1
|
Mazzotta C, Ingelfinger JR, Grabowski EF. Shiga toxin down-regulates ERG protein in endothelial cells and impairs angiogenesis. Thromb Res 2024; 240:109038. [PMID: 38850807 DOI: 10.1016/j.thromres.2024.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Shiga toxin (Stx) can activate inflammatory signaling, leading to vascular dysfunction and promotion of a pro-thrombotic tissue microenvironment. Stx can trigger the development of the enterohemorrhagic (childhood) hemolytic uremic syndrome (eHUS), a triad of thrombocytopenia, hemolytic anemia, and acute kidney injury, often requiring dialysis. Additional features may include damage to other organs, including the gastrointestinal tract, pancreas, brain and cardiovascular system; death occurs in 2-5 %. eHUS is a thrombotic microangiopathy; thus, endothelial cell (EC) injury and platelet fibrin thrombus formation in glomerular arterioles and in the arterioles of other affected organs are likely. To elucidate mechanisms of this microangiopathy, we examined in human ECs the regulation of the platelet adhesion proteins P-selectin and von Willebrand factor (VWF), along with the downregulation of erythroblast-transformation-specific transcription factor (ERG) a key regulator of angiogenesis and megakaryocyte development. METHODS VWF, P-selectin, and ERG levels were determined using immunofluorescence and Western blot in human umbilical endothelial cells (HUVECs). HUVECs were treated with tumor necrosis factor-alpha (TNF-α), Stx-1 or both, versus normal controls. Capillary morphogenesis on Matrigel was performed using HUVECs treated, for 22 h with TNF-α, Stx-1, or both, or treated 4 h with Stx-1 alone or in combination with TNF-α for 22 h. RESULTS Stx-1 significantly reduced ERG and VWF expression on HUVECs, but upregulated P-selectin expression. ERG levels decreased with Stx-1 alone or in combination with TNF-α, in the nuclear, perinuclear and cytoplasmatic regions. Stx-1 reduced capillary morphogenesis, while Stx-1-TNF-α combined treatment reduced capillary morphogenesis still further. CONCLUSIONS In the presence of Stx-1 or TNF-α or both treatments, ECs were activated, expressing higher levels of P-selectin and lower levels of VWF. Our findings, further, provide evidence that Stx-1 downregulates ERG, repressing angiogenesis in vitro.
Collapse
Affiliation(s)
- Celestina Mazzotta
- Cardiovascular Thrombosis Laboratory, Hematology/Oncology Division, Department of Pediatrics, *Massachusetts General Hospital for Children, Massachusetts General Hospital, and Harvard Medical School, United States
| | - Julie R Ingelfinger
- Nephology Division, Department of Pediatrics, Massachusetts General Hospital for Children, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, United States
| | - Eric F Grabowski
- Cardiovascular Thrombosis Laboratory, Hematology/Oncology Division, Department of Pediatrics, *Massachusetts General Hospital for Children, Massachusetts General Hospital, and Harvard Medical School, United States.
| |
Collapse
|
2
|
Wright SS, Wang C, Ta A, Havira MS, Ruan J, Rathinam VA, Vanaja SK. A bacterial toxin co-opts caspase-3 to disable active gasdermin D and limit macrophage pyroptosis. Cell Rep 2024; 43:114004. [PMID: 38522070 PMCID: PMC11095105 DOI: 10.1016/j.celrep.2024.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
During infections, host cells are exposed to pathogen-associated molecular patterns (PAMPs) and virulence factors that stimulate multiple signaling pathways that interact additively, synergistically, or antagonistically. The net effect of such higher-order interactions is a vital determinant of the outcome of host-pathogen interactions. Here, we demonstrate one such complex interplay between bacterial exotoxin- and PAMP-induced innate immune pathways. We show that two caspases activated during enterohemorrhagic Escherichia coli (EHEC) infection by lipopolysaccharide (LPS) and Shiga toxin (Stx) interact in a functionally antagonistic manner; cytosolic LPS-activated caspase-11 cleaves full-length gasdermin D (GSDMD), generating an active pore-forming N-terminal fragment (NT-GSDMD); subsequently, caspase-3 activated by EHEC Stx cleaves the caspase-11-generated NT-GSDMD to render it nonfunctional, thereby inhibiting pyroptosis and interleukin-1β maturation. Bacteria typically subvert inflammasomes by targeting upstream components such as NLR sensors or full-length GSDMD but not active NT-GSDMD. Thus, our findings uncover a distinct immune evasion strategy where a bacterial toxin disables active NT-GSDMD by co-opting caspase-3.
Collapse
Affiliation(s)
- Skylar S Wright
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Chengliang Wang
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Atri Ta
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | - Jianbin Ruan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
3
|
Tang J, Lu X, Zhang T, Feng Y, Xu Q, Li J, Lan Y, Luo H, Zeng L, Xiang Y, Zhang Y, Li Q, Mao X, Tang B, Zeng D. Shiga toxin 2 A-subunit induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells. Heliyon 2023; 9:e20012. [PMID: 37809632 PMCID: PMC10559750 DOI: 10.1016/j.heliyon.2023.e20012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Shiga toxin type 2 (Stx2) is the primary virulence factor produced by Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), which causes epidemic outbreaks of gastrointestinal sickness and potentially fatal sequela hemolytic uremic syndrome (HUS). Most studies on Stx2-induced apoptosis have been performed with holotoxins, but the mechanism of how the A and B subunits of Stx2 cause apoptosis in cells is not clear. Here, we found that Stx2 A-subunit (Stx2A) induced mitochondrial damage, PINK1/Parkin-dependent mitophagy and apoptosis in Caco-2 cells. PINK1/Parkin-dependent mitophagy caused by Stx2A reduced apoptosis by decreasing the accumulation of reactive oxidative species (ROS). Mechanistically, Stx2A interacts with Tom20 on mitochondria to initiate the translocation of Bax to mitochondria, leading to mitochondrial damage and apoptosis. Overall, these data suggested that Stx2A induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells and that mitophagy caused by Stx2A ameliorates apoptosis by eliminating damaged mitochondria. These findings provide evidence for the potential use of Tom20 inhibition as an anti-Shiga toxin therapy.
Collapse
Affiliation(s)
- Jie Tang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Xiaoxue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Zhang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuyang Feng
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiaolin Xu
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Jing Li
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuanzhi Lan
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Huaxing Luo
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Linghai Zeng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuanyuan Xiang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yan Zhang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Bin Tang
- Department of Clinical Laboratory, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Jiangjin, Chongqing, 402260, China
| | - Dongzhu Zeng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| |
Collapse
|
4
|
Zeng Y, Jiang M, Robinson S, Peng Z, Chonira V, Simeon R, Tzipori S, Zhang J, Chen Z. A Multi-Specific DARPin Potently Neutralizes Shiga Toxin 2 via Simultaneous Modulation of Both Toxin Subunits. Bioengineering (Basel) 2022; 9:511. [PMID: 36290479 PMCID: PMC9598796 DOI: 10.3390/bioengineering9100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing E. coli (STEC) is a common cause of bloody diarrhea. The pathology of STEC infection derives from two exotoxins-Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2)-that are secreted by STEC in the gut, from where they are systemically absorbed, causing severe kidney damage leading to hemolytic uremic syndrome (HUS). Currently, there is no effective treatment for HUS, and only supportive care is recommended. We report the engineering of a panel of designed ankyrin repeat proteins (DARPin) with potent neutralization activity against Stx2a, the major subtype associated with HUS. The best dimeric DARPin, SD5, created via a combination of directed evolution and rational design, neutralizes Stx2a with a half maximal effective concentration (EC50) of 0.61 nM in vitro. The two monomeric DARPin constituents of SD5 exhibit complementary functions-SHT targets the enzymatic A subunit of Stx2a and inhibits the toxin's catalytic activity, while DARPin #3 binds the B subunit, based on the cryo-EM study, and induces a novel conformational change in the B subunit that distorts its five-fold symmetry and presumably interferes with toxin attachment to target cells. SD5 was fused to an albumin-binding DARPin, and the resulting trimeric DARPin DA1-SD5 efficiently protects mice in a toxin challenge model, pointing to a high potential of this DARPin as a therapeutic for STEC infection. Finally, the unprecedented toxin conformational change induced by DARPin #3 represents a novel mode of action for neutralizing Stx2 toxicity and reveals new targets for future drug development.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Mengqiu Jiang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd., College Station, TX 77843, USA
| | - Sally Robinson
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA 01536, USA
| | - Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Vikas Chonira
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Rudo Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA 01536, USA
| | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd., College Station, TX 77843, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, 300 Olsen Blvd., College Station, TX 77843, USA
| |
Collapse
|
5
|
A novel shiga based immunotoxin against Fn-14 receptor on colorectal and lung cancer. Int Immunopharmacol 2022; 110:109076. [DOI: 10.1016/j.intimp.2022.109076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
|
6
|
Abstract
Assessing the threat posed by bacterial samples is fundamentally important to safeguarding human health. Whole-genome sequence analysis of bacteria provides a route to achieving this goal. However, this approach is fundamentally constrained by the scope, the diversity, and our understanding of the bacterial genome sequences that are available for devising threat assessment schemes. For example, genome-based strategies offer limited utility for assessing the threat associated with pathogens that exploit novel virulence mechanisms or are recently emergent. To address these limitations, we developed PathEngine, a machine learning strategy that features the use of phenotypic hallmarks of pathogenesis to assess pathogenic threat. PathEngine successfully classified potential pathogenic threats with high accuracy and thereby establishes a phenotype-based, sequence-independent pipeline for threat assessment. Bacterial pathogen identification, which is critical for human health, has historically relied on culturing organisms from clinical specimens. More recently, the application of machine learning (ML) to whole-genome sequences (WGSs) has facilitated pathogen identification. However, relying solely on genetic information to identify emerging or new pathogens is fundamentally constrained, especially if novel virulence factors exist. In addition, even WGSs with ML pipelines are unable to discern phenotypes associated with cryptic genetic loci linked to virulence. Here, we set out to determine if ML using phenotypic hallmarks of pathogenesis could assess potential pathogenic threat without using any sequence-based analysis. This approach successfully classified potential pathogenetic threat associated with previously machine-observed and unobserved bacteria with 99% and 85% accuracy, respectively. This work establishes a phenotype-based pipeline for potential pathogenic threat assessment, which we term PathEngine, and offers strategies for the identification of bacterial pathogens.
Collapse
|
7
|
Oloomi M, Moazzezy N, Bouzari S. Protein kinase signaling by Shiga Toxin subunits. JOURNAL OF MEDICAL SIGNALS & SENSORS 2022; 12:57-63. [PMID: 35265466 PMCID: PMC8804587 DOI: 10.4103/jmss.jmss_79_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Background: Escherichia coli produces Shiga toxin (Stx), a pentamer composed of one A subunit and four B subunits. The B subunit of Stx (StxB) mediated the attachment of the holotoxin to the cell surface while the A subunit (StxA) has N-glycosidase activity, resulting in protein synthesis and cell death inhibition. Stx-induced cytotoxicity and apoptosis have been observed in various cell lines, although the signaling effectors are not precisely defined. Activated by protein kinases (PK), the signaling pathway in human tumors plays an oncogenic role. Tumor proliferation, survival, and metastasis are promoted by kinase receptors. In this regard, PK regulatory effects on the cellular constituents of the tumor microenvironment can affect immunosuppressive purposes. Methods: In this study, kinase inhibitors were used to evaluate the influence of Stx and its subunits on HeLa and Vero cells. Selective inhibitors of protein kinase C (PKC), CaM kinase (calmodulin kinase), protein kinase A (PKA), and protein kinase G (PKG) were used to compare the signaling activity of each subunit. Results: The ribotoxic activity in the target cells will lead to rapid protein synthesis inhibition and cell death in the mammalian host. The expression of Bcl2 family members was also assessed. Protein kinase signaling by Stx and its A and B subunits was induced by PKA, PKG, and PKC in HeLa cells. CaM kinase induction was significant in Vero cells. StxB significantly induced the pro-apoptotic Bax signaling factor in HeLa cells. Conclusion: The assessment of different signaling pathways utilized by Stx and its subunits could help in a better understanding of various cell death responses. The use of inhibitors can block cell damage and disease progression and create therapeutic compounds for targeted cancer therapy. Inhibition of these pathways is the primary clinical goal.
Collapse
|
8
|
Hwang SB, Chelliah R, Kang JE, Rubab M, Banan-MwineDaliri E, Elahi F, Oh DH. Role of Recent Therapeutic Applications and the Infection Strategies of Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2021; 11:614963. [PMID: 34268129 PMCID: PMC8276698 DOI: 10.3389/fcimb.2021.614963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a global foodborne bacterial pathogen that is often accountable for colon disorder or distress. STEC commonly induces severe diarrhea in hosts but can cause critical illnesses due to the Shiga toxin virulence factors. To date, there have been a significant number of STEC serotypes have been evolved. STECs vary from nausea and hemorrhoid (HC) to possible lethal hemolytic-based uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP). Inflammation-based STEC is usually a foodborne illness with Shiga toxins (Stx 1 and 2) thought to be pathogenesis. The STEC's pathogenicity depends significantly on developing one or more Shiga toxins, which can constrain host cell protein synthesis leading to cytotoxicity. In managing STEC infections, antimicrobial agents are generally avoided, as bacterial damage and discharge of accumulated toxins are thought the body. It has also been documented that certain antibiotics improve toxin production and the development of these species. Many different groups have attempted various therapies, including toxin-focused antibodies, toxin-based polymers, synbiotic agents, and secondary metabolites remedies. Besides, in recent years, antibiotics' efficacy in treating STEC infections has been reassessed with some encouraging methods. Nevertheless, the primary role of synbiotic effectiveness (probiotic and prebiotic) against pathogenic STEC and other enteropathogens is less recognized. Additional studies are required to understand the mechanisms of action of probiotic bacteria and yeast against STEC infection. Because of the consensus contraindication of antimicrobials for these bacterial pathogens, the examination was focused on alternative remedy strategies for STEC infections. The rise of novel STEC serotypes and approaches employed in its treatment are highlighted.
Collapse
Affiliation(s)
- Su-bin Hwang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ji Eun Kang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Momna Rubab
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
9
|
Volokhina EB, Feitz WJC, Elders LM, van der Velden TJAM, van de Kar NCAJ, van den Heuvel LPWJ. Shiga Toxin Selectively Upregulates Expression of Syndecan-4 and Adhesion Molecule ICAM-1 in Human Glomerular Microvascular Endothelium. Toxins (Basel) 2020; 12:E435. [PMID: 32635212 PMCID: PMC7405002 DOI: 10.3390/toxins12070435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is a severe renal disease that is often preceded by infection with Shiga toxin (Stx)-producing Escherichia coli (STEC). The exact mechanism of Stx-mediated inflammation on human glomerular microvascular endothelial cells (HGMVECs) during HUS is still not well understood. In this study, we investigated the effect of Stx1 on the gene expression of proteins involved in leucocyte-mediated and complement-mediated inflammation. Our results showed that Stx1 enhances the mRNA and protein expression of heparan sulfate proteoglycan (HSPG) syndecan-4 in HGMVECs pre-stimulated with tumor necrosis factor α (TNFα). CD44 was upregulated on mRNA but not on protein level; no effect on the mRNA expression of other tested HSPGs glypican-1 and betaglycan was observed. Furthermore, Stx1 upregulated the mRNA, cell surface expression, and supernatant levels of the intercellular adhesion molecule-1 (ICAM-1) in HGMVECs. Interestingly, no effect on the protein levels of alternative pathway (AP) components was observed, although C3 mRNA was upregulated. All observed effects were much stronger in HGMVECs than in human umbilical endothelial cells (HUVECs), a common model cell type used in endothelial studies. Our results provide new insights into the role of Stx1 in the pathogenesis of HUS. Possibilities to target the overexpression of syndecan-4 and ICAM-1 for STEC-HUS therapy should be investigated in future studies.
Collapse
Affiliation(s)
- Elena B. Volokhina
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (L.M.E.); (T.J.A.M.v.d.V.); (N.C.A.J.v.d.K.); (L.P.W.J.v.d.H.)
- Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Wouter J. C. Feitz
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (L.M.E.); (T.J.A.M.v.d.V.); (N.C.A.J.v.d.K.); (L.P.W.J.v.d.H.)
| | - Lonneke M. Elders
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (L.M.E.); (T.J.A.M.v.d.V.); (N.C.A.J.v.d.K.); (L.P.W.J.v.d.H.)
| | - Thea J. A. M. van der Velden
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (L.M.E.); (T.J.A.M.v.d.V.); (N.C.A.J.v.d.K.); (L.P.W.J.v.d.H.)
| | - Nicole C. A. J. van de Kar
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (L.M.E.); (T.J.A.M.v.d.V.); (N.C.A.J.v.d.K.); (L.P.W.J.v.d.H.)
| | - Lambertus P. W. J. van den Heuvel
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (L.M.E.); (T.J.A.M.v.d.V.); (N.C.A.J.v.d.K.); (L.P.W.J.v.d.H.)
- Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Nyong EC, Zaia SR, Allué-Guardia A, Rodriguez AL, Irion-Byrd Z, Koenig SSK, Feng P, Bono JL, Eppinger M. Pathogenomes of Atypical Non-shigatoxigenic Escherichia coli NSF/SF O157:H7/NM: Comprehensive Phylogenomic Analysis Using Closed Genomes. Front Microbiol 2020; 11:619. [PMID: 32351476 PMCID: PMC7175801 DOI: 10.3389/fmicb.2020.00619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
The toxigenic conversion of Escherichia coli strains by Shiga toxin-converting (Stx) bacteriophages were prominent and recurring events in the stepwise evolution of enterohemorrhagic E. coli (EHEC) O157:H7 from an enteropathogenic (EPEC) O55:H7 ancestor. Atypical, attenuated isolates have been described for both non-sorbitol fermenting (NSF) O157:H7 and SF O157:NM serotypes, which are distinguished by the absence of Stx, the characteristic virulence hallmark of Stx-producing E. coli (STEC). Such atypical isolates either never acquired Stx-phages or may have secondarily lost stx during the course of infection, isolation, or routine subculture; the latter are commonly referred to as LST (Lost Shiga Toxin)-isolates. In this study we analyzed the genomes of 15 NSF O157:H7 and SF O157:NM strains from North America, Europe, and Asia that are characterized by the absence of stx, the virulence hallmark of STEC. The individual genomic basis of the Stx (-) phenotype has remained largely undetermined as the majority of STEC genomes in public genome repositories were generated using short read technology and are in draft stage, posing a major obstacle for the high-resolution whole genome sequence typing (WGST). The application of LRT (long-read technology) sequencing provided us with closed genomes, which proved critical to put the atypical non-shigatoxigenic NSF O157:H7 and SF O157:NM strains into the phylogenomic context of the stepwise evolutionary model. Availability of closed chromosomes for representative Stx (-) NSF O157:H7 and SF O157:NM strains allowed to describe the genomic basis and individual evolutionary trajectories underlying the absence of Stx at high accuracy and resolution. The ability of LRT to recover and accurately assemble plasmids revealed a strong correlation between the strains' featured plasmid genotype and chromosomally inferred clade, which suggests the coevolution of the chromosome and accessory plasmids. The identified ancestral traits in the pSFO157 plasmid of NSF O157:H7 strain LSU-61 provided additional evidence for its intermediate status. Taken together, these observations highlight the utility of LRTs for advancing our understanding of EHEC O157:H7/NM pathogenome evolution. Insights into the genomic and phenotypic plasticity of STEC on a lineage- and genome-wide scale are foundational to improve and inform risk assessment, biosurveillance, and prevention strategies.
Collapse
Affiliation(s)
- Emmanuel C. Nyong
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sam R. Zaia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Armando L. Rodriguez
- Research Computing Support Group, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zaina Irion-Byrd
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | | | - James L. Bono
- United States Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture (ARS-USDA), Clay Center, NE, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| |
Collapse
|
11
|
Shimizu M. Pathogenic functions and diagnostic utility of cytokines/chemokines in EHEC-HUS. Pediatr Int 2020; 62:308-315. [PMID: 31742829 DOI: 10.1111/ped.14053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Hemolytic - uremic syndrome (HUS) is a severe complication of infection by Shiga toxin (STx)-producing enterohemorrhagic Escherichia coli. Hemolytic - uremic syndrome is defined clinically as a triad of non-immune microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injuries. Neurologic complications such as acute encephalopathy are also observed. In humans, endothelial cells, proximal tubular epithelial cells, mesangial cells, podocytes, intestinal epithelial cells, and monocytes / macrophages are susceptible to STx-mediated injury. Shiga toxin induces the secretion of inflammatory cytokines and chemokines from susceptible cells, including tumor necrosis factor-α interleukin (IL)-1, IL-6, and IL-8. These cytokines and chemokines contribute to the pathogenesis of HUS and encephalopathy by enhancing STx-induced cytotoxicity and inducing inflammatory cell infiltration. Serum cytokine/chemokine levels are therefore useful as indicators of disease activity and predictors of progression from acute kidney injury to chronic kidney disease. Anti-inflammation therapy combined with apheresis to remove excessive cytokines / chemokines and methylprednisolone pulse therapy to suppress cytokine/chemokine production may be an effective treatment regimen for severe E. coli-associated HUS. However, this regimen requires careful monitoring of potential side effects, such as infections, thrombus formation, and hypertension.
Collapse
Affiliation(s)
- Masaki Shimizu
- Department of Pediatrics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
12
|
Role of Shiga Toxins in Cytotoxicity and Immunomodulatory Effects of Escherichia coli O157:H7 during Host-Bacterial Interactions in vitro. Toxins (Basel) 2020; 12:toxins12010048. [PMID: 31947665 PMCID: PMC7020462 DOI: 10.3390/toxins12010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/19/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains are food-borne pathogens that can cause different clinical conditions. Shiga toxin 2a and/or 2c (Stx2)-producing E. coli O157:H7 is the serotype most frequently associated with severe human disease. In this work we analyzed the hypothesis that host cells participate in Stx2 production, cell damage, and inflammation during EHEC infection. With this aim, macrophage-differentiated THP-1 cells and the intestinal epithelial cell line HCT-8 were incubated with E. coli O157:H7. A time course analysis of cellular and bacterial survival, Stx2 production, stx2 transcription, and cytokine secretion were analyzed in both human cell lines. We demonstrated that macrophages are able to internalize and kill EHEC. Simultaneously, Stx2 produced by internalized bacteria played a major role in macrophage death. In contrast, HCT-8 cells were completely resistant to EHEC infection. Besides, macrophages and HCT-8 infected cells produce IL-1β and IL-8 inflammatory cytokines, respectively. At the same time, bacterial stx2-specific transcripts were detected only in macrophages after EHEC infection. The interplay between bacteria and host cells led to Stx production, triggering of inflammatory response and cell damage, all of which could contribute to a severe outcome after EHEC infections.
Collapse
|
13
|
Kushak RI, Boyle DC, Rosales IA, Ingelfinger JR, Stahl GL, Ozaki M, Colvin RB, Grabowski EF. Platelet thrombus formation in eHUS is prevented by anti-MBL2. PLoS One 2019; 14:e0220483. [PMID: 31881024 PMCID: PMC6934323 DOI: 10.1371/journal.pone.0220483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022] Open
Abstract
E. coli associated Hemolytic Uremic Syndrome (epidemic hemolytic uremic syndrome, eHUS) caused by Shiga toxin-producing bacteria is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute kidney injury that cause acute renal failure in up to 65% of affected patients. We hypothesized that the mannose-binding lectin (MBL) pathway of complement activation plays an important role in human eHUS, as we previously demonstrated that injection of Shiga Toxin-2 (Stx-2) led to fibrin deposition in mouse glomeruli that was blocked by co-injection of the anti-MBL-2 antibody 3F8. However, the markers of platelet thrombosis in affected mouse glomeruli were not delineated. To investigate the effect of 3F8 on markers of platelet thrombosis, we used kidney sections from our mouse model (MBL-2+/+ Mbl-A/C-/-; MBL2 KI mouse). Mice in the control group received PBS, while mice in a second group received Stx-2, and those in a third group received 3F8 and Stx-2. Using double immunofluorescence (IF) followed by digital image analysis, kidney sections were stained for fibrin(ogen) and CD41 (marker for platelets), von-Willebrand factor (marker for endothelial cells and platelets), and podocin (marker for podocytes). Electron microscopy (EM) was performed on ultrathin sections from mice and human with HUS. Injection of Stx-2 resulted in an increase of both fibrin and platelets in glomeruli, while administration of 3F8 with Stx-2 reduced both platelet and fibrin to control levels. EM studies confirmed that CD41-positive objects observed by IF were platelets. The increases in platelet number and fibrin levels by injection of Stx-2 are consistent with the generation of platelet-fibrin thrombi that were prevented by 3F8.
Collapse
Affiliation(s)
- R. I. Kushak
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - D. C. Boyle
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - I. A. Rosales
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - J. R. Ingelfinger
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - G. L. Stahl
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - M. Ozaki
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - R. B. Colvin
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - E. F. Grabowski
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Nakanishi K, Matsuda M, Ida R, Hosokawa N, Kurohane K, Niwa Y, Kobayashi H, Imai Y. Lettuce-derived secretory IgA specifically neutralizes the Shiga toxin 1 activity. PLANTA 2019; 250:1255-1264. [PMID: 31222495 DOI: 10.1007/s00425-019-03215-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION An edible plant was tested as a host for the production of secretory monoclonal IgA against Shiga toxin 1 (Stx1). The lettuce-derived IgA completely protected Vero cells from Stx1. Secretory immunoglobulin A (SIgA) is thought to control mucosal infections and thus it may be applicable to oral passive immunotherapy. Edible plants are candidate hosts for producing oral formulations with SIgA against pathogenic agents. We previously established a recombinant IgA specific for the B subunit of Shiga toxin 1 (Stx1B) consisting of the Fab fragment of Stx1B-specific monoclonal IgG and the Fc region of IgA (hyIgA). Here, we developed transgenic lettuce (Lactuca sativa) that produces hyIgA in a secretory form (S-hyIgA). An Arabidopsis-derived light-harvesting complex II (LHCB) promoter was used for the expression of all four transgenes (hyIgA heavy, light and j chains, and secretory component). Agrobacterium-mediated transformation was carried out to introduce genes into lettuce leaf discs by means of a single vector harboring all four transgenes. Consistent with the tissue specificity of the LHCB promoter, the expression of hyIgA transgenes was observed in leaf and stem tissues, which contain chloroplasts, at the mRNA and protein levels. The leaves produced hyIgA in a more than tenfold higher yield as compared with stems. The lettuce-derived S-hyIgA was found to bind to Stx1B in a dose-dependent manner by means of ELISA. A leaf extract of the transgenic lettuce completely neutralized the cytotoxicity of Stx1 against Vero cells, which are highly susceptible to Stx1. In conclusion, we established a transgenic lettuce producing a secretory form of hyIgA that can bind bacterial toxin. The results indicate that edible practical plants containing S-hyIgA will provide a possible means for immunotherapy for food poisoning.
Collapse
Affiliation(s)
- Katsuhiro Nakanishi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Minami Matsuda
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Ryota Ida
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Nao Hosokawa
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan.
| |
Collapse
|
15
|
Nakanishi K, Morikane S, Hosokawa N, Kajihara Y, Kurohane K, Niwa Y, Kobayashi H, Imai Y. Plant-derived secretory component forms secretory IgA with shiga toxin 1-specific dimeric IgA produced by mouse cells and whole plants. PLANT CELL REPORTS 2019; 38:161-172. [PMID: 30506369 DOI: 10.1007/s00299-018-2358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
A key module, secretory component (SC), was efficiently expressed in Arabidopsis thaliana. The plant-based SC and immunoglobulin A of animal or plant origin formed secretory IgA that maintains antigen-binding activity. Plant expression systems are suitable for scalable and cost-effective production of biologics. Secretory immunoglobulin A (SIgA) will be useful as a therapeutic antibody against mucosal pathogens. SIgA is equipped with a secretory component (SC), which assists the performance of SIgA on the mucosal surface. Here we produced SC using a plant expression system and formed SIgA with dimeric IgAs produced by mouse cells as well as by whole plants. To increase the expression level, an endoplasmic reticulum retention signal peptide, KDEL (Lys-Asp-Glu-Leu), was added to mouse SC (SC-KDEL). The SC-KDEL cDNA was inserted into a binary vector with a translational enhancer and an efficient terminator. The SC-KDEL transgenic Arabidopsis thaliana produced SC-KDEL at the level of 2.7% of total leaf proteins. In vitro reaction of the plant-derived SC-KDEL with mouse dimeric monoclonal IgAs resulted in the formation of SIgA. When reacted with Shiga toxin 1 (Stx1)-specific ones, the antigen-binding activity was maintained. When an A. thaliana plant expressing SC-KDEL was crossed with one expressing dimeric IgA specific for Stx1, the plant-based SIgA exhibited antigen-binding activity. Leaf extracts of the crossbred transgenic plants neutralized Stx1 cytotoxicity against Stx1-sensitive cells. These results suggest that transgenic plants expressing SC-KDEL will provide a versatile means of SIgA production.
Collapse
Affiliation(s)
- Katsuhiro Nakanishi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Shota Morikane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Nao Hosokawa
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yuka Kajihara
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka, 422-8526, Japan.
| |
Collapse
|
16
|
Exeni RA, Fernandez-Brando RJ, Santiago AP, Fiorentino GA, Exeni AM, Ramos MV, Palermo MS. Pathogenic role of inflammatory response during Shiga toxin-associated hemolytic uremic syndrome (HUS). Pediatr Nephrol 2018; 33:2057-2071. [PMID: 29372302 DOI: 10.1007/s00467-017-3876-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/01/2017] [Accepted: 12/07/2017] [Indexed: 01/22/2023]
Abstract
Hemolytic uremic syndrome (HUS) is defined as a triad of noninmune microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The most frequent presentation is secondary to Shiga toxin (Stx)-producing Escherichia coli (STEC) infections, which is termed postdiarrheal, epidemiologic or Stx-HUS, considering that Stx is the necessary etiological factor. After ingestion, STEC colonize the intestine and produce Stx, which translocates across the intestinal epithelium. Once Stx enters the bloodstream, it interacts with renal endothelial and epithelial cells, and leukocytes. This review summarizes the current evidence about the involvement of inflammatory components as central pathogenic factors that could determine outcome of STEC infections. Intestinal inflammation may favor epithelial leakage and subsequent passage of Stx to the systemic circulation. Vascular damage triggered by Stx promotes not only release of thrombin and increased fibrin concentration but also production of cytokines and chemokines by endothelial cells. Recent evidence from animal models and patients strongly indicate that several immune cells types may participate in HUS physiopathology: neutrophils, through release of proteases and reactive oxygen species (ROS); monocytes/macrophages through secretion of cytokines and chemokines. In addition, high levels of Bb factor and soluble C5b-9 (sC5b-9) in plasma as well as complement factors adhered to platelet-leukocyte complexes, microparticles and microvesicles, suggest activation of the alternative pathway of complement. Thus, acute immune response secondary to STEC infection, the Stx stimulatory effect on different immune cells, and inflammatory stimulus secondary to endothelial damage all together converge to define a strong inflammatory status that worsens Stx toxicity and disease.
Collapse
Affiliation(s)
- Ramon Alfonso Exeni
- Departamento de Nefrología, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Romina Jimena Fernandez-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Adriana Patricia Santiago
- Departamento de Nefrología, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Gabriela Alejandra Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
- Laboratorio, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Andrea Mariana Exeni
- Servicio de Nefrología, Hospital Austral, Pilar, Provincia de Buenos Aires, Argentina
| | - Maria Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Zhang LX, Simpson DJ, McMullen LM, Gänzle MG. Comparative Genomics and Characterization of the Late Promoter pR' from Shiga Toxin Prophages in Escherichia coli. Viruses 2018; 10:v10110595. [PMID: 30384416 PMCID: PMC6266700 DOI: 10.3390/v10110595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 02/02/2023] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) causes human illness ranging from mild diarrhea to death. The bacteriophage encoded stx genes are located in the late transcription region, downstream of the antiterminator Q. The transcription of the stx genes is directly under the control of the late promoter pR’, thus the sequence diversity of the region between Q and stx, here termed the pR’ region, may affect Stx toxin production. Here, we compared the gene structure of the pR’ region and the stx subtypes of nineteen STECs. The sequence alignment and phylogenetic analysis suggested that the pR’ region tends to be more heterogeneous than the promoter itself, even if the prophages harbor the same stx subtype. Furthermore, we established and validated transcriptional fusions of the pR’ region to the DsRed reporter gene using mitomycin C (MMC) induction. Finally, these constructs were transformed into native and non-native strains and examined with flow cytometry. The results showed that induction levels changed when pR’ regions were placed under different regulatory systems. Moreover, not every stx gene could be induced in its native host bacteria. In addition to the functional genes, the diversity of the pR’ region plays an important role in determining the level of toxin induction.
Collapse
Affiliation(s)
- Ling Xiao Zhang
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - David J Simpson
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Lynn M McMullen
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Michael G Gänzle
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
18
|
Mohammadi-Farsani A, Habibi-Roudkenar M, Golkar M, Shokrgozar MA, Jahanian-Najafabadi A, KhanAhmad H, Valiyari S, Bouzari S. A-NGR fusion protein induces apoptosis in human cancer cells. EXCLI JOURNAL 2018; 17:590-597. [PMID: 30108463 PMCID: PMC6088213 DOI: 10.17179/excli2018-1120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022]
Abstract
The NGR peptide is one of the well-known peptides for targeting tumor cells. It has the ability to target aminopeptidase N (CD13) on tumor cells or the tumor vascular endothelium. In this study, the NGR peptide was used for targeting A subunit of the Shiga toxin to cancer cells. The cytotoxic effect of the A-NGR fusion protein was assessed on HT1080, U937, HT29 cancer cells and MRC-5 normal cells. For this purpose, cells were treated with different concentrations of A-NGR (0.5-40 µg/ml). The evaluation of cell viability was achieved by MTT assay. Apoptosis was determined by annexin-V/PI double staining flow cytometry. Alterations in the mRNA expression of apoptosis - related genes were assessed by real time RT- PCR. The results showed that A-NGR fusion protein effectively inhibited the growth of HT1080 and U937 cancer cells in comparison to negative control (PBS) but for CD13-negative HT-29 cancer cells, only at high concentrations of fusion protein was inhibited growth recorded. On the other hand, A-NGR had little cytotoxic effect on MRC-5 normal cells. The flow cytometry results showed that A-NGR induces apoptosis. Furthermore, the results of real time RT-PCR revealed that A-NGR significantly increases the mRNA expression of caspase 3 and caspase 9. Conclusively, A-NGR fusion protein has the ability of targeting CD13-positive cancer cells, the cytotoxic effect on CD13-positive cancer cells as well as has low cytotoxic effect on normal cells.
Collapse
Affiliation(s)
| | - Mehryar Habibi-Roudkenar
- Medical Biotechnology Department, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Majid Golkar
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein KhanAhmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samira Valiyari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Muhammad SA, Guo J, Nguyen TM, Wu X, Bai B, Yang XF, Chen JY. Simulation Study of cDNA Dataset to Investigate Possible Association of Differentially Expressed Genes of Human THP1-Monocytic Cells in Cancer Progression Affected by Bacterial Shiga Toxins. Front Microbiol 2018; 9:380. [PMID: 29593668 PMCID: PMC5859033 DOI: 10.3389/fmicb.2018.00380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Shiga toxin (Stxs) is a family of structurally and functionally related bacterial cytotoxins produced by Shigella dysenteriae serotype 1 and shigatoxigenic group of Escherichia coli that cause shigellosis and hemorrhagic colitis, respectively. Until recently, it has been thought that Stxs only inhibits the protein synthesis and induces expression to a limited number of genes in host cells, but recent data showed that Stxs can trigger several signaling pathways in mammalian cells and activate cell cycle and apoptosis. To explore the changes in gene expression induced by Stxs that have been shown in other systems to correlate with cancer progression, we performed the simulated analysis of cDNA dataset and found differentially expressed genes (DEGs) of human THP1-monocytic cells treated with Stxs. In this study, the entire data (treated and untreated replicates) was analyzed by statistical algorithms implemented in Bioconductor packages. The output data was validated by the k-fold cross technique using generalized linear Gaussian models. A total of 50 DEGs were identified. 7 genes including TSLP, IL6, GBP1, CD274, TNFSF13B, OASL, and PNPLA3 were considerably (<0.00005) related to cancer proliferation. The functional enrichment analysis showed 6 down-regulated and 1 up-regulated genes. Among these DEGs, IL6 was associated with several cancers, especially with leukemia, lymphoma, lungs, liver and breast cancers. The predicted regulatory motifs of these genes include conserved RELA, STATI, IRFI, NF-kappaB, PEND, HLF, REL, CEBPA, DI_2, and NFKB1 transcription factor binding sites (TFBS) involved in the complex biological functions. Thus, our findings suggest that Stxs has the potential as a valuable tool for better understanding of treatment strategies for several cancers.
Collapse
Affiliation(s)
- Syed A Muhammad
- Institute of Biopharmaceutical Informatics and Technologies, Wenzhou Medical University, Wenzhou, China.,Wenzhou Medical University 1st Affiliated Hospital, Wenzhou, China.,Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jinlei Guo
- Institute of Biopharmaceutical Informatics and Technologies, Wenzhou Medical University, Wenzhou, China.,Wenzhou Medical University 1st Affiliated Hospital, Wenzhou, China
| | - Thanh M Nguyen
- Institute of Biopharmaceutical Informatics and Technologies, Wenzhou Medical University, Wenzhou, China.,Wenzhou Medical University 1st Affiliated Hospital, Wenzhou, China.,Department of Computer and Information Science, Purdue University Indianapolis, Indianapolis, IN, United States
| | - Xiaogang Wu
- Institute for Systems Biology, Seattle, WA, United States
| | - Baogang Bai
- Institute of Biopharmaceutical Informatics and Technologies, Wenzhou Medical University, Wenzhou, China
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jake Y Chen
- Informatics Institute, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
20
|
Differential role of FL-BID and t-BID during verotoxin-1-induced apoptosis in Burkitt's lymphoma cells. Oncogene 2018; 37:2410-2421. [PMID: 29440708 PMCID: PMC5931984 DOI: 10.1038/s41388-018-0123-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 12/08/2017] [Accepted: 12/17/2017] [Indexed: 01/09/2023]
Abstract
The globotriaosylceramide Gb3 is a glycosphingolipid expressed on a subpopulation of germinal center B lymphocytes which has been recognized as the B cell differentiation antigen CD77. Among tumoral cell types, Gb3/CD77 is strongly expressed in Burkitt's lymphoma (BL) cells as well as other solid tumors including breast, testicular and ovarian carcinomas. One known ligand of Gb3/CD77 is Verotoxin-1 (VT-1), a Shiga toxin produced in specific E. coli strains. Previously, we have reported that in BL cells, VT-1 induces apoptosis via a caspase-dependent and mitochondria-dependent pathway. Yet, the respective roles of various apoptogenic factors remained to be deciphered. Here, this apoptotic pathway was found to require cleavage of the BID protein by caspase-8 as well as activation of two other apoptogenic proteins, BAK and BAX. Surprisingly however, t-BID, the truncated form of BID resulting from caspase-8 cleavage, played no role in the conformational changes of BAK and BAX. Rather, their activation occurred under the control of full length BID (FL-BID). Indeed, introducing a non-cleavable form of BID (BID-D59A) into BID-deficient BL cells restored BAK and BAX activation following VT-1 treatment. Still, t-BID was involved along with FL-BID in the BAK-dependent and BAX-dependent cytosolic release of CYT C and SMAC/DIABLO from the mitochondrial intermembrane space: FL-BID was found to control the homo-oligomerization of both BAK and BAX, likely contributing to the initial release of CYT C and SMAC/DIABLO, while t-BID was needed for their hetero-oligomerization and ensuing release amplification. Together, our results reveal a functional cooperation between BAK and BAX during VT-1-induced apoptosis and, unexpectedly, that activation of caspase-8 and production of t-BID were not mandatory for initiation of the cell death process.
Collapse
|
21
|
Belotserkovsky I, Sansonetti PJ. Shigella and Enteroinvasive Escherichia Coli. Curr Top Microbiol Immunol 2018; 416:1-26. [PMID: 30218158 DOI: 10.1007/82_2018_104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Shigella and enteroinvasive Escherichia coli (EIEC) are gram-negative bacteria responsible for bacillary dysentery (shigellosis) in humans, which is characterized by invasion and inflammatory destruction of the human colonic epithelium. Different EIEC and Shigella subgroups rose independently from commensal E. coli through patho-adaptive evolution that included loss of functional genes interfering with the virulence and/or with the intracellular lifestyle of the bacteria, as well as acquisition of genetic elements harboring virulence genes. Among the latter is the large virulence plasmid encoding for a type three secretion system (T3SS), which enables translocation of virulence proteins (effectors) from the bacterium directly into the host cell cytoplasm. These effectors enable the pathogen to subvert epithelial cell functions, promoting its own uptake, replication in the host cytosol, and dissemination to adjacent cells while concomitantly inhibiting pro-inflammatory cell death. Furthermore, T3SS effectors are directly involved in Shigella manipulation of immune cells causing their dysfunction and promoting cell death. In the current chapter, we first describe the evolution of the enteroinvasive pathovars and then summarize the overall knowledge concerning the pathogenesis of these bacteria, with a particular focus on Shigella flexneri. Subversion of host cell functions in the human gut, both epithelial and immune cells, by different virulence factors is especially highlighted.
Collapse
Affiliation(s)
- Ilia Belotserkovsky
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue Du Dr Roux, 75724 Cedex 15, Paris, France.
| | - Philippe J Sansonetti
- Microbiologie et Maladies Infectieuses, Collège de France, 11 Place Marcelin Berthelot, 75005, Paris, France
| |
Collapse
|
22
|
Park JY, Jeong YJ, Park SK, Yoon SJ, Choi S, Jeong DG, Chung SW, Lee BJ, Kim JH, Tesh VL, Lee MS, Park YJ. Shiga Toxins Induce Apoptosis and ER Stress in Human Retinal Pigment Epithelial Cells. Toxins (Basel) 2017; 9:toxins9100319. [PMID: 29027919 PMCID: PMC5666366 DOI: 10.3390/toxins9100319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 01/03/2023] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are the most potent known virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications such as acute renal failure, blindness and neurological abnormalities. Although numerous studies have defined apoptotic responses to Shiga toxin type 1 (Stx1) or Shiga toxin type 2 (Stx2) in a variety of cell types, the potential significance of Stx-induced apoptosis of photoreceptor and pigmented cells of the eye following intoxication is unknown. We explored the use of immortalized human retinal pigment epithelial (RPE) cells as an in vitro model of Stx-induced retinal damage. To the best of our knowledge, this study is the first report that intoxication of RPE cells with Stxs activates both apoptotic cell death signaling and the endoplasmic reticulum (ER) stress response. Using live-cell imaging analysis, fluorescently labeled Stx1 or Stx2 were internalized and routed to the RPE cell endoplasmic reticulum. RPE cells were significantly sensitive to wild type Stxs by 72 h, while the cells survived challenge with enzymatically deficient mutant toxins (Stx1A− or Stx2A−). Upon exposure to purified Stxs, RPE cells showed activation of a caspase-dependent apoptotic program involving a reduction of mitochondrial transmembrane potential (Δψm), increased activation of ER stress sensors IRE1, PERK and ATF6, and overexpression CHOP and DR5. Finally, we demonstrated that treatment of RPE cells with Stxs resulted in the activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK), suggesting that the ribotoxic stress response may be triggered. Collectively, these data support the involvement of Stx-induced apoptosis in ocular complications of intoxication. The evaluation of apoptotic responses to Stxs by cells isolated from multiple organs may reveal unique functional patterns of the cytotoxic actions of these toxins in the systemic complications that follow ingestion of toxin-producing bacteria.
Collapse
Affiliation(s)
- Jun-Young Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea.
| | - Yu-Jin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
- Department of Biochemistry, College of Medicine, Konyang University, 158 Gwanjeo-ro, Daejeon 35365, South Korea.
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
| | - Sung-Jin Yoon
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
| | - Song Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
| | - Su Wol Chung
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Ulsan 44610, South Korea.
| | - Byung Joo Lee
- Fight Against Angiogenesis-Related Blindness Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea.
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea.
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - Moo-Seung Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea.
| | - Young-Jun Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea.
| |
Collapse
|
23
|
Molecular Mechanisms of Anesthetic Neurotoxicity: A Review of the Current Literature. J Neurosurg Anesthesiol 2017; 28:361-372. [PMID: 27564556 DOI: 10.1097/ana.0000000000000348] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Data from epidemiologic studies and animal models have raised a concern that exposure to anesthetic agents during early postnatal life may cause lasting impairments in cognitive function. It is hypothesized that this is due to disruptions in brain development, but the mechanism underlying this toxic effect remains unknown. Ongoing research, particularly in rodents, has begun to address this question. In this review we examine currently postulated molecular mechanisms of anesthetic toxicity in the developing brain, including effects on cell death pathways, growth factor signaling systems, NMDA and GABA receptors, mitochondria, and epigenetic factors. The level of evidence for each putative mechanism is critically evaluated, and we attempt to draw connections between them where it is possible to do so. Although there are many promising avenues of research, at this time no consensus can be reached as to a definitive mechanism of injury.
Collapse
|
24
|
Nicod C, Banaei-Esfahani A, Collins BC. Elucidation of host-pathogen protein-protein interactions to uncover mechanisms of host cell rewiring. Curr Opin Microbiol 2017; 39:7-15. [PMID: 28806587 DOI: 10.1016/j.mib.2017.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/27/2017] [Indexed: 01/08/2023]
Abstract
Infectious diseases are the result of molecular cross-talks between hosts and their pathogens. These cross-talks are in part mediated by host-pathogen protein-protein interactions (HP-PPI). HP-PPI play crucial roles in infections, as they may tilt the balance either in favor of the pathogens' spread or their clearance. The identification of host proteins targeted by viral or bacterial pathogenic proteins necessary for the infection can provide insights into their underlying molecular mechanisms of pathogenicity, and potentially even single out pharmacological intervention targets. Here, we review the available methods to study HP-PPI, with a focus on recent mass spectrometry based methods to decipher bacterial-human infectious diseases and examine their relevance in uncovering host cell rewiring by pathogens.
Collapse
Affiliation(s)
- Charlotte Nicod
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, CH-8093 Zurich, Switzerland
| | - Amir Banaei-Esfahani
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
25
|
Nakanishi K, Morikane S, Ichikawa S, Kurohane K, Niwa Y, Akimoto Y, Matsubara S, Kawakami H, Kobayashi H, Imai Y. Protection of Human Colon Cells from Shiga Toxin by Plant-based Recombinant Secretory IgA. Sci Rep 2017; 7:45843. [PMID: 28368034 PMCID: PMC5377459 DOI: 10.1038/srep45843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/06/2017] [Indexed: 01/07/2023] Open
Abstract
Shiga toxin is a major virulence factor of food-poisoning caused by Escherichia coli such as O157:H7. Secretory immunoglobulin (Ig) A (SIgA) is supposed to prevent infection of the mucosal surface and is a candidate agent for oral immunotherapy. We previously established a recombinant monoclonal antibody (mAb) consisting of variable regions from a mouse IgG mAb specific for the binding subunit of Shiga toxin 1 (Stx1) and the Fc region of mouse IgA. Here we produced a secretory form of the recombinant IgA (S-hyIgA) with transgenic Arabidopsis thaliana plant. All the S-hyIgA cDNAs (heavy, light, J chain and secretory component) were expressed under the control of a bidirectional promoter of a chlorophyll a/b-binding protein of A. thaliana without using a viral promoter. The plant-based S-hyIgA exhibited antigen binding, and was modified with plant-specific N-linked sugar chains. The Ig heavy chain and secretory components were observed in an intracellular protein body-like structure of the transgenic leaves on immuno-electron microscopy. An extract of the transgenic leaves neutralized the cytotoxicity of Stx1 toward butyrate-treated Caco-2 cells, a human colon carcinoma cell line. These results will contribute to the development of edible therapeutic antibodies such as those for the treatment of mucosal infection.
Collapse
Affiliation(s)
- Katsuhiro Nakanishi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Shota Morikane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Shiori Ichikawa
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8612, Japan
| | - Sachie Matsubara
- Laboratory for Electron Microscopy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8612, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8612, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526, Japan
| |
Collapse
|
26
|
Rusconi B, Sanjar F, Koenig SSK, Mammel MK, Tarr PI, Eppinger M. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks. Front Microbiol 2016; 7:985. [PMID: 27446025 PMCID: PMC4928038 DOI: 10.3389/fmicb.2016.00985] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/08/2016] [Indexed: 01/29/2023] Open
Abstract
Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies.
Collapse
Affiliation(s)
- Brigida Rusconi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San AntonioSan Antonio, TX, USA; Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA
| | - Fatemeh Sanjar
- South Texas Center for Emerging Infectious Diseases, University of Texas at San AntonioSan Antonio, TX, USA; Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA
| | - Sara S K Koenig
- South Texas Center for Emerging Infectious Diseases, University of Texas at San AntonioSan Antonio, TX, USA; Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA
| | - Mark K Mammel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine St. Louis, MO, USA
| | - Mark Eppinger
- South Texas Center for Emerging Infectious Diseases, University of Texas at San AntonioSan Antonio, TX, USA; Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA
| |
Collapse
|
27
|
Leu H, Sugimoto N, Shimizu M, Toma T, Wada T, Ohta K, Yachie A. Tumor necrosis factor-α modifies the effects of Shiga toxin on glial cells. Int Immunopharmacol 2016; 38:139-43. [PMID: 27268285 DOI: 10.1016/j.intimp.2016.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/16/2016] [Accepted: 05/26/2016] [Indexed: 11/25/2022]
Abstract
Shiga toxin (STX) is one of the main factors inducing hemorrhagic colitis and hemolytic-uremic syndrome (HUS) in infections with STX-producing Escherichia coli (STEC). Approximately 62% of patients with HUS showed symptoms of encephalopathy in the 2011 Japanese outbreak of STEC infections. At that time, we reported elevated serum concentrations of tumor necrosis factor (TNF)-α in patients with acute encephalopathy during the HUS phase. In the current study, we investigated whether TNF-α augments the effects of STX in glial cell lines and primary glial cells. We found that TNF-α alone or STX in combination with TNF-α activates nuclear factor-κB (NF-κB) signaling and inhibits growth of glial cells. The magnitude of the NF-κB activation and the inhibition of cell growth by the STX and TNF-α combination was greater than that obtained with TNF-α alone or STX alone. Thus, this in vitro study reveals the role of TNF-α in glial cells during STEC infections.
Collapse
Affiliation(s)
- Hue Leu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan; Dan Phuong General Hospital, Hanoi, Vietnam.
| | - Naotoshi Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan; Department of Physiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Masaki Shimizu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Tomoko Toma
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Taizo Wada
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Kunio Ohta
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Akihiro Yachie
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
28
|
Abedi Jafari F, Oloomi M, Bouzari S. Comparative Effect of Recombinant Shiga Toxin in Induction of Pro- and Anti-Apoptotic Markers and Inflammatory Cytokines in Epithelial and Monocytic Cells. Jundishapur J Microbiol 2016; 9:e24758. [PMID: 27127585 PMCID: PMC4841980 DOI: 10.5812/jjm.24758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 10/10/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Shiga toxins (Stxs, also referred to as verotoxins) are a family of bacterial protein toxins generated by Stx producing-Escherichia coli (STEC), such as E. coli serotype O157:H7. Objectives: The aim of this study was to investigate the effect of recombinant and native Shiga toxin (Stx) in induction of pro- and anti-apoptosis factors and stimulation of immune response to HeLa and THP-1 cells. Materials and Methods: The HeLa and THP-1 cells were used to study the effect of native and recombinant Shiga toxin. For this purpose, 106 cells were cultured overnight in six-well plates and different concentrations of Stx were added to each well. The cells were then collected after 24 hours of incubation. Total RNA and protein was extracted. Firstly, the total RNA was used in reverse transcription-polymerase chain reaction (RT-PCR) for detection of interleukin (IL)-1α, IL-1β, IL-8, tumor necrosis factor (TNF)-α, B-cell lymphoma (Bcl)-2 and Bcl-xl transcript. Protein expression of pro- and anti-apoptotic factors was also confirmed by western blot analysis. Results: The IL-1α and IL-8 were increased by recombinant and native Stx. Interleukin-1β was detected in THP-1, while TNF-α was detected HeLa cells. Furthermore, Bcl-2 and Bcl-xl expression was observed in HeLa cells. However, expression of Bak was reduced by recombinant Stx and native toxin at the protein level, while Bcl-xl expression was increased. Conclusions: These results suggest that toxins induce inflammatory responses, particularly through expression of chemokine. Recombinant Stx and native toxin induced apoptosis by balancing between different pro- and anti-apoptotic Bcl-2 family-factors in epithelial cells. In this study, for the first time, recombinant and native Stx induction of apoptotic factors and stimulation of immune response to HeLa and THP-1 cells were compared.
Collapse
Affiliation(s)
| | - Mana Oloomi
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding author: Mana Oloomi, Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel: +98-2166953311, Fax: +98-2166492619, E-mail:
| | - Saeid Bouzari
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran
| |
Collapse
|
29
|
Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence. Microbiol Spectr 2016; 2. [PMID: 26104460 DOI: 10.1128/microbiolspec.ehec-0008-2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A major outbreak caused by Escherichia coli of serotype O104:H4 spread throughout Europe in 2011. This large outbreak was caused by an unusual strain that is most similar to enteroaggregative E. coli (EAEC) of serotype O104:H4. A significant difference, however, is the presence of a prophage encoding the Shiga toxin, which is characteristic of enterohemorrhagic E. coli (EHEC) strains. This combination of genomic features, associating characteristics from both EAEC and EHEC, represents a new pathotype. The 2011 E. coli O104:H4 outbreak of hemorrhagic diarrhea in Germany is an example of the explosive cocktail of high virulence and resistance that can emerge in this species. A total of 46 deaths, 782 cases of hemolytic-uremic syndrome, and 3,128 cases of acute gastroenteritis were attributed to this new clone of EAEC/EHEC. In addition, recent identification in France of similar O104:H4 clones exhibiting the same virulence factors suggests that the EHEC O104:H4 pathogen has become endemically established in Europe after the end of the outbreak. EAEC strains of serotype O104:H4 contain a large set of virulence-associated genes regulated by the AggR transcription factor. They include, among other factors, the pAA plasmid genes encoding the aggregative adherence fimbriae, which anchor the bacterium to the intestinal mucosa (stacked-brick adherence pattern on epithelial cells). Furthermore, sequencing studies showed that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga toxin-producing EAEC O104:H4 strain that caused the German outbreak. This article discusses the role these virulence factors could have in EAEC/EHEC O104:H4 pathogenesis.
Collapse
|
30
|
Tang B, Li Q, Zhao XH, Wang HG, Li N, Fang Y, Wang K, Jia YP, Zhu P, Gu J, Li JX, Jiao YJ, Tong WD, Wang M, Zou QM, Zhu FC, Mao XH. Shiga toxins induce autophagic cell death in intestinal epithelial cells via the endoplasmic reticulum stress pathway. Autophagy 2016; 11:344-54. [PMID: 25831014 DOI: 10.1080/15548627.2015.1023682] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Shiga toxins (Stxs) are a family of cytotoxic proteins that lead to the development of bloody diarrhea, hemolytic-uremic syndrome, and central nervous system complications caused by bacteria such as S. dysenteriae, E. coli O157:H7 and E. coli O104:H4. Increasing evidence indicates that macroautophagy (autophagy) is a key factor in the cell death induced by Stxs. However, the associated mechanisms are not yet clear. This study showed that Stx2 induces autophagic cell death in Caco-2 cells, a cultured line model of human enterocytes. Inhibition of autophagy using pharmacological inhibitors, such as 3-methyladenine and bafilomycin A1, or silencing of the autophagy genes ATG12 or BECN1 decreased the Stx2-induced death in Caco-2 cells. Furthermore, there were numerous instances of dilated endoplasmic reticulum (ER) in the Stx2-treated Caco-2 cells, and repression of ER stress due to the depletion of viable candidates of DDIT3 and NUPR1. These processes led to Stx2-induced autophagy and cell death. Finally, the data showed that the pseudokinase TRIB3-mediated DDIT3 expression and AKT1 dephosphorylation upon ER stress were triggered by Stx2. Thus, the data indicate that Stx2 causes autophagic cell death via the ER stress pathway in intestinal epithelial cells.
Collapse
Key Words
- 3-MA, 3-methyladenine
- AO, acridine orange
- ATF4, activating transcription factor 4
- ATG, autophagy-related
- BECN1, Beclin 1, autophagy-related
- Baf A1, bafilomycin A1
- CASP3, caspase 3, apoptosis-related cysteine peptidase
- DDIT3, DNA-damage-inducible transcript 3
- E. coli O157:H7
- EHEC O157, Escherichia coli O157:H7
- ER stress
- FACS, fluorescence activated cell sorting
- MAP1LC3B, microtubule-associated protein 1 light chain 3 beta
- MAPK, mitogen-activated protein kinase
- MDC, monodansylcadaverine
- NUPR1, nuclear protein, transcriptional regulator, 1
- PARP1, poly (ADP-ribose) polymerase 1
- PBS, phosphate-buffered saline
- PI, propidium iodide
- Shiga toxins
- Stxs, Shiga toxins
- TEM, transmission electron microscopy
- TRIB3, tribbles pseudokinase 3
- Thap, thapsigargin
- WT, wild type
- Z-VAD, Z-VAD-FMK
- autophagic cell death
- autophagy
- Δ, knockout
Collapse
Affiliation(s)
- Bin Tang
- a National Engineering Research Center for Immunobiological Products; Department of Microbiology and Biochemical Pharmacy; College of Pharmacy; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shiga Toxins Activate the NLRP3 Inflammasome Pathway To Promote Both Production of the Proinflammatory Cytokine Interleukin-1β and Apoptotic Cell Death. Infect Immun 2015; 84:172-86. [PMID: 26502906 DOI: 10.1128/iai.01095-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
Shiga toxin (Stx)-mediated immune responses, including the production of the proinflammatory cytokines tumor necrosis-α (TNF-α) and interleukin-1β (IL-1β), may exacerbate vascular damage and accelerate lethality. However, the immune signaling pathway activated in response to Stx is not well understood. Here, we demonstrate that enzymatically active Stx, which leads to ribotoxic stress, triggers NLRP3 inflammasome-dependent caspase-1 activation and IL-1β secretion in differentiated macrophage-like THP-1 (D-THP-1) cells. The treatment of cells with a chemical inhibitor of glycosphingolipid biosynthesis, which suppresses the expression of the Stx receptor globotriaosylceramide and subsequent endocytosis of the toxin, substantially blocked activation of the NLRP3 inflammasome and processing of caspase-1 and IL-1β. Processing and release of both caspase-1 and IL-1β were significantly reduced or abolished in Stx-intoxicated D-THP-1 cells in which the expression of NLRP3 or ASC was stably knocked down. Furthermore, Stx mediated the activation of caspases involved in apoptosis in an NLRP3- or ASC-dependent manner. In Stx-intoxicated cells, the NLRP3 inflammasome triggered the activation of caspase-8/3, leading to the initiation of apoptosis, in addition to caspase-1-dependent pyroptotic cell death. Taken together, these results suggest that Stxs trigger the NLRP3 inflammasome pathway to release proinflammatory IL-1β as well as to promote apoptotic cell death.
Collapse
|
32
|
Hauser E, Bruederle M, Reich C, Bruckbauer A, Funk J, Schmidt H. Subtilase contributes to the cytotoxicity of a Shiga toxin-producing Escherichia coli strain encoding three different toxins. Int J Food Microbiol 2015; 217:156-61. [PMID: 26523884 DOI: 10.1016/j.ijfoodmicro.2015.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 11/24/2022]
Abstract
Food-borne Shiga toxin-producing Escherichia coli (STEC) O113:H21 strain TS18/08, that has previously been isolated from mixed minced meat, harbors the Shiga toxin (Stx) encoding allele stx2a, the plasmid-located subtilase cytotoxin encoding allele subAB1 and the cytolethal distending toxin type V encoding gene cdt-V. In the current study, it could be shown that each of these toxin genes was transcribed with different transcription levels at different time points by RT real time PCR under laboratory batch conditions in LB-broth. The transcription maximum for cdt-V and subAB1 was observed after 3h while stx2a transcription was highest after 6h of incubation. During this time the mean relationship of the amount of stx2a:subAB1:cdt-V transcripts was 1:26:100. Furthermore, isogenic stx2a and cdt-V chromosomal deletion mutants were constructed to measure the contribution of SubAB1 to the overall cytotoxicity of this strain. In this context, a further copy of stx2 was detected in this strain and was also deleted. Comparing the cytotoxicity of supernatants of the resulting mutant strains TS18/08-3 (Δstx2-1Δstx2-2Δcdt-V) and TS18/08-4 (Δstx2-1Δstx2-2Δcdt-VΔsubAB1) on Vero cells demonstrated a contribution of SubAB1 to the overall cytotoxic effect while the 4-fold isogenic deletion mutant did not show any cytotoxic effect and that was comparable to the non-toxic laboratory E. coli strain C600. The cytotoxic effect could be restored by complementation with the recombinant low copy plasmid pWSK29 harboring subAB1 under the control of its own promoter. In addition, the cytotoxicity of wild type strain TS18/08 to Vero cells was in the same range as the EHEC O157:H7 strain EDL933. Therefore, food-borne STEC O113:H21 strain TS18/08 can be considered as a putative human pathogen.
Collapse
Affiliation(s)
- Elisabeth Hauser
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany
| | - Matthias Bruederle
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany
| | - Carolin Reich
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany
| | - Annette Bruckbauer
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany
| | - Joschua Funk
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany
| | - Herbert Schmidt
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
33
|
Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl Environ Microbiol 2015; 81:8118-25. [PMID: 26386055 PMCID: PMC4651098 DOI: 10.1128/aem.02034-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022] Open
Abstract
Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli.
Collapse
|
34
|
Sugimoto N, Leu H, Inoue N, Shimizu M, Toma T, Kuroda M, Saito T, Wada T, Yachie A. The critical role of lipopolysaccharide in the upregulation of aquaporin 4 in glial cells treated with Shiga toxin. J Biomed Sci 2015; 22:78. [PMID: 26385393 PMCID: PMC4575422 DOI: 10.1186/s12929-015-0184-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/10/2015] [Indexed: 11/10/2022] Open
Abstract
Background In 2011, there was an outbreak of Shiga toxin-producing Escherichia coli (STEC) infections in Japan. Approximately 62 % of patients with hemolytic-uremic syndrome also showed symptoms of encephalopathy. To determine the mechanisms of onset for encephalopathy during STEC infections, we conducted an in vitro study with glial cell lines and primary glial cells. Results Shiga toxin 2 (Stx-2) in combination with lipopolysaccharide (LPS), or LPS alone activates nuclear factor-κB (NF-κB) signaling in glial cells. Similarly, Stx-2 in combination with LPS, or LPS alone increases expression levels of aquaporin 4 (AQP4) in glial cells. It is possible that overexpression of AQP4 results in a rapid and increased influx of osmotic water across the plasma membrane into cells, thereby inducing cell swelling and cerebral edema. Conclusions We have showed that a combination of Stx-2 and LPS induced apoptosis of glial cells recently. Glial cells are indispensable for cerebral homeostasis; therefore, their dysfunction and death impairs cerebral homeostasis and results in encephalopathy. We postulate that the onset of encephalopathy in STEC infections occurs when Stx-2 attacks vascular endothelial cells of the blood–brain barrier, inducing their death. Stx-2 and LPS then attack the exposed glial cells that are no longer in contact with the endothelial cells. AQP4 is overexpressed in glial cells, resulting in their swelling and adversely affecting cerebral homeostasis. Once cerebral homeostasis is affected in such a way, encephalopathy is the likely result in STEC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0184-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan. .,Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Hue Leu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan. .,Dan Phuong General Hospital, Hanoi, Vietnam.
| | - Natsumi Inoue
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Masaki Shimizu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Tomoko Toma
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Mondo Kuroda
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Takekatsu Saito
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Taizo Wada
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Akihiro Yachie
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
35
|
Menge C, Loos D, Bridger PS, Barth S, Werling D, Baljer G. Bovine macrophages sense Escherichia coli Shiga toxin 1. Innate Immun 2015; 21:655-64. [PMID: 25907071 DOI: 10.1177/1753425915581215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/10/2015] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections in cattle are asymptomatic; however, Stx impairs the initiation of an adaptive immune response by targeting bovine peripheral and intraepithelial lymphocytes. As presumptive bovine mucosal macrophages (Mø) are also sensitive to Stx, STEC may even exert immune modulatory effects by acting on steps preceding lymphocyte activation at the Mø level. We therefore studied the expression of the Stx receptor (CD77), cellular phenotype and functions after incubation of primary bovine monocyte-derived Mø with purified Stx1. A significant portion of bovine Mø expressed CD77 on their surface, with the recombinant B-subunit of Stx1 binding to >50% of the cells. Stx1 down-regulated significantly surface expression of CD14, CD172a and co-stimulatory molecules CD80 and CD86 within 4 h of incubation, while MHC-II expression remained unaffected. Furthermore, incubation of Mø with Stx1 increased significantly numbers of transcripts for IL-4, IL-6, IL-10, IFN-γ, TNF-α, IL-8 and GRO-α but not for IL-12, TGF-β, MCP-1 and RANTES. In the course of bovine STEC infections, Stx1 appears to induce in Mø a mixed response pattern reminiscent of regulatory Mø, which may amplify the direct suppressive effect of the toxin on lymphocytes.
Collapse
Affiliation(s)
- Christian Menge
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Daniela Loos
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Philip S Bridger
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Stefanie Barth
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Dirk Werling
- Royal Veterinary College, Department of Pathology and Pathogen Biology, Hatfield, UK
| | - Georg Baljer
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| |
Collapse
|
36
|
|
37
|
Adenovirus vector expressing Stx1/Stx2-neutralizing agent protects piglets infected with Escherichia coli O157:H7 against fatal systemic intoxication. Infect Immun 2014; 83:286-91. [PMID: 25368111 DOI: 10.1128/iai.02360-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid heavy-chain-only VH domain (VHH)-based neutralizing agent (VNA) targeting Stx1 and Stx2 (VNA-Stx) protected mice from Stx1 and Stx2 intoxication. Here we report that a single intramuscular (i.m.) injection of a nonreplicating adenovirus (Ad) vector carrying a secretory transgene of VNA-Stx (Ad/VNA-Stx) protected mice challenged with Stx2 and protected gnotobiotic piglets infected with STEC from fatal systemic intoxication. One i.m. dose of Ad/VNA-Stx prevented fatal central nervous system (CNS) symptoms in 9 of 10 animals when it was given to piglets 24 h after bacterial challenge and in 5 of 9 animals when it was given 48 h after bacterial challenge, just prior to the onset of CNS symptoms. All 6 placebo animals died or were euthanized with severe CNS symptoms. Ad/VNA-Stx treatment had no impact on diarrhea. In conclusion, Ad/VNA-Stx treatment is effective in protecting piglets from fatal Stx2-mediated CNS complications following STEC challenge. With a low production cost and further development, this could presumably be an effective treatment for patients with HUS and/or individuals at high risk of developing HUS due to exposure to STEC.
Collapse
|
38
|
Bergan J, Skotland T, Lingelem ABD, Simm R, Spilsberg B, Lindbäck T, Sylvänne T, Simolin H, Ekroos K, Sandvig K. The ether lipid precursor hexadecylglycerol protects against Shiga toxins. Cell Mol Life Sci 2014; 71:4285-300. [PMID: 24740796 PMCID: PMC11113769 DOI: 10.1007/s00018-014-1624-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/12/2014] [Accepted: 04/01/2014] [Indexed: 11/24/2022]
Abstract
Shiga toxin-producing Escherichia coli bacteria cause hemorrhagic colitis and hemolytic uremic syndrome in humans. Currently, only supportive treatment is available for diagnosed patients. We show here that 24-h pretreatment with an ether lipid precursor, the alkylglycerol sn-1-O-hexadecylglycerol (HG), protects HEp-2 cells against Shiga toxin and Shiga toxin 2. Also the endothelial cell lines HMEC-1 and HBMEC are protected against Shiga toxins after HG pretreatment. In contrast, the corresponding acylglycerol, DL-α-palmitin, has no effect on Shiga toxicity. Although HG treatment provides a strong protection (~30 times higher IC₅₀) against Shiga toxin, only a moderate reduction in toxin binding was observed, suggesting that retrograde transport of the toxin from the plasma membrane to the cytosol is perturbed. Furthermore, endocytosis of Shiga toxin and retrograde sorting from endosomes to the Golgi apparatus remain intact, but transport from the Golgi to the endoplasmic reticulum is inhibited by HG treatment. As previously described, HG reduces the total level of all quantified glycosphingolipids to 50-70% of control, including the Shiga toxin receptor globotriaosylceramide (Gb3), in HEp-2 cells. In accordance with this, we find that interfering with Gb3 biosynthesis by siRNA-mediated knockdown of Gb3 synthase for 24 h causes a similar cytotoxic protection and only a moderate reduction in toxin binding (to 70% of control cells). Alkylglycerols, including HG, have been administered to humans for investigation of therapeutic roles in disorders where ether lipid biosynthesis is deficient, as well as in cancer therapy. Further studies may reveal if HG can also have a therapeutic potential in Shiga toxin-producing E. coli infections.
Collapse
Affiliation(s)
- Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Anne Berit Dyve Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Roger Simm
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Bjørn Spilsberg
- Section of Bacteriology-Food and GMO, Norwegian Veterinary Institute, Oslo, Norway
| | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | | | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Shiga toxin-2 enhances heat-shock-induced apoptotic cell death in cultured and primary glial cells. Cell Biol Toxicol 2014; 30:289-99. [PMID: 25200685 DOI: 10.1007/s10565-014-9286-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/01/2014] [Indexed: 01/07/2023]
Abstract
The blood-brain barrier (BBB) selectively controls the homeostasis of the central nervous system (CNS) environment using specific structural and biochemical features of the endothelial cells, pericytes, and glial limitans. Glial cells, which represent the cellular components of the mature BBB, are the most numerous cells in the brain and are indispensable for neuronal functioning. We investigated the effects of Shiga toxin on glial cells in vitro. Shiga toxin failed to inhibit cell proliferation but attenuated expression of heat shock protein 70, which is one of the chaperone proteins, in cultured and primary glial cells. Furthermore, the combination of Shiga toxin and a heat shock procedure induced cell apoptosis and decreased cell proliferation in both cells. Thus, we speculate that glial cell death in response to the combination of Shiga toxin and heat shock might weaken the BBB and induce central nervous system complications.
Collapse
|
40
|
Hyung Choi W, Jiang M. Evaluation of antibacterial activity of hexanedioic acid isolated from Hermetia illucens larvae. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2014.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
41
|
Moazzezy N, Oloomi M, Bouzari S. Effect of shiga toxin and its subunits on cytokine induction in different cell lines. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2014; 3:108-17. [PMID: 25035861 PMCID: PMC4082813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/22/2014] [Accepted: 05/20/2014] [Indexed: 11/01/2022]
Abstract
Shiga toxins (Stxs) are bacterial virulence factors produced by Shigella dysenteriae serotype 1 and Escherichia coli strains. Stxs are critical factors for the development of diseases such as severe bloody diarrhea and hemolytic uremic syndrome. Additionally, Stxs trigger the secretion of pro- inflammatory cytokines and chemokines, particularly in monocytes or macrophages. The inflammatory cytokines result in the modulation of the immune system, local inflammations and enhancement of cytotoxicity. In this study, stimulation of the pro- inflammatory cytokines IL-1α, IL-1β, IL-6, IL-8, and TNF-α was assessed by recombinant Stx (rStx) and its subunits (rStxA and rStxB). Cytokines expression at mRNA level was investigated by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) method in HeLa cells and THP1 monocyte/ macrophage cell lines. After incubation with rStx and its recombinant subunits, the expression of IL-1α, IL- 6 and IL- 8 mRNAs was strongly induced in HeLa cells. In HeLa cells, low expression of IL-1α mRNA was shown by rStxB induction. Furthermore, the expression of IL-1α and IL-1β mRNAs in undifferentiated THP1 cells was only induced by rStx. In differentiated THP1 cells, rStx and its recombinant subunits elicited the expression of IL-1α, IL-1β, IL-8 and IL- 6 mRNAs. On the other hand, expression of TNF-α mRNA was only induced by rStx. Based on the data, the profile of cytokine induction in response to the rStx, and its subunits differs depending on the cell types.
Collapse
Affiliation(s)
- Neda Moazzezy
- Molecular Biology Unit, Pasteur Institute of Iran, Pasteur Ave. 13164 Tehran, Iran.
| | - Mana Oloomi
- Molecular Biology Unit, Pasteur Institute of Iran, Pasteur Ave. 13164 Tehran, Iran.,Corresponding author: Molecular Biology Unit, Pasteur Institute of Iran, Pasteur Ave. 13164, Tehran, Iran. E. mail:
| | - Saeid Bouzari
- Molecular Biology Unit, Pasteur Institute of Iran, Pasteur Ave. 13164 Tehran, Iran.
| |
Collapse
|
42
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 855] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
43
|
Abstract
Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms.
Collapse
Affiliation(s)
- Matthew J Walsh
- RNA Biology Laboratory; Sheffield Institute for Translational Neuroscience (SITraN); Department of Neuroscience; University of Sheffield; Sheffield, UK
| | - Jennifer E Dodd
- RNA Biology Laboratory; Sheffield Institute for Translational Neuroscience (SITraN); Department of Neuroscience; University of Sheffield; Sheffield, UK
| | - Guillaume M Hautbergue
- RNA Biology Laboratory; Sheffield Institute for Translational Neuroscience (SITraN); Department of Neuroscience; University of Sheffield; Sheffield, UK
| |
Collapse
|
44
|
Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 2013; 70:425-57. [PMID: 22766973 PMCID: PMC11113656 DOI: 10.1007/s00018-012-1060-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 12/23/2022]
Abstract
The two major Shiga toxin (Stx) types, Stx1 and Stx2, produced by enterohemorrhagic Escherichia coli (EHEC) in particular injure renal and cerebral microvascular endothelial cells after transfer from the human intestine into the circulation. Stxs are AB(5) toxins composed of an enzymatically active A subunit and the pentameric B subunit, which preferentially binds to the glycosphingolipid globotriaosylceramide (Gb3Cer/CD77). This review summarizes the current knowledge on Stx-caused cellular injury and the structural diversity of Stx receptors as well as the initial molecular interaction of Stxs with the human endothelium of different vascular beds. The varying lipoforms of Stx receptors and their spatial organization in lipid rafts suggest a central role in different modes of receptor-mediated endocytosis and intracellular destiny of the toxins. The design and development of tailored Stx neutralizers targeting the oligosaccharide-toxin recognition event has become a very real prospect to ameliorate or prevent life-threatening renal and neurological complications.
Collapse
Affiliation(s)
- Andreas Bauwens
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Josefine Betz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Iris Meisen
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Münster, Robert-Koch-Str. 45, 48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
45
|
Shi PL, Binnington B, Sakac D, Katsman Y, Ramkumar S, Gariepy J, Kim M, Branch DR, Lingwood C. Verotoxin A subunit protects lymphocytes and T cell lines against X4 HIV infection in vitro. Toxins (Basel) 2012; 4:1517-34. [PMID: 23242319 PMCID: PMC3528260 DOI: 10.3390/toxins4121517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/24/2012] [Accepted: 12/06/2012] [Indexed: 11/23/2022] Open
Abstract
Our previous genetic, pharmacological and analogue protection studies identified the glycosphingolipid, Gb3 (globotriaosylceramide, Pk blood group antigen) as a natural resistance factor for HIV infection. Gb3 is a B cell marker (CD77), but a fraction of activated peripheral blood mononuclear cells (PBMCs) can also express Gb3. Activated PBMCs predominantly comprise CD4+ T-cells, the primary HIV infection target. Gb3 is the sole receptor for Escherichia coli verotoxins (VTs, Shiga toxins). VT1 contains a ribosome inactivating A subunit (VT1A) non-covalently associated with five smaller receptor-binding B subunits. The effect of VT on PHA/IL2-activated PBMC HIV susceptibility was determined. Following VT1 (or VT2) PBMC treatment during IL2/PHA activation, the small Gb3+/CD4+ T-cell subset was eliminated but, surprisingly, remaining CD4+ T-cell HIV-1IIIB (and HIV-1Ba-L) susceptibility was significantly reduced. The Gb3-Jurkat T-cell line was similarly protected by brief VT exposure prior to HIV-1IIIB infection. The efficacy of the VT1A subunit alone confirmed receptor independent protection. VT1 showed no binding or obvious Jurkat cell/PBMC effect. Protective VT1 concentrations reduced PBMC (but not Jurkat cell) proliferation by 50%. This may relate to the mechanism of action since HIV replication requires primary T-cell proliferation. Microarray analysis of VT1A-treated PBMCs indicated up regulation of 30 genes. Three of the top four were histone genes, suggesting HIV protection via reduced gene activation. VT blocked HDAC inhibitor enhancement of HIV infection, consistent with a histone-mediated mechanism. We speculate that VT1A may provide a benign approach to reduction of (X4 or R5) HIV cell susceptibility.
Collapse
Affiliation(s)
- Pei Lin Shi
- Department of Biochemistry, University of Toronto, Ontario M5G 1X8, Canada; E-Mail:
- Division of Molecular Structure and Function and Research Institute, The Hospital for Sick Children, Ontario M5G 1X8, Canada; E-Mail:
| | - Beth Binnington
- Division of Molecular Structure and Function and Research Institute, The Hospital for Sick Children, Ontario M5G 1X8, Canada; E-Mail:
| | - Darinka Sakac
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
| | - Yulia Katsman
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
| | - Stephanie Ramkumar
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
| | - Jean Gariepy
- Department of Medical Biophysics & Pharmaceutical Sciences, University of Toronto, Ontario M5G 1X8, Canada; E-Mail:
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto M4N 3M5, Canada
| | - Minji Kim
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
| | - Donald R. Branch
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
- Department of Medicine, University of Toronto, Ontario M5G 1X8, Canada
- Division of Cell and Molecular Biology, Toronto General Research Institute of the University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Clifford Lingwood
- Department of Biochemistry, University of Toronto, Ontario M5G 1X8, Canada; E-Mail:
- Division of Molecular Structure and Function and Research Institute, The Hospital for Sick Children, Ontario M5G 1X8, Canada; E-Mail:
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-416-813-5998; Fax: +1-416-813-5993
| |
Collapse
|
46
|
Abstract
Since the initial description of apoptosis, a number of different forms of cell death have been described. In this review we will focus on classic caspase-dependent apoptosis and its variations that contribute to diseases. Over fifty years of research have clarified molecular mechanisms involved in apoptotic signaling as well and shown that alterations of these pathways lead to human diseases. Indeed both reduced and increased apoptosis can result in pathology. More recently these findings have led to the development of therapeutic approaches based on regulation of apoptosis, some of which are in clinical trials or have entered medical practice.
Collapse
Affiliation(s)
- Bartolo Favaloro
- Dipartimento di Scienze Biomediche, Universita' "G. d'Annunzio" Chieti-Pescara, Italy
| | | | | | | | | |
Collapse
|
47
|
Bergan J, Dyve Lingelem AB, Simm R, Skotland T, Sandvig K. Shiga toxins. Toxicon 2012; 60:1085-107. [PMID: 22960449 DOI: 10.1016/j.toxicon.2012.07.016] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/19/2012] [Accepted: 07/25/2012] [Indexed: 02/03/2023]
Abstract
Shiga toxins are virulence factors produced by the bacteria Shigella dysenteriae and certain strains of Escherichia coli. There is currently no available treatment for disease caused by these toxin-producing bacteria, and understanding the biology of the Shiga toxins might be instrumental in addressing this issue. In target cells, the toxins efficiently inhibit protein synthesis by inactivating ribosomes, and they may induce signaling leading to apoptosis. To reach their cytoplasmic target, Shiga toxins are endocytosed and transported by a retrograde pathway to the endoplasmic reticulum, before the enzymatically active moiety is translocated to the cytosol. The toxins thereby serve as powerful tools to investigate mechanisms of intracellular transport. Although Shiga toxins are a serious threat to human health, the toxins may be exploited for medical purposes such as cancer therapy or imaging.
Collapse
Affiliation(s)
- Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
48
|
Activation of p53/ATM-dependent DNA damage signaling pathway by shiga toxin in mammalian cells. Microb Pathog 2012; 52:311-7. [DOI: 10.1016/j.micpath.2012.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 02/20/2012] [Accepted: 02/23/2012] [Indexed: 11/17/2022]
|
49
|
The interactions of human neutrophils with shiga toxins and related plant toxins: danger or safety? Toxins (Basel) 2012; 4:157-90. [PMID: 22741061 PMCID: PMC3381930 DOI: 10.3390/toxins4030157] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/11/2012] [Accepted: 02/19/2012] [Indexed: 11/16/2022] Open
Abstract
Shiga toxins and ricin are well characterized similar toxins belonging to quite different biological kingdoms. Plant and bacteria have evolved the ability to produce these powerful toxins in parallel, while humans have evolved a defense system that recognizes molecular patterns common to foreign molecules through specific receptors expressed on the surface of the main actors of innate immunity, namely monocytes and neutrophils. The interactions between these toxins and neutrophils have been widely described and have stimulated intense debate. This paper is aimed at reviewing the topic, focusing particularly on implications for the pathogenesis and diagnosis of hemolytic uremic syndrome.
Collapse
|
50
|
Loirat C, Saland J, Bitzan M. Management of hemolytic uremic syndrome. Presse Med 2012; 41:e115-35. [PMID: 22284541 DOI: 10.1016/j.lpm.2011.11.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 12/19/2022] Open
Abstract
2011 has been a special year for hemolytic uremic syndrome (HUS): on the one hand, the dramatic epidemic of Shiga toxin producing E. coli -associated HUS in Germany brought the disease to the attention of the general population, on the other hand it has been the year when eculizumab, the first complement blocker available for clinical practice, was demonstrated as the potential new standard of care for atypical HUS. Here we review the therapeutic options presently available for the various forms of hemolytic uremic syndrome and show how recent knowledge has changed the therapeutic approach and prognosis of atypical HUS.
Collapse
Affiliation(s)
- Chantal Loirat
- Assistance publique-Hôpitaux de Paris, Hôpital Robert-Debré, Nephrology Department, 75019 Paris, France.
| | | | | |
Collapse
|