1
|
Silva CMDA, Dos Santos FN, Mota TF, Brodskyn CI, Fraga DBM, Magalhães-Junior JT. Identification of Lutzomyia longipalpis' using MALDI-TOF peptide/protein profiles. Acta Trop 2024; 257:107303. [PMID: 38950763 DOI: 10.1016/j.actatropica.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Sand flies are vectors of great public health importance, since they constitute a group of hematophagous insects responsible for etiological agents transmission of zoonotic diseases such a visceral leishmaniasis. In face of the expansion of these diseases, efficient control strategies are needed which depend on comprehending the sand fly eco-epidemiology. In this regard, MALDI-TOF mass spectrometry has been used for bacteria, fungi and yeast detection studies through peptide/protein profiles. However, little is known about interference of biological factors associated with vector ecology, such as blood meal preferences and even sand fly age on the peptide/protein profiles. Thus, the present study aimed to evaluate the differences in peptide/protein profiles of the sand fly Lutzomyia longipalpis, by means of MALDI-TOF, due to the sand fly's age, sex, blood meal source and Leishmania infantum infection. Sample preparation was made removing both head and last abdomen segments keeping the thorax, its appendices and the rest of the abdomen. Five specimens per pool were used to obtain peptide/protein extract of which 1 μL solution was deposited over 1 μL MALDI matrix dried. Characteristic spectra were analyzed using principal coordinate analysis as well as indicator species analysis to discriminate differences in sand flies's peptide/protein profile by sex, age, blood meal source and L. infantum infection. The results show that the evaluated variables produced distinct peptide/protein profiles, demonstrated by the identification of specific diagnostic ions. It was found that the interference of biological factors should be taken into account when using the MALDI-TOF analysis of sand fly species identification and eco-epidemiological applications in field studies. Based on our results, we believe that it is possible to identify infected specimens and the source of blood meal in a collection of wild sand flies, serving to measure infectivity and understand the dynamics of the vector's transmission chain. Our results may be useful for epidemiological studies that look at the ecology of sand flies and leishmaniasis, as well as for raising awareness of biological characteristics' impact on peptide/protein profiles in sand fly species identification.
Collapse
Affiliation(s)
- Caliene Melo de Andrade Silva
- Universidade Federal do Oeste da Bahia (UFOB), Centro Multidisciplinar da Barra, Barra, Bahia, Brazil, 47100-000; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710.
| | - Fábio Neves Dos Santos
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil, 13083-970; Instituto de Química, Universidade Federal da Bahia (UFBA), Campus Universitário de Ondina, Salvador, Bahia, Brazil, 40170-290
| | - Tiago Feitosa Mota
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710
| | - Claudia Ida Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710
| | - Deborah Bittencourt Mothé Fraga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ), Salvador, Bahia, Brazil, 40296-710; Universidade Federal da Bahia (UFBA), Escola de Medicina Veterinária e Zootecnia, Salvador, Bahia, Brazil, 40170-110
| | | |
Collapse
|
2
|
Yean S, Prasetyo DB, Marcombe S, Hadi UK, Kazim AR, Tiawsirisup S, Chinh VD, Matsuno K, Low VL, Bonnet S, Boulanger N, Lam TTY, Abdad MY, Herbreteau V, Chavatte JM, Sum S, Ren T, Sakuntabhai A, Maquart PO, Rakotonirina A, Boyer S. Challenges for ticks and tick-borne diseases research in Southeast Asia: Insight from the first international symposium in Cambodia. PLoS Negl Trop Dis 2024; 18:e0012269. [PMID: 38985826 PMCID: PMC11236135 DOI: 10.1371/journal.pntd.0012269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Ticks, as critical vectors of a variety of pathogens, pose a significant public health challenge globally. In Southeast Asia (SEA), ticks are responsible for transmitting a diverse array of pathogens affecting humans and animals. The geographical and ecological diversity of SEA provides a unique environment that supports a wide range of tick species, which complicates the management and study of tick-borne diseases (TBDs). METHODOLOGY/PRINCIPAL FINDINGS This article synthesizes findings from the first international symposium on ticks and TBDs in Southeast Asia, held in Phnom Penh on June 22 and 23, 2023. It highlights regional efforts to understand tick ecology and pathogen transmission. This paper proposes to present a summary of the various presentations given during the symposium following 3 main parts. The first one is devoted to the state of knowledge regarding ticks and TBDs in SEA countries, with presentations from 6 different countries, namely Cambodia, Indonesia, Laos, Malaysia, Thailand, and Vietnam. The second part focuses on the development of new research approaches on tick-borne pathogens (TBPs) and TBDs. The last part is a summary of the round table discussion held on the final day, with the aim of defining the most important challenges and recommendations for researches on TBP and TBD in the SEA region. CONCLUSIONS/SIGNIFICANCE Key topics discussed include advancements in diagnostic tools, such as MALDI-TOF MS and proteomics, and the development of sustainable strategies for tick management and disease prevention. The symposium facilitated the exchange of knowledge and collaborative networks among experts from various disciplines, promoting a unified approach to tackling TBDs in the region. The symposium underscored the need for enhanced surveillance, diagnostics, and inter-regional cooperation to manage the threat of TBDs effectively. Recommendations include the establishment of a regional database for tick identification and the expansion of vector competence studies. These initiatives are crucial for developing targeted interventions and understanding the broader implications of climate change and urbanization on the prevalence of TBDs.
Collapse
Affiliation(s)
- Sony Yean
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Didot Budi Prasetyo
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Upik Kesumawati Hadi
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Abdul Rahman Kazim
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Selangor, Malaysia
| | | | - Vu Duc Chinh
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Keita Matsuno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Van Lun Low
- Tropical Infectious Diseases Research and Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sarah Bonnet
- Ecology and Emergence of Arthropod-borne pathogens Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, INRAE USC 1510, Paris, France
| | - Nathalie Boulanger
- University of Strasbourg and French Reference Center Lyme, Strasbourg, France
| | | | | | | | - Jean-Marc Chavatte
- National Public Health Laboratory–National Centre for Infectious Diseases, Ministry of Health, Singapore
| | - Samuth Sum
- Faculty of Veterinary Medicine, Royal University of Agriculture, Phnom Penh, Cambodia
| | - Theary Ren
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Anavaj Sakuntabhai
- Ecology and Emergence of Arthropod-borne pathogens Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, INRAE USC 1510, Paris, France
| | - Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Antsa Rakotonirina
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
3
|
Dai Y, Zhu X, Chang W, Lu H, Nie Z, Wu Y, Yao H, Chen Y, Xiao Y, Chu X. Clinical and economic evaluation of blood culture whole process optimisation in critically ill adult patients with positive blood cultures. Int J Antimicrob Agents 2024; 63:107176. [PMID: 38642811 DOI: 10.1016/j.ijantimicag.2024.107176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVES Optimising blood culture processing is important to ensure that bloodstream infections are accurately diagnosed while minimising adverse events caused by antibiotic abuse. This study aimed to evaluate the impact of optimised blood culture processes on antibiotic use, clinical outcomes and economics in intensive care unit (ICU) patients with positive blood cultures. METHODS From March 2020 to October 2021, this microbiology laboratory implemented a series of improvement measures, including the clinical utility of Fastidious Antimicrobial Neutralization (FAN® PLUS) bottles for the BacT/Alert Virtuo blood culture system, optimisation of bottle reception, graded reports and an upgraded laboratory information system. A total of 122 ICU patients were included in the pre-optimisation group from March 2019 to February 2020, while 179 ICU patients were included in the post-optimisation group from November 2021 to October 2022. RESULTS Compared with the pre-optimisation group, the average reporting time of identification and antimicrobial sensitivity was reduced by 16.72 hours in the optimised group. The time from admission to targeted antibiotic therapy within 24 hours after receiving both the Gram stain report and the final report were both significantly less in the post-optimisation group compared with the pre-optimisation group. The average hospitalisation time was reduced by 6.49 days, the average antimicrobial drug cost lowered by $1720.85 and the average hospitalisation cost by $9514.17 in the post-optimisation group. CONCLUSIONS Optimising blood culture processing was associated with a significantly increased positive detection rate, a remarkable reduction in the length of hospital stay and in hospital costs for ICU patients with bloodstream infections.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xiongfeng Zhu
- Department of Critical Care Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Wenjiao Chang
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Huaiwei Lu
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zhengchao Nie
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yongqin Wu
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Haifeng Yao
- Department of Information Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Xinmin Chu
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.
| |
Collapse
|
4
|
Nalbone L, Forgia S, Pirrone F, Giarratana F, Panebianco A. Use of Matrix-Assisted and Laser Desorption/Ionization Time-of-Flight Technology in the Identification of Aeromonas Strains Isolated from Retail Sushi and Sashimi. Pathogens 2024; 13:432. [PMID: 38921730 PMCID: PMC11206473 DOI: 10.3390/pathogens13060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Aeromonas includes well-known pathogenic species for fishes and humans that are widely distributed in the aquatic environment and foods. Nowadays, one of the main issues related to wild Aeromonas isolates is their identification at the species level, which is challenging using classical microbiological and biomolecular methods. This study aims to test MALDI-TOF MS technology in the identification of Aeromonas strains isolated from n. 60 retail sushi and sashimi boxes using an implemented version of the SARAMIS software V4.12. A total of 43 certified Aeromonas strains were used to implement the SARAMIS database by importing the spectra obtained from their identification. The original SARAMIS version (V4.12) failed to recognize 62.79% of the certified strains, while the herein-implemented version (V4.12plus) allowed the identification of all the certified strains at least to the genus level with a match of no less than 85%. Regarding the sushi and sashimi samples, Aeromonas spp. was detected in n. 18 (30%) boxes. A total of 127 colonies were identified at the species level, with A. salmonicida detected as the most prevalent species, followed by A. bestiarum and A. caviae. Based on the results of the present study, we could speculate that MALDI-TOF technology could be a useful tool both for the food industry to monitor product contamination and for clinical purposes to make diagnoses effectively and quickly.
Collapse
Affiliation(s)
- Luca Nalbone
- Department of Veterinary Science, University of Messina, Polo Universitario Dell’Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy; (S.F.); (F.P.); (F.G.); (A.P.)
| | - Salvatore Forgia
- Department of Veterinary Science, University of Messina, Polo Universitario Dell’Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy; (S.F.); (F.P.); (F.G.); (A.P.)
| | - Federico Pirrone
- Department of Veterinary Science, University of Messina, Polo Universitario Dell’Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy; (S.F.); (F.P.); (F.G.); (A.P.)
| | - Filippo Giarratana
- Department of Veterinary Science, University of Messina, Polo Universitario Dell’Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy; (S.F.); (F.P.); (F.G.); (A.P.)
- Riconnexia srls, Department of Veterinary Science, University of Messina, Polo Universitario Dell’Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy
| | - Antonio Panebianco
- Department of Veterinary Science, University of Messina, Polo Universitario Dell’Annunziata, Viale Giovanni Palatucci SNC, 98168 Messina, Italy; (S.F.); (F.P.); (F.G.); (A.P.)
| |
Collapse
|
5
|
Boutefnouchet C, Aouras H, Khennouchi NCEH, Berredjem H, Rolain JM, Hadjadj L. Algerian postcaesarean surgical site infections: A cross-sectional investigation of the epidemiology, bacteriology, and antibiotic resistance profile. Am J Infect Control 2024; 52:456-462. [PMID: 37805027 DOI: 10.1016/j.ajic.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Surgical site infections (SSIs) are one of the most common health care-associated infections in low and middle-income countries. The aims of this cross-sectional descriptive study were to estimate the frequency of postcaesarean infection with associated clinical characteristics and the antibiotic resistance profile of bacterial isolates. METHODS Patients who underwent a cesarean section at the obstetrics and gynecology department of the hospital in Annaba, Algeria were included. Each woman was followed postoperatively for 30 days and sociodemographic data were collected. Culture-based microbiological methods were used to identify the causative bacteria and determine their antibiotic resistance phenotype and molecular characterization. RESULTS Among 1,810 patients, we recorded 36 (1.9%) SSIs. Most patients had undergone an emergency delivery (75%) and low educational level (72.2%). The most frequent maternal pathologies were Body Mass Index ≥ 30 (63.9%), scarred uteri (58.3%), anemia (55.6%), and an American Society of Anaesthesiologists score between II and III (33.3%). Of the 43 bacteria isolated, Enterobacteriaceae were the most frequent (62.8%), predominated by Escherichia coli strains (43.5%), a majority of which were extended-spectrum β-lactamases carriers (62.9%). Although gram-positive cocci were less frequent (37.2%), a majority of Enterococcus faecalis (56.2%) were observed and 2 strains of vancomycin-resistant Enterococcus faecium harboring the vanA gene were identified. CONCLUSIONS Extensive surveillance of at-risk populations should be integrated to prevent the occurrence of SSIs.
Collapse
Affiliation(s)
- Chahinez Boutefnouchet
- Laboratoire de Biochimie et Microbiologie Appliquée, Département de Biochimie, Faculté des Sciences, Université Badji Mokhtar-Annaba, Algeria; Aix Marseille University, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille Cedex 05, France; IHU Méditerranée Infection, France
| | - Hayet Aouras
- Etablissement Hospitalier de Santé Abdallah Nouaouria "'El Bouni"' Annaba, Algeria
| | - Nour Chems El Houda Khennouchi
- Laboratoire de Biotechnologie des substances naturelles et applications, Université L'arbi Ben M'hidi, Oum El Bouaghi, Algeria
| | - Hajira Berredjem
- Laboratoire de Biochimie et Microbiologie Appliquée, Département de Biochimie, Faculté des Sciences, Université Badji Mokhtar-Annaba, Algeria
| | - Jean-Marc Rolain
- Aix Marseille University, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille Cedex 05, France; IHU Méditerranée Infection, France
| | - Linda Hadjadj
- Aix Marseille University, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille Cedex 05, France; IHU Méditerranée Infection, France.
| |
Collapse
|
6
|
Famielec S, Malinowski M, Tomaszek K, Wolny-Koładka K, Krilek J. The effect of biological methods for MSW treatment on the physicochemical, microbiological and phytotoxic properties of used biofilter bed media. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:276-285. [PMID: 38232519 DOI: 10.1016/j.wasman.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Biofilters are commonly used in municipal solid waste treatment (MSW) facilities to remove odors and pollutants from process gases. However, the effectiveness of biofilter bed media decreases over time, necessitating periodic replacement. The type of the treatment process may affect the lifespan of the bed and the way it should be utilized after replacement. This study aimed to analyze the physical, chemical, calorific, microbiological, and phytotoxic parameters of bed media in biofilters operated at an industrial scale in MSW treatment plants. The experiments included three full cycles of biofiltering gases from biodrying, composting, and aerobic biostabilization in two variations. Physicochemical properties (moisture, organic matter, carbon, nitrogen, sulfur, heavy metal contents), respiration activity (AT4), phytotoxicity, and microorganism abundance were determined for initial materials and samples from two biofilter layers collected after each cycle. Results revealed a substantial reduction in AT4 (by 63%-87% compared to initial material), significant moisture content increase in the bottom layers (by 61% or more, depending on the process), and a considerable decrease in microorganism abundance. Biofilter bed media from biodrying and composting exhibited low environmental risk (low heavy metal concentrations, negligible phytotoxicity, and microbiological stability). However, bed packings from aerobic biostabilization processes showed significant inhibition of indicator plants and incomplete sanitization (presence of pathogens like E. coli and Salmonella spp.). Therefore, these bed packings can be utilized for energy recovery, such as incineration after drying. This research provides significant insights into the effectiveness and safety of biofilter bed media in MSW treatment plants.
Collapse
Affiliation(s)
- Stanisław Famielec
- Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116b, 30-149 Krakow, Poland.
| | - Mateusz Malinowski
- Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116b, 30-149 Krakow, Poland
| | - Klaudia Tomaszek
- Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116b, 30-149 Krakow, Poland
| | - Katarzyna Wolny-Koładka
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicz Ave 24/28, 30-059 Krakow, Poland
| | - Jozef Krilek
- Department of Environmental and Forestry Machinery, Faculty of Technology, Technical University in Zvolen, T.G. Masaryka Street 24, 960 01 Zvolen, Slovakia
| |
Collapse
|
7
|
Lins KDA, Piveta CSC, Levy CE, Drummond MR, dos Santos LS, Sussulini A, Velho PENF. The influence of growth time on the identification of Bartonella henselae strains by MALDI-TOF mass spectrometry. Rev Inst Med Trop Sao Paulo 2024; 66:e9. [PMID: 38324875 PMCID: PMC10846483 DOI: 10.1590/s1678-9946202466009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 02/09/2024] Open
Abstract
Bartonella spp. are bacteria responsible for neglected diseases worldwide. Bartonella henselae is the species most associated with human infections. It is associated with a large spectrum of clinical manifestations and is potentially fatal. The identification of Bartonella spp. is considered a challenge in clinical routine. These bacteria are fastidious, and the time required to isolate them varies from one to six weeks. MALDI-TOF mass spectrometry has emerged as an application for research on Bartonella spp. , and has still been little explored. We investigated whether three different B. henselae strains with different growth times-14 and 28 days-could be correctly identified by MALDI-TOF mass spectra fingerprint comparison and matching. We found that the spectra from strains with different growth times do not match each other, leading to misidentification. We suggest creating database entries with multiple spectra from strains with different growth times to increase the chances of accurate identification of Bartonella spp. by MALD-TOF MS.
Collapse
Affiliation(s)
- Karina de Almeida Lins
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Dermatologia, Campinas, São Paulo, Brazil
| | - Cristiane Santos Cruz Piveta
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Patologia Clínica Campinas, São Paulo, Brazil
| | - Carlos Emilio Levy
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Patologia Clínica Campinas, São Paulo, Brazil
| | - Marina Rovani Drummond
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Dermatologia, Campinas, São Paulo, Brazil
| | - Luciene Silva dos Santos
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Dermatologia, Campinas, São Paulo, Brazil
| | - Alessandra Sussulini
- Universidade Estadual de Campinas, Instituto de Química, Departamento de Química Analítica, Campinas, São Paulo, Brazil
| | | |
Collapse
|
8
|
Chung HH, Huang P, Chen CL, Lee C, Hsu CC. Next-generation pathology practices with mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2023; 42:2446-2465. [PMID: 35815718 DOI: 10.1002/mas.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique that reveals the spatial distribution of various molecules in biological samples, and it is widely used in pathology-related research. In this review, we summarize common MSI techniques, including matrix-assisted laser desorption/ionization and desorption electrospray ionization MSI, and their applications in pathological research, including disease diagnosis, microbiology, and drug discovery. We also describe the improvements of MSI, focusing on the accumulation of imaging data sets, expansion of chemical coverage, and identification of biological significant molecules, that have prompted the evolution of MSI to meet the requirements of pathology practices. Overall, this review details the applications and improvements of MSI techniques, demonstrating the potential of integrating MSI techniques into next-generation pathology practices.
Collapse
Affiliation(s)
- Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chuping Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
9
|
Fall FK, Diarra AZ, Bouganali C, Sokhna C, Parola P. Using MALDI-TOF MS to Identify Mosquitoes from Senegal and the Origin of Their Blood Meals. INSECTS 2023; 14:785. [PMID: 37887797 PMCID: PMC10607482 DOI: 10.3390/insects14100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Mosquitoes are arthropods that represent a real public health problem in Africa. Morphology and molecular biology techniques are usually used to identify different mosquito species. In recent years, an innovative tool, matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), has been used to identify many arthropods quickly and at low cost, where equipment is available. We evaluated the ability of MALDI-TOF MS to identify mosquitoes collected in Senegal and stored for several months in silica gel, and to determine the origin of their blood meal. A total of 582 mosquitoes were collected and analysed. We obtained 329/582 (56.52%) MALDI-TOF MS good-quality spectra from mosquito legs and 123/157 (78.34%) good-quality spectra from engorged abdomens. We updated our home-made MALDI-TOF MS arthropod spectra database by adding 23 spectra of five mosquito species from Senegal that had been identified morphologically and molecularly. These included legs from Anopheles gambiae, Anopheles arabiensis, Anopheles cf. rivulorum, Culex nebulosus, Anopheles funestus, and three spectra from abdomens engorged with human blood. Having updated the database, all mosquitoes tested by MALDI-TOF MS were identified with scores greater than or equal to 1.7 as An. gambiae (n = 64), Anopheles coluzzii (n = 12), An. arabiensis (n = 1), An. funestus (n = 7), An. cf rivulorum (n = 1), Lutzia tigripes (n = 3), Cx. nebulosus (n = 211), Culex quinquefasciatus (n = 2), Culex duttoni (n = 1), Culex perfescus (n = 1), Culex tritaeniorhynchus (n = 1), and Aedes aegypti (n = 2). Blood meal identification by MALDI-TOF MS revealed that mosquitoes had fed on the blood of humans (n = 97), cows (n = 6), dogs (n = 2), goats (n = 1), sheep (n = 1), and bats (n = 1). Mixed meals were also detected. These results confirm that MALDI-TOF MS is a promising technique for identifying mosquitoes and the origin of their blood meal.
Collapse
Affiliation(s)
- Fatou Kiné Fall
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (F.K.F.); (A.Z.D.)
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
- VITROME Dakar, Campus International IRD-UCAD Hann, Dakar 1386, Senegal;
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (F.K.F.); (A.Z.D.)
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
| | - Charles Bouganali
- VITROME Dakar, Campus International IRD-UCAD Hann, Dakar 1386, Senegal;
| | - Cheikh Sokhna
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
- VITROME Dakar, Campus International IRD-UCAD Hann, Dakar 1386, Senegal;
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (F.K.F.); (A.Z.D.)
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
| |
Collapse
|
10
|
Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteomics 2023; 20:32. [PMID: 37633929 PMCID: PMC10464495 DOI: 10.1186/s12014-023-09424-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics have been increasingly implemented in various disciplines of laboratory medicine to identify and quantify biomolecules in a variety of biological specimens. MS-based proteomics is continuously expanding and widely applied in biomarker discovery for early detection, prognosis and markers for treatment response prediction and monitoring. Furthermore, making these advanced tests more accessible and affordable will have the greatest healthcare benefit.This review article highlights the new paradigms MS-based clinical proteomics has created in microbiology laboratories, cancer research and diagnosis of metabolic disorders. The technique is preferred over conventional methods in disease detection and therapy monitoring for its combined advantages in multiplexing capacity, remarkable analytical specificity and sensitivity and low turnaround time.Despite the achievements in the development and adoption of a number of MS-based clinical proteomics practices, more are expected to undergo transition from bench to bedside in the near future. The review provides insights from early trials and recent progresses (mainly covering literature from the NCBI database) in the application of proteomics in clinical laboratories.
Collapse
|
11
|
Tsuchida S, Yamashita K, Murata S, Miyabe A, Satoh M, Matsushita K, Nakayama T, Nomura F, Umemura H. Evaluation of a novel sample preparation method for identifying Aspergillus fumigatus using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: Combining Yatalase and silica beads treatment. J Microbiol Methods 2023; 207:106706. [PMID: 36925050 DOI: 10.1016/j.mimet.2023.106706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023]
Abstract
Aspergillus spp. belong to filamentous fungi and sometimes cause invasive aspergillosis which has high mortality. Filamentous fungi are generally identified morphologically. However, morphologic identification is time consuming and requires advanced skills. It is difficult to train technicians and ensure a high level of quality. Therefore, an identification technique that is both accurate and relatively easy to learn is needed. In the present study, we focused on the effects of Yatalase and silica beads, which enable the efficient extraction of proteins via cell wall disruption of Aspergillus spp., and aimed to establish a novel sample preparation method using Yatalase and silica beads to enhance the efficiency of Aspergillus spp. identification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The sample preparation method using the combination of Yatalase and silica beads showed higher accuracy for the identification of Aspergillus spp. compared with Yatalase or silica beads alone. The Yatalase/silica beads method also resulted in significantly higher identification scores compared with the conventional method for the identification of Aspergillus fumigatus (n = 33). These findings indicate that our novel Yatalase/silica beads method provides more reliable identification of A. fumigatus than does the conventional method.
Collapse
Affiliation(s)
- Sachio Tsuchida
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan; Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Koji Yamashita
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Division of Clinical Research, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Syota Murata
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Akiko Miyabe
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kazuyuki Matsushita
- Department of Clinical Laboratory, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tomohiro Nakayama
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroshi Umemura
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo 173-8610, Japan; Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
12
|
Cannet A, Simon-Chane C, Akhoundi M, Histace A, Romain O, Souchaud M, Jacob P, Delaunay P, Sereno D, Bousses P, Grebaut P, Geiger A, de Beer C, Kaba D, Sereno D. Wing Interferential Patterns (WIPs) and machine learning, a step toward automatized tsetse (Glossina spp.) identification. Sci Rep 2022; 12:20086. [PMID: 36418429 PMCID: PMC9684539 DOI: 10.1038/s41598-022-24522-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
A simple method for accurately identifying Glossina spp in the field is a challenge to sustain the future elimination of Human African Trypanosomiasis (HAT) as a public health scourge, as well as for the sustainable management of African Animal Trypanosomiasis (AAT). Current methods for Glossina species identification heavily rely on a few well-trained experts. Methodologies that rely on molecular methodologies like DNA barcoding or mass spectrometry protein profiling (MALDI TOFF) haven't been thoroughly investigated for Glossina sp. Nevertheless, because they are destructive, costly, time-consuming, and expensive in infrastructure and materials, they might not be well adapted for the survey of arthropod vectors involved in the transmission of pathogens responsible for Neglected Tropical Diseases, like HAT. This study demonstrates a new type of methodology to classify Glossina species. In conjunction with a deep learning architecture, a database of Wing Interference Patterns (WIPs) representative of the Glossina species involved in the transmission of HAT and AAT was used. This database has 1766 pictures representing 23 Glossina species. This cost-effective methodology, which requires mounting wings on slides and using a commercially available microscope, demonstrates that WIPs are an excellent medium to automatically recognize Glossina species with very high accuracy.
Collapse
Affiliation(s)
- Arnaud Cannet
- Direction des affaires sanitaires et sociales de la Nouvelle-Calédonie, Nouméa, New Caledonia France
| | - Camille Simon-Chane
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Mohammad Akhoundi
- grid.413780.90000 0000 8715 2621Parasitology-Mycology, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Aymeric Histace
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Olivier Romain
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Marc Souchaud
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Pierre Jacob
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Pascal Delaunay
- grid.462370.40000 0004 0620 5402Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Université de Nice-Sophia Antipolis, Nice, France ,grid.413770.6Parasitologie-Mycologie, Hôpital de L’Archet, Centre Hospitalier Universitaire de Nice, (CHU), Nice, France ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Darian Sereno
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Philippe Bousses
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Pascal Grebaut
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Anne Geiger
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Chantel de Beer
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Center of Nuclear Techniques in Food and Agriculture, Vienna, Austria ,grid.428711.90000 0001 2173 1003Epidemiology, Parasites & Vectors, Agricultural Research Council - Onderstepoort Veterinary Research (ARC-OVR), Onderstepoort, South Africa
| | - Dramane Kaba
- grid.452477.7Institut Pierre Richet, Institut National de Santé Publique, Abidjian, Côte d’Ivoire
| | - Denis Sereno
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
13
|
Hleba L, Hlebova M, Kovacik A, Petrova J, Maskova Z, Cubon J, Massanyi P. Use of MALDI-TOF MS to Discriminate between Aflatoxin B1-Producing and Non-Producing Strains of Aspergillus flavus. Molecules 2022; 27:molecules27227861. [PMID: 36431961 PMCID: PMC9692738 DOI: 10.3390/molecules27227861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins. One of the producers of AFB1 is Aspergillus flavus. Therefore, its rapid identification plays a key role in various sectors of the food and feed industry. MALDI-TOF mass spectrometry is one of the fastest and most accurate methods today. Therefore, the aim of this research was to develop the rapid identification of producing and non-producing strains of A. flavus based on the entire mass spectrum. To accomplish the main goal a different confirmatory MALDI-TOF MS and TLC procedures such as direct AFB1 identification by scraping from TLC plates, A. flavus mycelium, nutrient media around A. flavus growth, and finally direct AFB1 identification from infected wheat and barley grains had to be conducted. In this experiment, MALDI-TOF mass spectrometry with various modifications was the main supporting technology. All confirmatory methods confirmed the presence of AFB1 in the samples of aflatoxin-producing strains of A. flavus and vice versa; AFB1 was not detected in the case of non-producing strains. Entire mass spectra (from 2 to 20 kDa) of aflatoxin-producing and non-producing A. flavus strains were collected, statistically analyzed and clustered. An in-depth analysis of the obtained entire mass spectra showed differences between AFB1-producing and non-producing strains of A. flavus. Statistical and cluster analysis divided AFB1-producing and non-producing strains of A. flavus into two monasteries. The results indicate that it is possible to distinguish between AFB1 producers and non-producers by comparing the entire mass spectra using MALDI-TOF MS. Finally, we demonstrated that if there are established local AFB1-producing and non-producing strains of A. flavus, the entire mass spectrum database identification of aflatoxigenic A. flavus strains can be even faster and cheaper, without the need to identify the toxin itself.
Collapse
Affiliation(s)
- Lukas Hleba
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence:
| | - Miroslava Hlebova
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Anton Kovacik
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Jana Petrova
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Zuzana Maskova
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Juraj Cubon
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Peter Massanyi
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
14
|
MALDI-TOF MS Identification of Dromedary Camel Ticks and Detection of Associated Microorganisms, Southern Algeria. Microorganisms 2022; 10:microorganisms10112178. [DOI: 10.3390/microorganisms10112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
This study used MALDI-TOF MS and molecular tools to identify tick species infesting camels from Tamanrasset in southern Algeria and to investigate their associated microorganisms. Ninety-one adult ticks were collected from nine camels and were morphologically identified as Hyalomma spp., Hyalomma dromedarii, Hyalomma excavatum, Hyalomma impeltatum and Hyalomma anatolicum. Next, the legs of all ticks were subjected to MALDI-TOF MS, and 88/91 specimens provided good-quality MS spectra. Our homemade MALDI-TOF MS arthropod spectra database was then updated with the new MS spectra of 14 specimens of molecularly confirmed species in this study. The spectra of the remaining tick specimens not included in the MS database were queried against the upgraded database. All 74 specimens were correctly identified by MALDI-TOF MS, with logarithmic score values ranging from 1.701 to 2.507, with median and mean values of 2.199 and 2.172 ± 0.169, respectively. One H. impeltatum and one H. dromedarii (2/91; 2.20%) tested positive by qPCR for Coxiella burnetii, the agent of Q fever. We also report the first detection of an Anaplasma sp. close to A. platys in H. dromedarii in Algeria and a potentially new Ehrlichia sp. in H. impeltatum.
Collapse
|
15
|
Abdelhamed H, Nho SW, Kim SW, Reddy JS, Park SB, Jung TS, Lawrence ML. Serotype-identifying ions in Listeria monocytogenes using matrix-associated laser desorption ionization-time of flight mass spectrometry. Heliyon 2022; 8:e11769. [DOI: 10.1016/j.heliyon.2022.e11769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/23/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022] Open
|
16
|
Bonini A, Carota AG, Poma N, Vivaldi FM, Biagini D, Bottai D, Lenzi A, Tavanti A, Di Francesco F, Lomonaco T. Emerging Biosensing Technologies towards Early Sepsis Diagnosis and Management. BIOSENSORS 2022; 12:894. [PMID: 36291031 PMCID: PMC9599348 DOI: 10.3390/bios12100894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Sepsis is defined as a systemic inflammatory dysfunction strictly associated with infectious diseases, which represents an important health issue whose incidence is continuously increasing worldwide. Nowadays, sepsis is considered as one of the main causes of death that mainly affects critically ill patients in clinical settings, with a higher prevalence in low-income countries. Currently, sepsis management still represents an important challenge, since the use of traditional techniques for the diagnosis does not provide a rapid response, which is crucial for an effective infection management. Biosensing systems represent a valid alternative due to their characteristics such as low cost, portability, low response time, ease of use and suitability for point of care/need applications. This review provides an overview of the infectious agents associated with the development of sepsis and the host biomarkers suitable for diagnosis and prognosis. Special focus is given to the new emerging biosensing technologies using electrochemical and optical transduction techniques for sepsis diagnosis and management.
Collapse
Affiliation(s)
- Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Angela Gilda Carota
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Noemi Poma
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Federico Maria Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Daria Bottai
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
17
|
Rosa NM, Penati M, Fusar-Poli S, Addis MF, Tola S. Species identification by MALDI-TOF MS and gap PCR-RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis. Vet Res 2022; 53:84. [PMID: 36243811 PMCID: PMC9569034 DOI: 10.1186/s13567-022-01102-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococci and streptococci are common causes of intramammary infection in small ruminants, and reliable species identification is crucial for understanding epidemiology and impact on animal health and welfare. We applied MALDI-TOF MS and gap PCR–RFLP to 204 non-aureus staphylococci (NAS) and mammaliicocci (NASM) and to 57 streptococci isolated from the milk of sheep and goats with mastitis. The top identified NAS was Staphylococcus epidermidis (28.9%) followed by Staph. chromogenes (27.9%), haemolyticus (15.7%), caprae, and simulans (6.4% each), according to both methods (agreement rate, AR, 100%). By MALDI-TOF MS, 13.2% were Staph. microti (2.9%), xylosus (2.0%), equorum, petrasii and warneri (1.5% each), Staph. sciuri (now Mammaliicoccus sciuri, 1.0%), arlettae, capitis, cohnii, lentus (now M. lentus), pseudintermedius, succinus (0.5% each), and 3 isolates (1.5%) were not identified. PCR–RFLP showed 100% AR for Staph. equorum, warneri, arlettae, capitis, and pseudintermedius, 50% for Staph. xylosus, and 0% for the remaining NASM. The top identified streptococcus was Streptococcus uberis (89.5%), followed by Strep. dysgalactiae and parauberis (3.5% each) and by Strep. gallolyticus (1.8%) according to both methods (AR 100%). Only one isolate was identified as a different species by MALDI-TOF MS and PCR–RFLP. In conclusion, MALDI-TOF MS and PCR–RFLP showed a high level of agreement in the identification of the most prevalent NAS and streptococci causing small ruminant mastitis. Therefore, gap PCR–RFLP can represent a good identification alternative when MALDI-TOF MS is not available. Nevertheless, some issues remain for Staph. haemolyticus, minor NAS species including Staph. microti, and species of the novel genus Mammaliicoccus.
Collapse
Affiliation(s)
- Nives Maria Rosa
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", Via Duca degli Abruzzi 8, 07100, Sassari, Italy
| | - Martina Penati
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Sara Fusar-Poli
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy. .,MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| | - Sebastiana Tola
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", Via Duca degli Abruzzi 8, 07100, Sassari, Italy
| |
Collapse
|
18
|
Zhan L, Hou Z, Wang Y, Liu H, Liu Y, Huang G. Rapid Profiling of Metabolic Perturbations to Antibiotics in Living Bacteria by Induced Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1960-1966. [PMID: 36106750 DOI: 10.1021/jasms.2c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid monitoring of real bacterial metabolic perturbations to antibiotics may be helpful to better understand the mechanisms of action and more targeted treatment. In this study, the real metabolic responses to antibiotic treatment in living bacteria were profiled rapidly by induced electrospray ionization mass spectrometry. Significant metabolic perturbations were profiled after antibiotic treatment compared with untreated bacteria. Similar and unique metabolic responses were observed with different antibiotic treatments. Further multivariable analysis was performed to determine significant metabolites as potential biomarkers. Moreover, different metabolic disturbances were detected for serial dilutions of antibiotic treatments. Overall, combined with induced electrospray ionization mass spectrometry, the rapid and real bacterial metabolic status caused by antibiotics was monitored, suggesting the potential application of our method in mechanism exploration and clinical diagnosis.
Collapse
Affiliation(s)
- Liujuan Zhan
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Yu Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
| | - Huimin Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Yangzhong Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
19
|
Ouarti B, Fonkou DMM, Houhamdi L, Mediannikov O, Parola P. Lice and lice-borne diseases in humans in Africa: a narrative review. Acta Trop 2022; 237:106709. [PMID: 36198330 DOI: 10.1016/j.actatropica.2022.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 01/18/2023]
Abstract
Lice are host-specific insects. Human lice include Pediculus humanus humanus (body lice) which are known to be vectors of serious human bacterial infectious diseases including epidemic typhus, relapsing fever, trench fever and plague; Pediculus humanus capitis (head lice) that frequently affect children; and Pthirus pubis, commonly known as crab lice. In Africa, human infections transmitted by lice remained poorly known and therefore, underestimated, perhaps due to the lack of diagnostic tools and professional knowledge. In this paper we review current knowledge of the microorganisms identified in human lice in the continent of Africa, in order to alert health professionals to the importance of recognising the risk of lice-related diseases.
Collapse
Affiliation(s)
- Basma Ouarti
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| | | | - Linda Houhamdi
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France; IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France.
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
20
|
Laceb ZM, Diene SM, Lalaoui R, Kihal M, Chergui FH, Rolain JM, Hadjadj L. Genetic Diversity and Virulence Profile of Methicillin and Inducible Clindamycin-Resistant Staphylococcus aureus Isolates in Western Algeria. Antibiotics (Basel) 2022; 11:antibiotics11070971. [PMID: 35884225 PMCID: PMC9312111 DOI: 10.3390/antibiotics11070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcusaureus causes a wide range of life-threatening infections. In this study, we determined its prevalence in the hospital environment and investigated nasal carriage among healthcare workers and patients admitted to a hospital in western Algeria. A total of 550 specimens were collected. An antibiogram was performed and the genes encoding resistance to methicillin, inducible clindamycin and toxins were sought among the 92 S. aureus isolates. The spread of clones with a methicillin- and/or clindamycin-resistance phenotype between these ecosystems was studied using genomic analysis. A prevalence of 27%, 30% and 13% of S. aureus (including 2.7%, 5% and 1.25% of MRSA) in patients, healthcare workers and the hospital environment were observed, respectively. The presence of the mecA, erm, pvl and tsst-1 genes was detected in 10.9%, 17.4%, 7.6% and 18.5% of samples, respectively. Sequencing allowed us to identify seven sequence types, including three MRSA-IV-ST6, two MRSA-IV-ST80-PVL+, two MRSA-IV-ST22-TSST-1, two MRSA-V-ST5, and one MRSA-IV-ST398, as well as many virulence genes. Here, we reported that both the hospital environment and nasal carriage may be reservoirs contributing to the spread of the same pathogenic clone persisting over time. The circulation of different pathogenic clones of MRSA, MSSA, and iMLSB, as well as the emergence of at-risk ST398 clones should be monitored.
Collapse
Affiliation(s)
- Zahoua Mentfakh Laceb
- Laboratoire de Biotechnologies, Environnement et Santé, Faculté des Sciences de la Nature et de la Vie, Université de Blida 01, BP270 Route Soumaa, Blida 09000, Algeria; (Z.M.L.); (F.H.C.)
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Seydina M. Diene
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Rym Lalaoui
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Mabrouk Kihal
- Laboratoire de Microbiologie Appliquée, Université Ahmed Ben Bella Oran1, BP1524 El M’naouer, Oran 31000, Algeria;
| | - Fella Hamaidi Chergui
- Laboratoire de Biotechnologies, Environnement et Santé, Faculté des Sciences de la Nature et de la Vie, Université de Blida 01, BP270 Route Soumaa, Blida 09000, Algeria; (Z.M.L.); (F.H.C.)
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Linda Hadjadj
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-8613-6930
| |
Collapse
|
21
|
Dong B, He Z, Li Y, Xu X, Wang C, Zeng J. Improved Conventional and New Approaches in the Diagnosis of Tuberculosis. Front Microbiol 2022; 13:924410. [PMID: 35711765 PMCID: PMC9195135 DOI: 10.3389/fmicb.2022.924410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is a life-threatening infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis). Timely diagnosis and effective treatment are essential in the control of TB. Conventional smear microscopy still has low sensitivity and is unable to reveal the drug resistance of this bacterium. The traditional culture-based diagnosis is time-consuming, since usually the results are available after 3–4 weeks. Molecular biology methods fail to differentiate live from dead M. tuberculosis, while diagnostic immunology methods fail to distinguish active from latent TB. In view of these limitations of the existing detection techniques, in addition to the continuous emergence of multidrug-resistant and extensively drug-resistant TB, in recent years there has been an increase in the demand for simple, rapid, accurate and economical point-of-care approaches. This review describes the development, evaluation, and implementation of conventional diagnostic methods for TB and the rapid new approaches for the detection of M. tuberculosis.
Collapse
Affiliation(s)
- Baoyu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Mycobacterium chimaera Identification Using MALDI-TOF MS Technology: A Practical Approach for the Clinical Microbiology Laboratories. Microorganisms 2022; 10:microorganisms10061184. [PMID: 35744702 PMCID: PMC9228860 DOI: 10.3390/microorganisms10061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Mycobacterium chimaera (MC) is an environmental, slowly growing, non-tuberculous mycobacterium (NTM) belonging to Mycobacterium avium complex (MAC), which recently has been linked to severe cardiovascular infections following open heart and vascular surgery. The majority of the diagnostic laboratory tests used in routine are not able to distinguish MC from M. intracellulare (MI), because of the great genetic similarity existing between these two species. The Genotype Mycobacterium NTM-DR™ represents a valid method to differentiate between these species, but it is expensive, requiring also specialized personnel. Recently, MALDI-TOF MS has been proposed to identify relevant NTM. However, a software implementation is required to distinguish between MC and MI, presenting the two microorganisms’ overlapping spectra. The present study evaluates the feasibility of applying a MALDI-TOF logarithmic-based analysis in the routine of a clinical microbiology laboratory, and proposes an easy-to-use template spreadsheet to make the results quickly interpretable. The protocol was previously validated through the identification of 87 strains of MC/MI collected from clinical and environmental samples, and it was identified using the GenoType Mycobacterium NTM-DR™ and/or WGS. The proposed protocol provides accurate identification for the isolates tested; moreover, it is less expensive and more rapid than sequencing methods and can be implemented with minimum effort.
Collapse
|
23
|
Li Y, Li W, Luo R, Sakandar HA, Zhang H, Liu W. Lentilactobacillus rapi subsp. dabitei subsp. nov., a lactic acid bacterium isolated from naturally fermented dairy product. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two lactic acid bacterial strains (IMAU80584T and IMAU92037) were isolated from naturally fermented dairy products (kurut and yoghurt) in China and Russia. Based on sequence analysis of the 16S rRNA gene it was revealed that these strains belonged to
Lentilactobacillus rapi
. However, phylogenetic tree analyses of two housekeeping genes, rpoA (encoding RNA polymerase alpha subunit) and pheS (encoding phenylalanyl-tRNA synthase alpha subunit), and 88 core genes, indicated the two strains were separated into an independent monophyletic branch from
L. rapi
DSM 19907T, forming an infra-specific subgroup. The average nucleotide identity and digital DNA–DNA hybridization values between IMAU80584T and
L. rapi
DSM 19907T were 93.1 and 52.8 %, respectively. Strains IMAU80584T and IMAU92037 are distinguished from
L. rapi
DSM 19907T because they have different polar lipids and fatty acids. The novel subgroup strains could not ferment gluconate potassium. The DNA G+C content of strain IMAU80584T was 42.3 mol%. The major cellular fatty acids were C16 : 0, C18 : 1
ω9t and summed feature 5 (C18 : 0 ante and/or C18 : 2
ω6c and/or C18 : 2
ω9c). Therefore, based on the results of polyphasic taxonomic analysis, IMAU80584T and IMAU92037 could be considered as a novel subspecies in the species
L. rapi
with the proposed name
Lentilactobacillus rapi
subsp. dabitei subsp. nov. The type strain is IMAU80584T (=GDMCC 1.2566T=JCM 34647T).
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Weicheng Li
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Rui Luo
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Hafiz Arbab Sakandar
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Heping Zhang
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Wenjun Liu
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| |
Collapse
|
24
|
Han G, Lin Q, Yi J, Lyu Q, Ma Q, Qiao L. Isothermal gene amplification coupled MALDI-TOF MS for SARS-CoV-2 detection. Talanta 2022; 242:123297. [PMID: 35151081 PMCID: PMC8821030 DOI: 10.1016/j.talanta.2022.123297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading worldwide for more than a year and has undergone several mutations and evolutions. Due to the lack of effective therapeutics and long-active vaccines, accurate and large-scale screening and early diagnosis of infected individuals are crucial to control the pandemic. Nevertheless, the current widely used RT-qPCR-based methods suffer from complicated temperature control, long processing time and the risk of false-negative results. Herein, we present a three-way junction induced exponential rolling circle amplification (3WJ-eRCA) combined MALDI-TOF MS assay for SARS-CoV-2 detection. The assay can detect simultaneously the target nucleocapsid (N) and open reading frame 1 ab (orf1ab) genes of SARS-CoV-2 in a single test within 30 min, with an isothermal process (55 °C). High specificity to discriminate SARS-CoV-2 from other coronaviruses, like SARS-CoV, MERS-CoV and bat SARS-like coronavirus (bat-SL-CoVZC45), was observed. We have further used the method to detect pseudovirus of SARS-CoV-2 in various matrices, e.g. water, saliva and urine. The results demonstrated a great potential of the method for large scale screening of COVID-19, which is an important part of the pandemic control.
Collapse
|
25
|
Chuang PC, Lin WH, Chen YC, Chien CC, Chiu IM, Tsai TS. Oral Bacteria and Their Antibiotic Susceptibilities in Taiwanese Venomous Snakes. Microorganisms 2022; 10:microorganisms10050951. [PMID: 35630396 PMCID: PMC9147925 DOI: 10.3390/microorganisms10050951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 12/07/2022] Open
Abstract
Wound infections after venomous snakebites are clinically important. Information regarding the nature and antibiotic susceptibilities of snake oral bacterial flora could support empiric antibiotic therapy. Wild venomous snakes were collected from southern Taiwan: a total of 30 each of Bungarus multicinctus, Naja atra, Protobothrops mucrosquamatus, and Trimeresurus stejnegeri; 3 Deinagkistrodon acutus; and 4 Daboia siamensis. The species and antibiotic susceptibilities of their oral bacteria were determined. Aerobic gram-negative bacteria, especially Pseudomonas aeruginosa and Proteus vulgaris, were the most abundant. Proteus vulgaris were more abundant in B. multicinctus, N. atra, and P. mucrosquamatus than in T. stejnegeri (40%, 43.3%, and 40% vs. 13.3%, respectively). The gram-negative species were less susceptible to first- and second-generation cephalosporins and ampicillin-sulbactam than to third-generation cephalosporins, fluoroquinolones, carbapenems, or piperacillin-tazobactam. The most abundant aerobic gram-positive species cultured was Enterococcus faecalis, which was more abundant in N. atra than in other snakes (p < 0.001) and was highly susceptible to ampicillin, high-level gentamicin, penicillin, teicoplanin, and vancomycin. Bacteroides fragilis and Clostridium species were the most common anaerobic bacteria. The anaerobic organisms were highly susceptible to metronidazole and piperacillin. As a reference for empiric antimicrobial therapy, third-generation cephalosporins, fluoroquinolones, carbapenems, or piperacillin-tazobactam can be initiated in venomous snakebites wound infections.
Collapse
Affiliation(s)
- Po-Chun Chuang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (P.-C.C.); (I.-M.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Wen-Hao Lin
- Institute of Wildlife Conservation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Yi-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
| | - Chun-Chih Chien
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
| | - I-Min Chiu
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (P.-C.C.); (I.-M.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Tein-Shun Tsai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: or
| |
Collapse
|
26
|
MALDI-Based Mass Spectrometry in Clinical Testing: Focus on Bacterial Identification. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062814] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The term “proteome” refers to the total of all proteins expressed in an organism. The term “proteomics” refers to the field of research that includes not only information on the expression levels of individual proteins, but also their higher-order structures, intermolecular interactions, and post-translational modifications. The core technology, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), is available for protein analysis thanks to the work of Koichi Tanaka and John Fenn, who were awarded the Nobel Prize in Chemistry in 2002. The most successful proteome analysis in clinical practice is rapid microbial identification. This method determines the bacterial species by comparing the proteome profile of the bacteria obtained by matrix-assisted laser desorption ionization-time of flight MS (MALDI-TOF MS) with a database. MS is superior in simplicity, speed, and accuracy to classic speciation by staining and phenotyping. In clinical microbiology, MS has had a large impact on the diagnosis and treatment of infectious disease. Early diagnosis and treatment of infectious disease are important, and rapid identification by MALDI-TOF MS has made a major contribution to this field.
Collapse
|
27
|
Do T, Guran R, Adam V, Zitka O. Use of MALDI-TOF mass spectrometry for virus identification: a review. Analyst 2022; 147:3131-3154. [DOI: 10.1039/d2an00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibilities of virus identification, including SARS-CoV-2, by MALDI-TOF mass spectrometry are discussed in this review.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
28
|
Vandamme P, Sutcliffe I. Out with the old and in with the new: time to rethink twentieth century chemotaxonomic practices in bacterial taxonomy. Int J Syst Evol Microbiol 2021; 71. [PMID: 34846285 PMCID: PMC8742553 DOI: 10.1099/ijsem.0.005127] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chemotaxonomic methods played an important role in the development of the polyphasic approach to classification of Archaea and Bacteria. However, we here argue that routine application of these methods is unnecessary in an era when genomic data are available and sufficient for species delineation. Thus, authors who choose not to utilize such methods should not be forced to do so during the peer review and editorial handling of manuscripts describing novel species. Instead, we argue that chemotaxonomy will thrive if improved analytical methods are introduced and deployed, primarily by specialist laboratories, in studies at taxonomic levels above the characterisation of novel species.
Collapse
Affiliation(s)
- Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Iain Sutcliffe
- Northumbria University, Faculty of Health & Life Sciences, Newcastle Upon Tyne, Tyne & Wear, U.K
| |
Collapse
|
29
|
Hamlili FZ, Bérenger JM, Diarra AZ, Parola P. Molecular and MALDI-TOF MS identification of swallow bugs Cimex hirundinis (Heteroptera: Cimicidae) and endosymbionts in France. Parasit Vectors 2021; 14:587. [PMID: 34838119 PMCID: PMC8627032 DOI: 10.1186/s13071-021-05073-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background The Cimicidae are obligatory blood-feeding ectoparasites of medical and veterinary importance. We aim in the current study to assess the ability of MALDI-TOF MS to identify Cimex hirundinis swallow bugs collected in house martin nests. Methods Swallow bugs were picked out from abandoned nests of house martin swallows and identified morphologically to the species level. The bugs were randomly selected, dissected and then subjected to MALDI-TOF MS and molecular analyses. Results A total of 65 adults and 50 nymphs were used in the attempt to determine whether this tool could identify the bug species and discriminate their developmental stages. Five adults and four nymphs of C. hirundinis specimens were molecularly identified to update our MS homemade arthropod database. BLAST analysis of COI gene sequences from these C. hirundinis revealed 98.66–99.12% identity with the corresponding sequences of C. hirundinis of the GenBank. The blind test against the database supplemented with MS reference spectra showed 100% (57/57) C. hirundinis adults and 100% (46/46) C. hirundinis nymphs were reliably identified and in agreement with morphological identification with logarithmic score values between 1.922 and 2.665. Ninety-nine percent of C. hirundinis specimens tested were positive for Wolbachia spp. The sequencing results revealed that they were identical to Wolbachia massiliensis, belonging to the new T-supergroup strain and previously isolated from C. hemipterus. Conclusions We report for the first time to our knowledge a case of human infestation by swallow bugs (C. hirundinis) in France. We also show the usefulness of MALDI-TOF MS in the rapid identification of C. hirundinis specimens and nymphs with minimal sample requirements. We phylogenetically characterized the novel Wolbachia strain (W. massiliensis) infecting C. hirundinis and compared it to other recognized Wolbachia clades. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05073-x.
Collapse
Affiliation(s)
- Fatima Zohra Hamlili
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Jean-Michel Bérenger
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France. .,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
30
|
Aouati H, Hadjadj L, Aouati F, Agabou A, Ben Khedher M, Bousseboua H, Bentchouala C, Rolain JM, Diene SM. Emergence of Methicillin-Resistant Staphylococcus aureus ST239/241 SCCmec-III Mercury in Eastern Algeria. Pathogens 2021; 10:1503. [PMID: 34832658 PMCID: PMC8621676 DOI: 10.3390/pathogens10111503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
In this paper, we investigate the epidemiology of infections-associated Staphylococcusaureus (S. aureus) from the Medical Intensive Care Unit (MICU) at University Hospital Center of Constantine (UHCC) in Algeria, with a special emphasis on methicillin-resistant strains (MRSA) revealed by cefoxitin disks (30 μg), then confirmed by penicillin-binding protein (PBP2a) agglutination and real-time polymerase chain reaction (RT-PCR) targeting mecA and mecC genes. Staphylococcal Cassette Chromosome mec (SCCmec type), staphylococcal protein A (spa-type), multilocus sequence type (MLST), Panton-Valentine Leucocidin (PVL), and toxic shock syndrome toxin-1 (TSST-1) were further investigated in all isolates, and whole genome sequencing was performed for a selected subset of three hospital-acquired MRSA (HA-MRSA) isolates. A measurement of 80% out of the 50 S. aureus isolates were identified as HA-MRSA harbouring the mecA gene, and 72.5% of them were multidrug resistant (MDR). Twelve STs, four different SCCmec cassettes, fourteen spa types, ten isolates Panton-Valentine Leukocidin (PVL)-positive, and three isolates TSST-1 were identified. Interestingly, there was a high prevalence (n = 29; 72.5%) of a worrisome emerging clone: the HA-MRSA ST239/241 SCCmec-III mercury with PVL negative, resistant to β-lactams, aminoglycosides, quinolones, and tetracyclines. Other clones of HA-MRSA isolates were also identified, including PVL-positive ST80 SCCmec-IV/SCCmec-unknown (22.5%), ST34 SCCmec-V with TSST-1 positive (2.5%), and PVL-negative ST72 SCCmec-II (2.5%). Genome analysis enables us to describe the first detection of both PVL-negative HA-MRSA ST239/241 SCCmec-III mercury carrying ccrC, as well as SCCmec-V cassette, which dramatically changes the epidemiology of S. aureus infections in one of the hospitals in eastern Algeria.
Collapse
Affiliation(s)
- Hanane Aouati
- Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université des Frères Mentouri Constantine 1, Constantine 25017, Algeria;
- MEPHI, IRD, APHM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille Université, 13005 Marseille, France; (L.H.); (M.B.K.); (J.-M.R.)
- Faculté de Médecine, Université Salah Boubnider Constantine 3, Centre Hospitalo-Universitaire Ben Badis, Service de Microbiologie, BP 125, Constantine 25000, Algeria;
| | - Linda Hadjadj
- MEPHI, IRD, APHM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille Université, 13005 Marseille, France; (L.H.); (M.B.K.); (J.-M.R.)
| | - Farida Aouati
- Département d’Anesthésie-Réanimation Chirurgicale, Université Paris Nord, APHP, Hôpital Beaujon, 92110 Clichy, France;
| | - Amir Agabou
- Institut Vétérinaire, Université des frères Mentouri Constantine 1, Laboratoire de Recherche PADESCA, Constantine 25071, Algeria;
| | - Mariem Ben Khedher
- MEPHI, IRD, APHM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille Université, 13005 Marseille, France; (L.H.); (M.B.K.); (J.-M.R.)
| | - Hacène Bousseboua
- Ecole de Biotechnologie, Université Salah Boubnider Constantine 3, Laboratoire de Génie Microbiologique, BP E66, Constantine 25000, Algeria;
| | - Chafia Bentchouala
- Faculté de Médecine, Université Salah Boubnider Constantine 3, Centre Hospitalo-Universitaire Ben Badis, Service de Microbiologie, BP 125, Constantine 25000, Algeria;
| | - Jean-Marc Rolain
- MEPHI, IRD, APHM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille Université, 13005 Marseille, France; (L.H.); (M.B.K.); (J.-M.R.)
| | - Seydina M. Diene
- MEPHI, IRD, APHM, IHU-Méditerranée Infection, Faculté de Pharmacie, Aix-Marseille Université, 13005 Marseille, France; (L.H.); (M.B.K.); (J.-M.R.)
| |
Collapse
|
31
|
Siqueira JF, Rôças IN. A critical analysis of research methods and experimental models to study the root canal microbiome. Int Endod J 2021; 55 Suppl 1:46-71. [PMID: 34714548 DOI: 10.1111/iej.13656] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Endodontic microbiology deals with the study of the microbial aetiology and pathogenesis of pulpal and periradicular inflammatory diseases. Research in endodontic microbiology started almost 130 years ago and since then has mostly focussed on establishing and confirming the infectious aetiology of apical periodontitis, identifying the microbial species associated with the different types of endodontic infections and determining the efficacy of treatment procedures in eradicating or controlling infection. Diverse analytical methods have been used over the years, each one with their own advantages and limitations. In this review, the main features and applications of the most used technologies are discussed, and advice is provided to improve study designs in order to properly address the scientific questions and avoid setbacks that can compromise the results. Finally, areas of future research are described.
Collapse
Affiliation(s)
- José F Siqueira
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, Brazil.,Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, Brazil
| | - Isabela N Rôças
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, Brazil.,Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, Brazil
| |
Collapse
|
32
|
Multicenter evaluation of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy-based method for rapid identification of clinically relevant yeasts. J Clin Microbiol 2021; 60:e0139821. [PMID: 34669460 DOI: 10.1128/jcm.01398-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fourier transform infrared (FTIR) spectroscopy has demonstrated applicability as a reagent-free whole-organism fingerprinting technique for both microbial identification and strain typing. For routine application of this technique in microbiology laboratories, acquisition of FTIR spectra in the attenuated total reflectance (ATR) mode simplifies the FTIR spectroscopy workflow, providing results within minutes after initial culture without prior sample preparation. In our previous central work, 99.7% correct species identification of clinically relevant yeasts was achieved by employing an ATR-FTIR-based method and spectral database developed by our group. In this study, ATR-FTIR spectrometers were placed in 6 clinical microbiology laboratories over a 16-month period and were used to collect spectra of routine yeast isolates for on-site identification to the species level. The identification results were compared to those obtained from conventional biochemical tests and/or matrix-assisted laser desorption/ionization time of flight mass spectrometry. Isolates producing discordant results were reanalyzed by routine identification methods, ATR-FTIR spectroscopy and PCR gene sequencing of the D1/D2 and ITS regions. Among the 573 routine clinical yeast isolates collected and identified by the ATR-FTIR-based method, 564 isolates (98.4%) were correctly identified at the species level while the remaining isolates were inconclusive with no misidentifications. Due to the low prevalence of Candida auris in routine isolates, additional randomly selected C. auris (n = 24) isolates were obtained for evaluation and resulted in 100% correct identification. Overall, the data obtained in our multicenter evaluation study using multiple spectrometers and system operators indicate that ATR-FTIR spectroscopy is a reliable, cost-effective yeast identification technique that provides accurate and timely (∼3 minutes/sample) species identification promptly after the initial culture.
Collapse
|
33
|
Awandkar SP, Kulkarni MB, Agnihotri AA, Chavan VG, Chincholkar VV. Novel fluconazole-resistant zoonotic yeast isolated from mastitis. Anim Biotechnol 2021:1-10. [PMID: 34613892 DOI: 10.1080/10495398.2021.1982725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A hospital-based cross-sectional study was conducted during 2018-2019 to decipher the prevalence of yeast mastitis. The results indicated a 19.68% prevalence of clinical mastitis in bovines. Among them, 5.51% of samples revealed yeasts constituting 1.09% overall prevalence. Candida albicans was recorded as a significant fungal agent involved in clinical bovine mastitis. We record the association of Kodamaea ohmeri in clinical bovine mastitis. On proteomic and molecular confirmation, K. ohmeri isolates were re-identified from phenotypically identified Candida isolates associated with bovine mastitis. After conventional identification, the yeast isolates were re-identified by MALDI-TOF MS-based proteomic approaches. The D1/D2 domains of 26S-rRNA gene and 5.8S-internal transcribed spacer (ITS) rDNA regions based molecular phylogenetic analysis identified the isolates as K. ohmeri. The isolates were resistant to fluconazole. This study reports the first systemic study of K. ohmeri isolates recovered from bovine clinical mastitis, utilizing conventional, automated, proteomic, and genomic approaches followed by antifungal susceptibility. The findings suggest K. ohmeri as a potent opportunistic emerging pathogen of veterinary and public health concern, need for accurate identification of fungal agents from mycotic mastitis, and use of validated antifungal susceptibility assay because of developing resistance to antimycotic agents. Our findings suggest judicious use of fluconazole and alternative antifungal agents may be considered in case of an outbreak.
Collapse
Affiliation(s)
- Sudhakar P Awandkar
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Udgir, India
| | - Mahesh B Kulkarni
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Udgir, India
| | - Aditya A Agnihotri
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Udgir, India
| | - Vishranti G Chavan
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Udgir, India
| | - Vijay V Chincholkar
- Department of Medical Microbiology, Vilasrao Deshmukh Government Institute of Medical Research, Maharashtra University of Health Sciences, Latur, India
| |
Collapse
|
34
|
Nix ID, Idelevich EA, Schlattmann A, Sparbier K, Kostrzewa M, Becker K. MALDI-TOF Mass Spectrometry-Based Optochin Susceptibility Testing for Differentiation of Streptococcus pneumoniae from other Streptococcus mitis Group Streptococci. Microorganisms 2021; 9:microorganisms9102010. [PMID: 34683331 PMCID: PMC8537049 DOI: 10.3390/microorganisms9102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Discrimination of Streptococcus pneumoniae from other Streptococcus mitis group (SMG) species is still challenging but very important due to their different pathogenic potential. In this study, we aimed to develop a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based optochin susceptibility test with an objective read-out. Optimal test performance was established and evaluated by testing consecutively collected respiratory isolates. Optochin in different concentrations as a potential breakpoint concentration was added to a standardized inoculum. Droplets of 6 µL with optochin and, as growth control, without optochin were spotted onto a MALDI target. Targets were incubated in a humidity chamber, followed by medium removal and on-target protein extraction with formic acid before adding matrix with an internal standard. Spectra were acquired, and results were interpreted as S. pneumoniae in the case of optochin susceptibility (no growth), or as non-S. pneumoniae in the case of optochin non-susceptibility (growth). Highest test accuracy was achieved after 20 h incubation time (95.7%). Rapid testing after 12 h incubation time (optochin breakpoint 2 µg/mL; correct classification 100%, validity 62.5%) requires improvement by optimization of assay conditions. The feasibility of the MALDI-TOF MS-based optochin susceptibility test was demonstrated in this proof-of-principle study; however, confirmation and further improvements are warranted.
Collapse
Affiliation(s)
- Ilka D. Nix
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (I.D.N.); (E.A.I.); (A.S.)
- Bruker Daltonics GmbH & Co. KG, 28359 Bremen, Germany; (K.S.); (M.K.)
| | - Evgeny A. Idelevich
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (I.D.N.); (E.A.I.); (A.S.)
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Andreas Schlattmann
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (I.D.N.); (E.A.I.); (A.S.)
| | - Katrin Sparbier
- Bruker Daltonics GmbH & Co. KG, 28359 Bremen, Germany; (K.S.); (M.K.)
| | - Markus Kostrzewa
- Bruker Daltonics GmbH & Co. KG, 28359 Bremen, Germany; (K.S.); (M.K.)
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (I.D.N.); (E.A.I.); (A.S.)
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-5560
| |
Collapse
|
35
|
Antibiotic Resistance of Escherichia coli Isolated from Processing of Brewery Waste with the Addition of Bulking Agents. SUSTAINABILITY 2021. [DOI: 10.3390/su131810174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of the study was to determine the drug resistance profile and to assess the presence of genes responsible for the production of extended-spectrum beta-lactamases in Escherichia coli isolated from energy-processed hop sediment with the addition of bulking agents. Antibiotic resistance was determined by the disk diffusion method and the PCR technique to detect genes determining the extended-spectrum beta-lactamases (ESBLs) mechanism. A total of 100 strains of E. coli were collected. The highest resistance was found to aztreonam, tetracycline, ampicillin, ticarcillin, and ceftazidime. The bacteria collected were most often resistant to even 10 antibiotics at the same time and 15 MDR strains were found. The ESBL mechanism was determined in 14 isolates. Among the studied genes responsible for beta-lactamase production, blaTEM was the most common (64%). The study revealed that the analysed material was colonised by multi-drug-resistant strains of E. coli, which pose a threat to public health. The obtained results encourage further studies to monitor the spread of drug resistance in E. coli.
Collapse
|
36
|
Iorio R, Viglietta E, Mazza D, Petrucca A, Borro M, Iolanda S, Simmaco M, Ferretti A. Accuracy and Cost-Effectivenss of a Novel Method for Alpha Defensins Measurement in the Diagnosis of Periprosthetic Joint Infections. J Arthroplasty 2021; 36:3275-3281. [PMID: 34088569 DOI: 10.1016/j.arth.2021.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Two methods for detecting synovial fluids alpha defensins are available: the enzyme-linked immunosorbent assay and the lateral flow test. For both, the proper role and accuracy remain uncertain. The purpose of this study was to assess the accuracy of the matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) for alpha defensin detection in synovial fluids of patients with total knee arthroplasty/total hip arthroplasty failures. The hypothesis was that the alpha defensin measurement through MALDI-TOF MS assay could be a high sensitive and specific test for periprosthetic joint infections (PJI) diagnosis as compared with Musculoskeletal Infection Society (MSIS) criteria. METHODS The study included 138 patients. The 2018 MSIS criteria were used to diagnose PJIs. Synovial fluids were assessed for routinely synovial fluid tests and alpha defensin measurement through MALDI-TOF MS. Sensitivity, specificity, overall diagnostic accuracy, positive and negative predictive values, receiver operator curves, and area under the curve were calculated. RESULTS As per the 2018 MSIS criteria, 59 PJIs (43%) and 79 aseptic failures (57%) were diagnosed. The MALDI-TOF MS assay showed an overall accuracy of 94.9%. The sensitivity was 93%, the specificity was 96%, the positive predictive value was 95%, and the negative predictive value was 95%. Receiver operator curves analysis demonstrates an area under the curve of 0.95 (P < .001). CONCLUSION The MALDI-TOF MS assay showed high sensitivity and specificity for alpha defensin detection in case of total knee arthroplasty/total hip arthroplasty failures. The advantages of the technology, such as the few milliliters of sample needed, the rapidity of obtaining results, and the cost-effectiveness of the procedure could make the MALDI-TOF MS alpha defensin assay a useful and widespread test in clinical practice.
Collapse
Affiliation(s)
- Raffaele Iorio
- Sant'Andrea Hospital - Sapienza University of Rome, Rome, Italy; Sant'Andrea Hospital - Orthopaedic Unit and Kirk Kilgour Sports Injury Centre, Rome, Italy
| | - Edoardo Viglietta
- Sant'Andrea Hospital - Sapienza University of Rome, Rome, Italy; Sant'Andrea Hospital - Orthopaedic Unit and Kirk Kilgour Sports Injury Centre, Rome, Italy
| | - Daniele Mazza
- Sant'Andrea Hospital - Orthopaedic Unit and Kirk Kilgour Sports Injury Centre, Rome, Italy
| | | | - Marina Borro
- Sant'Andrea Hospital - Sapienza University of Rome, Rome, Italy; Sant'Andrea Hospital - Department of Molecular and Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Santino Iolanda
- Sant'Andrea Hospital - Sapienza University of Rome, Rome, Italy; Sant'Andrea Hospital - Microbiology Unit, Rome, Italy
| | - Maurizio Simmaco
- Sant'Andrea Hospital - Sapienza University of Rome, Rome, Italy; Sant'Andrea Hospital - Department of Molecular and Clinical Medicine, Sapienza University of Rome, Rome, Italy; Sant'Andrea Hospital - Microbiology Unit, Rome, Italy
| | - Andrea Ferretti
- Sant'Andrea Hospital - Sapienza University of Rome, Rome, Italy; Sant'Andrea Hospital - Orthopaedic Unit and Kirk Kilgour Sports Injury Centre, Rome, Italy
| |
Collapse
|
37
|
Hamlili FZ, Thiam F, Laroche M, Diarra AZ, Doucouré S, Gaye PM, Fall CB, Faye B, Sokhna C, Sow D, Parola P. MALDI-TOF mass spectrometry for the identification of freshwater snails from Senegal, including intermediate hosts of schistosomes. PLoS Negl Trop Dis 2021; 15:e0009725. [PMID: 34516582 PMCID: PMC8489727 DOI: 10.1371/journal.pntd.0009725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 10/04/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
Freshwater snails of the genera Biomphalaria, Bulinus, and Oncomelania are intermediate hosts of schistosomes that cause human schistosomiasis, one of the most significant infectious neglected diseases in the world. Identification of freshwater snails is usually based on morphology and potentially DNA-based methods, but these have many drawbacks that hamper their use. MALDI-TOF MS has revolutionised clinical microbiology and has emerged in the medical entomology field. This study aims to evaluate MALDI-TOF MS profiling for the identification of both frozen and ethanol-stored snail species using protein extracts from different body parts. A total of 530 field specimens belonging to nine species (Biomphalaria pfeifferi, Bulinus forskalii, Bulinus senegalensis, Bulinus truncatus, Bulinus globosus, Bellamya unicolor, Cleopatra bulimoides, Lymnaea natalensis, Melanoides tuberculata) and 89 laboratory-reared specimens, including three species (Bi. pfeifferi, Bu. forskalii, Bu. truncatus) were used for this study. For frozen snails, the feet of 127 field and 74 laboratory-reared specimens were used to validate the optimised MALDI-TOF MS protocol. The spectral analysis yielded intra-species reproducibility and inter-species specificity which resulted in the correct identification of all the specimens in blind queries, with log-score values greater than 1.7. In a second step, we demonstrated that MALDI-TOF MS could also be used to identify ethanol-stored snails using proteins extracted from the foot using a specific database including a large number of ethanol preserved specimens. This study shows for the first time that MALDI-TOF MS is a reliable tool for the rapid identification of frozen and ethanol-stored freshwater snails without any malacological expertise.
Collapse
Affiliation(s)
- Fatima Zohra Hamlili
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Fatou Thiam
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Laboratoire de Parasitologie-Helminthologie, Département de Biologie Animale, Faculté des Sciences et Techniques, UCAD, Dakar, Senegal
| | - Maureen Laroche
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | | | - Papa Mouhamadou Gaye
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Laboratoire de Parasitologie-Helminthologie, Département de Biologie Animale, Faculté des Sciences et Techniques, UCAD, Dakar, Senegal
| | - Cheikh Binetou Fall
- Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop, Dakar, Senegal
| | - Babacar Faye
- Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop, Dakar, Senegal
| | - Cheikh Sokhna
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
| | - Doudou Sow
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Service de Parasitologie-Mycologie, UFR Sciences de la Santé, Université Gaston Berger de Saint Louis, Senegal
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
38
|
Briggs RE, Billing SR, Boatwright WD, Chriswell BO, Casas E, Dassanayake RP, Palmer MV, Register KB, Tatum FM. Protection against Mycoplasma bovis infection in calves following intranasal vaccination with modified-live Mannheimia haemolytica expressing Mycoplasma antigens. Microb Pathog 2021; 161:105159. [PMID: 34454023 DOI: 10.1016/j.micpath.2021.105159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Novel live vaccine strains of Mannheimia haemolytica serotypes (St)1 and St6, expressing and secreting inactive yet immunogenic leukotoxin (leukotoxoid) fused to antigenic domains of Mycoplasma bovis Elongation Factor Tu (EFTu) and Heat shock protein (Hsp) 70 were constructed and tested for efficacy in cattle. Control calves were administered an intranasal mixture of M. haemolytica St1 and St6 mutants (ΔlktCAV4) expressing and secreting leukotoxoid while vaccinated calves were administered an intranasal mixture of like M. haemolytica St1 and St6 leukotoxoid mutants coupled to M. bovis antigens (EFTu-Hsp70-ΔlktCAV4). Both M. haemolytica strains were recovered from palatine tonsils up to 34 days post intranasal exposure. On day 35 all calves were exposed to bovine herpes virus-1, four days later lung challenged with virulent M. bovis, then euthanized up to 20 days post-challenge. Results showed all cattle produced systemic antibody responses against M. haemolytica. The vaccinates also produced systemic antibody responses to M. bovis antigen, and concurrent reductions in temperatures, middle ear infections, joint infection and lung lesions versus the control group. Notably, dramatically decreased lung loads of M. bovis were detected in the vaccinated cattle. These observations indicate that the attenuated M. haemolytica vaccine strains expressing Mycoplasma antigens can control M. bovis infection and disease symptoms in a controlled setting.
Collapse
Affiliation(s)
- Robert E Briggs
- USDA, Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA, USA
| | - Sheila R Billing
- USDA, Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA, USA
| | - William D Boatwright
- USDA, Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA, USA
| | - Bradley O Chriswell
- USDA, Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA, USA
| | - Eduardo Casas
- USDA, Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA, USA
| | - Rohana P Dassanayake
- USDA, Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA, USA
| | - Mitchell V Palmer
- USDA, Agricultural Research Service, National Animal Disease Center, Infectious Bacterial Diseases Research Unit, Ames, IA, USA
| | - Karen B Register
- USDA, Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA, USA
| | - Fred M Tatum
- USDA, Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA, USA.
| |
Collapse
|
39
|
Tans R, Dey S, Dey NS, Calder G, O’Toole P, Kaye PM, Heeren RMA. Spatially Resolved Immunometabolism to Understand Infectious Disease Progression. Front Microbiol 2021; 12:709728. [PMID: 34489899 PMCID: PMC8418271 DOI: 10.3389/fmicb.2021.709728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Infectious diseases, including those of viral, bacterial, fungal, and parasitic origin are often characterized by focal inflammation occurring in one or more distinct tissues. Tissue-specific outcomes of infection are also evident in many infectious diseases, suggesting that the local microenvironment may instruct complex and diverse innate and adaptive cellular responses resulting in locally distinct molecular signatures. In turn, these molecular signatures may both drive and be responsive to local metabolic changes in immune as well as non-immune cells, ultimately shaping the outcome of infection. Given the spatial complexity of immune and inflammatory responses during infection, it is evident that understanding the spatial organization of transcripts, proteins, lipids, and metabolites is pivotal to delineating the underlying regulation of local immunity. Molecular imaging techniques like mass spectrometry imaging and spatially resolved, highly multiplexed immunohistochemistry and transcriptomics can define detailed metabolic signatures at the microenvironmental level. Moreover, a successful complementation of these two imaging techniques would allow multi-omics analyses of inflammatory microenvironments to facilitate understanding of disease pathogenesis and identify novel targets for therapeutic intervention. Here, we describe strategies for downstream data analysis of spatially resolved multi-omics data and, using leishmaniasis as an exemplar, describe how such analysis can be applied in a disease-specific context.
Collapse
Affiliation(s)
- Roel Tans
- Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, Netherlands
| | - Shoumit Dey
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Nidhi Sharma Dey
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Grant Calder
- Department of Biology, University of York, York, United Kingdom
| | - Peter O’Toole
- Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Ron M. A. Heeren
- Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
40
|
Jeon H, Lee DH, Jundi B, Pinilla-Vera M, Baron RM, Levy BD, Voldman J, Han J. Fully Automated, Sample-to-Answer Leukocyte Functional Assessment Platform for Continuous Sepsis Monitoring via Microliters of Blood. ACS Sens 2021; 6:2747-2756. [PMID: 34185513 DOI: 10.1021/acssensors.1c00887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a fully automated, sample-to-answer, and label-free leukocyte activation analysis platform for monitoring immune responses in sepsis, by integrating the multidimensional double spiral (MDDS) and isodielectric separation (IDS) subplatforms. The integrated platform can provide rapid and fully automated identification of clinically diagnosed sepsis patients from only 50 μL of peripheral blood volume within 25 min. Many critical innovations were implemented in direct interconnection between the two subplatforms, such as intermediate sample storage and sample transfer, addressing flow rate mismatch (from mL/min to μL/min), and integration of a ridge array for upstream cell focusing in the IDS subplatform. The ridge array in the IDS subplatform can prevent the distortion of electrical profiling due to the residual red blood cells even after the MDDS process. We showed that the integrated platform can separate leukocytes (up to >99.9% red blood cell removal) in the MDDS subplatform and automatically transfer them to the downstream ridge-integrated IDS subplatform for their activation analysis without any apparent ex vivo cell activation and any human intervention. We also demonstrated that the integrated platform can identify differences between leukocytes from human sepsis and healthy subjects significantly (p = 0.0024, 95% confidence interval) by looking into differences in the intrinsic electrical properties of leukocytes. The integrated platform could enable monitoring of host leukocyte function daily or even hourly as a bedside assessment tool, which is currently a critical yet unmet need for managing many critical care patients.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, the Republic of Korea
| | | | - Bakr Jundi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mayra Pinilla-Vera
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
41
|
Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS APPLIED BIO MATERIALS 2021; 4:3962-3984. [PMID: 35006817 DOI: 10.1021/acsabm.0c01358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present review is intended to describe bloodstream infections (BSIs), the major pathogens responsible for BSIs, conventional tests and their limitations, commercially available methods used, and the aptamer and nanomaterials-based approaches developed so far for the detection of BSIs. The advantages associated with aptamers and the aptamer-based sensors, the comparison between the aptamers and the antibodies, and the various types of aptasensors developed so far for the detection of bloodstream infections have been described in detail in the present review. Also, the future outlook and roadmap toward aptamer-based sensors and the challenges associated with the aptamer development have also been concluded in this review.
Collapse
Affiliation(s)
- Chaitali Singhal
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - John G Bruno
- Nanohmics, Inc., Austin, Texas 78741, United States
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram, Haryana 122413, India
| | - Tarun K Sharma
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|
42
|
Production of bioconcrete with improved durability properties using Alkaliphilic Egyptian bacteria. 3 Biotech 2021; 11:231. [PMID: 33968575 DOI: 10.1007/s13205-021-02781-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 10/21/2022] Open
Abstract
Microbial-based self-healing of concrete represents innovative technology for improving micro-crack sealing. Microbial bioactivity can induce calcite-precipitation in concrete, which seals micro-cracks. In this respect, two Egyptian bacterial isolates were selected and identified, as Bacillus subtilis (Bs) and Bacillus megaterium (Bm) using MALDI-TOF/MS-Biotyper®. Peak patterns of the bacterial ribosomal proteins showed a high match between samples and standards, which verified species consistency. Bs and Bm were added to the mortar mixture in two concentrations (0.5%, 1%) of cement weight, then the mechanical and physical properties were tested throughout a 180-day time course. The compressive strength of Bm0.5 bacterial mortar samples was increased by 21.4% after 28 days, as compared to control. The rate of water absorption of Bm samples was decreased by 12.4% after 180 days. Bacterial mortar samples showed significant restoration of compressive strength than the original samples by 44%, 21%, and 52.6% for Bs1, Bm0.5, and Bs0.5, respectively. SEM and EDAX analyses confirmed that bacterial samples were denser with fewer voids than the control, as a result of microbial nanosized calcite-precipitation. DTA verified that the amount of CaCO3 and its degree of crystallinity were increased in the bacterial mortar samples. Load-deflection of reinforced-laminates for bacterial mortar samples showed ductile behavior and less deformation as compared to control. In this work, novel concrete with improved mechanical and physical properties has been developed using selected Egyptian microorganisms, it can promote self-healing of micro-cracks with improved durability of the concrete. The application of self-healing bioconcrete can reduce the inspection and maintenance costs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02781-0.
Collapse
|
43
|
Fall FK, Laroche M, Bossin H, Musso D, Parola P. Performance of MALDI-TOF Mass Spectrometry to Determine the Sex of Mosquitoes and Identify Specific Colonies from French Polynesia. Am J Trop Med Hyg 2021; 104:1907-1916. [PMID: 33755583 PMCID: PMC8103438 DOI: 10.4269/ajtmh.20-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
Mosquitoes are the main arthropod vectors of human pathogens. The current methods for mosquito identification include morphological and molecular methods. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), now routinely used for bacterial identification, has recently emerged in the field of entomology. The aim of this study was to use MALDI-TOF MS to identify mosquito colonies from French Polynesia. Five hundred specimens from French Polynesia belonging to three species, Aedes aegypti, Aedes polynesiensis, and Culex quinquefasciatus, were included in the study. Testing the legs of these mosquitoes by MALDI-TOF MS revealed a 100% correct identification of all specimens at the species level. The MALDI-TOF MS profiles obtained allowed differentiation of male from female mosquitoes and the specific identification of female mosquito colonies of the same species but different geographic origin.
Collapse
Affiliation(s)
- Fatou Kiné Fall
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France;,IHU Méditerranée Infection, Marseille, France;,Campus International IRD-UCAD de l’IRD, Dakar, Senegal
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France;,IHU Méditerranée Infection, Marseille, France
| | - Hervé Bossin
- Medical Entomology Laboratory, Institut Louis Malardé, Tahiti, French Polynesia
| | - Didier Musso
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France;,SELAS Eurofins Labazur Guyane, Cayenne, French Guiana
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France;,IHU Méditerranée Infection, Marseille, France;,Address correspondence to Philippe Parola, VITROME, IHU Méditerranée Infection, 19-21 Blvd., Jean Moulin, Marseille 13005, France. E-mail:
| |
Collapse
|
44
|
Comparison of Strategies for Isolating Anaerobic Bacteria from the Porcine Intestine. Appl Environ Microbiol 2021; 87:AEM.00088-21. [PMID: 33608289 DOI: 10.1128/aem.00088-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
The isolation of bacteria that represent the diversity of autochthonous taxa in the gastrointestinal tract is necessary to fully ascertain their function, but the majority of bacterial species inhabiting the intestines of mammals are fastidious and thus challenging to isolate. The goal of the current study was to isolate a diverse assemblage of anaerobic bacteria from the intestine of pigs as a model animal and to comparatively examine various novel and traditional isolation strategies. Methods used included long-term enrichments, direct plating, a modified ichip method, as well as ethanol and tyndallization treatments of samples to select for endospore-forming taxa. A total of 234 taxa (91 previously uncultured) comprising 80 genera and 7 phyla were isolated from mucosal and luminal samples from the ileum, cecum, ascending colon, and spiral colon removed from animals under anesthesia. The diversity of bacteria isolated from the large intestine was less than that detected by next-generation sequence analysis. Long-term enrichments yielded the greatest diversity of recovered bacteria (Shannon's index [SI] = 4.7). Methods designed to isolate endospore-forming bacteria produced the lowest diversity (SI ≤ 2.7), with tyndallization yielding lower diversity than the ethanol method. However, the isolation frequency of previously uncultured bacteria was highest for ethanol-treated samples (41.9%) and the ichip method (32.5%). The goal of recovering a diverse collection of enteric bacteria was achieved. Importantly, the study findings demonstrate that it is necessary to use a combination of methods in concert to isolate bacteria that are representative of the diversity within the intestines of mammals.IMPORTANCE This work determined that using a combination of anaerobic isolation methods is necessary to increase the diversity of bacteria recovered from the intestines of monogastric mammals. Direct plating methods have traditionally been used to isolate enteric bacteria, and recent methods (e.g., diffusion methods [i.e., ichip] or differential isolation of endospore-forming bacteria) have been suggested to be superior at increasing diversity, including the recovery of previously uncultured taxa. We showed that long-term enrichment of samples using a variety of media isolated the most diverse and novel bacteria. Application of the ichip method delivered a diversity of bacteria similar to those of enrichment and direct plating methods. Methods that selected for endospore-forming bacteria generated collections that differed in composition from those of other methods with reduced diversity. However, the ethanol treatment frequently isolated novel bacteria. By using a combination of methods in concert, a diverse collection of enteric bacteria was generated for ancillary experimentation.
Collapse
|
45
|
Sogodogo E, Doumbo O, Kouriba B, Aboudharam G. Microbial biodiversity of natural toothbrushes in Mali. New Microbes New Infect 2021; 40:100844. [PMID: 33796319 PMCID: PMC7995651 DOI: 10.1016/j.nmni.2021.100844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Different oral hygiene practices are used to overcome endemic diseases such as dental caries and oral infections. In Mali (Africa), natural plant-based toothbrushes are used for eliminating bacterial biofilm. The repertoire of microorganisms associated with natural toothbrushes is unknown. The aim of our study is to study microbial flora in particular the methanogenic archaea associated with natural toothbrushes recently recognized as responsible for periodontitis and peri-implantitis. We investigated the methanogens and bacteria associated with 15 different natural plant toothbrushes collected in Bamako local market (Mali). Microbiological investigations consisted in culturing the bacteria on agar plates and searching archaea using molecular techniques. No archaea were demonstrated by molecular biology but 50 bacterial species, including 33 aero-anaerobic and 17 aerobic species, were isolated from natural toothbrushes. We isolated Pseudomonas sp., Staphylococcus sp. and Klebsiella pneumoniae, which are acknowledged as opportunistic human pathogens. This study has highlighted the likely impact of the use of natural toothbrushes in the spread of potentially pathogenic bacteria in the human oral cavity.
Collapse
Affiliation(s)
- E Sogodogo
- Aix Marseille Université. IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - O Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - B Kouriba
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.,Centre d'infectiologie Charles-Mérieux (CICM), Bamako, Mali
| | - G Aboudharam
- Aix Marseille Université. IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Université, UFR Odontology, Marseille, France
| |
Collapse
|
46
|
Sevestre J, Diarra AZ, Laroche M, Almeras L, Parola P. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an emerging tool for studying the vectors of human infectious diseases. Future Microbiol 2021; 16:323-340. [PMID: 33733821 DOI: 10.2217/fmb-2020-0145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arthropod vectors have historically been identified morphologically, and more recently using molecular biology methods. However, both of these methods are time-consuming and require specific expertise and equipment. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, which has revolutionized the routine identification of microorganisms in clinical microbiology laboratories, was recently successfully applied to the identification of arthropod vectors. Since then, the robustness of this identification technique has been confirmed, extended to a large panel of arthropod vectors, and assessed for detecting blood feeding behavior and identifying the infection status in regard to certain pathogenic agents. In this study, we summarize the state-of-the-art of matrix-assisted laser desorption ionization time-of-flight mass spectrometry applied to the identification of arthropod vectors (ticks, mosquitoes, phlebotomine sand-flies, fleas, triatomines, lice and Culicoides), their trophic preferences and their ability to discriminate between infection statuses.
Collapse
Affiliation(s)
- Jacques Sevestre
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Z Diarra
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Maureen Laroche
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Lionel Almeras
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,Département Microbiologie et Maladies Infectieuses, Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
47
|
Xu E, Pérez-Torres D, Fragkou PC, Zahar JR, Koulenti D. Nosocomial Pneumonia in the Era of Multidrug-Resistance: Updates in Diagnosis and Management. Microorganisms 2021; 9:534. [PMID: 33807623 PMCID: PMC8001201 DOI: 10.3390/microorganisms9030534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Nosocomial pneumonia (NP), including hospital-acquired pneumonia in non-intubated patients and ventilator-associated pneumonia, is one of the most frequent hospital-acquired infections, especially in the intensive care unit. NP has a significant impact on morbidity, mortality and health care costs, especially when the implicated pathogens are multidrug-resistant ones. This narrative review aims to critically review what is new in the field of NP, specifically, diagnosis and antibiotic treatment. Regarding novel imaging modalities, the current role of lung ultrasound and low radiation computed tomography are discussed, while regarding etiological diagnosis, recent developments in rapid microbiological confirmation, such as syndromic rapid multiplex Polymerase Chain Reaction panels are presented and compared with conventional cultures. Additionally, the volatile compounds/electronic nose, a promising diagnostic tool for the future is briefly presented. With respect to NP management, antibiotics approved for the indication of NP during the last decade are discussed, namely, ceftobiprole medocaril, telavancin, ceftolozane/tazobactam, ceftazidime/avibactam, and meropenem/vaborbactam.
Collapse
Affiliation(s)
- Elena Xu
- Burns, Trauma and Critical Care Research Centre, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia;
| | - David Pérez-Torres
- Servicio de Medicina Intensiva, Hospital Universitario Río Hortega, 47012 Valladolid, Spain;
| | - Paraskevi C. Fragkou
- Fourth Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece;
| | - Jean-Ralph Zahar
- Microbiology Department, Infection Control Unit, Hospital Avicenne, 93000 Bobigny, France;
| | - Despoina Koulenti
- Burns, Trauma and Critical Care Research Centre, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia;
- Second Critical Care Department, Attikon University Hospital, 12462 Athens, Greece
| |
Collapse
|
48
|
Jahan NA, Godden SM, Royster E, Schoenfuss TC, Gebhart C, Timmerman J, Fink RC. Evaluation of the matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) system in the detection of mastitis pathogens from bovine milk samples. J Microbiol Methods 2021; 182:106168. [PMID: 33600875 DOI: 10.1016/j.mimet.2021.106168] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/08/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
MALDI-TOF is a chemistry analytical tool that has recently been deployed in the identification of microorganisms isolated from nosocomial environments. Its use in diagnostics has been extremely advantageous in terms of cost effectiveness, sample preparation easiness, turn-around time and result analysis accessibility. In the dairy industry, where mastitis causes great financial losses, a rapid diagnostic method such as MALDI-TOF could assist in the control and prevention program of mastitis, in addition to the sanitation and safety level of the dairy farms and processing facility. However, the diagnostic strengths and limitations of this test method require further understanding. In the present study, we prospectively compared MALDI-TOF MS to conventional 16S rDNA sequencing method for the identification of pathogens recovered from milk associated with clinical and subclinical bovine mastitis cases. Initially, 810 bacterial isolates were collected from raw milk samples over a period of three months. However, only the isolates (481) having both 16S rDNA sequencing and MALDI-TOF identification were included in the final phase of the study. Among the 481 milk isolates, a total of 26 genera (12 g-postive and 14 g-negative), including 71 different species, were taxonomically charecterized by 16S rDNA at the species level. Comparatively, MALDI-TOF identified 17 genera (9 g-positive and 8 g-negative) and 33 differernt species. Overall, 445 (93%) were putatively identified to the genus level by MALDI-TOF MS and 355 (74%) were identified to the species level, but no reliable identification was obtained for 16 (3.3%), and 20 (4.2%) discordant results were identified. Future studies may help to overcome the limitations of the MALDI database and additional sample preparation steps might help to reduce the number of discordances in identification. In conclusion, our results show that MALDI-TOF MS is a fast and reliable technique which has the potential to replace conventional identification methods for common mastitis pathogens, routinely isolated from raw milk. Thus it's adoption will strengthen the capacity, quality, and possibly the scope of diagnostic services to support the dairy industry.
Collapse
Affiliation(s)
- Nusrat A Jahan
- Department of Biology, St. Cloud State University, Saint Cloud, MN, USA
| | - Sandra M Godden
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Erin Royster
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Tonya C Schoenfuss
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Connie Gebhart
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Jennifer Timmerman
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Ryan C Fink
- Department of Biology, St. Cloud State University, Saint Cloud, MN, USA,.
| |
Collapse
|
49
|
Investigation of skin microbiota reveals Mycobacterium ulcerans-Aspergillus sp. trans-kingdom communication. Sci Rep 2021; 11:3777. [PMID: 33580189 PMCID: PMC7881091 DOI: 10.1038/s41598-021-83236-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/07/2021] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium ulcerans secrete a series of non-ribosomal-encoded toxins known as mycolactones that are responsible for causing a disabling ulceration of the skin and subcutaneous tissues named Buruli ulcer. The disease is the sole non-contagion among the three most common mycobacterial diseases in humans. Direct contact with contaminated wetlands is a risk factor for Buruli ulcer, responsible for M. ulcerans skin carriage before transcutaneous inoculation with this opportunistic pathogen. In this study, we analysed the bacterial and fungal skin microbiota in individuals exposed to M. ulcerans in Burkina Faso. We showed that M. ulcerans-specific DNA sequences were detected on the unbreached skin of 6/52 (11.5%) asymptomatic farmers living in Sindou versus 0/52 (0%) of those living in the non-endemic region of Tenkodogo. Then, we cultured the skin microbiota of asymptomatic M. ulcerans carriers and negative control individuals, all living in the region of Sindou. A total of 84 different bacterial and fungal species were isolated, 21 from M. ulcerans-negative skin samples, 31 from M. ulcerans-positive samples and 32 from both. More specifically, Actinobacteria, Aspergillus niger and Aspergillus flavus were significantly associated with M. ulcerans skin carriage. We further observed that in vitro, mycolactones induced spore germination of A. flavus, attracting the fungal network. These unprecedented observations suggest that interactions with fungi may modulate the outcome of M. ulcerans skin carriage, opening new venues to the understanding of Buruli ulcer pathology, prophylaxis and treatment of this still neglected tropical infection.
Collapse
|
50
|
Jakobsen TH, Xu Y, Bay L, Schønheyder HC, Jakobsen T, Bjarnsholt T, Thomsen TR. Sampling challenges in diagnosis of chronic bacterial infections. J Med Microbiol 2021; 70. [PMID: 33410733 DOI: 10.1099/jmm.0.001302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent decades there has been an increase in knowledge of the distribution, species diversity and growth patterns of bacteria in human chronic infections. This has challenged standard diagnostic methods, which have undergone a development to both increase the accuracy of testing as well as to decrease the occurrence of contamination. In particular, the introduction of new technologies based on molecular techniques into the clinical diagnostic process has increased detection and identification of infectious pathogens. Sampling is the first step in the diagnostic process, making it crucial for obtaining a successful outcome. However, sampling methods have not developed at the same speed as molecular identification. The heterogeneous distribution and potentially small number of pathogenic bacterial cells in chronic infected tissue makes sampling a complicated task, and samples must be collected judiciously and handled with care. Clinical sampling is a step in the diagnostic process that may benefit from innovative methods based on current knowledge of bacteria present in chronic infections. In the present review, we describe and discuss different aspects that complicate sampling of chronic infections. The purpose is to survey representative scientific work investigating the presence and distribution of bacteria in chronic infections in relation to various clinical sampling methods.
Collapse
Affiliation(s)
- Tim Holm Jakobsen
- Costerton Biofilm Center, Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Yijuan Xu
- Bio- and Environmental Technology, Danish Technological Institute, Taastrup, Denmark
- Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, Aalborg, Denmark
| | - Lene Bay
- Costerton Biofilm Center, Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Carl Schønheyder
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Thomas Jakobsen
- Department of Orthopaedics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Trine Rolighed Thomsen
- Bio- and Environmental Technology, Danish Technological Institute, Taastrup, Denmark
- Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, Aalborg, Denmark
| |
Collapse
|