1
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. mBio 2024:e0351124. [PMID: 39727417 DOI: 10.1128/mbio.03511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to the formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point toward their having a joint role in controlling metabolism, cell division, and cell growth.IMPORTANCECell division is a fundamental biological process, and the mechanisms that control it in Escherichia coli have been the subject of intense research scrutiny for many decades. Similarly, both the (p)ppGpp-dependent stringent response and inorganic polyphosphate (polyP) synthesis are well-studied, evolutionarily ancient, and widely conserved pathways in diverse bacteria. Our results indicate that these systems, normally studied as stress-response mechanisms, play a coordinated and novel role in regulating cell division, morphology, and metabolism even under non-stress conditions.
Collapse
Affiliation(s)
- Christopher W Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Sun N, Deng X, Kong H, Zhi Z, Jiang G, Xiong J, Chen S, Li S, Yuan W, Wong WL. Magnolol as an Antibacterial Agent Against Drug-resistant Bacteria Targeting Filamentous Temperature-sensitive Mutant Z. Chem Biodivers 2024:e202402800. [PMID: 39714990 DOI: 10.1002/cbdv.202402800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The emergence of multiple drug-resistant bacteria poses critical health threats worldwide. It is urgently needed to develop potent and safe antibacterial agents with novel bactericidal mechanisms to treat these infections. In this study, magnolol was identified as a potential bacterial cell division inhibitor by a cell-based screening approach. This compound showed good antibacterial activity against a number of Gram-positive pathogens (minimum inhibitory concentration 8-16 µg/mL) including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. Further results obtained from biochemical experiments demonstrated that magnolol could markedly disrupt GTPase activity and filamentous temperature-sensitive mutant Z (FtsZ) polymerization, consistent with the impediment to cell division in the bacteria tested. The in vivo antibacterial activity of magnolol was evaluated with a Galleria mellonella larvae model. The results showed that magnolol significantly increased the survival rate of larvae infected with methicillin-resistant S. aureus. The interaction pattern of magnolol with FtsZ was investigated through molecular docking. The finding may offer meaningful insights into the mechanism of action of the compound. The results point to magnolol as a promising antimicrobial compound that inhibits cell division by affecting FtsZ polymerization and has the potential to be developed into an effective antimicrobial drug by further structure modification.
Collapse
Affiliation(s)
- Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, P. R. China
| | - Xin Deng
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, P. R. China
| | - Hanqin Kong
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, P. R. China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, P. R. China
| | - Guli Jiang
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, P. R. China
| | - Jing Xiong
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, P. R. China
| | - Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, P. R. China
| | - Song Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, P. R. China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| |
Collapse
|
3
|
Shin Y, Prasad R, Das N, Taylor JA, Qin H, Hu W, Hu YY, Fu R, Zhang R, Zhou HX, Cross TA. Mycobacterium tuberculosis CrgA Forms a Dimeric Structure with Its Transmembrane Domain Sandwiched between Cytoplasmic and Periplasmic β-Sheets, Enabling Multiple Interactions with Other Divisome Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627054. [PMID: 39677619 PMCID: PMC11643046 DOI: 10.1101/2024.12.05.627054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
CrgA is a key transmembrane (TM) protein in the cell division process of Mycobacterium tuberculosis (Mtb), the pathogen responsible for tuberculosis. While many of the Mtb divisome proteins have been identified, their structures and interactions remain largely unknown. Previous studies of CrgA using oriented-sample solid-state NMR have defined the tilt and rotation of the TM helices, but the cytoplasmic and periplasmic domains and even the oligomeric state were uncharacterized. Here, combining oriented-sample and magic-angle spinning solid-state NMR spectra, we solved the full-length structure of CrgA. The structure features a dimer with a TM domain sandwiched between a cytoplasmic β-sheet and a periplasmic β-sheet. The β-sheets stabilize dimerization, which in turn increases CrgA's ability to participate in multiple protein interactions. Within the membrane, CrgA binds FtsQ, CwsA, PbpA, FtsI, and MmPL3 via its TM helices; in the cytoplasm, Lys23 and Lys25 project outward from the β-sheet to interact with acidic residues of FtsQ and FtsZ. The structural determination of CrgA thus provides significant insights into its roles in recruiting other divisome proteins and stabilizing their complexes for Mtb cell wall synthesis and polar growth.
Collapse
Affiliation(s)
- Yiseul Shin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607
| | - Nabanita Das
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Joshua A. Taylor
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Huajun Qin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Wenhao Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Yan-Yan Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Rongfu Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607
| | - Timothy A. Cross
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee, FL 32310
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| |
Collapse
|
4
|
Degiacomi G, Chiarelli LR, Riabova O, Loré NI, Muñoz-Muñoz L, Recchia D, Stelitano G, Postiglione U, Saliu F, Griego A, Scoffone VC, Kazakova E, Scarpa E, Ezquerra-Aznárez JM, Stamilla A, Buroni S, Tortoli E, Rizzello L, Sassera D, Ramón-García S, Cirillo DM, Makarov V, Pasca MR. The novel drug candidate VOMG kills Mycobacterium abscessus and other pathogens by inhibiting cell division. Int J Antimicrob Agents 2024; 64:107278. [PMID: 39069229 DOI: 10.1016/j.ijantimicag.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
AIMS The incidence of lung infections is increasing worldwide in individuals suffering from cystic fibrosis and chronic obstructive pulmonary disease. Mycobacterium abscessus is associated with chronic lung deterioration in these populations. The intrinsic resistance of M. abscessus to most conventional antibiotics jeopardizes treatment success rates. To date, no single drug has been developed targeting M. abscessus specifically. The objective of this study was to characterize VOMG, a pyrithione-core drug-like small molecule, as a new compound active against M. abscessus and other pathogens. METHODS A multi-disciplinary approach including microbiological, chemical, biochemical and transcriptomics procedures was used to validate VOMG as a promising anti-M. abscessus drug candidate. RESULTS To the authors' knowledge, this is the first study to report the in-vitro and in-vivo bactericidal activity of VOMG against M. abscessus and other pathogens. Besides being active against M. abscessus biofilm, the compound showed a favourable pharmacological (ADME-Tox) profile. Frequency of resistance studies were unable to isolate resistant mutants. VOMG inhibits cell division, particularly the FtsZ enzyme. CONCLUSIONS VOMG is a new drug-like molecule active against M. abscessus, inhibiting cell division with broad-spectrum activity against other microbial pathogens.
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Olga Riabova
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Nicola Ivan Loré
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lara Muñoz-Muñoz
- Department of Microbiology/Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Deborah Recchia
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Umberto Postiglione
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Fabio Saliu
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Griego
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Elena Kazakova
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | | | - Alessandro Stamilla
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loris Rizzello
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Genetics, Milan, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Santiago Ramón-García
- Department of Microbiology/Faculty of Medicine, University of Zaragoza, Zaragoza, Spain; Research and Development Agency of Aragon Foundation, Zaragoza, Spain; Spanish Network for Research on Respiratory Diseases, Carlos III Health Institute, Madrid, Spain.
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Vadim Makarov
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
5
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612536. [PMID: 39314361 PMCID: PMC11419118 DOI: 10.1101/2024.09.11.612536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point towards their having a joint role in controlling metabolism, cell division, and cell growth.
Collapse
Affiliation(s)
- Christopher W. Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Espino IN, Drolet J, Jones TN, Uwechue A, Koehler B, Beaird R, Maione S, Darrah C, Hijazi R, James C, Dupre A, Koscinski E, Creft L, Giampaolo M, Bernier A, Theisen KE. Computational docking of FtsZ: Survey of promising antibiotic compounds. Biochem Biophys Rep 2024; 39:101796. [PMID: 39687410 PMCID: PMC11647940 DOI: 10.1016/j.bbrep.2024.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 12/18/2024] Open
Abstract
The bacterial cell-division protein FtsZ has been a promising antibiotic target for over a decade now, but there is still a need for more work in this area. So far there are no FtsZ targeting drugs commercially available. We have analyzed a wide variety of prospective drugs and their interactions with multiple FtsZ species using both free and directed docking simulations. Our goal is to present a standardized computational screening method for potential drug compounds targeting FtsZ. Our work is an example of a way to compare many proposed drugs and FtsZ species combinations relatively quickly. A common method for comparison can yield new results that individual studies and varying methods might not show, as we demonstrate here. To our knowledge this is one of the first, if not the first, computational docking study on the new E. coli FtsZ structures obtained in 2020.
Collapse
Affiliation(s)
- Ileini N. Espino
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Julia Drolet
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Ty-niquia Jones
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Antonette Uwechue
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Brittany Koehler
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Raquel Beaird
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Sanni Maione
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Christine Darrah
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Rana Hijazi
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Christopher James
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Annabelle Dupre
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Ewa Koscinski
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Leilani Creft
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Michael Giampaolo
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Alexandre Bernier
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| | - Kelly E. Theisen
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, 12901, NY, USA
| |
Collapse
|
7
|
Sun N, Zhi Z, Xiao T, Deng X, He T, Dong W, Feng S, Chen S, Wong WL, Yuan W. The study of honokiol as a natural product-based antimicrobial agent and its potential interaction with FtsZ protein. Front Microbiol 2024; 15:1361508. [PMID: 39104591 PMCID: PMC11298477 DOI: 10.3389/fmicb.2024.1361508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Multidrug resistant bacteria have been a global health threat currently and frontline clinical treatments for these infections are very limited. To develop potent antibacterial agents with new bactericidal mechanisms is thus needed urgently to address this critical antibiotic resistance challenge. Natural products are a treasure of small molecules with high bioactive and low toxicity. In the present study, we demonstrated that a natural compound, honokiol, showed potent antibacterial activity against a number of Gram-positive bacteria including MRSA and VRE. Moreover, honokiol in combination with clinically used β-lactam antibiotics exhibits strong synergistic antimicrobial effects against drug-resistant S. aureus strains. Biochemical studies further reveal that honokiol may disrupt the GTPase activity, FtsZ polymerization, cell division. These biological impacts induced by honokiol may ultimately cause bacterial cell death. The in vivo antibacterial activity of honokiol against S. aureus infection was also verified with a biological model of G. mellonella larvae. The in vivo results support that honokiol is low toxic against the larvae and effectively increases the survival rate of the larvae infected with S. aureus. These findings demonstrate the potential of honokiol for further structural advancement as a new class of antibacterial agents with high potency against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ting Xiao
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Xin Deng
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Tenghui He
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Shuyi Feng
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Zhao X, Cao X, Qiu H, Liang W, Jiang Y, Wang Q, Wang W, Li C, Li Y, Han B, Tang K, Zhao L, Zhang X, Wang X, Liang H. Rational molecular design converting fascaplysin derivatives to potent broad-spectrum inhibitors against bacterial pathogens via targeting FtsZ. Eur J Med Chem 2024; 270:116347. [PMID: 38552428 DOI: 10.1016/j.ejmech.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/21/2024]
Abstract
The filamentous temperature-sensitive mutant Z protein (FtsZ), a key player in bacterial cell division machinery, emerges as an attractive target to tackle the plight posed by the ever growing antibiotic resistance over the world. Therefore in this regard, agents with scaffold diversities and broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens are highly needed. In this study, a new class of marine-derived fascaplysin derivatives has been designed and synthesized by Suzuki-Miyaura cross-coupling. Some compounds exhibited potent bactericidal activities against a panel of Gram-positive (MIC = 0.024-6.25 μg/mL) and Gram-negative (MIC = 1.56-12.5 μg/mL) bacteria including methicillin-resistant S. aureus (MRSA). They exerted their effects by dual action mechanism via disrupting the integrity of the bacterial cell membrane and targeting FtsZ protein. These compounds stimulated polymerization of FtsZ monomers and bundling of the polymers, and stabilized the resulting polymer network, thus leading to the dysfunction of FtsZ in cell division. In addition, these agents showed negligible hemolytic activity and low cytotoxicity to mammalian cells. The studies on docking and molecular dynamics simulations suggest that these inhibitors bind to the hydrophilic inter-domain cleft of FtsZ protein and the insights obtained in this study would facilitate the development of potential drugs with broad-spectrum bioactivities.
Collapse
Affiliation(s)
- Xing Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China; Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xuanyu Cao
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yinli Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Qiang Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Weile Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Chengxi Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yang Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Bowen Han
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xuan Zhang
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
9
|
Bryan EJ, Qiao Q, Wang Y, Roberge JY, LaVoie EJ, Pilch DS. A FtsZ Inhibitor That Can Utilize Siderophore-Ferric Iron Uptake Transporter Systems for Activity against Gram-Negative Bacterial Pathogens. Antibiotics (Basel) 2024; 13:209. [PMID: 38534644 DOI: 10.3390/antibiotics13030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
The global threat of multidrug-resistant Gram-negative bacterial pathogens necessitates the development of new and effective antibiotics. FtsZ is an essential and highly conserved cytoskeletal protein that is an appealing antibacterial target for new antimicrobial therapeutics. However, the effectiveness of FtsZ inhibitors against Gram-negative species has been limited due in part to poor intracellular accumulation. To address this limitation, we have designed a FtsZ inhibitor (RUP4) that incorporates a chlorocatechol siderophore functionality that can chelate ferric iron (Fe3+) and utilizes endogenous siderophore uptake pathways to facilitate entry into Gram-negative pathogens. We show that RUP4 is active against both Klebsiella pneumoniae and Acinetobacter baumannii, with this activity being dependent on direct Fe3+ chelation and enhanced under Fe3+-limiting conditions. Genetic deletion studies in K. pneumoniae reveal that RUP4 gains entry through the FepA and CirA outer membrane transporters and the FhuBC inner membrane transporter. We also show that RUP4 exhibits bactericidal synergy against K. pneumoniae when combined with select antibiotics, with the strongest synergy observed with PBP2-targeting β-lactams or MreB inhibitors. In the aggregate, our studies indicate that incorporation of Fe3+-chelating moieties into FtsZ inhibitors is an appealing design strategy for enhancing activity against Gram-negative pathogens of global clinical significance.
Collapse
Affiliation(s)
- Eric J Bryan
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Qi Qiao
- Department of Molecular Design and Synthesis, Rutgers University Biomedical Innovation Cores, Piscataway, NJ 08854, USA
| | - Yuxuan Wang
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Jacques Y Roberge
- Department of Molecular Design and Synthesis, Rutgers University Biomedical Innovation Cores, Piscataway, NJ 08854, USA
| | - Edmond J LaVoie
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Daniel S Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Suigo L, Monterroso B, Sobrinos-Sanguino M, Alfonso C, Straniero V, Rivas G, Zorrilla S, Valoti E, Margolin W. Benzodioxane-benzamides as promising inhibitors of Escherichia coli FtsZ. Int J Biol Macromol 2023; 253:126398. [PMID: 37634788 DOI: 10.1016/j.ijbiomac.2023.126398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
The conserved process of cell division in bacteria has been a long-standing target for antimicrobials, although there are few examples of potent broad-spectrum compounds that inhibit this process. Most currently available compounds acting on division are directed towards the FtsZ protein, a self-assembling GTPase that is a central element of the division machinery in most bacteria. Benzodioxane-benzamides are promising candidates, but poorly explored in Gram-negatives. We have tested a number of these compounds on E. coli FtsZ and found that many of them significantly stabilized the polymers against disassembly and reduced the GTPase activity. Reconstitution in crowded cell-like conditions showed that FtsZ bundles were also susceptible to these compounds, including some compounds that were inactive on protofilaments in dilute conditions. They efficiently killed E. coli cells defective in the AcrAB efflux pump. The activity of the compounds on cell growth and division generally showed a good correlation with their effect in vitro, and our experiments are consistent with FtsZ being the target in vivo. Our results uncover the detrimental effects of benzodioxane-benzamides on permeable E. coli cells via its central division protein, implying that lead compounds may be found within this class for the development of antibiotics against Gram-negative bacteria.
Collapse
Affiliation(s)
- Lorenzo Suigo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milano, Italy
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Marta Sobrinos-Sanguino
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Valentina Straniero
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milano, Italy
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Ermanno Valoti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milano, Italy.
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston 77030, TX, USA.
| |
Collapse
|
11
|
Liu B, Liu D, Chen T, Wang X, Xiang H, Wang G, Cai R. iTRAQ-based quantitative proteomic analysis of the antibacterial mechanism of silver nanoparticles against multidrug-resistant Streptococcus suis. Front Microbiol 2023; 14:1293363. [PMID: 38033593 PMCID: PMC10684948 DOI: 10.3389/fmicb.2023.1293363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Background The increase in antibiotic resistance of bacteria has become a major concern in clinical treatment. Silver nanoparticles (AgNPs) have significant antibacterial effects against Streptococcus suis. Therefore, this study aimed to investigate the antibacterial activity and mechanism of action of AgNPs against multidrug-resistant S. suis. Methods The effect of AgNPs on the morphology of multidrug-resistant S. suis was observed using scanning electron microscopy (SEM). Differentially expressed proteins were analyzed by iTRAQ quantitative proteomics, and the production of reactive oxygen species (ROS) was assayed by H2DCF-DA staining. Results SEM showed that AgNPs disrupted the normal morphology of multidrug-resistant S. suis and the integrity of the biofilm structure. Quantitative proteomic analysis revealed that a large number of cell wall synthesis-related proteins, such as penicillin-binding protein and some cell cycle proteins, such as the cell division protein FtsZ and chromosomal replication initiator protein DnaA, were downregulated after treatment with 25 μg/mL AgNPs. Significant changes were also observed in the expression of the antioxidant enzymes glutathione reductase, alkyl hydroperoxides-like protein, α/β superfamily hydrolases/acyltransferases, and glutathione disulfide reductases. ROS production in S. suis positively correlated with AgNP concentration. Conclusion The potential antibacterial mechanism of AgNPs may involve disrupting the normal morphology of bacteria by inhibiting the synthesis of cell wall peptidoglycans and inhibiting the growth of bacteria by inhibiting the cell division protein FtsZ and Chromosomal replication initiator protein DnaA. High oxidative stress may be a significant cause of bacterial death. The potential mechanism by which AgNPs inhibit S. suis biofilm formation may involve affecting bacterial adhesion and interfering with the quorum sensing system.
Collapse
Affiliation(s)
- Baoling Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dingyu Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Tianbao Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Xiaohu Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Hua Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Gang Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Rujian Cai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
12
|
Lade H, Kim JS. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics (Basel) 2023; 12:1362. [PMID: 37760659 PMCID: PMC10525618 DOI: 10.3390/antibiotics12091362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The development of antibiotic resistance in Staphylococcus aureus, particularly in methicillin-resistant S. aureus (MRSA), has become a significant health concern worldwide. The acquired mecA gene encodes penicillin-binding protein 2a (PBP2a), which takes over the activities of endogenous PBPs and, due to its low affinity for β-lactam antibiotics, is the main determinant of MRSA. In addition to PBP2a, other genetic factors that regulate cell wall synthesis, cell signaling pathways, and metabolism are required to develop high-level β-lactam resistance in MRSA. Although several genetic factors that modulate β-lactam resistance have been identified, it remains unclear how they alter PBP2a expression and affect antibiotic resistance. This review describes the molecular determinants of β-lactam resistance in MRSA, with a focus on recent developments in our understanding of the role of mecA-encoded PBP2a and on other genetic factors that modulate the level of β-lactam resistance. Understanding the molecular determinants of β-lactam resistance can aid in developing novel strategies to combat MRSA.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| |
Collapse
|
13
|
Myszka K, Tomaś N, Juzwa W, Wolko Ł. Chlorogenic Acid Inhibits Rahnella aquatilis KM25 Growth and Proteolytic Activity in Fish-Based Products. Microorganisms 2023; 11:1367. [PMID: 37374869 DOI: 10.3390/microorganisms11061367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
This work verified the antiproliferative and antiproteolytic activities of chlorogenic acid against Rahnella aquatilis KM25, a spoilage organism of raw salmon stored at 4 °C. Chlorogenic acid limited the growth of R. aqatilis KM25 in vitro at a concentration of 2.0 mg/mL. The dead (46%), viable (25%), and injured (20%) cell subpopulations were identified by flow cytometry following treatment of R. aquatilis KM25 with the examined agent. The exposure of R. aquatilis KM25 to chlorogenic acid altered its morphology. Changes in cell dimensions, mostly in length parameters from 0.778 µm to 1.09 µm, were found. The length of untreated cells ranged from 0.958 µm to 1.53 µm. The RT-qPCR experiments revealed changes in the expression of genes responsible for the proliferation and proteolytic activity of cells. Chlorogenic acid caused a significant reduction in the mRNA levels of the ftsZ, ftsA, ftsN, tolB, and M4 genes (-2.5, -1.5, -2.0, -1.5, and -1.5, respectively). In situ experiments confirmed the potential of chlorogenic acid to limit bacterial growth. A similar effect was noted in samples treated with benzoic acid, where the growth inhibition of R. aquatilis KM25 was 85-95%. Reduction of microbial R. aquatilis KM25 proliferation significantly limited total volatile base nitrogen (TVB-N) and trimethylamine (TMA-N) formation during storage, extending the shelf life of model products. The TVB-N and TMA-N parameters did not exceed the upper levels of the maximum permissible limit of acceptability. In this work, the TVB-N and TMA-N parameters were 10-25 mg/100 g and 2.5-20.5 mg/100 g, respectively; for samples with benzoic acid-supplemented marinades, the parameters TVB-N and TMA-N were 7.5-25.0 mg/100 g and 2.0-20.0 mg/100 g, respectively. Based on the results of this work, it can be concluded that chlorogenic acid can increase the safety, shelf life, and quality of fishery products.
Collapse
Affiliation(s)
- Kamila Myszka
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Natalia Tomaś
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| |
Collapse
|
14
|
Kifayat S, Yele V, Ashames A, Sigalapalli DK, Bhandare RR, Shaik AB, Nasipireddy V, Sanapalli BKR. Filamentous temperature sensitive mutant Z: a putative target to combat antibacterial resistance. RSC Adv 2023; 13:11368-11384. [PMID: 37057268 PMCID: PMC10089256 DOI: 10.1039/d3ra00013c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
In the pre-antibiotic era, common bacterial infections accounted for high mortality and morbidity. Moreover, the discovery of penicillin in 1928 marked the beginning of an antibiotic revolution, and this antibiotic era witnessed the discovery of many novel antibiotics, a golden era. However, the misuse or overuse of these antibiotics, natural resistance that existed even before the antibiotics were discovered, genetic variations in bacteria, natural selection, and acquisition of resistance from one species to another consistently increased the resistance to the existing antibacterial targets. Antibacterial resistance (ABR) is now becoming an ever-increasing concern jeopardizing global health. Henceforth, there is an urgent unmet need to discover novel compounds to combat ABR, which act through untapped pathways/mechanisms. Filamentous Temperature Sensitive mutant Z (FtsZ) is one such unique target, a tubulin homolog involved in developing a cytoskeletal framework for the cytokinetic ring. Additionally, its pivotal role in bacterial cell division and the lack of homologous structural protein in mammals makes it a potential antibacterial target for developing novel molecules. Approximately 2176 X-crystal structures of FtsZ were available, which initiated the research efforts to develop novel antibacterial agents. The literature has reported several natural, semisynthetic, peptides, and synthetic molecules as FtsZ inhibitors. This review provides valuable insights into the basic crystal structure of FtsZ, its inhibitors, and their inhibitory activities. This review also describes the available in vitro detection and quantification methods of FtsZ-drug complexes and the various approaches for determining drugs targeting FtsZ polymerization.
Collapse
Affiliation(s)
- Sumaiya Kifayat
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India
| | - Akram Ashames
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Dilep Kumar Sigalapalli
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University Vadlamudi 522213 Andhra Pradesh India
| | - Richie R Bhandare
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada Chebrolu Guntur 522212 Andhra Pradesh India
| | | | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| |
Collapse
|
15
|
Safi AUR, Bendixen E, Rahman H, Khattak B, Wu W, Ullah W, Khan N, Ali F, Yasin N, Qasim M. Molecular identification and differential proteomics of drug resistant Salmonella Typhi. Diagn Microbiol Infect Dis 2023; 105:115883. [PMID: 36731197 DOI: 10.1016/j.diagmicrobio.2022.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to elucidate differentially expressed proteins in drug resistant Salmonella Typhi. Among 100 samples, S. typhi were identified in 43 samples. In drug susceptibility profile, 95.3% (41/43), 80% (35/43) and 70% (30/43) resistances were observed against Nalidixic acid, Ampicillin, and Chloramphenicol respectively. No resistance was observed against Imipenum and Azithromycin while only 11% (5/43) isolates were found resistant to Ceftriaxone. Mass spectrometric differential analysis resulted in 23 up-regulated proteins in drug resistant isolates. Proteins found up-regulated are involved in virulence (vipB, galU, tufA, and lpp1), translation (rpsF, rpsG, rplJ, and rplR), antibiotic resistance (zwf, phoP, and ompX), cell metabolism (metK, ftsZ, pepD, and secB), stress response (ridA, rbfA, and dps), housekeeping (gapA and eno) and hypothetical proteins including ydfZ, t1802, and yajQ. These proteins are of diverse nature and functions but highly interconnected. Further characterization may be helpful for elucidation of new biomarker proteins and therapeutic drug targets.
Collapse
Affiliation(s)
- Aziz Ur Rehman Safi
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Emoke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C Denmark
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan Pakistan
| | - Baharullah Khattak
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Wei Wu
- College of Animal Sciences and Technology, Southwest University, Chongqing China
| | - Waheed Ullah
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Nasar Khan
- Department of Microbiology, Kohsar University Murree, Kashmir Point, Punjab, Pakistan
| | - Farhad Ali
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Nusrat Yasin
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan.
| |
Collapse
|
16
|
Chanu NK, Mandal MK, Srivastava A, Mishra Y, Chaurasia N. Proteomics Reveals Damaging Effect of Alpha-Cypermethrin Exposure in a Non-Target Freshwater Microalga Chlorella sp. NC-MKM. Curr Microbiol 2023; 80:144. [PMID: 36943524 DOI: 10.1007/s00284-023-03179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/02/2023] [Indexed: 03/23/2023]
Abstract
Alpha-cypermethrin, a pyrethroid pesticide, is frequently used on crops to prevent insect attacks. However, occasionally, due to drift, leaching, or with rainwater, it enters the aquatic environment and poses a serious threat to the growth of non-target aquatic organisms. In the current study, we were interested in investigating the damaging effect of alpha-cypermethrin on a local freshwater non-target green alga Chlorella sp. NC-MKM in terms of its protein levels. This was achieved by exposing Chlorella sp. NC-MKM to an EC50 concentration of alpha-cypermethrin for 1 day, followed by the two-dimensional (2-D) gel electrophoresis and MALDI-TOF MS. Fifty-three proteins, which had showed significant differential accumulation (> 1.5 fold, P < 0.05) after exposure to alpha-cypermethrin, were considered as differentially accumulated proteins (DAPs). These DAPs were further divided into several functional categories, and the expressions of each in control and treatment samples were compared. Comparison revealed that alpha-cypermethrin exposure affects the accumulation of proteins related with photosynthesis, stress response, carbohydrate metabolism, signal transduction and transporters, translation, transcription, cell division, lipid metabolism, amino acid and nucleotide biosynthesis, secondary metabolites production, and post-translational modification, and thus rendered the tested algal isolate sensitive toward this pesticide. The overall findings of this research thus offer a fundamental understanding of the possible mechanism of action of the insecticide alpha-cypermethrin on the microalga Chlorella sp. NC-MKM and also suggest potential biomarkers for the investigation of pesticide exposed microalgae.
Collapse
Affiliation(s)
- Ng Kunjarani Chanu
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Madan Kumar Mandal
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Chaurasia
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, 793022, Meghalaya, India.
| |
Collapse
|
17
|
Bryan E, Ferrer-González E, Sagong HY, Fujita J, Mark L, Kaul M, LaVoie EJ, Matsumura H, Pilch DS. Structural and Antibacterial Characterization of a New Benzamide FtsZ Inhibitor with Superior Bactericidal Activity and In Vivo Efficacy Against Multidrug-Resistant Staphylococcus aureus. ACS Chem Biol 2023; 18:629-642. [PMID: 36854145 PMCID: PMC10274580 DOI: 10.1021/acschembio.2c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant (MDR) bacterial pathogen of acute clinical significance. Resistance to current standard-of-care antibiotics, such as vancomycin and linezolid, among nosocomial and community-acquired MRSA clinical isolates is on the rise. This threat to global public health highlights the need to develop new antibiotics for the treatment of MRSA infections. Here, we describe a new benzamide FtsZ inhibitor (TXH9179) with superior antistaphylococcal activity relative to earlier-generation benzamides like PC190723 and TXA707. TXH9179 was found to be 4-fold more potent than TXA707 against a library of 55 methicillin-sensitive S. aureus (MSSA) and MRSA clinical isolates, including MRSA isolates resistant to vancomycin and linezolid. TXH9179 was also associated with a lower frequency of resistance relative to TXA707 in all but one of the MSSA and MRSA isolates examined, with the observed resistance being due to mutations in the ftsZ gene. TXH9179 induced changes in MRSA cell morphology, cell division, and FtsZ localization are fully consistent with its actions as a FtsZ inhibitor. Crystallographic studies demonstrate the direct interaction of TXH9179 with S. aureus FtsZ (SaFtsZ), while delineating the key molecular contacts that drive complex formation. TXH9179 was not associated with any mammalian cytotoxicity, even at a concentration 10-fold greater than that producing antistaphylococcal activity. In serum, the carboxamide prodrug of TXH9179 (TXH1033) is rapidly hydrolyzed to TXH9179 by serum acetylcholinesterases. Significantly, both intravenously and orally administered TXH1033 exhibited enhanced in vivo efficacy relative to the carboxamide prodrug of TXA707 (TXA709) in treating a mouse model of systemic (peritonitis) MRSA infection. Viewed as a whole, our results highlight TXH9179 as a promising new benzamide FtsZ inhibitor worthy of further development.
Collapse
Affiliation(s)
- Eric Bryan
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| | - Edgar Ferrer-González
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| | - Hye Yeon Sagong
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
- TAXIS Pharmaceuticals, Inc., 9 Deer Park Drive, Suite J-15, Monmouth Junction, New Jersey 08852, United States
| | - Junso Fujita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lilly Mark
- TAXIS Pharmaceuticals, Inc., 9 Deer Park Drive, Suite J-15, Monmouth Junction, New Jersey 08852, United States
| | - Malvika Kaul
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| | - Edmond J LaVoie
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Shiga 525-8577, Japan
| | - Daniel S Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, United States
| |
Collapse
|
18
|
A Comparative Study of the Inhibitory Action of Berberine Derivatives on the Recombinant Protein FtsZ of E. coli. Int J Mol Sci 2023; 24:ijms24065674. [PMID: 36982749 PMCID: PMC10057996 DOI: 10.3390/ijms24065674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Medicinal plants belonging to the genus Berberis may be considered an interesting source of drugs to counteract the problem of antimicrobial multiresistance. The important properties associated with this genus are mainly due to the presence of berberine, an alkaloid with a benzyltetrahydroisoquinoline structure. Berberine is active against both Gram-negative and Gram-positive bacteria, influencing DNA duplication, RNA transcription, protein synthesis, and the integrity of the cell surface structure. Countless studies have shown the enhancement of these beneficial effects following the synthesis of different berberine analogues. Recently, a possible interaction between berberine derivatives and the FtsZ protein was predicted through molecular docking simulations. FtsZ is a highly conserved protein essential for the first step of cell division in bacteria. The importance of FtsZ for the growth of numerous bacterial species and its high conservation make it a perfect candidate for the development of broad-spectrum inhibitors. In this work, we investigate the inhibition mechanisms of the recombinant FtsZ of Escherichia coli by different N-arylmethyl benzodioxolethylamines as berberine simplified analogues appropriately designed to evaluate the effect of structural changes on the interaction with the enzyme. All the compounds determine the inhibition of FtsZ GTPase activity by different mechanisms. The tertiary amine 1c proved to be the best competitive inhibitor, as it causes a remarkable increase in FtsZ Km (at 40 μM) and a drastic reduction in its assembly capabilities. Moreover, a fluorescence spectroscopic analysis carried out on 1c demonstrated its strong interaction with FtsZ (Kd = 26.6 nM). The in vitro results were in agreement with docking simulation studies.
Collapse
|
19
|
Monterroso B, Robles-Ramos MÁ, Sobrinos-Sanguino M, Luque-Ortega JR, Alfonso C, Margolin W, Rivas G, Zorrilla S. Bacterial division ring stabilizing ZapA versus destabilizing SlmA modulate FtsZ switching between biomolecular condensates and polymers. Open Biol 2023; 13:220324. [PMID: 36854378 PMCID: PMC9974302 DOI: 10.1098/rsob.220324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Cytokinesis is a fundamental process for bacterial survival and proliferation, involving the formation of a ring by filaments of the GTPase FtsZ, spatio-temporally regulated through the coordinated action of several factors. The mechanisms of this regulation remain largely unsolved, but the inhibition of FtsZ polymerization by the nucleoid occlusion factor SlmA and filament stabilization by the widely conserved cross-linking protein ZapA are known to play key roles. It was recently described that FtsZ, SlmA and its target DNA sequences (SlmA-binding sequence (SBS)) form phase-separated biomolecular condensates, a type of structure associated with cellular compartmentalization and resistance to stress. Using biochemical reconstitution and orthogonal biophysical approaches, we show that FtsZ-SlmA-SBS condensates captured ZapA in crowding conditions and when encapsulated inside cell-like microfluidics microdroplets. We found that, through non-competitive binding, the nucleotide-dependent FtsZ condensate/polymer interconversion was regulated by the ZapA/SlmA ratio. This suggests a highly concentration-responsive tuning of the interconversion that favours FtsZ polymer stabilization by ZapA under conditions mimicking intracellular crowding. These results highlight the importance of biomolecular condensates as concentration hubs for bacterial division factors, which can provide clues to their role in cell function and bacterial survival of stress conditions, such as those generated by antibiotic treatment.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Miguel Ángel Robles-Ramos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Marta Sobrinos-Sanguino
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Carlos Alfonso
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, TX 77030, USA
| | - Germán Rivas
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Silvia Zorrilla
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
20
|
Sharma AK, Poddar SM, Chakraborty J, Nayak BS, Kalathil S, Mitra N, Gayathri P, Srinivasan R. A mechanism of salt bridge-mediated resistance to FtsZ inhibitor PC190723 revealed by a cell-based screen. Mol Biol Cell 2023; 34:ar16. [PMID: 36652338 PMCID: PMC10011733 DOI: 10.1091/mbc.e22-12-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacterial cell division proteins, especially the tubulin homologue FtsZ, have emerged as strong targets for developing new antibiotics. Here, we have utilized the fission yeast heterologous expression system to develop a cell-based assay to screen for small molecules that directly and specifically target the bacterial cell division protein FtsZ. The strategy also allows for simultaneous assessment of the toxicity of the drugs to eukaryotic yeast cells. As a proof-of-concept of the utility of this assay, we demonstrate the effect of the inhibitors sanguinarine, berberine, and PC190723 on FtsZ. Though sanguinarine and berberine affect FtsZ polymerization, they exert a toxic effect on the cells. Further, using this assay system, we show that PC190723 affects Helicobacter pylori FtsZ function and gain new insights into the molecular determinants of resistance to PC190723. On the basis of sequence and structural analysis and site-specific mutations, we demonstrate that the presence of salt bridge interactions between the central H7 helix and β-strands S9 and S10 mediates resistance to PC190723 in FtsZ. The single-step in vivo cell-based assay using fission yeast enabled us to dissect the contribution of sequence-specific features of FtsZ and cell permeability effects associated with bacterial cell envelopes. Thus, our assay serves as a potent tool to rapidly identify novel compounds targeting polymeric bacterial cytoskeletal proteins like FtsZ to understand how they alter polymerization dynamics and address resistance determinants in targets.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Sakshi Mahesh Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Joyeeta Chakraborty
- Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bhagyashri Soumya Nayak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Srilakshmi Kalathil
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Nivedita Mitra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Pananghat Gayathri
- Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
21
|
Models versus pathogens: how conserved is the FtsZ in bacteria? Biosci Rep 2023; 43:232502. [PMID: 36695643 PMCID: PMC9939409 DOI: 10.1042/bsr20221664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.
Collapse
|
22
|
Brajtenbach D, Puls JS, Matos de Opitz CL, Sass P, Kubitscheck U, Grein F. Quantitative Analysis of Microscopy Data to Evaluate Bacterial Responses to Antibiotic Treatment. Methods Mol Biol 2023; 2601:231-257. [PMID: 36445587 DOI: 10.1007/978-1-0716-2855-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microscopy is a powerful method to evaluate the direct effects of antibiotic action on the single cell level. As with other methodologies, microscopy data is obtained through sufficient biological and technical replicate experiments, where evaluation of the sample is generally followed over time. Even if a single antibiotic is tested for a defined time, the most certain outcome is large amounts of raw data that requires systematic analysis. Although microscopy is a helpful qualitative method, the recorded information is stored as defined quantifiable units, the pixels. When this information is transferred to diverse bioinformatic tools, it is possible to analyze the microscopy data while avoiding the inherent bias associated to manual quantification. Here, we briefly describe methods for the analysis of microscopy images using open-source programs, with a special focus on bacteria exposed to antibiotics.
Collapse
Affiliation(s)
- Dominik Brajtenbach
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Jan-Samuel Puls
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cruz L Matos de Opitz
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Peter Sass
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany.
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
23
|
Sass P. Antibiotics: Precious Goods in Changing Times. Methods Mol Biol 2023; 2601:3-26. [PMID: 36445576 DOI: 10.1007/978-1-0716-2855-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibiotics represent a first line of defense of diverse microorganisms, which produce and use antibiotics to counteract natural enemies or competitors for nutritional resources in their nearby environment. For antimicrobial activity, nature has invented a great variety of antibiotic modes of action that involve the perturbation of essential bacterial structures or biosynthesis pathways of macromolecules such as the bacterial cell wall, DNA, RNA, or proteins, thereby threatening the specific microbial lifestyle and eventually even survival. However, along with highly inventive modes of antibiotic action, nature also developed a comparable set of resistance mechanisms that help the bacteria to circumvent antibiotic action. Microorganisms have evolved specific adaptive responses that allow to appropriately react to the presence of antimicrobial agents, thereby ensuring survival during antimicrobial stress. In times of rapid development and spread of antibiotic (multi-)resistance, new resistance-breaking strategies to counteract bacterial infections are desperately needed. This chapter is an update to Chapter 1 of the first edition of this book and intends to give an overview of common antibiotics and their target pathways. It will also present examples for new antibiotics with novel modes of action, illustrating that nature's repertoire of innovative new antimicrobial agents has not been fully exploited yet, and we still might find new drugs that help to evade established antimicrobial resistance strategies.
Collapse
Affiliation(s)
- Peter Sass
- Interfaculty Institute for Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
24
|
Matos de Opitz CL, Sass P. Microscopy-Based Multiwell Assay to Characterize Disturbed Bacterial Morphogenesis Upon Antibiotic Action. Methods Mol Biol 2023; 2601:171-190. [PMID: 36445584 DOI: 10.1007/978-1-0716-2855-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The urgent need of new antimicrobial agents to combat life-threatening bacterial infections demands the identification and characterization of novel compounds that interfere with new and unprecedented target pathways or structures in multiresistant bacteria. Here, bacterial cell division has emerged as a new and promising target pathway for antibiotic intervention. Compounds, which inhibit division, commonly induce a characteristic filamentation phenotype of rod-shaped bacteria, such as Bacillus subtilis. Hence, this filamentation phenotype can be used to identify and characterize novel compounds that primarily target bacterial cell division. Since novel compounds of both synthetic and natural product origin are often available in small amounts only, thereby limiting the number of assays during mode of action studies, we here describe a semiautomated, microscopy-based approach that requires only small volumes of compounds to allow for the real-time observation of their effects on living bacteria, such as filamentation or cell lysis, in high-throughput 96-well-based formats. We provide a detailed workflow for the initial characterization of multiple compounds at once and further tools for the initial, microscopy-based characterization of their antibacterial mode of action.
Collapse
Affiliation(s)
- Cruz L Matos de Opitz
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Peter Sass
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Vemula D, Maddi DR, Bhandari V. Homology modeling, virtual screening, molecular docking, and dynamics studies for discovering Staphylococcus epidermidis FtsZ inhibitors. Front Mol Biosci 2023; 10:1087676. [PMID: 36936991 PMCID: PMC10020519 DOI: 10.3389/fmolb.2023.1087676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Staphylococcus epidermidis is the most common cause of medical device-associated infections and is an opportunistic biofilm former. Among hospitalized patients, S. epidermidis infections are the most prevalent, and resistant to most antibiotics. In order to overcome this resistance, it is imperative to treat the infection at a cellular level. The present study aims to identify inhibitors of the prokaryotic cell division protein FtsZ a widely conserved component of bacterial cytokinesis. Two substrate binding sites are present on the FtsZ protein; the nucleotide-binding domain and the inter-domain binding sites. Molecular modeling was used to identify potential inhibitors against the binding sites of the FtsZ protein. One hundred thirty-eight chemical entities were virtually screened for the binding sites and revealed ten molecules, each with good binding affinities (docking score range -9.549 to -4.290 kcal/mol) compared to the reference control drug, i.e., Dacomitinib (-4.450 kcal/mol) and PC190723 (-4.694 kcal/mol) at nucleotide and inter-domain binding sites respectively. These top 10 hits were further analyzed for their ADMET properties and molecular dynamics simulations. The Chloro-derivative of GTP, naphthalene-1,3-diyl bis(3,4,5-trihydroxybenzoate), Guanosine triphosphate (GTP), morpholine and methylpiperazine derivative of GTP were identified as the lead molecules for nucleotide binding site whereas for inter-domain binding site, 1-(((amino(iminio)methyl)amino)methyl)-3-(3-(tert-butyl)phenyl)-6,7-dimethoxyisoquinolin-2-ium, and Chlorogenic acidwere identified as lead molecules. Molecular dynamics simulation and post MM/GBSA analysis of the complexes revealed good protein-ligand stability predicting them as potential inhibitors of FtsZ (Figure 1). Thus, identified FtsZ inhibitors are a promising lead compounds for S. epidermidis related infections.
Collapse
|
26
|
Antibiotic Acyldepsipeptides Stimulate the Streptomyces Clp-ATPase/ClpP Complex for Accelerated Proteolysis. mBio 2022; 13:e0141322. [PMID: 36286522 PMCID: PMC9765437 DOI: 10.1128/mbio.01413-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clp proteases consist of a proteolytic, tetradecameric ClpP core and AAA+ Clp-ATPases. Streptomycetes, producers of a plethora of secondary metabolites, encode up to five different ClpP homologs, and the composition of their unusually complex Clp protease machinery has remained unsolved. Here, we report on the composition of the housekeeping Clp protease in Streptomyces, consisting of a heterotetradecameric core built of ClpP1, ClpP2, and the cognate Clp-ATPases ClpX, ClpC1, or ClpC2, all interacting with ClpP2 only. Antibiotic acyldepsipeptides (ADEP) dysregulate the Clp protease for unregulated proteolysis. We observed that ADEP binds Streptomyces ClpP1, but not ClpP2, thereby not only triggering the degradation of nonnative protein substrates but also accelerating Clp-ATPase-dependent proteolysis. The explanation is the concomitant binding of ADEP and Clp-ATPases to opposite sides of the ClpP1P2 barrel, hence revealing a third, so far unknown mechanism of ADEP action, i.e., the accelerated proteolysis of native protein substrates by the Clp protease. IMPORTANCE Clp proteases are antibiotic and anticancer drug targets. Composed of the proteolytic core ClpP and a regulatory Clp-ATPase, the protease machinery is important for protein homeostasis and regulatory proteolysis. The acyldepsipeptide antibiotic ADEP targets ClpP and has shown promise for treating multiresistant and persistent bacterial infections. The molecular mechanism of ADEP is multilayered. Here, we present a new way how ADEP can deregulate the Clp protease system. Clp-ATPases and ADEP bind to opposite sides of Streptomyces ClpP, accelerating the degradation of natural Clp protease substrates. We also demonstrate the composition of the major Streptomyces Clp protease complex, a heteromeric ClpP1P2 core with the Clp-ATPases ClpX, ClpC1, or ClpC2 exclusively bound to ClpP2, and the killing mechanism of ADEP in Streptomyces.
Collapse
|
27
|
De Franceschi N, Pezeshkian W, Fragasso A, Bruininks BMH, Tsai S, Marrink SJ, Dekker C. Synthetic Membrane Shaper for Controlled Liposome Deformation. ACS NANO 2022; 17:966-978. [PMID: 36441529 PMCID: PMC9878720 DOI: 10.1021/acsnano.2c06125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Shape defines the structure and function of cellular membranes. In cell division, the cell membrane deforms into a "dumbbell" shape, while organelles such as the autophagosome exhibit "stomatocyte" shapes. Bottom-up in vitro reconstitution of protein machineries that stabilize or resolve the membrane necks in such deformed liposome structures is of considerable interest to characterize their function. Here we develop a DNA-nanotechnology-based approach that we call the synthetic membrane shaper (SMS), where cholesterol-linked DNA structures attach to the liposome membrane to reproducibly generate high yields of stomatocytes and dumbbells. In silico simulations confirm the shape-stabilizing role of the SMS. We show that the SMS is fully compatible with protein reconstitution by assembling bacterial divisome proteins (DynaminA, FtsZ:ZipA) at the catenoidal neck of these membrane structures. The SMS approach provides a general tool for studying protein binding to complex membrane geometries that will greatly benefit synthetic cell research.
Collapse
Affiliation(s)
- Nicola De Franceschi
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Weria Pezeshkian
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
- The
Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, 17DK-2100Copenhagen, Denmark
| | - Alessio Fragasso
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Bart M. H. Bruininks
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Sean Tsai
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| |
Collapse
|
28
|
Bianchi D, Pelletier JF, Hutchison CA, Glass JI, Luthey-Schulten Z. Toward the Complete Functional Characterization of a Minimal Bacterial Proteome. J Phys Chem B 2022; 126:6820-6834. [PMID: 36048731 PMCID: PMC9483919 DOI: 10.1021/acs.jpcb.2c04188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Recently, we presented a whole-cell kinetic model of the genetically minimal bacterium JCVI-syn3A that described the coupled metabolic and genetic information processes and predicted behaviors emerging from the interactions among these networks. JCVI-syn3A is a genetically reduced bacterial cell that has the fewest number and smallest fraction of genes of unclear function, with approximately 90 of its 452 protein-coding genes (that is less than 20%) unannotated. Further characterization of unclear JCVI-syn3A genes strengthens the robustness and predictive power of cell modeling efforts and can lead to a deeper understanding of biophysical processes and pathways at the cell scale. Here, we apply computational analyses to elucidate the functions of the products of several essential but previously uncharacterized genes involved in integral cellular processes, particularly those directly affecting cell growth, division, and morphology. We also suggest directed wet-lab experiments informed by our analyses to further understand these "missing puzzle pieces" that are an essential part of the mosaic of biological interactions present in JCVI-syn3A. Our workflow leverages evolutionary sequence analysis, protein structure prediction, interactomics, and genome architecture to determine upgraded annotations. Additionally, we apply the structure prediction analysis component of our work to all 452 protein coding genes in JCVI-syn3A to expedite future functional annotation studies as well as the inverse mapping of the cell state to more physical models requiring all-atom or coarse-grained representations for all JCVI-syn3A proteins.
Collapse
Affiliation(s)
- David
M. Bianchi
- Department
of Chemistry, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| | - James F. Pelletier
- Centro
Nacional de Biotecnologia, Calle Darwin no. 3, 28049 Madrid, Spain
| | - Clyde A. Hutchison
- J.
Craig Venter Institute, 4120 Capricorn Ln. La Jolla, California 92037, United States
| | - John I. Glass
- J.
Craig Venter Institute, 4120 Capricorn Ln. La Jolla, California 92037, United States
| | - Zaida Luthey-Schulten
- Department
of Chemistry, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Andreu JM, Huecas S, Araújo-Bazán L, Vázquez-Villa H, Martín-Fontecha M. The Search for Antibacterial Inhibitors Targeting Cell Division Protein FtsZ at Its Nucleotide and Allosteric Binding Sites. Biomedicines 2022; 10:1825. [PMID: 36009372 PMCID: PMC9405007 DOI: 10.3390/biomedicines10081825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
The global spread of bacterial antimicrobial resistance is associated to millions of deaths from bacterial infections per year, many of which were previously treatable. This, combined with slow antibiotic deployment, has created an urgent need for developing new antibiotics. A still clinically unexploited mode of action consists in suppressing bacterial cell division. FtsZ, an assembling GTPase, is the key protein organizing division in most bacteria and an attractive target for antibiotic discovery. Nevertheless, developing effective antibacterial inhibitors targeting FtsZ has proven challenging. Here we review our decade-long multidisciplinary research on small molecule inhibitors of bacterial division, in the context of global efforts to discover FtsZ-targeting antibiotics. We focus on methods to characterize synthetic inhibitors that either replace bound GTP from the FtsZ nucleotide binding pocket conserved across diverse bacteria or selectively bind into the allosteric site at the interdomain cleft of FtsZ from Bacillus subtilis and the pathogen Staphylococcus aureus. These approaches include phenotype screening combined with fluorescence polarization screens for ligands binding into each site, followed by detailed cytological profiling, and biochemical and structural studies. The results are analyzed to design an optimized workflow to identify effective FtsZ inhibitors, and new approaches for the discovery of FtsZ-targeting antibiotics are discussed.
Collapse
Affiliation(s)
- José M. Andreu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (S.H.); (L.A.-B.)
| | - Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (S.H.); (L.A.-B.)
| | - Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (S.H.); (L.A.-B.)
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain;
| | - Mar Martín-Fontecha
- Departamento de Química Orgánica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
30
|
Sionov RV, Banerjee S, Bogomolov S, Smoum R, Mechoulam R, Steinberg D. Targeting the Achilles' Heel of Multidrug-Resistant Staphylococcus aureus by the Endocannabinoid Anandamide. Int J Mol Sci 2022; 23:7798. [PMID: 35887146 PMCID: PMC9319909 DOI: 10.3390/ijms23147798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant Staphylococcus aureus is a major health issue that requires new therapeutic approaches. Accumulating data suggest that it is possible to sensitize these bacteria to antibiotics by combining them with inhibitors targeting efflux pumps, the low-affinity penicillin-binding protein PBP2a, cell wall teichoic acid, or the cell division protein FtsZ. We have previously shown that the endocannabinoid Anandamide (N-arachidonoylethanolamine; AEA) could sensitize drug-resistant S. aureus to a variety of antibiotics, among others, through growth arrest and inhibition of drug efflux. Here, we looked at biochemical alterations caused by AEA. We observed that AEA increased the intracellular drug concentration of a fluorescent penicillin and augmented its binding to membrane proteins with concomitant altered membrane distribution of these proteins. AEA also prevented the secretion of exopolysaccharides (EPS) and reduced the cell wall teichoic acid content, both processes known to require transporter proteins. Notably, AEA was found to inhibit membrane ATPase activity that is necessary for transmembrane transport. AEA did not affect the membrane GTPase activity, and the GTPase cell division protein FtsZ formed the Z-ring of the divisome normally in the presence of AEA. Rather, AEA caused a reduction in murein hydrolase activities involved in daughter cell separation. Altogether, this study shows that AEA affects several biochemical processes that culminate in the sensitization of the drug-resistant bacteria to antibiotics.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Shreya Banerjee
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Sergei Bogomolov
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| | - Reem Smoum
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (R.S.); (R.M.)
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Biomedical and Oral Sciences, Faculty of Dentistry, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (S.B.); (S.B.); (D.S.)
| |
Collapse
|
31
|
Investigating the Antituberculosis Activity of Selected Commercial Essential Oils and Identification of Active Constituents Using a Biochemometrics Approach and In Silico Modeling. Antibiotics (Basel) 2022; 11:antibiotics11070948. [PMID: 35884202 PMCID: PMC9311982 DOI: 10.3390/antibiotics11070948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis which has become prevalent due to the emergence of resistant M. tuberculosis strains. The use of essential oils (EOs) as potential anti-infective agents to treat microbial infections, including TB, offers promise due to their long historical use and low adverse effects. The current study aimed to investigate the in vitro anti-TB activity of 85 commercial EOs, and identify compounds responsible for the activity, using a biochemometrics approach. A microdilution assay was used to determine the antimycobacterial activity of the EOs towards some non-pathogenic Mycobacterium strains. In parallel, an Alamar blue assay was used to investigate antimycobacterial activity towards the pathogenic M. tuberculosis strain. Chemical profiling of the EOs was performed using gas chromatography-mass spectrometry (GC-MS) analysis. Biochemometrics filtered out putative biomarkers using orthogonal projections to latent structures discriminant analysis (OPLS-DA). In silico modeling was performed to identify potential therapeutic targets of the active biomarkers. Broad-spectrum antimycobacterial activity was observed for Cinnamomum zeylanicum (bark) (MICs = 1.00, 0.50, 0.25 and 0.008 mg/mL) and Levisticum officinale (MICs = 0.50, 0.5, 0.5 and 0.004 mg/mL) towards M. smegmatis, M. fortuitum, M. gordonae and M. tuberculosis, respectively. Biochemometrics predicted cinnamaldehyde, thymol and eugenol as putative biomarkers. Molecular docking demonstrated that cinnamaldehyde could serve as a scaffold for developing a novel class of antimicrobial compounds by targeting FtsZ and PknB from M. tuberculosis.
Collapse
|
32
|
Zhang C, Liu W, Deng J, Ma S, Chang Z, Yang J. Structural Insights into the Interaction between Bacillus subtilis SepF Assembly and FtsZ by Solid-State NMR Spectroscopy. J Phys Chem B 2022; 126:5219-5230. [PMID: 35799411 DOI: 10.1021/acs.jpcb.2c02810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In many species of Gram-positive bacteria, SepF participated in the membrane tethering of FtsZ Z-ring during bacteria division. However, atomic-level details of interaction between SepF and FtsZ in an assembled state are lacking. Here, by combining solid-state NMR (SSNMR) with biochemical analyses, the interaction of Bacillus subtilis SepF and the C-terminal domain (CTD) of FtsZ was investigated. We obtained near complete chemical shift assignments of SepF and determined the structural model of the SepF monomer. Interaction with FtsZ-CTD caused further packing of SepF rings, and SSNMR experiments revealed the affected residues locating at α1, α2, β3, and β4 of SepF. Solution NMR experiments of dimeric SepF constructed by point mutation strategy proved a prerequisite role of α-α interface formation in SepF for FtsZ binding. Overall, our results provide structural insights into the mechanisms of SepF-FtsZ interaction for better understanding the function of SepF in bacteria.
Collapse
Affiliation(s)
- Chang Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.,National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Wenjing Liu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Shaojie Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.,National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Ziwei Chang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.,National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
33
|
Borrero‐de Acuña JM, Poblete‐Castro I. Rational engineering of natural polyhydroxyalkanoates producing microorganisms for improved synthesis and recovery. Microb Biotechnol 2022; 16:262-285. [PMID: 35792877 PMCID: PMC9871526 DOI: 10.1111/1751-7915.14109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial production of biopolymers derived from renewable substrates and waste streams reduces our heavy reliance on petrochemical plastics. One of the most important biodegradable polymers is the family of polyhydroxyalkanoates (PHAs), naturally occurring intracellular polyoxoesters produced for decades by bacterial fermentation of sugars and fatty acids at the industrial scale. Despite the advances, PHA production still suffers from heavy costs associated with carbon substrates and downstream processing to recover the intracellular product, thus restricting market positioning. In recent years, model-aided metabolic engineering and novel synthetic biology approaches have spurred our understanding of carbon flux partitioning through competing pathways and cellular resource allocation during PHA synthesis, enabling the rational design of superior biopolymer producers and programmable cellular lytic systems. This review describes these attempts to rationally engineering the cellular operation of several microbes to elevate PHA production on specific substrates and waste products. We also delve into genome reduction, morphology, and redox cofactor engineering to boost PHA biosynthesis. Besides, we critically evaluate engineered bacterial strains in various fermentation modes in terms of PHA productivity and the period required for product recovery.
Collapse
Affiliation(s)
| | - Ignacio Poblete‐Castro
- Biosystems Engineering LaboratoryDepartment of Chemical and Bioprocess EngineeringUniversidad de Santiago de Chile (USACH)SantiagoChile
| |
Collapse
|
34
|
Deng J, Zhang T, Li B, Xu M, Wang Y. Design, synthesis and biological evaluation of biphenyl-benzamides as potent FtsZ inhibitors. Eur J Med Chem 2022; 239:114553. [PMID: 35763867 DOI: 10.1016/j.ejmech.2022.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/04/2022]
Abstract
The rapid emergence of antibiotic resistance has become a prevalent threat to public health, thereby development of new antibacterial agents having novel mechanisms of action is in an urgent need. Targeting at the cytoskeletal cell division protein filamenting temperature-sensitive mutant Z (FtsZ) has been validated as an effective and promising approach for antibacterial drug discovery. In this study, a series of novel biphenyl-benzamides as FtsZ inhibitors has been rationally designed, synthesized and evaluated for their antibacterial activities against various Gram-positive bacteria strains. In particular, the most promising compound 30 exhibited excellent antibacterial activities, especially against four different Bacillus subtilis strains, with an MIC range of 0.008 μg/mL to 0.063 μg/mL. Moreover, compound 30 also showed good pharmaceutical properties with low cytotoxicity (CC50 > 20 μg/mL), excellent human metabolic stability (T1/2 = 111.98 min), moderate pharmacokinetics (T1/2 = 2.26 h, F = 61.2%) and in vivo efficacy, which can be identified as a promising FtsZ inhibitor worthy of further profiling.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Tao Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory),Guangzhou, 510530, PR China
| | - Baiqing Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory),Guangzhou, 510530, PR China
| | - Mingyuan Xu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory),Guangzhou, 510530, PR China
| | - Yuanze Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory),Guangzhou, 510530, PR China.
| |
Collapse
|
35
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
36
|
Park S, Lee JH, Kim YG, Hu L, Lee J. Fatty Acids as Aminoglycoside Antibiotic Adjuvants Against Staphylococcus aureus. Front Microbiol 2022; 13:876932. [PMID: 35633672 PMCID: PMC9133387 DOI: 10.3389/fmicb.2022.876932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Fatty acids have diverse functions in the vast majority of cells. At high doses, they act as antimicrobials while, at low doses, they exhibit antibiofilm and antivirulence activities. In this study, the synergistic antibacterial and antibiofilm activities of 30 fatty acids and 11 antibiotics were investigated against methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains. Of the 15 saturated and 15 unsaturated fatty acids examined, 16 enhanced the antibacterial activity of tobramycin. Combinatorial treatment with myristoleic acid (the most active) at 10 μg/ml and tobramycin at 10 μg/ml decreased cell survival by >4 log as compared with tobramycin treatment alone. Notably, aminoglycoside antibiotics, such as tobramycin, kanamycin, gentamicin, and streptomycin exhibited antimicrobial synergy with myristoleic acid. Co-treatment with myristoleic acid and antibiotics markedly decreased biofilm formation. Interestingly, co-treatment with tobramycin and myristoleic acid induced a reduction in S. aureus cell size. These results suggest that fatty acids, particularly myristoleic acid, can be used as aminoglycoside antibiotic adjuvants against recalcitrant S. aureus infections.
Collapse
Affiliation(s)
- Sunyoung Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Liangbin Hu
- School of Food & Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Jintae Lee,
| |
Collapse
|
37
|
Abstract
The microtubule cytoskeleton is assembled from the α- and β-tubulin subunits of the canonical tubulin heterodimer, which polymerizes into microtubules, and a small number of other family members, such as γ-tubulin, with specialized functions. Overall, microtubule function involves the collective action of multiple α- and β-tubulin isotypes. However, despite 40 years of awareness that most eukaryotes harbor multiple tubulin isotypes, their role in the microtubule cytoskeleton has remained relatively unclear. Various model organisms offer specific advantages for gaining insight into the role of tubulin isotypes. Whereas simple unicellular organisms such as yeast provide experimental tractability that can facilitate deeper access to mechanistic details, more complex organisms, such as the fruit fly, nematode and mouse, can be used to discern potential specialized functions of tissue- and structure-specific isotypes. Here, we review the role of α- and β-tubulin isotypes in microtubule function and in associated tubulinopathies with an emphasis on the advances gained using model organisms. Overall, we argue that studying tubulin isotypes in a range of organisms can reveal the fundamental mechanisms by which they mediate microtubule function. It will also provide valuable perspectives on how these mechanisms underlie the functional and biological diversity of the cytoskeleton.
Collapse
Affiliation(s)
- Emmanuel T Nsamba
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
38
|
Juskewitz E, Mishchenko E, Dubey VK, Jenssen M, Jakubec M, Rainsford P, Isaksson J, Andersen JH, Ericson JU. Lulworthinone: In Vitro Mode of Action Investigation of an Antibacterial Dimeric Naphthopyrone Isolated from a Marine Fungus. Mar Drugs 2022; 20:md20050277. [PMID: 35621928 PMCID: PMC9147123 DOI: 10.3390/md20050277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/27/2023] Open
Abstract
Treatment options for infections caused by antimicrobial-resistant bacteria are rendered ineffective, and drug alternatives are needed—either from new chemical classes or drugs with new modes of action. Historically, natural products have been important contributors to drug discovery. In a recent study, the dimeric naphthopyrone lulworthinone produced by an obligate marine fungus in the family Lulworthiaceae was discovered. The observed potent antibacterial activity against Gram-positive bacteria, including several clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates, prompted this follow-up mode of action investigation. This paper aimed to characterize the antibacterial mode of action (MOA) of lulworthinone by combining in vitro assays, NMR experiments and microscopy. The results point to a MOA targeting the bacterial membrane, leading to improper cell division. Treatment with lulworthinone induced an upregulation of genes responding to cell envelope stress in Bacillus subtilis. Analysis of the membrane integrity and membrane potential indicated that lulworthinone targets the bacterial membrane without destroying it. This was supported by NMR experiments using artificial lipid bilayers. Fluorescence microscopy revealed that lulworthinone affects cell morphology and impedes the localization of the cell division protein FtsZ. Surface plasmon resonance and dynamic light scattering assays showed that this activity is linked with the compound‘s ability to form colloidal aggregates. Antibacterial agents acting at cell membranes are of special interest, as the development of bacterial resistance to such compounds is deemed more difficult to occur.
Collapse
Affiliation(s)
- Eric Juskewitz
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
- Correspondence: (E.J.); (J.U.E.)
| | - Ekaterina Mishchenko
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
| | - Vishesh K. Dubey
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
| | - Marte Jenssen
- Marbio, The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (J.H.A.)
| | - Martin Jakubec
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (P.R.); (J.I.)
| | - Philip Rainsford
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (P.R.); (J.I.)
| | - Johan Isaksson
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (P.R.); (J.I.)
| | - Jeanette H. Andersen
- Marbio, The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (M.J.); (J.H.A.)
| | - Johanna U. Ericson
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway; (E.M.); (V.K.D.)
- Correspondence: (E.J.); (J.U.E.)
| |
Collapse
|
39
|
Gurnani M, Chauhan A, Ranjan A, Tuli HS, Alkhanani MF, Haque S, Dhama K, Lal R, Jindal T. Filamentous Thermosensitive Mutant Z: An Appealing Target for Emerging Pathogens and a Trek on Its Natural Inhibitors. BIOLOGY 2022; 11:624. [PMID: 35625352 PMCID: PMC9138142 DOI: 10.3390/biology11050624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Antibiotic resistance is a major emerging issue in the health care sector, as highlighted by the WHO. Filamentous Thermosensitive mutant Z (Fts-Z) is gaining significant attention in the scientific community as a potential anti-bacterial target for fighting antibiotic resistance among several pathogenic bacteria. The Fts-Z plays a key role in bacterial cell division by allowing Z ring formation. Several in vitro and in silico experiments have demonstrated that inhibition of Fts-Z can lead to filamentous growth of the cells, and finally, cell death occurs. Many natural compounds that have successfully inhibited Fts-Z are also studied. This review article intended to highlight the structural-functional aspect of Fts-Z that leads to Z-ring formation and its contribution to the biochemistry and physiology of cells. The current trend of natural inhibitors of Fts-Z protein is also covered.
Collapse
Affiliation(s)
- Manisha Gurnani
- Amity Institute of Environmental Science, Amity University, Noida 201301, India;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India;
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Görükle Campus, Bursa Uludağ University, Nilüfer, Bursa 16059, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR—Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi 110021, India;
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| |
Collapse
|
40
|
Hamde F, Dinka H, Naimuddin M. In silico analysis of promoter regions to identify regulatory elements in TetR family transcriptional regulatory genes of Mycobacterium colombiense CECT 3035. J Genet Eng Biotechnol 2022; 20:53. [PMID: 35357597 PMCID: PMC8971250 DOI: 10.1186/s43141-022-00331-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 12/18/2022]
Abstract
Background Mycobacterium colombiense is an acid-fast, non-motile, rod-shaped mycobacterium confirmed to cause respiratory disease and disseminated infection in immune-compromised patients, and lymphadenopathy in immune-competent children. It has virulence mechanisms that allow them to adapt, survive, replicate, and produce diseases in the host. To tackle the diseases caused by M. colombiense, understanding of the regulation mechanisms of its genes is important. This paper, therefore, analyzes transcription start sites, promoter regions, motifs, transcription factors, and CpG islands in TetR family transcriptional regulatory (TFTR) genes of M. colombiense CECT 3035 using neural network promoter prediction, MEME, TOMTOM algorithms, and evolutionary analysis with the help of MEGA-X. Results The analysis of 22 protein coding TFTR genes of M. colombiense CECT 3035 showed that 86.36% and 13.64% of the gene sequences had one and two TSSs, respectively. Using MEME, we identified five motifs (MTF1, MTF2, MTF3, MTF4, and MTF5) and MTF1 was revealed as the common promoter motif for 100% TFTR genes of M. colombiense CECT 3035 which may serve as binding site for transcription factors that shared a minimum homology of 95.45%. MTF1 was compared to the registered prokaryotic motifs and found to match with 15 of them. MTF1 serves as the binding site mainly for AraC, LexA, and Bacterial histone-like protein families. Other protein families such as MATP, RR, σ-70 factor, TetR, LytTR, LuxR, and NAP also appear to be the binding candidates for MTF1. These families are known to have functions in virulence mechanisms, metabolism, quorum sensing, cell division, and antibiotic resistance. Furthermore, it was found that TFTR genes of M. colombiense CECT 3035 have many CpG islands with several fragments in their CpG islands. Molecular evolutionary genetic analysis showed close relationship among the genes. Conclusion We believe these findings will provide a better understanding of the regulation of TFTR genes in M. colombiense CECT 3035 involved in vital processes such as cell division, pathogenesis, and drug resistance and are likely to provide insights for drug development important to tackle the diseases caused by this mycobacterium. We believe this is the first report of in silico analyses of the transcriptional regulation of M. colombiense TFTR genes.
Collapse
Affiliation(s)
- Feyissa Hamde
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| | - Hunduma Dinka
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Mohammed Naimuddin
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| |
Collapse
|
41
|
Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution. J Colloid Interface Sci 2022; 608:1813-1826. [PMID: 34742090 DOI: 10.1016/j.jcis.2021.10.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
Developing antimicrobial agents that can eradicate drug-resistant (DR) bacteria and provide sustained protection from DR bacteria is a major challenge. Herein, we report a mild pyrolysis approach to prepare carbon nanogels (CNGs) through polymerization and the partial carbonization of l-lysine hydrochloride at 270 °C as a potential broad-spectrum antimicrobial agent that can inhibit biopolymer-producing bacteria and clinical drug-resistant isolates and tackle drug resistance issues. We thoroughly studied the structures of the CNGs, their antibacterial mechanism, and biocompatibility. CNGs possess superior bacteriostatic effects against drug-resistant bacteria compared to some commonly explored antibacterial nanomaterials (silver, copper oxide, and zinc oxide nanoparticles, and graphene oxide) through multiple antimicrobial mechanisms, including reactive oxygen species generation, membrane potential dissipation, and membrane function disruption, due to the positive charge and flexible colloidal structures resulting strong interaction with bacterial membrane. The minimum inhibitory concentration (MIC) values of the CNGs (0.6 µg mL-1 against E. coli and S. aureus) remained almost the same against the bacteria after 20 passages; however, the MIC values increased significantly after treatment with silver nanoparticles, antibiotics, the bacteriostatic chlorhexidine, and especially gentamicin (approximately 140-fold). Additionally, the CNGs showed a negligible MIC value difference against the obtained resistant bacteria after acclimation to the abovementioned antimicrobial agents. The findings of this study unveil the development of antimicrobial CNGs as a sustainable solution to combat multidrug-resistant bacteria.
Collapse
|
42
|
Salinas-Almaguer S, Mell M, Almendro-Vedia VG, Calero M, Robledo-Sánchez KCM, Ruiz-Suarez C, Alarcón T, Barrio RA, Hernández-Machado A, Monroy F. Membrane rigidity regulates E. coli proliferation rates. Sci Rep 2022; 12:933. [PMID: 35042922 PMCID: PMC8766614 DOI: 10.1038/s41598-022-04970-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022] Open
Abstract
Combining single cell experiments, population dynamics and theoretical methods of membrane mechanics, we put forward that the rate of cell proliferation in E. coli colonies can be regulated by modifiers of the mechanical properties of the bacterial membrane. Bacterial proliferation was modelled as mediated by cell division through a membrane constriction divisome based on FtsZ, a mechanically competent protein at elastic interaction against membrane rigidity. Using membrane fluctuation spectroscopy in the single cells, we revealed either membrane stiffening when considering hydrophobic long chain fatty substances, or membrane softening if short-chained hydrophilic molecules are used. Membrane stiffeners caused hindered growth under normal division in the microbial cultures, as expected for membrane rigidification. Membrane softeners, however, altered regular cell division causing persistent microbes that abnormally grow as long filamentous cells proliferating apparently faster. We invoke the concept of effective growth rate under the assumption of a heterogeneous population structure composed by distinguishable individuals with different FtsZ-content leading the possible forms of cell proliferation, from regular division in two normal daughters to continuous growing filamentation and budding. The results settle altogether into a master plot that captures a universal scaling between membrane rigidity and the divisional instability mediated by FtsZ at the onset of membrane constriction.
Collapse
Affiliation(s)
- Samuel Salinas-Almaguer
- Centro de Investigación y de Estudios Avanzados, Unidad Monterrey, Vía del Conocimiento 201, PIIT, 66600, Apodaca, NL, Mexico
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Michael Mell
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Victor G Almendro-Vedia
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense S/N, 28040, Madrid, Spain
| | - Macarena Calero
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense S/N, 28040, Madrid, Spain
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre (IMAS12), Av. Andalucía S/N, 28041, Madrid, Spain
| | | | - Carlos Ruiz-Suarez
- Centro de Investigación y de Estudios Avanzados, Unidad Monterrey, Vía del Conocimiento 201, PIIT, 66600, Apodaca, NL, Mexico
| | - Tomás Alarcón
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| | - Rafael A Barrio
- Instituto de Fisica, U.N.A.M., Apartado Postal 20-364, 01000, Mexico, D.F., Mexico
| | - Aurora Hernández-Machado
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193, Bellaterra, Barcelona, Spain.
- Departament Fisica de la Materia Condensada, Facultat de Fisica, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Av. Complutense S/N, 28040, Madrid, Spain.
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre (IMAS12), Av. Andalucía S/N, 28041, Madrid, Spain.
| |
Collapse
|
43
|
Li Y, Qiao D, Zhang Y, Hao W, Xi Y, Deng X, Ge X, Xu M. MapZ deficiency leads to defects in the envelope structure and changes stress tolerance of Streptococcus mutans. Mol Oral Microbiol 2021; 36:295-307. [PMID: 34463029 DOI: 10.1111/omi.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022]
Abstract
Cell division is a central process in bacteria and a prerequisite for pathogenicity. Several proteins are involved in this process to ensure the accurate localization and proper function of the division machinery. In Streptococcus mutans, MapZ marks the division sites and position of the Z-ring to regulate cell division; however, whether MapZ deficiency can impair the cariogenic virulence of S. mutans remains unclear. Here, using a phenotypic assay and RNA-seq, we investigated the role of MapZ in cell envelope maintenance, biofilm formation, and stress tolerance in S. mutans. The results show that MapZ is important for normal cell shape and envelope structure, and its deletion causes abnormal septum structure and a thin cell wall. Subsequently, we found that the absence of MapZ leads to a greater level of cell death within 12 h biofilms, but it does not seem to affect biofilm architecture and accumulation. mapZ deletion also results in a decreased acid and osmotic stress tolerance. Furthermore, RNA-seq data reveal that MapZ deficiency causes changes in the expression levels of genes involved in transport systems, sugar metabolism, nature competence, and bacteriocin synthesis. Interestingly, we found that mapZ mutation renders S. mutans more sensitive to chlorhexidine. Taken together, our study suggests that MapZ plays a role in maintaining cell envelope structure and stress tolerance in S. mutans, showing a potential application as a drug target for caries prevention.
Collapse
Affiliation(s)
- Yongliang Li
- Department of Geriatric Dentistry, Peking University Hospital of Stomatology, Beijing, P. R. China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China
| | - Dan Qiao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, P. R. China
| | - Yifei Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Weifeng Hao
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China
| | - Yue Xi
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University Hospital of Stomatology, Beijing, P. R. China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China
| | - Xuejun Ge
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, P. R. China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University Hospital of Stomatology, Beijing, P. R. China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University Hospital of Stomatology, Beijing, P. R. China
| |
Collapse
|
44
|
Wang L, Niu TC, Valladares A, Lin GM, Zhang JY, Herrero A, Chen WL, Zhang CC. The developmental regulator PatD modulates assembly of the cell-division protein FtsZ in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol 2021; 23:4823-4837. [PMID: 34296514 DOI: 10.1111/1462-2920.15682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
FtsZ is a tubulin-like GTPase that polymerizes to initiate the process of cell division in bacteria. Heterocysts are terminally differentiated cells of filamentous cyanobacteria that have lost the capacity for cell division and in which the ftsZ gene is downregulated. However, mechanisms of FtsZ regulation during heterocyst differentiation have been scarcely investigated. The patD gene is NtcA dependent and involved in the optimization of heterocyst frequency in Anabaena sp. PCC 7120. Here, we report that the inactivation of patD caused the formation of multiple FtsZ-rings in vegetative cells, cell enlargement, and the retention of peptidoglycan synthesis activity in heterocysts, whereas its ectopic expression resulted in aberrant FtsZ polymerization and cell division. PatD interacted with FtsZ, increased FtsZ precipitation in sedimentation assays, and promoted the formation of thick straight FtsZ bundles that differ from the toroidal aggregates formed by FtsZ alone. These results suggest that in the differentiating heterocysts, PatD interferes with the assembly of FtsZ. We propose that in Anabaena FtsZ is a bifunctional protein involved in both vegetative cell division and regulation of heterocyst differentiation. In the differentiating cells PatD-FtsZ interactions appear to set an FtsZ activity that is insufficient for cell division but optimal to foster differentiation.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tian-Cai Niu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Gui-Ming Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Wen-Li Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,Institut AMU-WUT, Aix-Marseille University and Wuhan University of Technology, Wuhan, Hubei, 430070, China
| |
Collapse
|
45
|
Zorrilla S, Monterroso B, Robles-Ramos MÁ, Margolin W, Rivas G. FtsZ Interactions and Biomolecular Condensates as Potential Targets for New Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10030254. [PMID: 33806332 PMCID: PMC7999717 DOI: 10.3390/antibiotics10030254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
FtsZ is an essential and central protein for cell division in most bacteria. Because of its ability to organize into dynamic polymers at the cell membrane and recruit other protein partners to form a “divisome”, FtsZ is a leading target in the quest for new antibacterial compounds. Strategies to potentially arrest the essential and tightly regulated cell division process include perturbing FtsZ’s ability to interact with itself and other divisome proteins. Here, we discuss the available methodologies to screen for and characterize those interactions. In addition to assays that measure protein-ligand interactions in solution, we also discuss the use of minimal membrane systems and cell-like compartments to better approximate the native bacterial cell environment and hence provide a more accurate assessment of a candidate compound’s potential in vivo effect. We particularly focus on ways to measure and inhibit under-explored interactions between FtsZ and partner proteins. Finally, we discuss recent evidence that FtsZ forms biomolecular condensates in vitro, and the potential implications of these assemblies in bacterial resistance to antibiotic treatment.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Miguel-Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, TX 77030, USA;
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| |
Collapse
|
46
|
Silber N, Mayer C, Matos de Opitz CL, Sass P. Progression of the late-stage divisome is unaffected by the depletion of the cytoplasmic FtsZ pool. Commun Biol 2021; 4:270. [PMID: 33649500 PMCID: PMC7921118 DOI: 10.1038/s42003-021-01789-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 11/14/2022] Open
Abstract
Cell division is a central and essential process in most bacteria, and also due to its complexity and highly coordinated nature, it has emerged as a promising new antibiotic target pathway in recent years. We have previously shown that ADEP antibiotics preferably induce the degradation of the major cell division protein FtsZ, thereby primarily leading to a depletion of the cytoplasmic FtsZ pool that is needed for treadmilling FtsZ rings. To further investigate the physiological consequences of ADEP treatment, we here studied the effect of ADEP on the different stages of the FtsZ ring in rod-shaped bacteria. Our data reveal the disintegration of early FtsZ rings during ADEP treatment in Bacillus subtilis, indicating an essential role of the cytoplasmic FtsZ pool and thus FtsZ ring dynamics during initiation and maturation of the divisome. However, progressed FtsZ rings finalized cytokinesis once the septal peptidoglycan synthase PBP2b, a late-stage cell division protein, colocalized at the division site, thus implying that the concentration of the cytoplasmic FtsZ pool and FtsZ ring dynamics are less critical during the late stages of divisome assembly and progression.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany.
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
47
|
Matos de Opitz CL, Sass P. Tackling antimicrobial resistance by exploring new mechanisms of antibiotic action. Future Microbiol 2020; 15:703-708. [DOI: 10.2217/fmb-2020-0048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Germany
| |
Collapse
|