapy/radiotherapy can offer hope for patients. The privilege paradigm in cancer biology suggests that cell-autonomous mechanisms play a central role in tumorigenesis. According to this paradigm, these cellular mechanisms are the primary focus for the prevention and treatment of cancers. However, this point of view does not present a comprehensive theory for the initiation of cancer and an effective therapeutic strategy. Having an incomplete understanding of the etiology of cancer, it is essential to re-examine previous assumptions about carcinogenesis and develop new, practical theories that can account for all available clinical and experimental evidence. This will not only help to gain a better understanding of the disease, but also offer new avenues for treatment. This review provides evidence suggesting a shift in focus from a cell-autonomous mechanism to systemic mechanisms, particularly the immune system, that are involved in cancer formation.
Collapse
Affiliation(s)
- Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| |
Collapse
|
4
|
Pensotti A, Bizzarri M, Bertolaso M. The phenotypic reversion of cancer: Experimental evidences on cancer reversibility through epigenetic mechanisms (Review). Oncol Rep 2024; 51:48. [PMID: 38275101 PMCID: PMC10835663 DOI: 10.3892/or.2024.8707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Different experimental models reveal that malignant cancer cells can be induced to change their phenotype into a benign one. This phenotypic transformation, confirmed both in vitro and in vivo, currently is known as 'tumor reversion'. This evidence raises a radical question among current cancer models: Is cancer reversible? How do genetic and epigenetic alterations hierarchically relate? Understanding the mechanisms of 'tumor reversion' represents a key point in order to evolve the actual cancer models and develop new heuristic models that can possibly lead to drugs that target epigenetic mechanisms, for example epigenetic drugs. Even though evidence of tumor reversion dates back to the 1950s, this remains a completely new field of research recently re‑discovered thanks to the interest in cell reprogramming research, developmental biology and the increasing understanding of epigenetic mechanisms. In the current review, a comprehensive review of all the main experimental models on tumor reversion was presented.
Collapse
Affiliation(s)
- Andrea Pensotti
- Research Unit of Philosophy of Science and Human Development, University Campus Bio‑Medico of Rome, I‑00128 Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, I‑00185 Rome, Italy
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, University Campus Bio‑Medico of Rome, I‑00128 Rome, Italy
| |
Collapse
|
5
|
Pensotti A, Bertolaso M, Bizzarri M. Is Cancer Reversible? Rethinking Carcinogenesis Models-A New Epistemological Tool. Biomolecules 2023; 13:733. [PMID: 37238604 PMCID: PMC10216038 DOI: 10.3390/biom13050733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
A growing number of studies shows that it is possible to induce a phenotypic transformation of cancer cells from malignant to benign. This process is currently known as "tumor reversion". However, the concept of reversibility hardly fits the current cancer models, according to which gene mutations are considered the primary cause of cancer. Indeed, if gene mutations are causative carcinogenic factors, and if gene mutations are irreversible, how long should cancer be considered as an irreversible process? In fact, there is some evidence that intrinsic plasticity of cancerous cells may be therapeutically exploited to promote a phenotypic reprogramming, both in vitro and in vivo. Not only are studies on tumor reversion highlighting a new, exciting research approach, but they are also pushing science to look for new epistemological tools capable of better modeling cancer.
Collapse
Affiliation(s)
- Andrea Pensotti
- Research Unit of Philosophy of Science and Human Development, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
6
|
Claras J. Cancer—A Pragmatic Switch to Combat Metabolic Syndrome? Oncol Rev 2023. [DOI: 10.3389/or.2023.10573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Both cancer and metabolic disease have become the prevalent health risks in modern societies worldwide. Cancer is a complex set of illnesses with many definitions. About 15% of cancers are caused by infections, and 10% carry a hereditary burden. The remaining 70%–75% cancers are associated with a variety of processes, often associated with metabolic syndrome and chronic inflammation. This review examines the role of metabolic dysfunction and chronic inflammation in cancer development. I propose a novel concept of a switch, in which our intelligent body uses its sophisticated set of subsystems and sensors to pragmatically anticipate and combat metabolic dysfunction as its’ most direct and dire threat first, while temporarily accepting cancer as a state that in any other circumstances would be considered detrimental, and utilizing cancer as an additional tool to lower glucose levels. Once metabolic dysfunction has been resolved this switch is reversed, and cancer growth will be impaired.
Collapse
|
7
|
Xiu M, Zeng X, Shan R, Wen W, Li J, Wan R. Targeting Notch4 in Cancer: Molecular Mechanisms and Therapeutic Perspectives. Cancer Manag Res 2021; 13:7033-7045. [PMID: 34526819 PMCID: PMC8436177 DOI: 10.2147/cmar.s315511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
The dysregulation of Notch signaling is found in many cancers and is closely related to cancer progression. As an important Notch receptor, abnormal Notch4 expression affects several tumor-cell behaviors, including stemness, the epithelial-mesenchymal transition, radio/chemoresistance and angiogenesis. In order to inhibit the oncogenic effects of Notch4 activation, several methods for targeting Notch4 signaling have been proposed. In this review, we summarize the known molecular mechanisms through which Notch4 affects cancer progression. Finally, we discuss potential Notch4-targeting therapeutic strategies as a reference for future research.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China.,Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Xiaohong Zeng
- Imaging Department, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
8
|
Li A, Zhao Y, Li Y, Jiang L, Gu Y, Liu J. Cell-derived biomimetic nanocarriers for targeted cancer therapy: cell membranes and extracellular vesicles. Drug Deliv 2021; 28:1237-1255. [PMID: 34142930 PMCID: PMC8216268 DOI: 10.1080/10717544.2021.1938757] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology provides synthetic carriers for cancer drug delivery that protect cargos from degradation, control drug release and increase local accumulation at tumors. However, these non-natural vehicles display poor tumor targeting and potential toxicity and are eliminated by the immune system. Recently, biomimetic nanocarriers have been widely developed based on the concept of ‘mimicking nature.’ Among them, cell-derived biomimetic vehicles have become the focus of bionics research because of their multiple natural functions, such as low immunogenicity, long circulation time and targeting ability. Cell membrane-coated carriers and extracellular vesicles are two widely used cell-based biomimetic materials. Here, this review summarizes the latest progress in the application of these two biomimetic carriers in targeted cancer therapy. Their properties and performance are compared, and their future challenges and development prospects are discussed.
Collapse
Affiliation(s)
- Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixiu Li
- Department of Pharmacy, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liangdi Jiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.,Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Levin M. Bioelectrical approaches to cancer as a problem of the scaling of the cellular self. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:102-113. [PMID: 33961843 DOI: 10.1016/j.pbiomolbio.2021.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
One lens with which to understand the complex phenomenon of cancer is that of developmental biology. Cancer is the inevitable consequence of a breakdown of the communication that enables individual cells to join into computational networks that work towards large-scale, morphogenetic goals instead of more primitive, unicellular objectives. This perspective suggests that cancer may be a physiological disorder, not necessarily due to problems with the genetically-specified protein hardware. One aspect of morphogenetic coordination is bioelectric signaling, and indeed an abnormal bioelectric signature non-invasively reveals the site of incipient tumors in amphibian models. Functionally, a disruption of resting potential states triggers metastatic melanoma phenotypes in embryos with no genetic defects or carcinogen exposure. Conversely, optogenetic or molecular-biological modulation of bioelectric states can override powerful oncogenic mutations and prevent or normalize tumors. The bioelectrically-mediated information flows that harness cells toward body-level anatomical outcomes represent a very attractive and tractable endogenous control system, which is being targeted by emerging approaches to cancer.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 02155, USA.
| |
Collapse
|
10
|
Barati M, Akhondi M, Mousavi NS, Haghparast N, Ghodsi A, Baharvand H, Ebrahimi M, Hassani SN. Pluripotent Stem Cells: Cancer Study, Therapy, and Vaccination. Stem Cell Rev Rep 2021; 17:1975-1992. [PMID: 34115316 PMCID: PMC8193020 DOI: 10.1007/s12015-021-10199-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Pluripotent stem cells (PSCs) are promising tools for modern regenerative medicine applications because of their stemness properties, which include unlimited self-renewal and the ability to differentiate into all cell types in the body. Evidence suggests that a rare population of cells within a tumor, termed cancer stem cells (CSCs), exhibit stemness and phenotypic plasticity properties that are primarily responsible for resistance to chemotherapy, radiotherapy, metastasis, cancer development, and tumor relapse. Different therapeutic approaches that target CSCs have been developed for tumor eradication. RESULTS AND DISCUSSION In this review, we first provide an overview of different viewpoints about the origin of CSCs. Particular attention has been paid to views believe that CSCs are probably appeared through dysregulation of very small embryonic-like stem cells (VSELs) which reside in various tissues as the main candidate for tissue-specific stem cells. The expression of pluripotency markers in these two types of cells can strengthen the validity of this theory. In this regard, we discuss the common properties of CSCs and PSCs, and highlight the potential of PSCs in cancer studies, therapeutic applications, as well as educating the immune system against CSCs. CONCLUSION In conclusion, the resemblance of CSCs to PSCs can provide an appropriate source of CSC-specific antigens through cultivation of PSCs which brings to light promising ideas for prophylactic and therapeutic cancer vaccine development.
Collapse
Affiliation(s)
- Mojgan Barati
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Akhondi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narges Sabahi Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Newsha Haghparast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Asma Ghodsi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
11
|
Liu J, Wang Y, Ji P, Jin X. Application of the microRNA-302/367 cluster in cancer therapy. Cancer Sci 2020; 111:1065-1075. [PMID: 31957939 PMCID: PMC7156871 DOI: 10.1111/cas.14317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/05/2023] Open
Abstract
As a novel class of noncoding RNAs, microRNAs (miRNAs) can effectively silence their target genes at the posttranscriptional level. Various biological processes, such as cell proliferation, differentiation, and motility, are regulated by miRNAs. In different diseases and different stages of disease, miRNAs have various expression patterns, which makes them candidate prognostic markers and therapeutic targets. Abnormal miRNA expression has been detected in numerous neoplastic diseases in humans, which indicates the potential role of miRNAs in tumorigenesis. Previous studies have indicated that miRNAs are involved in nearly the entire process of tumor development. MicroRNA‐302a, miR‐302b, miR‐302c, miR‐302d, and miR‐367 are members of the miR‐302/367 cluster that plays various biological roles in diverse neoplastic diseases by targeting different genes. These miRNAs have been implicated in several unique characteristics of cancer, including the evasion of growth suppressors, the sustained activation of proliferative signaling, the evasion of cell death and senescence, and the regulation of angiogenesis, invasion, and metastasis. This review provides a critical overview of miR‐302/367 cluster dysregulation and the subsequent effects in cancer and highlights the vast potential of members of this cluster as therapeutic targets and novel biomarkers.
Collapse
Affiliation(s)
- Jiajia Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Marie KL, Sassano A, Yang HH, Michalowski AM, Michael HT, Guo T, Tsai YC, Weissman AM, Lee MP, Jenkins LM, Zaidi MR, Pérez-Guijarro E, Day CP, Ylaya K, Hewitt SM, Patel NL, Arnheiter H, Davis S, Meltzer PS, Merlino G, Mishra PJ. Melanoblast transcriptome analysis reveals pathways promoting melanoma metastasis. Nat Commun 2020; 11:333. [PMID: 31949145 PMCID: PMC6965108 DOI: 10.1038/s41467-019-14085-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/11/2019] [Indexed: 01/21/2023] Open
Abstract
Cutaneous malignant melanoma is an aggressive cancer of melanocytes with a strong propensity to metastasize. We posit that melanoma cells acquire metastatic capability by adopting an embryonic-like phenotype, and that a lineage approach would uncover metastatic melanoma biology. Using a genetically engineered mouse model to generate a rich melanoblast transcriptome dataset, we identify melanoblast-specific genes whose expression contribute to metastatic competence and derive a 43-gene signature that predicts patient survival. We identify a melanoblast gene, KDELR3, whose loss impairs experimental metastasis. In contrast, KDELR1 deficiency enhances metastasis, providing the first example of different disease etiologies within the KDELR-family of retrograde transporters. We show that KDELR3 regulates the metastasis suppressor, KAI1, and report an interaction with the E3 ubiquitin-protein ligase gp78, a regulator of KAI1 degradation. Our work demonstrates that the melanoblast transcriptome can be mined to uncover targetable pathways for melanoma therapy.
Collapse
Affiliation(s)
- Kerrie L Marie
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Antonella Sassano
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Helen T Michael
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theresa Guo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kris Ylaya
- Experimental Pathology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, 21702, USA
| | - Heinz Arnheiter
- Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, 20892, USA
| | - Sean Davis
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Pravin J Mishra
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- James Cancer Hospital and Solove Research Institute, Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| |
Collapse
|
13
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
14
|
CD133 Is Associated with Increased Melanoma Cell Survival after Multikinase Inhibition. JOURNAL OF ONCOLOGY 2019; 2019:6486173. [PMID: 31379943 PMCID: PMC6662463 DOI: 10.1155/2019/6486173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/12/2019] [Accepted: 05/14/2019] [Indexed: 01/09/2023]
Abstract
FDA-approved kinase inhibitors are now used for melanoma, including combinations of the MEK inhibitor trametinib, and BRAF inhibitor dabrafenib for BRAFV600 mutations. NRAS-mutated cell lines are also sensitive to MEK inhibition in vitro, and NRAS-mutated tumors have also shown partial response to MEK inhibitors. However, melanoma still has high recurrence rates due to subpopulations, sometimes described as “melanoma initiating cells,” resistant to treatment. Since CD133 is a putative cancer stem cell marker for different cancers, associated with decreased survival, we examined resistance of patient-derived CD133(+) and CD133(-) melanoma cells to MAPK inhibitors. Human melanoma cells were exposed to increasing concentrations of trametinib and/or dabrafenib, either before or after separation into CD133(+) and CD133(-) subpopulations. In parental CD133-mixed lines, the percentages of CD133(+) cells increased significantly (p<0.05) after high-dose drug treatment. Presorted CD133(+) cells also exhibited significantly greater (p<0.05) IC50s for single and combination MAPKI treatment. siRNA knockdown revealed a causal relationship between CD133 and drug resistance. Microarray and qRT-PCR analyses revealed that ten of 18 ABC transporter genes were significantly (P<0.05) upregulated in the CD133(+) subpopulation, while inhibition of ABC activity increased sensitivity, suggesting a mechanism for increased drug resistance of CD133(+) cells.
Collapse
|
15
|
Lan G, Lin Z, Zhang J, Liu L, Zhang J, Zheng L, Luo Q. Notch pathway is involved in the suppression of colorectal cancer by embryonic stem cell microenvironment. Onco Targets Ther 2019; 12:2869-2878. [PMID: 31114232 PMCID: PMC6489681 DOI: 10.2147/ott.s199046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Objectives: Recently, embryonic microenvironment is being known for its non-permissive property for tumor growth. However, the regulatory mechanism to maintain the balance between differentiation and tumorigenicity of cancer cell in microenvironment is not well understood. Materials and Methods: qRT-PCR was performed to detect the levels of gene expression in HT29, LoVo and Caco-2 colorectal cancer cells, and Western blot was used to measure the protein levels. Cell migration and apoptosis were measured by Transwell and flow cytometry assays. Cancer cell markers were detected using immunohistochemical staining. In vivo tumor formation assay was conducted by subcutaneous injection of embryonic microenvironment-treated cancer cells. Results: Colorectal cancer cell lines were treated with human embryonic stem cell conditioned culture and then collected for in vivo tumor formation assay and in vitro assays assessing the aggressive properties. We found exposure of cancer cells in human ES cultures resulted in inhibition of growth, migration of tumor cells. Moreover, we found that manipulation of Notch pathway in the ES cells microenvironment could influence the stemness of tumor. We specifically discovered that some factor in the embryonic microenvironment could suppress Notch1 pathway in the cancer cells, leading to a reduction in tumorigenesis and invasiveness. Conclusions: This study may provide another evidence to understand the crosstalk between tumor cells and embryonic environment and may offer new therapeutic strategies to inhibit colorectal cancer progression.
Collapse
Affiliation(s)
- Guanghui Lan
- Shenzhen Hospital, Southern Medical University, Shenzhen 518101, People's Republic of China
| | - Zongwei Lin
- Shenzhen Hospital, Southern Medical University, Shenzhen 518101, People's Republic of China
| | - Jinhui Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518101, People's Republic of China
| | - Li Liu
- GI Surgery, The People's Hospital of Nanshan District, Shenzhen, 518067, People's Republic of China
| | - Jianjun Zhang
- GI Surgery, The People's Hospital of Nanshan District, Shenzhen, 518067, People's Republic of China
| | - Lei Zheng
- Central Laboratory, Harrison International Peace Hospital, Hengshui 053000, People's Republic of China
| | - Qiong Luo
- Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang 421000, People's Republic of China
| |
Collapse
|
16
|
Zhu Q, Ling X, Yang Y, Zhang J, Li Q, Niu X, Hu G, Chen B, Li H, Wang Y, Deng Z. Embryonic Stem Cells-Derived Exosomes Endowed with Targeting Properties as Chemotherapeutics Delivery Vehicles for Glioblastoma Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801899. [PMID: 30937268 PMCID: PMC6425428 DOI: 10.1002/advs.201801899] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/24/2018] [Indexed: 05/16/2023]
Abstract
Exosomes are nanosized membrane vesicles (30-100 nm) that can easily penetrate the blood-brain barrier, safely deliver therapeutic drugs, and be modified with target ligands. Embryonic stem cells (ESCs) provide abundant exosome sources for clinical application due to their almost unlimited self-renewal. Previous studies show that exosomes secreted by ESCs (ESC-exos) have antitumor properties. However, it is not known whether ESC-exos inhibit glioblastoma (GBM) growth. In this study, the anti-GBM effect of ESC-exos is confirmed and then c(RGDyK)-modified and paclitaxel (PTX)-loaded ESC-exos, named cRGD-Exo-PTX are prepared. It is then investigated whether the engineered exosomes deliver more efficiently to GBM cells versus free drug alone and drug-loaded ESC-exos using an in vitro GBM model and in vivo subcutaneous and orthotopic xenografts model. The results show that cRGD-Exo-PTX significantly improves the curative effects of PTX in GBM via enhanced targeting. These data indicate that ESC-exos are potentially powerful therapeutic carriers for GBM and could have utility in many other diseases.
Collapse
Affiliation(s)
- Qingwei Zhu
- Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Xiaozheng Ling
- Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Yunlong Yang
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Juntao Zhang
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Qing Li
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Xin Niu
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Guowen Hu
- Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Bi Chen
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Haiyan Li
- Med‐X Research Institute, School of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RoadShanghai200030China
| | - Yang Wang
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| | - Zhifeng Deng
- Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People' HospitalNo. 600 Yishan RoadShanghai200233China
| |
Collapse
|
17
|
Differences in microRNA expression between melanoma and healthy adjacent skin. BMC DERMATOLOGY 2019; 19:1. [PMID: 30611259 PMCID: PMC6321655 DOI: 10.1186/s12895-018-0081-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Background The tumor microenvironment is composed of cancer-associated fibroblasts, tumor-associated macrophages, endothelial cells, immune cells, signaling molecules and extracellular matrix structures, which closelycommunicate with the tumor via multiple mechanisms. MicroRNAs are paracrine regulators that provide a direct interaction between the microenvironment and cancer cells. In the presentstudy, we aimed to identify the microRNA expression profile in melanoma compared with thatin healthy adjacent skin, with a further assessment of altered microRNA signaling pathways and target genes. Methods Formalin-fixed paraffin-embedded (FFPE) melanoma tissue samples were separated by dissection into tumor and surrounding health tissue fragments. MicroRNA expression profiles were obtained by microarray using Gene Atlas Microarray System (Affymetrix, California, USA). To confirm microarray results real-time PCR was carried out. Bioinformatic analysis was performed using the DIANA-miRPath v.3.0 database. Target genes for miR-146a-5p were determined using three algorithms: TargetScan 7.0, miRWalk 2.0 and miRTarBase v.4.5. Results A microarray profiling revealed 143 microRNAs asdifferent in tumor versus adjacent tissues. Expression level of hsa-miR-146a-5p showedto be higher in melanoma cells as compared to thehealthy adjacent skin. The bioinformatic study has determined several signaling cascades associated with miR-146a-5p:Toll-like receptor pathway, NF-κB pathway, ErB pathway, and measles signaling pathway. The 38 target genes have been shown for miR-146a-5p of which NRAS gene is known asone of the most frequent mutated in melanoma. Conclusions Elucidation of the role of miR-146-a-5p in complex interactions between the tumor and the cells of healthy adjacent skin is necessary for our understanding of the mechanisms oftumor progression. Significant differences found between cancer cells and adjacent tissues in microRNA expression profile corresponding to divergent mRNA/protein levels in these structures should be taken into account when tumor samples characterization estimatedby high-throughput methods. Electronic supplementary material The online version of this article (10.1186/s12895-018-0081-1) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Seftor EA, Margaryan NV, Seftor REB, Hendrix MJC. Heterogeneity of Melanoma with Stem Cell Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:105-114. [PMID: 31134497 DOI: 10.1007/978-3-030-14366-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metastatic melanoma continues to present a significant challenge-with a cure rate of less than 10% and a median survival of 6-9 months. Despite noteworthy advances in the field, the heterogeneity of melanoma tumors, comprised of cell subpopulations expressing a cancer stem cell (CSC) phenotype concomitant with drug resistance markers presents a formidable challenge in the design of current therapies. Particularly vexing is the ability of distinct subpopulations of melanoma cells to resist standard-of-care treatments, resulting in relapse and progression to metastasis. Recent studies have provided new information and insights into the expression and function of CSC markers associated with the aggressive melanoma phenotype, such as the embryonic morphogen Nodal and CD133, together with a drug resistance marker ABCA1. This chapter highlights major findings that demonstrate the promise of targeting Nodal as a viable option to pursue in combination with standard-of-care therapy. In recognizing that aggressive melanoma tumors utilize multiple mechanisms to survive, we must consider a more strategic approach to effectively target heterogeneity, tumor cell plasticity, and functional adaptation and resistance to current therapies-to eliminate relapse, disease progression, and metastasis.
Collapse
Affiliation(s)
- Elisabeth A Seftor
- Department of Biochemistry and Cancer Institute, West Virginia University Health Sciences Center, One Medical Center Drive, Morgantown, WV, USA
| | - Naira V Margaryan
- Department of Biochemistry and Cancer Institute, West Virginia University Health Sciences Center, One Medical Center Drive, Morgantown, WV, USA
| | - Richard E B Seftor
- Department of Biochemistry and Cancer Institute, West Virginia University Health Sciences Center, One Medical Center Drive, Morgantown, WV, USA
| | - Mary J C Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, USA.
| |
Collapse
|
19
|
Carcinogenesis: the cancer cell–mast cell connection. Inflamm Res 2018; 68:103-116. [DOI: 10.1007/s00011-018-1201-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
|
20
|
Zeng F, Chen H, Zhang Z, Yao T, Wang G, Zeng Q, Duan S, Zhan Y. Regulating glioma stem cells by hypoxia through the Notch1 and Oct3/4 signaling pathway. Oncol Lett 2018; 16:6315-6322. [PMID: 30405767 PMCID: PMC6202516 DOI: 10.3892/ol.2018.9442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/25/2018] [Indexed: 01/09/2023] Open
Abstract
To investigate the effects of hypoxia on the features of cancer stem cells in the glioma cancer U87 cell line and underlying mechanism, stem cell markers and features in U87 were studied under the hypoxic and normoxic culture conditions by reverse transcription-quantitative polymerase chain reaction, western blot analysis, MTT, a colony formation test and flow cytometry. Compared to the normoxic group, the cluster of differentiation 133+ phenotype, clone formation rate and cell vitality were significantly elevated in U87 cells cultured in a hypoxic microenvironment. Also, the mRNA and protein expression of neurogenic locus notch homolog protein 1 (Notch1) and Oct3/4 were significantly elevated in U87 cells cultured in a hypoxic microenvironment, however, transcription factor SOX-2 expression was not significantly changed. These results indicate that hypoxia can promote the proliferation of glioma stem cells and maintain the characteristics of stem cells through the activation of Notch1 and Oct3/4 or Notch1 activation, affecting the biological characteristics of glioma cells.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Yao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qingxing Zeng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shenhan Duan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yanqiang Zhan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
21
|
Age-related gene expression in luminal epithelial cells is driven by a microenvironment made from myoepithelial cells. Aging (Albany NY) 2018; 9:2026-2051. [PMID: 29016359 PMCID: PMC5680554 DOI: 10.18632/aging.101298] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/28/2017] [Indexed: 12/24/2022]
Abstract
Luminal epithelial cells in the breast gradually alter gene and protein expression with age, appearing to lose lineage-specificity by acquiring myoepithelial-like characteristics. We hypothesize that the luminal lineage is particularly sensitive to microenvironment changes, and age-related microenvironment changes cause altered luminal cell phenotypes. To evaluate the effects of different microenvironments on the fidelity of epigenetically regulated luminal and myoepithelial gene expression, we generated a set of lineage-specific probes for genes that are controlled through DNA methylation. Culturing primary luminal cells under conditions that favor myoepithelial propogation led to their reprogramming at the level of gene methylation, and to a more myoepithelial-like expression profile. Primary luminal cells' lineage-specific gene expression could be maintained when they were cultured as bilayers with primary myoepithelial cells. Isogenic stromal fibroblast co-cultures were unable to maintain the luminal phenotype. Mixed-age luminal-myoepithelial bilayers revealed that luminal cells adopt transcription and methylation patterns consistent with the chronological age of the myoepithelial cells. We provide evidence that the luminal epithelial phenotype is exquisitely sensitive to microenvironment conditions, and that states of aging are cell non-autonomously communicated through microenvironment cues over at least one cell diameter.
Collapse
|
22
|
Binmadi NO, Basile JR, Perez P, Gallo A, Tandon M, Elias W, Jang SI, Alevizos I. miRNA expression profile of mucoepidermoid carcinoma. Oral Dis 2018; 24:537-543. [PMID: 29095552 DOI: 10.1111/odi.12800] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/21/2017] [Accepted: 10/22/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) are single-stranded RNAs that have been implicated in cancer initiation and progression and act as tumour suppressors or oncogenes. In this study, miRNA profiling was conducted on the most frequent malignancy of salivary glands, mucoepidermoid carcinoma (MEC), in comparison with normal tissues. MATERIALS AND METHODS The TaqMan Human miRNA Cards Array was used for the miRNA profiling of MEC and normal tissues. To validate the differentially expressed miRNAs in MEC, we used real-time PCR (qRT-PCR). RESULTS miR-302a was the most significantly increased miRNA in cancer tissues (p < .05). Here, we demonstrate that the upregulation of miR-302a expression in SGT cell lines induced cancer cell invasion in vitro. CONCLUSIONS These promising results suggest the need for further studies to establish mir-302a as a marker of invasion and aggressiveness in MEC.
Collapse
Affiliation(s)
- N O Binmadi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - J R Basile
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, MD, USA.,Greenebaum Cancer Centre, Baltimore, MD, USA
| | - P Perez
- Molecular Physiology and Therapeutics branch, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - A Gallo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo peri Trapiantie Terapie ad alta specializzazione), Palermo, Italy
| | - M Tandon
- Molecular Physiology and Therapeutics branch, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - W Elias
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S I Jang
- Molecular Physiology and Therapeutics branch, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - I Alevizos
- Molecular Physiology and Therapeutics branch, Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Margaryan NV, Seftor EA, Seftor RE, Hendrix MJ. Targeting the Stem Cell Properties of Adult Breast Cancer Cells: Using Combinatorial Strategies to Overcome Drug Resistance. CURRENT MOLECULAR BIOLOGY REPORTS 2017; 3:159-164. [PMID: 29152453 PMCID: PMC5687579 DOI: 10.1007/s40610-017-0067-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Cancer is a major public health problem worldwide. In aggressive cancers, which are heterogeneous in nature, there exists a paucity of targetable molecules that can be used to predict outcome and response to therapy in patients, especially those in the high risk category with a propensity to relapse following chemotherapy. This review addresses the challenges pertinent to treating aggressive cancer cells with inherent stem cell properties, with a special focus on triple-negative breast cancer (TNBC). RECENT FINDINGS Plasticity underlies the cancer stem cell (CSC) phenotype in aggressive cancers like TNBC. Progenitors and CSCs implement similar signaling pathways to sustain growth, and the convergence of embryonic and tumorigenic signaling pathways has led to the discovery of novel oncofetal targets, rigorously regulated during normal development, but aberrantly reactivated in aggressive forms of cancer. SUMMARY Translational studies have shown that Nodal, an embryonic morphogen, is reactivated in aggressive cancers, but not in normal tissues, and underlies tumor growth, invasion, metastasis and drug resistance. Front-line therapies do not inhibit Nodal, but when a combinatorial approach is used with an agent such as doxorubicin followed by anti-Nodal antibody therapy, significant decreases in cell growth and viability occur. These findings are of special interest in the development of new therapeutic interventions that target the stem cell properties of cancer cells to overcome drug resistance and metastasis.
Collapse
Affiliation(s)
- Naira V. Margaryan
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| | - Elisabeth A. Seftor
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| | - Richard E.B. Seftor
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| | - Mary J.C. Hendrix
- Department of Internal Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| |
Collapse
|
24
|
Dubey A, Jeon J. Epigenetic regulation of development and pathogenesis in fungal plant pathogens. MOLECULAR PLANT PATHOLOGY 2017; 18:887-898. [PMID: 27749982 PMCID: PMC6638268 DOI: 10.1111/mpp.12499] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 05/08/2023]
Abstract
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis.
Collapse
Affiliation(s)
- Akanksha Dubey
- Department of BiotechnologyCollege of Life and Applied Sciences, Yeungnam UniversityGyeongsanGyeongbuk38541South Korea
| | - Junhyun Jeon
- Department of BiotechnologyCollege of Life and Applied Sciences, Yeungnam UniversityGyeongsanGyeongbuk38541South Korea
| |
Collapse
|
25
|
Balch C, Ramapuram JB, Tiwari AK. The Epigenomics of Embryonic Pathway Signaling in Colorectal Cancer. Front Pharmacol 2017; 8:267. [PMID: 28579957 PMCID: PMC5437112 DOI: 10.3389/fphar.2017.00267] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer death in developed countries. While early detection (e.g., colonoscopy) generally yields excellent outcomes, metastatic and drug-resistant disease is uniformly fatal, and non-compliance for screening remains over 25%. Familial CRCs (10% of total cases) primarily include mutations in the gene APC. Somatic disease is linked to several environmental several risk factors, including mutations in WNT, KRAS, and TGFβ. To reflect the genesis/progression of CRC, a series of five discrete stages, from normal colon mucosa to fully invasive carcinoma, each regulated by specific “gatekeeper” genes, remains well-accepted after 20 years. However, many CRC tumors do not possess those particular mutations, suggesting alternative mechanisms. More recently, embryo-like “cancer stem cells” have been proposed to undergo self-renewal and drive tumorigenesis (and possibly, metastasis), as governed by specific “epigenomic” alterations. Here, we review recent literature describing possible mechanisms that underlie these phenotypes, including cancer “stemness,” believed by many to associate with the epithelial-to-mesenchymal transition (EMT). We further propose that the maintenance of undifferentiated phenotypes, by the activity of distinct transcription factors, facilitates chromatin remodeling and phenotypic plasticity. With that regard, we support recent assertions that EMT is not an “either/or” event, but rather a continuous spectrum of mesenchymal vs. epithelial phenotypes (in various degrees of aberrant differentiation/undifferentiation). Finally, we discuss possible methods of pharmacologically targeting such aberrant epigenomes, with regard to their possible relevance toward halting, or even reversing, colorectal cancer progression.
Collapse
Affiliation(s)
- Curt Balch
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, University of Toledo, ToledoOH, USA.,Bioscience Advising, YpsilantiMI, USA.,Complex Biological Systems Alliance, North AndoverMA, USA
| | - Jayaram B Ramapuram
- Department of Drug Discovery and Development, Auburn University, AuburnAL, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, University of Toledo, ToledoOH, USA
| |
Collapse
|
26
|
Holton AB, Sinatra FL, Kreahling J, Conway AJ, Landis DA, Altiok S. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment. PLoS One 2017; 12:e0169797. [PMID: 28085924 PMCID: PMC5235371 DOI: 10.1371/journal.pone.0169797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023] Open
Abstract
The tumor microenvironment is composed of cellular and stromal components such as tumor cells, mesenchymal cells, immune cells, cancer associated fibroblasts and the supporting extracellular matrix. The tumor microenvironment provides crucial support for growth and progression of tumor cells and affects tumor response to therapeutic interventions. To better understand tumor biology and to develop effective cancer therapeutic agents it is important to develop preclinical platforms that can faithfully recapitulate the tumor microenvironment and the complex interaction between the tumor and its surrounding stromal elements. Drug studies performed in vitro with conventional two-dimensional cancer cell line models do not optimally represent clinical drug response as they lack true tumor heterogeneity and are often performed in static culture conditions lacking stromal tumor components that significantly influence the metabolic activity and proliferation of cells. Recent microfluidic approaches aim to overcome such obstacles with the use of cell lines derived in artificial three-dimensional supportive gels or micro-chambers. However, absence of a true tumor microenvironment and full interstitial flow, leads to less than optimal evaluation of tumor response to drug treatment. Here we report a continuous perfusion microfluidic device coupled with microscopy and image analysis for the assessment of drug effects on intact fresh tumor tissue. We have demonstrated that fine needle aspirate biopsies obtained from patient-derived xenograft models of adenocarcinoma of the lung can successfully be analyzed for their response to ex vivo drug treatment within this biopsy trapping microfluidic device, wherein a protein kinase C inhibitor, staurosporine, was used to assess tumor cell death as a proof of principle. This approach has the potential to study tumor tissue within its intact microenvironment to better understand tumor response to drug treatments and eventually to choose the most effective drug and drug combination for individual patients in a cost effective and timely manner.
Collapse
Affiliation(s)
- Angela Babetski Holton
- Draper, Cambridge, Massachusetts, United States of America
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, United States of America
| | | | - Jenny Kreahling
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Amy J. Conway
- Draper, Cambridge, Massachusetts, United States of America
| | | | - Soner Altiok
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Bodenstine TM, Chandler GS, Seftor REB, Seftor EA, Hendrix MJC. Plasticity underlies tumor progression: role of Nodal signaling. Cancer Metastasis Rev 2016; 35:21-39. [PMID: 26951550 DOI: 10.1007/s10555-016-9605-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The transforming growth factor beta (TGFβ) superfamily member Nodal is an established regulator of early embryonic development, with primary roles in endoderm induction, left-right asymmetry, and primitive streak formation. Nodal signals through TGFβ family receptors at the plasma membrane and induces signaling cascades leading to diverse transcriptional regulation. While conceptually simple, the regulation of Nodal and its molecular effects are profoundly complex and context dependent. Pioneering work by developmental biologists has characterized the signaling pathways, regulatory components, and provided detailed insight into the mechanisms by which Nodal mediates changes at the cellular and organismal levels. Nodal is also an important factor in maintaining pluripotency of embryonic stem cells through regulation of core transcriptional programs. Collectively, this work has led to an appreciation for Nodal as a powerful morphogen capable of orchestrating multiple cellular phenotypes. Although Nodal is not active in most adult tissues, its reexpression and signaling have been linked to multiple types of human cancer, and Nodal has emerged as a driver of tumor growth and cellular plasticity. In vitro and in vivo experimental evidence has demonstrated that inhibition of Nodal signaling reduces cancer cell aggressive characteristics, while clinical data have established associations with Nodal expression and patient outcomes. As a result, there is great interest in the potential targeting of Nodal activity in a therapeutic setting for cancer patients that may provide new avenues for suppressing tumor growth and metastasis. In this review, we evaluate our current understanding of the complexities of Nodal function in cancer and highlight recent experimental evidence that sheds light on the therapeutic potential of its inhibition.
Collapse
Affiliation(s)
- Thomas M Bodenstine
- Stanley Manne Children's Research Institute, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL, 60611, USA
| | - Grace S Chandler
- Stanley Manne Children's Research Institute, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL, 60611, USA
| | - Richard E B Seftor
- Stanley Manne Children's Research Institute, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL, 60611, USA
| | - Elisabeth A Seftor
- Stanley Manne Children's Research Institute, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL, 60611, USA
| | - Mary J C Hendrix
- Stanley Manne Children's Research Institute, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL, 60611, USA.
| |
Collapse
|
28
|
Li X, Shi S, Li FF, Cheng R, Han Y, Diao LW, Zhang Q, Zhi JX, Liu SL. Characterization of soluble N-ethylmaleimide-sensitive factor attachment protein receptor gene STX18 variations for possible roles in congenital heart diseases. Gene 2016; 598:79-83. [PMID: 27816473 DOI: 10.1016/j.gene.2016.10.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
Congenital heart disease (CHD) is among the most prevalent and complex congenital anatomic malformations in newborns. Interactions of cardiac progenitor with a broad range of cellular regulatory factors play key roles in the formation of mammalian heart and pathogenesis of CHD. STX18 is a soluble N-ethylmaleimide-sensitive factor attachment protein receptor, which is involved in numeral cellular activities such as organelle assembly and the cell cycle. The aim of this work was to find evidence on whether STX18 variations might be associated with CHD in Chinese Han populations. We evaluated SNPs rs2044, rs33952588, rs61740788, rs12504020 and rs12644497, which are located within the exon or intron sequences of the STX18 gene, for 310 Chinese Han CHD patients and 400 non-CHD controls. Using SPSS software (version 19.0) and the online software OEGE, we conducted statistical analyses and Hardy-Weinberg equilibrium test, respectively. Among the five SNPs identified in the STX18 gene, rs33952588 and rs61740788 had very low genetic heterozygosity. In contrast, the genetic heterozygosity of the remaining three variations rs12504020 and rs12644497 near the 5'UTR and rs2044 within 3'UTR of the STX18 gene was considerably high. Analysis of associations of these genetic variations with the risk of CHD showed that rs12644497 (P value=0.017<0.05) was associated with the risk of CHD, specifically VSD and ASD, whereas rs12504020 (P value=0.560>0.05) and rs2044 (P value=0.972>0.05) were not. The SNP rs12644497 in the STX18 gene was associated with CHD in Chinese Han populations.
Collapse
Affiliation(s)
- Xia Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Shuai Shi
- Department of Cardiology of the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fei-Feng Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.
| | - Rui Cheng
- Department of Cardiology of the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Han
- Department of Cardiology of the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-Wei Diao
- Department of Cardiology of the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiong Zhang
- Department of Antibiotics, Heilongjiang Province Food and Drug Inspection Testing Institute, Harbin, China
| | - Ji-Xin Zhi
- Department of Cardiology of the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
29
|
Khalkhali-Ellis Z, Galat V, Galat Y, Gilgur A, Seftor EA, Hendrix MJC. Lefty Glycoproteins in Human Embryonic Stem Cells: Extracellular Delivery Route and Posttranslational Modification in Differentiation. Stem Cells Dev 2016; 25:1681-1690. [PMID: 27554431 DOI: 10.1089/scd.2016.0081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lefty is a member of transforming growth factor-beta (TGF-β) superfamily and a potent antagonist of the TGF-β/Nodal/Activin signaling pathway. Lefty is critical in sustaining self-renewal/pluripotency status, and implicated in the differentiation of embryonic stem cells (ESCs). However, emerging studies depict Lefty as a multifaceted protein involved in myriad cellular events. Lefty proteins (human Lefty A and B) are secreted glycoproteins, but their mode of secretion and the significance of their "glycan" moiety remain mostly unexplored. By employing an in vitro system of human ESCs (hESCs), we observed that Lefty protein(s) are encased in exosomes for extracellular release. The exosomal- and cell-associated Lefty diverge in their proteolytic processing, and possess N-glycan structures of high mannose and complex nature. Differentiation of hESCs to mesenchymal cells (MSCs) or neuronal progenitor cells (NPCs) entails distinct changes in the Lefty A/Lefty B gene(s), and protein expression. Specifically, the proteolytic cleavage and N-glycan composition of the cell-associated and exosomal Lefty differ in the differentiated progenies. These modifications affected Lefty's inhibitory effect on Nodal signaling in aggressive melanoma cells. The microheterogeneity in the processing and glycosylation of Lefty protein(s) between hESCs, MSCs, and NPCs could present efficient means of diversifying the endogenous functions of Lefty. Whether Lefty's diverse functions in embryonic patterning, as well as its diffusion range in the extracellular environment, are similarly affected remains to be determined. Our studies underscore the potential relevance of Lefty-packaged exosomes for combating debilitating diseases such as cancer.
Collapse
Affiliation(s)
- Zhila Khalkhali-Ellis
- 1 Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute , Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Vasiliy Galat
- 2 Department of Pathology, Stanley Manne Children's Research Institute , Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,3 Developmental Biology Program, Stanley Manne Children's Research Institute , Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,4 Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Yekaterina Galat
- 3 Developmental Biology Program, Stanley Manne Children's Research Institute , Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alina Gilgur
- 1 Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute , Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Elisabeth A Seftor
- 1 Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute , Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Mary J C Hendrix
- 1 Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute , Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,4 Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| |
Collapse
|
30
|
Kurebayashi H, Goi T, Shimada M, Tagai N, Naruse T, Nakazawa T, Kimura Y, Hirono Y, Yamaguchi A. Prokineticin 2 (PROK2) is an important factor for angiogenesis in colorectal cancer. Oncotarget 2016; 6:26242-51. [PMID: 26317645 PMCID: PMC4694898 DOI: 10.18632/oncotarget.4385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/19/2015] [Indexed: 01/08/2023] Open
Abstract
The Prokineticin 2 (PROK2) is correlated with indispensable in maintaining the homeostasis of healthy human tissues. Herein, we examined the role of PROK2 in human colorectal cancer. After total RNA extraction from 6 colorectal cancer cell lines, we examined the expression of PROK2 mRNA. For investigating angiogenesis and tumor growth in mice, the PROK2 gene was transfected into colorectal cancer cell lines having low PROK2 mRNA expression. In addition, small interfering RNA (siRNA) was transfected into colorectal cancer cell lines having high PROK2 mRNA expression for investigation of angiogenesis and tumor growth in mice. From 6 colorectal cancer cell lines studied, PROK2 mRNA expression was increased in 3 cell lines. When the PROK2 gene was transfected into the colorectal cancer cell line with low PROK2 mRNA expression, angiogenesis and tumor growth in mice increased significantly compared to the cell line with the control vector. When PROK2 siRNA was transfected into colorectal cancer cell lines with high PROK2 mRNA expression, angiogenesis and tumor growth in mice were suppressed significantly compared to the cell line with siRNA (control). This is the first report of the association of PROK2 as an angiogenic growth factor in colorectal cancer.
Collapse
Affiliation(s)
| | - Takanori Goi
- Department of Surgery, University of Fukui, Fukui 9101193, Japan
| | - Michiaki Shimada
- Department of Surgery, University of Fukui, Fukui 9101193, Japan
| | - Noriyuki Tagai
- Department of Surgery, University of Fukui, Fukui 9101193, Japan
| | - Takayuki Naruse
- Department of Surgery, University of Fukui, Fukui 9101193, Japan
| | | | - Youhei Kimura
- Department of Surgery, University of Fukui, Fukui 9101193, Japan
| | - Yasuo Hirono
- Department of Surgery, University of Fukui, Fukui 9101193, Japan
| | - Akio Yamaguchi
- Department of Surgery, University of Fukui, Fukui 9101193, Japan
| |
Collapse
|
31
|
Hendrix MJC, Seftor EA, Seftor REB, Chao JT, Chien DS, Chu YW. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma. Pharmacol Ther 2016; 159:83-92. [PMID: 26808163 PMCID: PMC4779708 DOI: 10.1016/j.pharmthera.2016.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 1999, the American Journal of Pathology published an article, entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry" by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a "citation classic" (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways--each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model.
Collapse
Affiliation(s)
- Mary J C Hendrix
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| | - Elisabeth A Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States
| | - Richard E B Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | | | | | | |
Collapse
|
32
|
Li FF, Han Y, Shi S, Li X, Zhu XD, Zhou J, Shao QL, Li XQ, Liu SL. Characterization of Transcriptional Repressor Gene MSX1 Variations for Possible Associations with Congenital Heart Diseases. PLoS One 2015; 10:e0142666. [PMID: 26556783 PMCID: PMC4640503 DOI: 10.1371/journal.pone.0142666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/26/2015] [Indexed: 01/26/2023] Open
Abstract
Background The human heart consists of several cell types with distinct lineage origins. Interactions between these cardiac progenitors are very important for heart formation. The muscle segment homeobox gene family plays a key role in the cell morphogenesis and growth, controlled cellular proliferation, differentiation, and apoptosis, but the relationships between the genetic abnormalities and CHD phenotypes still remain largely unknown. The aim of this work was to evaluate variations in MSX1 and MSX2 for their possible associations with CHD. Methods We sequenced the MSX1 and MSX2 genes for 300 Chinese Han CHD patients and 400 normal controls and identified the variations. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 19.0). The Hardy-Weinberg equilibrium test of the population was carried out using the online software OEGE. Results Six variations rs4647952, rs2048152, rs4242182, rs61739543, rs111542301 and rs3087539 were identified in the MSX2 gene, but the genetic heterozygosity of those SNPs was very low. In contrast, the genetic heterozygosity of two variations rs3821949 near the 5’UTR and rs12532 within 3’UTR of the MSX1 gene was considerably high. Statistical analyses showed that rs3821949 and rs12532 were associated with the risk of CHD (specifically VSD). Conclusions The SNPs rs3821949 and rs12532 in the MSX1 gene were associated with CHD in Chinese Han populations.
Collapse
Affiliation(s)
- Fei-Feng Li
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Ying Han
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Shi
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xia Li
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
| | - Xi-Dong Zhu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Zhou
- Intensive care unit, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing-Liang Shao
- Department of Neonatalogy, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue-Qi Li
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail: (S-LL); (X-QL)
| | - Shu-Lin Liu
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- * E-mail: (S-LL); (X-QL)
| |
Collapse
|
33
|
LaBarge MA, Mora-Blanco EL, Samson S, Miyano M. Breast Cancer beyond the Age of Mutation. Gerontology 2015; 62:434-42. [PMID: 26539838 DOI: 10.1159/000441030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/11/2015] [Indexed: 12/26/2022] Open
Abstract
Age is the greatest risk factor for breast cancer, but the reasons underlying this association are unclear. While there is undeniably a genetic component to all cancers, the accumulation of mutations with age is insufficient to explain the age-dependent increase in breast cancer incidence. In this viewpoint, we propose a multilevel framework to better understand the respective roles played by somatic mutation, microenvironment, and epigenetics making women more susceptible to breast cancer with age. The process of aging is associated with gradual breast tissue changes that not only corrupt the tumor-suppressive activity of normal tissue but also impose age-specific epigenetic changes that alter gene expression, thus reinforcing cellular phenotypes that are associated with a continuum of age-related tissue microenvironments. The evidence discussed here suggests that while the riddle of whether epigenetics drives microenvironmental changes, or whether changes in the microenvironment alter heritable cellular memory has not been solved, a path has been cleared enabling functional analysis leading to the prediction of key nodes in the network that link the microenvironment with the epigenome. The hypothesis that the accumulation of somatic mutations with age drives the age-related increase in breast cancer incidence, if correct, has a somewhat nihilistic conclusion, namely that cancers will be impossible to avoid. Alternatively, if microenvironment-driven epigenetic changes are the key to explaining susceptibility to age-related breast cancers, then there is hope that primary prevention is possible because epigenomes are relatively malleable.
Collapse
Affiliation(s)
- Mark A LaBarge
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, Calif., USA
| | | | | | | |
Collapse
|
34
|
Strizzi L, Sandomenico A, Margaryan NV, Focà A, Sanguigno L, Bodenstine TM, Chandler GS, Reed DW, Gilgur A, Seftor EA, Seftor RE, Khalkhali-Ellis Z, Leonardi A, Ruvo M, Hendrix MJ. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget 2015; 6:34071-86. [PMID: 26460952 PMCID: PMC4741437 DOI: 10.18632/oncotarget.6049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
Nodal is highly expressed in various human malignancies, thus supporting the rationale for exploring Nodal as a therapeutic target. Here, we describe the effects of a novel monoclonal antibody (mAb), 3D1, raised against human Nodal. In vitro treatment of C8161 human melanoma cells with 3D1 mAb shows reductions in anchorage-independent growth and vasculogenic network formation. 3D1 treated cells also show decreases of Nodal and downstream signaling molecules, P-Smad2 and P-ERK and of P-H3 and CyclinB1, with an increase in p27. Similar effects were previously reported in human breast cancer cells where Nodal expression was generally down-regulated; following 3D1 mAb treatment, both Nodal and P-H3 levels are reduced. Noteworthy is the reduced growth of human melanoma xenografts in Nude mice treated with 3D1 mAb, where immunostaining of representative tumor sections show diminished P-Smad2 expression. Similar effects both in vitro and in vivo were observed in 3D1 treated A375SM melanoma cells harboring the active BRAF(V600E) mutation compared to treatments with IgG control or a BRAF inhibitor, dabrafenib. Finally, we describe a 3D1-based ELISA for the detection of Nodal in serum samples from cancer patients. These data suggest the potential of 3D1 mAb for selecting and targeting Nodal expressing cancers.
Collapse
Affiliation(s)
- Luigi Strizzi
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Università Federico II di Napoli, Naples, Italy
| | - Naira V. Margaryan
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Annalia Focà
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Università Federico II di Napoli, Naples, Italy
| | - Luca Sanguigno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Naples, Italy
| | - Thomas M. Bodenstine
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Grace S. Chandler
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - David W. Reed
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Alina Gilgur
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Elisabeth A. Seftor
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Richard E.B. Seftor
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhila Khalkhali-Ellis
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Naples, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Università Federico II di Napoli, Naples, Italy
| | - Mary J.C. Hendrix
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
35
|
New Anti-Nodal Monoclonal Antibodies Targeting the Nodal Pre-Helix Loop Involved in Cripto-1 Binding. Int J Mol Sci 2015; 16:21342-62. [PMID: 26370966 PMCID: PMC4613256 DOI: 10.3390/ijms160921342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 12/25/2022] Open
Abstract
Nodal is a potent embryonic morphogen belonging to the TGF-β superfamily. Typically, it also binds to the ALK4/ActRIIB receptor complex in the presence of the co-receptor Cripto-1. Nodal expression is physiologically restricted to embryonic tissues and human embryonic stem cells, is absent in normal cells but re-emerges in several human cancers, including melanoma, breast, and colon cancer. Our aim was to obtain mAbs able to recognize Nodal on a major CBR (Cripto-Binding-Region) site and to block the Cripto-1-mediated signalling. To achieve this, antibodies were raised against hNodal(44-67) and mAbs generated by the hybridoma technology. We have selected one mAb, named 3D1, which strongly associates with full-length rhNodal (KD 1.4 nM) and recognizes the endogenous protein in a panel of human melanoma cell lines by western blot and FACS analyses. 3D1 inhibits the Nodal-Cripto-1 binding and blocks Smad2/3 phosphorylation. Data suggest that inhibition of the Nodal-Cripto-1 axis is a valid therapeutic approach against melanoma and 3D1 is a promising and interesting agent for blocking Nodal-Cripto mediated tumor development. These findings increase the interest for Nodal as both a diagnostic and prognostic marker and as a potential new target for therapeutic intervention.
Collapse
|
36
|
Li FF, Zhou J, Zhao DD, Yan P, Li X, Han Y, Li XS, Wang GY, Yu KJ, Liu SL. Characterization of SMAD3 Gene Variants for Possible Roles in Ventricular Septal Defects and Other Congenital Heart Diseases. PLoS One 2015; 10:e0131542. [PMID: 26110764 PMCID: PMC4482402 DOI: 10.1371/journal.pone.0131542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/03/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Nodal/TGF signaling pathway has an important effect at early stages of differentiation of human embryonic stem cells in directing them to develop into different embryonic lineages. SMAD3 is a key intracellular messenger regulating factor in the Nodal/TGF signaling pathway, playing important roles in embryonic and, particularly, cardiovascular system development. The aim of this work was to find evidence on whether SMAD3 variations might be associated with ventricular septal defects (VSD) or other congenital heart diseases (CHD). METHODS We sequenced the SMAD3 gene for 372 Chinese Han CHD patients including 176 VSD patients and evaluated SNP rs2289263, which is located before the 5'UTR sequence of the gene. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 13.0). The Hardy-Weinberg equilibrium test of the population was carried out using the online software OEGE. RESULTS Three heterozygous variants in SMAD3 gene, rs2289263, rs35874463 and rs17228212, were identified. Statistical analyses showed that the rs2289263 variant located before the 5'UTR sequence of SMAD3 gene was associated with the risk of VSD (P value=0.013 <0.05). CONCLUSIONS The SNP rs2289263 in the SMAD3 gene is associated with VSD in Chinese Han populations.
Collapse
Affiliation(s)
- Fei-Feng Li
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
| | - Jing Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan-Dan Zhao
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
| | - Peng Yan
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xia Li
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
| | - Ying Han
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
| | | | - Gui-Yu Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail: (GYW); (KJY); (SLL)
| | - Kai-Jiang Yu
- Intensive Care Unit, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail: (GYW); (KJY); (SLL)
| | - Shu-Lin Liu
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- * E-mail: (GYW); (KJY); (SLL)
| |
Collapse
|
37
|
Hardy KM, Strizzi L, Margaryan NV, Gupta K, Murphy GF, Scolyer RA, Hendrix MJC. Targeting nodal in conjunction with dacarbazine induces synergistic anticancer effects in metastatic melanoma. Mol Cancer Res 2015; 13:670-80. [PMID: 25767211 DOI: 10.1158/1541-7786.mcr-14-0077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. Despite a complete response in fewer than 5% of patients, the chemotherapeutic agent dacarbazine (DTIC) remains the reference drug after almost 40 years. More recently, FDA-approved drugs have shown promise but patient outcome remains modest, predominantly due to drug resistance. As such, combinatorial targeting has received increased attention, and will advance with the identification of new molecular targets. One attractive target for improving melanoma therapy is the growth factor Nodal, whose normal expression is largely restricted to embryonic development, but is reactivated in metastatic melanoma. In this study, we sought to determine how Nodal-positive human melanoma cells respond to DTIC treatment and to ascertain whether targeting Nodal in combination with DTIC would be more effective than monotherapy. A single treatment with DTIC inhibited cell growth but did not induce apoptosis. Rather than reducing Nodal expression, DTIC increased the size of the Nodal-positive subpopulation, an observation coincident with increased cellular invasion. Importantly, clinical tissue specimens from patients with melanomas refractory to DTIC therapy stained positive for Nodal expression, both in pre- and post-DTIC tumors, underscoring the value of targeting Nodal. In vitro, anti-Nodal antibodies alone had some adverse effects on proliferation and apoptosis, but combining DTIC treatment with anti-Nodal antibodies decreased cell growth and increased apoptosis synergistically, at concentrations incapable of producing meaningful effects as monotherapy. IMPLICATIONS Targeting Nodal in combination with DTIC therapy holds promise for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Katharine M Hardy
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Luigi Strizzi
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Naira V Margaryan
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kanika Gupta
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois. Howard Hughes Medical Institute NU Bioscientist Program, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | - George F Murphy
- Department of Pathology, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts
| | - Richard A Scolyer
- Melanoma Institute Australia; Sydney Medical School, The University of Sydney; and Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mary J C Hendrix
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
38
|
Lefty inhibits glioma growth by suppressing Nodal-activated Smad and ERK1/2 pathways. J Neurol Sci 2014; 347:137-42. [DOI: 10.1016/j.jns.2014.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 01/01/2023]
|
39
|
Rostama B, Peterson SM, Vary CPH, Liaw L. Notch signal integration in the vasculature during remodeling. Vascul Pharmacol 2014; 63:97-104. [PMID: 25464152 PMCID: PMC4304902 DOI: 10.1016/j.vph.2014.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023]
Abstract
Notch signaling plays many important roles in homeostasis and remodeling in the vessel wall, and serves a critical role in the communication between endothelial cells and smooth muscle cells. Within blood vessels, Notch signaling integrates with multiple pathways by mechanisms including direct protein–protein interaction, cooperative or synergistic regulation of signal cascades, and co-regulation of transcriptional targets. After establishment of the mature blood vessel, the spectrum and intensity of Notch signaling change during phases of active remodeling or disease progression. These changes can be mediated by regulation via microRNAs and protein stability or signaling, and corresponding changes in complementary signaling pathways. Notch also affects endothelial cells on a system level by regulating key metabolic components. This review will outline the most recent findings of Notch activity in blood vessels, with a focus on how Notch signals integrate with other molecular signaling pathways controlling vascular phenotype.
Collapse
Affiliation(s)
- Bahman Rostama
- Center for Molecular Medicine, Maine Medical Center Research Institute, USA
| | | | | | | |
Collapse
|
40
|
Khalkhali-Ellis Z, Kirschmann DA, Seftor EA, Gilgur A, Bodenstine TM, Hinck AP, Hendrix MJC. Divergence(s) in nodal signaling between aggressive melanoma and embryonic stem cells. Int J Cancer 2014; 136:E242-51. [PMID: 25204799 DOI: 10.1002/ijc.29198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
The significant role of the embryonic morphogen Nodal in maintaining the pluripotency of embryonic stem cells is well documented. Interestingly, the recent discovery of Nodal's re-expression in several aggressive and metastatic cancers has highlighted its critical role in self renewal and maintenance of the stem cell-like characteristics of tumor cells, such as melanoma. However, the key TGFβ/Nodal signaling component(s) governing Nodal's effects in metastatic melanoma remain mostly unknown. By employing receptor profiling at the mRNA and protein level(s), we made the novel discovery that embryonic stem cells and metastatic melanoma cells share a similar repertoire of Type I serine/threonine kinase receptors, but diverge in their Type II receptor expression. Ligand:receptor crosslinking and native gel binding assays indicate that metastatic melanoma cells employ the heterodimeric TGFβ receptor I/TGFβ receptor II (TGFβRI/TGFβRII) for signal transduction, whereas embryonic stem cells use the Activin receptors I and II (ACTRI/ACTRII). This unexpected receptor usage by tumor cells was tested by: neutralizing antibody to block its function; and transfecting the dominant negative receptor to compete with the endogenous receptor for ligand binding. Furthermore, a direct biological role for TGFβRII was found to underlie vasculogenic mimicry (VM), an endothelial phenotype contributing to vascular perfusion and associated with the functional plasticity of aggressive melanoma. Collectively, these findings reveal the divergence in Nodal signaling between embryonic stem cells and metastatic melanoma that can impact new therapeutic strategies targeting the re-emergence of embryonic pathways.
Collapse
Affiliation(s)
- Zhila Khalkhali-Ellis
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | | | | |
Collapse
|
41
|
Deng X, Zhou J, Li FF, Yan P, Zhao EY, Hao L, Yu KJ, Liu SL. Characterization of nodal/TGF-lefty signaling pathway gene variants for possible roles in congenital heart diseases. PLoS One 2014; 9:e104535. [PMID: 25111179 PMCID: PMC4128709 DOI: 10.1371/journal.pone.0104535] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/09/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nodal/TGF-Lefty signaling pathway has important effects at early stages of differentiation of human embryonic stem cells in directing them to differentiate into different embryonic lineages. LEFTY, one of transforming growth factors in the Nodal/TGF-Lefty signaling pathway, plays an important role in the development of heart. The aim of this work was to find evidence on whether Lefty variations are associated with congenital heart diseases (CHD). METHODS We sequenced the Lefty gene for 230 Chinese Han CHD patients and evaluated SNPs rs2295418, rs360057 and g.G169A, which are located within the translated regions of the genes. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 13.0). The Hardy-Weinberg equilibrium test of the population was carried out using online software OEGE, and multiple-sequence alignments of LEFTY proteins were carried out using the Vector NTI software. RESULTS Two heterozygous variants in Lefty1 gene, g.G169A and g.A1035C, and one heterozygous variant in Lefty2 gene, g.C925A, were identified. Statistical analyses showed that the rs2295418 (g.C925A) variant in Lefty2 gene was obviously associated with the risk of CHD (P value = 0.016<0.05). The genotype frequency of rs360057 (g.A1035C) variant in Lefty1 gene was associated with the risk of CHD (P value = 0.007<0.05), but the allele frequency was not (P value = 0.317>0.05). CONCLUSIONS The SNP rs2295418 in the Lefty2 gene is associated with CHD in Chinese Han populations.
Collapse
Affiliation(s)
- Xia Deng
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
| | - Jing Zhou
- Intensive Care Unit, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fei-Feng Li
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
- * E-mail: (K-JY); (F-FL); (S-LL)
| | - Peng Yan
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Er-Ying Zhao
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
| | - Ling Hao
- Department of Oncology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai-Jiang Yu
- Intensive Care Unit, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail: (K-JY); (F-FL); (S-LL)
| | - Shu-Lin Liu
- Genomics Research Center (one of the State-Province Key Laboratory of Biopharmaceutical Engineering, China), Harbin Medical University, Harbin, China
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada
- * E-mail: (K-JY); (F-FL); (S-LL)
| |
Collapse
|
42
|
Kasai T, Chen L, Mizutani A, Kudoh T, Murakami H, Fu L, Seno M. Cancer stem cells converted from pluripotent stem cells and the cancerous niche. J Stem Cells Regen Med 2014. [PMID: 25075155 PMCID: PMC4112272 DOI: 10.46582/jsrm.1001002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nowadays, the cancer stem cells are considered to be significantly responsible for growth, metastasis, invasion and recurrence of all cancer. Cancer stem cells are typically characterized by continuous proliferation and self-renewal as well as by differentiation potential, while stem cells are considered to differentiate into tissue- specific phenotype of mature cells under the influence of micro-environment. Cancer stem cells should be traced to the stem cells under the influence of a micro-environment, which induces malignant tumors. In this review, we propose this micro-environment as a ‘cancerous niche’ and discuss its importance on the formation and maintenance of cancer stem cells with the recent experimental results to establish cancer stem cell models from induced pluripotent stem cells. These models of cancer stem cell will provide the great advantages in cancer research and its therapeutic applications in the future.
Collapse
Affiliation(s)
- T Kasai
- Department of Biotechnology, Graduate School of Natural Science and Technology , Okayama University, Okayama, Japan
| | - L Chen
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics , Tianjin, China
| | - Az Mizutani
- Department of Biotechnology, Graduate School of Natural Science and Technology , Okayama University, Okayama, Japan
| | - T Kudoh
- Department of Biotechnology, Graduate School of Natural Science and Technology , Okayama University, Okayama, Japan
| | - H Murakami
- Department of Biotechnology, Graduate School of Natural Science and Technology , Okayama University, Okayama, Japan
| | - L Fu
- Department of Breast Cancer Pathology and Research laboratory of Cancer Hospital , Tianjin Medical University, Tianjin, China
| | - M Seno
- Department of Biotechnology, Graduate School of Natural Science and Technology , Okayama University, Okayama, Japan
| |
Collapse
|
43
|
Seftor EA, Seftor REB, Weldon D, Kirsammer GT, Margaryan NV, Gilgur A, Hendrix MJC. Melanoma tumor cell heterogeneity: a molecular approach to study subpopulations expressing the embryonic morphogen nodal. Semin Oncol 2014; 41:259-266. [PMID: 24787297 DOI: 10.1053/j.seminoncol.2014.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
As the frequency of melanoma increases, current treatment strategies are struggling to significantly impact patient survival. One of the critical issues in designing efficient therapies is understanding the composition of heterogeneous melanoma tumors in order to target cancer stem cells (CSCs) and drug-resistant subpopulations. In this review, we summarize recent findings pertinent to the reemergence of the embryonic Nodal signaling pathway in melanoma and its significance as a prognostic biomarker and therapeutic target. In addition, we offer a novel molecular approach to studying the functional relevance of Nodal-expressing subpopulations and their CSC phenotype.
Collapse
Affiliation(s)
- Elisabeth A Seftor
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| | - Richard E B Seftor
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| | | | - Gina T Kirsammer
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| | - Naira V Margaryan
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| | - Alina Gilgur
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| | - Mary J C Hendrix
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| |
Collapse
|
44
|
Leal J, Lleonart M. MicroRNAs and cancer stem cells: Therapeutic approaches and future perspectives. Cancer Lett 2013; 338:174-83. [DOI: 10.1016/j.canlet.2012.04.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/21/2012] [Accepted: 04/25/2012] [Indexed: 12/25/2022]
|
45
|
Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett 2013; 339:70-81. [PMID: 23879969 DOI: 10.1016/j.canlet.2013.07.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/07/2013] [Accepted: 07/14/2013] [Indexed: 01/05/2023]
Abstract
Liver cancer stem cells (LCSCs) can drive and maintain hepatocellular carcinoma (HCC) growth, metastasis, and recurrence. Therefore, they are potentially responsible for the poor prognosis of HCC. Oxygen and nutrient deficiencies are common characteristics of the tumor microenvironment. However, how LCSCs adapt to oxygen- and nutrient-deprived conditions is unclear. Here, we used immunofluorescent staining and flow cytometry analysis to show that CD133+ cells were significantly enriched after hypoxia and nutrient starvation (H/S) in the human HCC cell line Huh7. Sorted CD133+ cells showed higher survival, less apoptosis, and possess higher clonogenic ability under H/S compared to the CD133- population. Under H/S, electron microscopy revealed more advanced autophagic vesicles in CD133+ cells. Additionally, CD133+ cells had higher autophagy levels as measured by both RT-qPCR and Western blotting. CD133+ cells had more accumulated GFP-LC3 puncta, which can be detected by fluorescence microscopy. The autophagic inhibitor chloroquine (CQ) significantly increased apoptosis and decreased the clonogenic capacity of CD133+ cells under H/S. Pre-culturing in H/S enhanced the sphere-forming capacity of CD133+ cells. However, CQ significantly impaired this process. Therefore, autophagy is essential for LCSCs maintenance. CD133+ cells were also found to have a higher tumor-forming ability in vivo, which could be inhibited by CQ administration. Collectively, our results indicate that the involvement of autophagy in maintenance of CD133+ LCSCs under the oxygen- and nutrient-deprived conditions that are typical of the tumor microenvironment in HCC. Therefore, autophagy inhibitors may make LCSCs more sensitive to the tumor microenvironment and be useful in improving anti-cancer treatments.
Collapse
|
46
|
Abstract
Much of the focus on the transforming growth factor-β (TGFβ) superfamily in cancer has revolved around the TGFβ ligands themselves. However, it is now becoming apparent that deregulated signalling by many of the other superfamily members also has crucial roles in both the development of tumours and metastasis. Furthermore, these signalling pathways are emerging as plausible therapeutic targets. Their roles in tumorigenesis frequently reflect their function in embryonic development or in adult tissue homeostasis, and their influence extends beyond the tumours themselves, to the tumour microenvironment and more widely to complications of cancer such as cachexia and bone loss.
Collapse
Affiliation(s)
- Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
| | | |
Collapse
|
47
|
Saito A, Ochiai H, Okada S, Miyata N, Azuma T. Suppression of Lefty expression in induced pluripotent cancer cells. FASEB J 2013; 27:2165-74. [PMID: 23407711 DOI: 10.1096/fj.12-221432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cancer and stem cells share the ability to silence tumor suppressors. We focused on Lefty, which encodes one of the most abundant tumor suppressors in embryonic stem (ES) cells and is not expressed in somatic cancer cells. We found that transforming growth factor β (TGF-β) induced demethylation of the Lefty B cytosine-phosphate-guanine (CpG) island and increased Lefty expression (10-200 times) in human pancreatic cancer cells and human liver cancer cells (PLC/PRF/5 and HLF). Expression of Cripto, another important factor in Nodal-Lefty signaling, was not increased after adding TGF-β. We generated reprogrammed cancer cells that revealed high expression of immature marker proteins, high proliferation, and the potential to express morphological patterns of ectoderm, mesoderm, and endoderm, suggesting that these cells may have cancer stem cell-like phenotypes. We investigated Lefty and found that reprogrammed human liver cancer cells (induced pluripotent cancer cells) displayed a much lower ability to express Lefty, although less Lefty B CpG methylation was also observed. We also found that a MEK inhibitor dramatically enhanced Lefty expression in human pancreatic cancers with mutated ras, whereas Lefty B CpG methylation was not decreased. These observations indicate that despite the demethylation of DNA strands in promoter regions of pluripotency-associated genes, including Lefty gene, Lefty expression was not induced well in reprogrammed cells. Of note was the fact that Lefty is abundantly expressed in human ES cells but not in induced pluripotent stem (iPS) cells. We thus think that reprogrammed cancer cells share the mechanism for expression of Lefty with iPS cells. This shared mechanism may contribute to the cancerous transformation of iPS cells.
Collapse
Affiliation(s)
- Akiko Saito
- Department of Biochemistry, Tokyo Dental College, Chiba, Japan
| | | | | | | | | |
Collapse
|
48
|
Völler D, Ott C, Bosserhoff A. MicroRNAs in malignant melanoma. Clin Biochem 2013; 46:909-17. [PMID: 23360785 DOI: 10.1016/j.clinbiochem.2013.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 12/11/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, and the incidence of melanoma has been increasing faster than that of most other cancers. While the survival rate following surgical resection of early-stage primary tumors is nearly 100%, the survival of patients with metastasized tumors is strongly reduced, likely due to resistance to conventional therapies. Therefore, it is important to use new molecular approaches to develop new biomarkers to better prevent and diagnose melanoma. MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate gene expression via repression of translation or direct degradation of their complementary mRNA. In this review, we summarize our current understanding of the involvement of miRNAs and their corresponding targets in melanomagenesis as well as the potential use of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Daniel Völler
- Institute of Pathology, Molecular Pathology, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
49
|
Epigenetic targeting therapies to overcome chemotherapy resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:285-311. [PMID: 22956507 DOI: 10.1007/978-1-4419-9967-2_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is now well established that epigenetic aberrations occur early in malignant transformation, raising the possibility of identifying chemopreventive compounds or reliable diagnostic screening using epigenetic biomarkers. Combinatorial therapies effective for the reexpression of tumor suppressors, facilitating resensitization to conventional chemotherapies, hold great promise for the future therapy of cancer. This approach may also perturb cancer stem cells and thus represent an effective means for managing a number of solid tumors. We believe that in the near future, anticancer drug regimens will routinely include epigenetic therapies, possibly in conjunction with inhibitors of "stemness" signal pathways, to effectively reduce the devastating occurrence of cancer chemotherapy resistance.
Collapse
|
50
|
de Souza CF, Xander P, Monteiro AC, Silva AGDS, da Silva DCP, Mai S, Bernardo V, Lopes JD, Jasiulionis MG. Mining gene expression signature for the detection of pre-malignant melanocytes and early melanomas with risk for metastasis. PLoS One 2012; 7:e44800. [PMID: 22984562 PMCID: PMC3439384 DOI: 10.1371/journal.pone.0044800] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/14/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metastatic melanoma is a highly aggressive skin cancer and currently resistant to systemic therapy. Melanomas may involve genetic, epigenetic and metabolic abnormalities. Evidence is emerging that epigenetic changes might play a significant role in tumor cell plasticity and metastatic phenotype of melanoma cells. PRINCIPAL FINDINGS In this study, we developed a systematic approach to identify genes implicated in melanoma progression. To do this, we used the Affymetrix GeneChip Arrays to screen 34,000 mouse transcripts in melan-a melanocytes, 4C pre-malignant melanocytes, 4C11- non-metastatic and 4C11+ metastatic melanoma cell lines. The genome-wide association studies revealed pathways commonly over-represented in the transition from immortalized to pre-malignant stage, and under-represented in the transition from non-metastatic to metastatic stage. Additionally, the treatment of cells with 10 µM 5-aza-2'-deoxycytidine (5AzaCdR) for 48 hours allowed us to identify genes differentially re-expressed at specific stages of melan-a malignant transformation. Treatment of human primary melanocytes with the demethylating agent 5AzaCdR in combination to the histone deacetylase inhibitor Trichostatin A (TSA) revealed changes on melanocyte morphology and gene expression which could be an indicator of epigenetic flexibility in normal melanocytes. Moreover, changes on gene expression recognized by affecting the melanocyte biology (NDRG2 and VDR), phenotype of metastatic melanoma cells (HSPB1 and SERPINE1) and response to cancer therapy (CTCF, NSD1 and SRC) were found when Mel-2 and/or Mel-3-derived patient metastases were exposed to 5AzaCdR plus TSA treatment. Hierarchical clustering and network analyses in a panel of five patient-derived metastatic melanoma cells showed gene interactions that have never been described in melanomas. SIGNIFICANCE Despite the heterogeneity observed in melanomas, this study demonstrates the utility of our murine melanoma progression model to identify molecular markers commonly perturbed in metastasis. Additionally, the novel gene expression signature identified here may be useful in the future into a model more closely related to translational research.
Collapse
|