1
|
Bianconi A, Palmieri G, Aruta G, Monticelli M, Zeppa P, Tartara F, Melcarne A, Garbossa D, Cofano F. Updates in Glioblastoma Immunotherapy: An Overview of the Current Clinical and Translational Scenario. Biomedicines 2023; 11:1520. [PMID: 37371615 DOI: 10.3390/biomedicines11061520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive central nervous system tumor, requiring multimodal management. Due to its malignant behavior and infiltrative growth pattern, GBM is one of the most difficult tumors to treat and gross total resection is still considered to be the first crucial step. The deep understanding of GBM microenvironment and the possibility of manipulating the patient's innate and adaptive immune system to fight the neoplasm represent the base of immunotherapeutic strategies that currently express the future for the fight against GBM. Despite the immunotherapeutic approach having been successfully adopted in several solid and haematologic neoplasms, immune resistance and the immunosuppressive environment make the use of these strategies challenging in GBM treatment. We describe the most recent updates regarding new therapeutic strategies that target the immune system, immune checkpoint inhibitors, chimeric antigen receptor T cell therapy, peptide and oncolytic vaccines, and the relevant mechanism of immune resistance. However, no significant results have yet been obtained in studies targeting single molecules/pathways. The future direction of GBM therapy will include a combined approach that, in contrast to the inescapable current treatment modality of maximal resection followed by chemo- and radiotherapy, may combine a multifaceted immunotherapy treatment with the dual goals of directly killing tumor cells and activating the innate and adaptive immune response.
Collapse
Affiliation(s)
- Andrea Bianconi
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | | | - Gelsomina Aruta
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Matteo Monticelli
- UOC Neurochirurgia, Dipartimento di Medicina Traslazionale e per la Romagna, Università degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Pietro Zeppa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fulvio Tartara
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonio Melcarne
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Diego Garbossa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fabio Cofano
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
- Humanitas Gradenigo, 10100 Turin, Italy
| |
Collapse
|
2
|
Lee DY, Im E, Yoon D, Lee YS, Kim GS, Kim D, Kim SH. Pivotal role of PD-1/PD-L1 immune checkpoints in immune escape and cancer progression: Their interplay with platelets and FOXP3+Tregs related molecules, clinical implications and combinational potential with phytochemicals. Semin Cancer Biol 2022; 86:1033-1057. [PMID: 33301862 DOI: 10.1016/j.semcancer.2020.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/27/2023]
Abstract
Immune checkpoint proteins including programmed cell death protein 1 (PD-1), its ligand PD-L1 and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are involved in proliferation, angiogenesis, metastasis, chemoresistance via immune escape and immune tolerance by disturbing cytotoxic T cell activation. Though many clinical trials have been completed in several cancers by using immune checkpoint inhibitors alone or in combination with other agents to date, recently multi-target therapy is considered more attractive than monotherapy, since immune checkpoint proteins work with other components such as surrounding blood vessels, dendritic cells, fibroblasts, macrophages, platelets and extracellular matrix within tumor microenvironment. Thus, in the current review, we look back on research history of immune checkpoint proteins and discuss their associations with platelets or tumor cell induced platelet aggregation (TCIPA) and FOXP3+ regulatory T cells (Tregs) related molecules involved in immune evasion and tumor progression, clinical implications of completed trial results and signaling networks by phytochemicals for combination therapy with immune checkpoint inhibitors and suggest future research perspectives.
Collapse
Affiliation(s)
- Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Donghwi Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
De Beck L, Awad RM, Basso V, Casares N, De Ridder K, De Vlaeminck Y, Gnata A, Goyvaerts C, Lecocq Q, San José-Enériz E, Verhulst S, Maes K, Vanderkerken K, Agirre X, Prosper F, Lasarte JJ, Mondino A, Breckpot K. Inhibiting Histone and DNA Methylation Improves Cancer Vaccination in an Experimental Model of Melanoma. Front Immunol 2022; 13:799636. [PMID: 35634329 PMCID: PMC9134079 DOI: 10.3389/fimmu.2022.799636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has improved the treatment of malignant skin cancer of the melanoma type, yet overall clinical response rates remain low. Combination therapies could be key to meet this cogent medical need. Because epigenetic hallmarks represent promising combination therapy targets, we studied the immunogenic potential of a dual inhibitor of histone methyltransferase G9a and DNA methyltransferases (DNMTs) in the preclinical B16-OVA melanoma model. Making use of tumor transcriptomic and functional analyses, methylation-targeted epigenetic reprogramming was shown to induce tumor cell cycle arrest and apoptosis in vitro coinciding with transient tumor growth delay and an IFN-I response in immune-competent mice. In consideration of a potential impact on immune cells, the drug was shown not to interfere with dendritic cell maturation or T-cell activation in vitro. Notably, the drug promoted dendritic cell and, to a lesser extent, T-cell infiltration in vivo, yet failed to sensitize tumor cells to programmed cell death-1 inhibition. Instead, it increased therapeutic efficacy of TCR-redirected T cell and dendritic cell vaccination, jointly increasing overall survival of B16-OVA tumor-bearing mice. The reported data confirm the prospect of methylation-targeted epigenetic reprogramming in melanoma and sustain dual G9a and DNMT inhibition as a strategy to tip the cancer-immune set-point towards responsiveness to active and adoptive vaccination against melanoma.
Collapse
Affiliation(s)
- Lien De Beck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Veronica Basso
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Noelia Casares
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alessandra Gnata
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Edurne San José-Enériz
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ken Maes
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Center for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Xabier Agirre
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Felipe Prosper
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
4
|
Buch SA, Baba MR. Immune-Related Adverse Events (irAEs) in Cancer, with Inputs from a Nursing Expert: A Review. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1742442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
AbstractImmune checkpoint inhibitors (ICPis) belong to a group of immunotherapeutic agents that act on different immune cells and tumor cells and reactivate the suppressed immune system of the host. The emergence of immunotherapy has resulted in the successful management of many malignancies. High success rates with certain advanced cancers have attributed wide importance and relevance to the use of immunotherapy. Although ICPis have gained huge popularity, their use often leads to side effects that can affect almost any system; immune-related adverse events (irAEs). These adverse events occur due to unrestrained T cell activity that unsettles the immune homeostasis of the host. Although close monitoring for toxicities controls the events on most of the occasions, the inability to diagnose them early may prove fatal on some occasions due to their subtle and nonspecific symptoms. This review summarizes in brief the usual irAEs and their management, besides a very important nursing perspective, from a nursing expert about an overall insight into the routine irAEs.
Collapse
Affiliation(s)
- Sajad Ahmad Buch
- Department of Oral Medicine and Radiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Mudasir Rashid Baba
- Yenepoya Physiotherapy College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
5
|
Wang Y, Gu T, Tian X, Li W, Zhao R, Yang W, Gao Q, Li T, Shim JH, Zhang C, Liu K, Lee MH. A Small Molecule Antagonist of PD-1/PD-L1 Interactions Acts as an Immune Checkpoint Inhibitor for NSCLC and Melanoma Immunotherapy. Front Immunol 2021; 12:654463. [PMID: 34054817 PMCID: PMC8160380 DOI: 10.3389/fimmu.2021.654463] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint inhibitors, such as monoclonal antibodies targeting programmed death 1 (PD-1) and programmed death ligand-1 (PD-L1), have achieved enormous success in the treatment of several cancers. However, monoclonal antibodies are expensive to produce, have poor tumor penetration, and may induce autoimmune side effects, all of which limit their application. Here, we demonstrate that PDI-1 (also name PD1/PD-L1 inhibitor 1), a small molecule antagonist of PD-1/PD-L1 interactions, shows potent anti-tumor activity in vitro and in vivo and acts by relieving PD-1/PD-L1-induced T cell exhaustion. We show that PDI-1 binds with high affinity to purified human and mouse PD-1 and PD-L1 proteins and is a competitive inhibitor of human PD-1/PD-L1 binding in vitro. Incubation of ex vivo activated human T cells with PDI-1 enhanced their cytotoxicity towards human lung cancer and melanoma cells, and concomitantly increased the production of granzyme B, perforin, and inflammatory cytokines. Luciferase reporter assays showed that PDI-1 directly increases TCR-mediated activation of NFAT in a PD-1/PD-L1-dependent manner. In two syngeneic mouse tumor models, the intraperitoneal administration of PDI-1 reduced the growth of tumors derived from human PD-L1-transfected mouse lung cancer and melanoma cells; increased and decreased the abundance of tumor-infiltrating CD8+ and FoxP3+ CD4+ T cells, respectively; decreased the abundance of PD-L1-expressing tumor cells, and increased the production of inflammatory cytokines. The anti-tumor effect of PDI-1 in vivo was comparable to that of the anti-PD-L1 antibody atezolizumab. These results suggest that the small molecule inhibitors of PD-1/PD-L1 may be effective as an alternative or complementary immune checkpoint inhibitor to monoclonal antibodies.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xueli Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenwen Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenqian Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Quanli Gao
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Tiepeng Li
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Mokpo, South Korea
| | - Chengjuan Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, DongShin University, Naju, South Korea
| |
Collapse
|
6
|
Ruetsch C, Brglez V, Crémoni M, Zorzi K, Fernandez C, Boyer-Suavet S, Benzaken S, Demonchy E, Risso K, Courjon J, Cua E, Ichai C, Dellamonica J, Passeron T, Seitz-Polski B. Functional Exhaustion of Type I and II Interferons Production in Severe COVID-19 Patients. Front Med (Lausanne) 2021; 7:603961. [PMID: 33585507 PMCID: PMC7873370 DOI: 10.3389/fmed.2020.603961] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged in Wuhan in December 2019 and has since spread across the world. Even though the majority of patients remain completely asymptomatic, some develop severe systemic complications. In this prospective study we compared the immunological profile of 101 COVID-19 patients with either mild, moderate or severe form of the disease according to the WHO classification, as well as of 50 healthy subjects, in order to identify functional immune factors independently associated with severe forms of COVID-19. Plasma cytokine levels, and cytokine levels upon in vitro non-specific stimulation of innate and adaptive immune cells, were measured at several time points during the course of the disease. As described previously, inflammatory cytokines IL1β, IL6, IL8, and TNFα associated with cytokine storm were significantly increased in the plasma of moderate and severe COVID-19 patients (p < 0.0001 for all cytokines). During follow-up, plasma IL6 levels decreased between the moment of admission to the hospital and at the last observation carried forward for patients with favorable outcome (p = 0.02148). After in vitro stimulation of immune cells from COVID-19 patients, reduced levels of both type I and type II interferons (IFNs) upon in vitro stimulation were correlated with increased disease severity [type I IFN (IFNα): p > 0.0001 mild vs. moderate and severe; type II IFN (IFNγ): p = 0.0002 mild vs. moderate and p < 0.0001 mild vs. severe] suggesting a functional exhaustion of IFNs production. Stimulated IFNα levels lower than 2.1 pg/ml and IFNγ levels lower than 15 IU/mL at admission to the hospital were associated with more complications during hospitalization (p = 0.0098 and p =0.0002, respectively). A low IFNγ level was also confirmed by multivariable analysis [p = 0.0349 OR = 0.98 (0.962; 0.999)] as an independent factor of complications. In vitro treatment with type IFNα restored type IFNγ secretion in COVID-19 patients while the secretion of pro-inflammatory cytokines IL6 and IL1β remained stable or decreased, respectively. These results (a) demonstrate a functional exhaustion of both innate and adaptive immune response in severe forms of COVID-19; (b) identify IFNα and IFNγ as new potential biomarkers of severity; and (c) highlight the importance of targeting IFNs when considering COVID-19 treatment in order to re-establish a normal balance between inflammatory and Th1 effector cytokines.
Collapse
Affiliation(s)
- Caroline Ruetsch
- Laboratoire d'Immunologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Université Côte d'Azur, Nice, France
| | - Vesna Brglez
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Marion Crémoni
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Kévin Zorzi
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Céline Fernandez
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Sonia Boyer-Suavet
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Sylvia Benzaken
- Laboratoire d'Immunologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Elisa Demonchy
- Service d'Infectiologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Karine Risso
- Service d'Infectiologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Johan Courjon
- Service d'Infectiologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Eric Cua
- Service d'Infectiologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Carole Ichai
- Service de réanimation, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Jean Dellamonica
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
- Service de réanimation, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Thierry Passeron
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Université Côte d'Azur, Nice, France
- Service de dermatologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Barbara Seitz-Polski
- Laboratoire d'Immunologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| |
Collapse
|
7
|
Soluble Immune Checkpoints, Gut Metabolites and Performance Status as Parameters of Response to Nivolumab Treatment in NSCLC Patients. J Pers Med 2020; 10:jpm10040208. [PMID: 33158018 PMCID: PMC7712566 DOI: 10.3390/jpm10040208] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) have been shown to benefit from the introduction of anti-PD1 treatment. However, not all patients experience tumor regression and durable response. The identification of a string of markers that are direct or indirect indicators of the immune system fitness is needed to choose optimal therapeutic schedules in the management of NSCLC patients. We analyzed 34 immuno-related molecules (14 soluble immune checkpoints, 17 cytokines/chemokines, 3 adhesion molecules) released in the serum of 22 NSCLC patients under Nivolumab treatment and the gut metabolomic profile at baseline. These parameters were correlated with performance status (PS) and/or response to treatment. Nivolumab affected the release of soluble immune checkpoints (sICs). Patients with a better clinical outcome and with an optimal PS (PS = 0) showed a decreased level of PD1 and maintained low levels of several sICs at first clinical evaluation. Low levels of PDL1, PDL2, Tim3, CD137 and BTLA4 were also correlated with a long response to treatment. Moreover, responding patients showed a high proportion of eubiosis-associated gut metabolites. In this exploratory study, we propose a combination of immunological and clinical parameters (sICs, PS and gut metabolites) for the identification of patients more suitable for Nivolumab treatment. This string of parameters validated in a network analysis on a larger cohort of patients could help oncologists to improve their decision-making in an NSCLC setting.
Collapse
|
8
|
MASCC 2020 recommendations for the management of immune-related adverse events of patients undergoing treatment with immune checkpoint inhibitors. Support Care Cancer 2020; 28:6107-6110. [DOI: 10.1007/s00520-020-05727-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|