1
|
Anichina K, Lumov N, Bakov V, Yancheva D, Georgiev N. Recent Advances in the Application of Nitro(het)aromatic Compounds for Treating and/or Fluorescent Imaging of Tumor Hypoxia. Molecules 2024; 29:3475. [PMID: 39124883 PMCID: PMC11314162 DOI: 10.3390/molecules29153475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
This review delves into recent advancements in the field of nitro(het)aromatic bioreductive agents tailored for hypoxic environments. These compounds are designed to exploit the low-oxygen conditions typically found in solid tumors, making them promising candidates for targeted cancer therapies. Initially, this review focused on their role as gene-directed enzyme prodrugs, which are inert until activated by specific enzymes within tumor cells. Upon activation, these prodrugs undergo chemical transformations that convert them into potent cytotoxic agents, selectively targeting cancerous tissue while sparing healthy cells. Additionally, this review discusses recent developments in prodrug conjugates containing nitro(het)aromatic moieties, designed to activate under low-oxygen conditions within tumors. This approach enhances their efficacy and specificity in cancer treatment. Furthermore, this review covers innovative research on using nitro(het)aromatic compounds as fluorescent probes for imaging hypoxic tumors. These probes enable non-invasive visualization of low-oxygen regions within tumors, providing valuable insights for the diagnosis, treatment planning, and monitoring of therapeutic responses. We hope this review will inspire researchers to design and synthesize improved compounds for selective cancer treatment and early diagnostics.
Collapse
Affiliation(s)
- Kameliya Anichina
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| | - Nikolay Lumov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Ventsislav Bakov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| | - Denitsa Yancheva
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Nikolai Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| |
Collapse
|
2
|
Ge L, Tang Y, Wang C, Chen J, Mao H, Jiang X. A light-activatable theranostic combination for ratiometric hypoxia imaging and oxygen-deprived drug activity enhancement. Nat Commun 2024; 15:153. [PMID: 38167737 PMCID: PMC10762052 DOI: 10.1038/s41467-023-44429-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
While performing oxygen-related tumour treatments such as chemotherapy and photodynamic therapy, real-time monitoring hypoxia of tumour is of great value and significance. Here, we design a theranostic combination for light-activated ratiometric hypoxia imaging, hypoxia modulating and prodrug activation. This combination consisted of an oxygen-sensitive near-infrared-emitting ratiometric phosphorescence probe and a hypoxia-activated prodrug-loaded covalent organic framework. In this combination, the probe plays two roles, including quantitative monitoring of oxygen concentration by ratiometric imaging and consuming the oxygen of tumour under light excitation by photodynamic therapy. Meanwhile, the enhanced hypoxia microenvironment of tumour can raise the cytotoxicity of prodrug loaded in covalent organic framework, resulting in boosting antitumour therapeutic effects in vivo. This theranostic combination can precisely provide therapeutic regime and screen hypoxia-activated prodrugs based on real-time tumour hypoxia level, offering a strategy to develop hypoxia mediated tumour theranostics with hypoxia targeted prodrugs.
Collapse
Affiliation(s)
- Lei Ge
- College of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Yikai Tang
- College of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chongzhi Wang
- College of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Jian Chen
- College of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Xiqun Jiang
- College of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
3
|
Terrazas-Armendáriz LD, Alvizo-Báez CA, Luna-Cruz IE, Hernández-González BA, Uscanga-Palomeque AC, Ruiz-Robles MA, Pérez Tijerina EG, Rodríguez-Padilla C, Tamez-Guerra R, Alcocer-González JM. Systemic Delivery of Magnetogene Nanoparticle Vector for Gene Expression in Hypoxic Tumors. Pharmaceutics 2023; 15:2232. [PMID: 37765201 PMCID: PMC10536535 DOI: 10.3390/pharmaceutics15092232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a disease that causes millions of deaths per year worldwide because conventional treatments have disadvantages such as unspecific tumor selectivity and unwanted toxicity. Most human solid tumors present hypoxic microenvironments and this promotes multidrug resistance. In this study, we present "Magnetogene nanoparticle vector" which takes advantage of the hypoxic microenvironment of solid tumors to increase selective gene expression in tumor cells and reduce unwanted toxicity in healthy cells; this vector was guided by a magnet to the tumor tissue. Magnetic nanoparticles (MNPs), chitosan (CS), and the pHRE-Luc plasmid with a hypoxia-inducible promoter were used to synthesize the vector called "Magnetogene nanoparticles" by ionic gelation. The hypoxic functionality of Magnetogene vector nanoparticles was confirmed in the B16F10 cell line by measuring the expression of the luciferase reporter gene under hypoxic and normoxic conditions. Also, the efficiency of the Magnetogene vector was confirmed in vivo. Magnetogene was administered by intravenous injection (IV) in the tail vein and directed through an external magnetic field at the site of tumor growth in C57Bl/6 mice. A Magnetogene vector with a size of 50 to 70 nm was directed and retained at the tumor area and gene expression was higher at the tumor site than in the others tissues, confirming the selectivity of this vector towards hypoxic tumor areas. This nanosystem, that we called the "Magnetogene vector" for systemic delivery and specific gene expression in hypoxic tumors controlled by an external magnetic designed to target hypoxic regions of tumors, can be used for cancer-specific gene therapies.
Collapse
Affiliation(s)
- Luis Daniel Terrazas-Armendáriz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Cynthia Aracely Alvizo-Báez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Itza Eloisa Luna-Cruz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Becky Annette Hernández-González
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Ashanti Concepción Uscanga-Palomeque
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Mitchel Abraham Ruiz-Robles
- Centro de Investigación en Ciencias Fisico Matematicas, Facultad de Ciencias Físico Matematicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza 66451, NL, Mexico; (M.A.R.-R.); (E.G.P.T.)
| | - Eduardo Gerardo Pérez Tijerina
- Centro de Investigación en Ciencias Fisico Matematicas, Facultad de Ciencias Físico Matematicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza 66451, NL, Mexico; (M.A.R.-R.); (E.G.P.T.)
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Reyes Tamez-Guerra
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Juan Manuel Alcocer-González
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| |
Collapse
|
4
|
Agwa MM, Elmotasem H, Elsayed H, Abdelsattar AS, Omer AM, Gebreel DT, Mohy-Eldin MS, Fouda MMG. Carbohydrate ligands-directed active tumor targeting of combinatorial chemotherapy/phototherapy-based nanomedicine: A review. Int J Biol Macromol 2023; 239:124294. [PMID: 37004933 DOI: 10.1016/j.ijbiomac.2023.124294] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Phototherapies or light mediated therapies, including mutually photothermal and photodynamic therapy that encompass irradiation of the target organs with light, have been widely employed as minimally invasive approach associated with negligible drug resistance for eradicating multiple tumors with minimal hazards to normal organs. Despite all these advantages, many obstacles in phototherapy hinder progress toward clinical application. Therefore, researchers have developed nano-particulate delivery systems integrated with phototherapy and therapeutic cytotoxic drugs to overcome these obstacles and achieve maximum efficacy in cancer treatment. Active targeting ligands were integrated into their surfaces to improve the selectivity and tumor targeting ability, enabling easy binding and recognition by cellular receptors overexpressed on the tumor tissue compared to normal ones. This enhances intratumoral accumulation with minimal toxicity on the adjacent normal cells. Various active targeting ligands, including antibodies, aptamers, peptides, lactoferrin, folic acid and carbohydrates, have been explored for the targeted delivery of chemotherapy/phototherapy-based nanomedicine. Among these ligands, carbohydrates have been applied due to their unique features that ameliorate the bioadhesive, noncovalent conjugation to biological tissues. In this review, the up-to-date techniques of employing carbohydrates active targeting ligands will be highlighted concerning the surface modification of the nanoparticles for ameliorating the targeting ability of the chemo/phototherapy.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Behooth St., Dokki, Giza 12622, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Behooth St., Dokki, Giza 12622, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Doaa T Gebreel
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research and Technology Institute (TRT), National Research Center, 33 El-Behooth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
5
|
Chen J, Zhu Y, Wu C, Shi J. Engineering lactate-modulating nanomedicines for cancer therapy. Chem Soc Rev 2023; 52:973-1000. [PMID: 36597879 DOI: 10.1039/d2cs00479h] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lactate in tumors has long been considered "metabolic junk" derived from the glycolysis of cancer cells and utilized only as a biomarker of malignancy, but is presently believed to be a pivotal regulator of tumor development, maintenance and metastasis. Indeed, tumor lactate can be a "fuel" for energy supply and functions as a signaling molecule, which actively contributes to tumor progression, angiogenesis, immunosuppression, therapeutic resistance, etc., thus providing promising opportunities for cancer treatment. However, the current approaches for regulating lactate homeostasis with available agents are still challenging, which is mainly due to the short half-life, low bioavailability and poor specificity of these agents and their unsatisfactory therapeutic outcomes. In recent years, lactate modulation nanomedicines have emerged as a charming and efficient strategy for fighting cancer, which play important roles in optimizing the delivery of lactate-modulating agents for more precise and effective modulation and treatment. Integrating specific lactate-modulating functions in diverse therapeutic nanomedicines may overcome the intrinsic restrictions of different therapeutic modalities by remodeling the pathological microenvironment for achieving enhanced cancer therapy. In this review, the most recent advances in the engineering of functional nanomedicines that can modulate tumor lactate for cancer therapy are summarized and discussed, and the fundamental mechanisms by which lactate modulation benefits various therapeutics are elucidated. Finally, the challenges and perspectives of this emerging strategy in the anti-tumor field are highlighted.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, P. R. China
| |
Collapse
|
6
|
Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022; 291:121906. [DOI: 10.1016/j.biomaterials.2022.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
7
|
Chen G, Wu K, Li H, Xia D, He T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front Oncol 2022; 12:961637. [PMID: 36212414 PMCID: PMC9545774 DOI: 10.3389/fonc.2022.961637] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor microenvironment (TME), which is characterized by hypoxia, widely exists in solid tumors. As a current research hotspot in the TME, hypoxia is expected to become a key element to break through the bottleneck of tumor treatment. More and more research results show that a variety of biological behaviors of tumor cells are affected by many factors in TME which are closely related to hypoxia. In order to inhibiting the immune response in TME, hypoxia plays an important role in tumor cell metabolism and anti-apoptosis. Therefore, exploring the molecular mechanism of hypoxia mediated malignant tumor behavior and therapeutic targets is expected to provide new ideas for anti-tumor therapy. In this review, we discussed the effects of hypoxia on tumor behavior and its interaction with TME from the perspectives of immune cells, cell metabolism, oxidative stress and hypoxia inducible factor (HIF), and listed the therapeutic targets or signal pathways found so far. Finally, we summarize the current therapies targeting hypoxia, such as glycolysis inhibitors, anti-angiogenesis drugs, HIF inhibitors, hypoxia-activated prodrugs, and hyperbaric medicine.
Collapse
Affiliation(s)
- Gaoqi Chen
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Kaiwen Wu
- Department of Gastroenterology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hao Li
- Deparment of Neurology, Affiliated Hospital of Jiangsu University, Jiang Su University, Zhenjiang, China
| | - Demeng Xia
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
- *Correspondence: Demeng Xia, ; Tianlin He,
| | - Tianlin He
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- *Correspondence: Demeng Xia, ; Tianlin He,
| |
Collapse
|
8
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
9
|
Jackson-Patel V, Liu E, Bull MR, Ashoorzadeh A, Bogle G, Wolfram A, Hicks KO, Smaill JB, Patterson AV. Tissue Pharmacokinetic Properties and Bystander Potential of Hypoxia-Activated Prodrug CP-506 by Agent-Based Modelling. Front Pharmacol 2022; 13:803602. [PMID: 35211015 PMCID: PMC8861431 DOI: 10.3389/fphar.2022.803602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/02/2022] Open
Abstract
Hypoxia-activated prodrugs are bioactivated in oxygen-deficient tumour regions and represent a novel strategy to exploit this pharmacological sanctuary for therapeutic gain. The approach relies on the selective metabolism of the prodrug under pathological hypoxia to generate active metabolites with the potential to diffuse throughout the tumour microenvironment and potentiate cell killing by means of a “bystander effect”. In the present study, we investigate the pharmacological properties of the nitrogen mustard prodrug CP-506 in tumour tissues using in silico spatially-resolved pharmacokinetic/pharmacodynamic (SR-PK/PD) modelling. The approach employs a number of experimental model systems to define parameters for the cellular uptake, metabolism and diffusion of both the prodrug and its metabolites. The model predicts rapid uptake of CP-506 to high intracellular concentrations with its long plasma half-life driving tissue diffusion to a penetration depth of 190 µm, deep within hypoxic activating regions. While bioreductive metabolism is restricted to regions of severe pathological hypoxia (<1 µM O2), its active metabolites show substantial bystander potential with release from the cell of origin into the extracellular space. Model predictions of bystander efficiency were validated using spheroid co-cultures, where the clonogenic killing of metabolically defective “target” cells increased with the proportion of metabolically competent “activator” cells. Our simulations predict a striking bystander efficiency at tissue-like densities with the bis-chloro-mustard amine metabolite (CP-506M-Cl2) identified as a major diffusible metabolite. Overall, this study shows that CP-506 has favourable pharmacological properties in tumour tissue and supports its ongoing development for use in the treatment of patients with advanced solid malignancies.
Collapse
Affiliation(s)
- Victoria Jackson-Patel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Emily Liu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Matthew R Bull
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Amir Ashoorzadeh
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Gib Bogle
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Anna Wolfram
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin O Hicks
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Aghajanzadeh M, Zamani M, Rajabi Kouchi F, Eixenberger J, Shirini D, Estrada D, Shirini F. Synergic Antitumor Effect of Photodynamic Therapy and Chemotherapy Mediated by Nano Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14020322. [PMID: 35214054 PMCID: PMC8880656 DOI: 10.3390/pharmaceutics14020322] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
This review provides a summary of recent progress in the development of different nano-platforms for the efficient synergistic effect between photodynamic therapy and chemotherapy. In particular, this review focuses on various methods in which photosensitizers and chemotherapeutic agents are co-delivered to the targeted tumor site. In many cases, the photosensitizers act as drug carriers, but this review, also covers different types of appropriate nanocarriers that aid in the delivery of photosensitizers to the tumor site. These nanocarriers include transition metal, silica and graphene-based materials, liposomes, dendrimers, polymers, metal–organic frameworks, nano emulsions, and biologically derived nanocarriers. Many studies have demonstrated various benefits from using these nanocarriers including enhanced water solubility, stability, longer circulation times, and higher accumulation of therapeutic agents/photosensitizers at tumor sites. This review also describes novel approaches from different research groups that utilize various targeting strategies to increase treatment efficacy through simultaneous photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Mozhgan Aghajanzadeh
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Mostafa Zamani
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Fereshteh Rajabi Kouchi
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
| | - Josh Eixenberger
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
- Correspondence: (J.E.); or (F.S.)
| | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
- Correspondence: (J.E.); or (F.S.)
| |
Collapse
|
11
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Wang L, Zhang M, Gao X, Li J, Wu M, Zhang X, Ye Z. Multifunctional nanoprobes combined with radiotherapy and hypoxia-activated therapy synergistically improve antitumor efficacy. RSC Adv 2022; 12:32297-32306. [DOI: 10.1039/d2ra04690c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
The developed nanoprobes show a high level of biocompatibility, efficient radiosensitisation and anti-tumour efficacy at the cellular and tissue level.
Collapse
Affiliation(s)
- Lingwei Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Mengyang Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Xujie Gao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Jiang Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Menglin Wu
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Zhaoxiang Ye
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| |
Collapse
|
13
|
Song F, Li S, Sun C, Ji Y, Zhang Y. ROS-Responsive Selenium-Containing Carriers for Coencapsulation of Photosensitizer and Hypoxia-Activated Prodrug and Their Cellular Behaviors. Macromol Biosci 2021; 21:e2100229. [PMID: 34390189 DOI: 10.1002/mabi.202100229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/06/2021] [Indexed: 11/08/2022]
Abstract
The integration of hypoxia-activated chemotherapy with photodynamic therapy (PDT) has newly become a potent strategy for tumor treatment. Herein, a reactive oxygen species (ROS)-responsive drug carriers (PS@AQ4N/mPEG-b-PSe NPs) are fabricated based on the amphiphilic selenium-containing methoxy poly(ethylene glycol)-polycarbonate (mPEG-b-PSe), the hydrophobic photosensitizer (PS), and hypoxia-activated prodrug Banoxantrone (AQ4N). The obtained nanoparticles are spherical with an average diameter of 100 nm as characterized by transmission electron microscope (TEM) and dynamic laser scattering (DLS) respectively. The encapsulation efficiency of the PS and AQ4N reaches 92.83% and 51.04% at different conditions, respectively, by UV-vis spectrophotometer. It is found that the drug release is accelerated due to the good ROS responsiveness of mPEG-b-PSe and the cumulative release of AQ4N is up to 89% within 30 h. The cell test demonstrates that the nanoparticles dissociate when triggered by the ROS stimuli in the cancer cells, thus the PS is exposed to more oxygen and the ROS generation efficiency is enhanced accordingly. The consumption of oxygen during PDT leads to the increased tumor hypoxia, and subsequently activates AQ4N into cytotoxic counterpart to inhibit tumor growth. Therefore, the synergistic therapeutic efficacy demonstrates this drug delivery has great potential for antitumor therapy.
Collapse
Affiliation(s)
- Fangqin Song
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Siqi Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chuanhao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Ji
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong SAR, 999077, China
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China
| |
Collapse
|
14
|
Guo X, Jin H, Lo PC. Encapsulating an acid-activatable phthalocyanine-doxorubicin conjugate and the hypoxia-sensitive tirapazamine in polymeric micelles for multimodal cancer therapy. Biomater Sci 2021; 9:4936-4951. [PMID: 34075948 DOI: 10.1039/d1bm00443c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A zinc(ii) phthalocyanine (ZnPc) was conjugated to doxorubicin (Dox) via an acid-labile hydrazone linker. The resulting ZnPc-Dox conjugate was then encapsulated into polymeric micelles formed through self-assembly of a block copolymer of poly(ethylene glycol) and poly(d,l-lactide) both in the absence and presence of the hypoxia-activated prodrug tirapazamine (TPZ) to give ZnPc-Dox@micelles and ZnPc-Dox/TPZ@micelles respectively. These polymeric micelles exhibited an excellent stability in aqueous media, but underwent disassembly in an acidic environment. Upon internalisation into HT29 human colorectal carcinoma cells, fluorescence due to ZnPc and Dox could be observed in the cytoplasm and nucleus respectively for both nanosystems. This observation suggested the disassembly of the polymeric micelles and the cleavage of the hydrazone linker in ZnPc-Dox in the acidic intracellular compartments. These micelles were slightly cytotoxic against HT29 cells in the dark due to the chemotherapeutic effect of Dox and/or TPZ. Upon light irradiation, ZnPc-Dox@micelles showed higher cytotoxicity. The IC50 value under a normoxic condition (0.35 μM based on ZnPc-Dox) was significantly lower than that under hypoxia (>1 μM). With an additional therapeutic component, ZnPc-Dox/TPZ@micelles exhibited higher photocytotoxicity with IC50 values of 0.20 μM and 0.78 μM under normoxia and hypoxia respectively. It is believed that the photodynamic action of this nanosystem consumed the intracellular oxygen and hence triggered the hypoxia-mediated chemotherapeutic action of TPZ. The multimodal antitumor effects of these polymeric micelles were also validated on HT29 tumour-bearing nude mice.
Collapse
Affiliation(s)
- Xuejiao Guo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China. and Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China. and Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
15
|
|
16
|
Zheng P, Fan M, Liu H, Zhang Y, Dai X, Li H, Zhou X, Hu S, Yang X, Jin Y, Yu N, Guo S, Zhang J, Liang XJ, Cheng K, Li Z. Self-Propelled and Near-Infrared-Phototaxic Photosynthetic Bacteria as Photothermal Agents for Hypoxia-Targeted Cancer Therapy. ACS NANO 2021; 15:1100-1110. [PMID: 33236885 DOI: 10.1021/acsnano.0c08068] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hypoxia can increase the resistance of tumor cells to radiotherapy and chemotherapy. However, the dense extracellular matrix, high interstitial fluid pressure, and irregular blood supply often serve as physical barriers to inhibit penetration of drugs or nanodrugs across tumor blood microvessels into hypoxic regions. Therefore, it is of great significance and highly desirable to improve the efficiency of hypoxia-targeted therapy. In this work, living photosynthetic bacteria (PSB) are utilized as hypoxia-targeted carriers for hypoxic tumor therapy due to their near-infrared (NIR) chemotaxis and their physiological characteristics as facultative aerobes. More interestingly, we discovered that PSB can serve as a kind of photothermal agent to generate heat through nonradiative relaxation pathways due to their strong photoabsorption in the NIR region. Therefore, PSB integrate the properties of hypoxia targeting and photothermal therapeutic agents in an "all-in-one" manner, and no postmodification is needed to achieve hypoxia-targeted cancer therapy. Moreover, as natural bacteria, noncytotoxic PSB were found to enhance immune response that induced the infiltration of cytotoxicity T lymphocyte. Our results indicate PSB specifically accumulate in hypoxic tumor regions, and they show a high efficiency in the elimination of cancer cells. This proof of concept may provide a smart therapeutic system in the field of hypoxia-targeted photothermal therapeutic platforms.
Collapse
Affiliation(s)
- Pengli Zheng
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
| | - Miao Fan
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Huifang Liu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, P.R. China
| | - Yinghua Zhang
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
| | - Xinyue Dai
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Hang Li
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
| | - Xiaohan Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xinjian Yang
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Na Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P.R. China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P.R. China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhenhua Li
- College of Chemistry & Environmental Science, Analytical Chemistry Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
17
|
Chen SX, Xue F, Kuang Y, Chen S, Sheng D, Chen H. A self-activating nanovesicle with oxygen-depleting capability for efficient hypoxia-responsive chemo-thermo cancer therapy. Biomaterials 2020; 269:120533. [PMID: 33228991 DOI: 10.1016/j.biomaterials.2020.120533] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/30/2022]
Abstract
Hypoxia-activated prodrugs (HAPs) promise to mitigate side effects of conventional chemotherapy and to enable precise medication treatment. One challenge facing HAPs-based chemotherapy is prodrug failure in normoxic tumor region. However, current strategies to enhance tumor hypoxia rely on delivery of oxygen-consuming agents and external stimulation, which can impede the optimal application of HAPs. Herein, a novel self-activating nanovesicle, TH-302@BR-Chitosan NPs, is constructed by assembling bilirubin-chitosan conjugate (named as BR-Chitosan) with a HAP, TH-302. It is interesting to find that the BR-Chitosan shows the inherent oxygen-depleting performance, especially in the presence of over expressed H2O2 in tumor area, during which the BR-Chitosan can facily transform into biliverdin-chitosan (BV-Chitosan) and subsequently result in the disassembly of nanovesicles to release and activate the prodrug. Thus, this in situ strengthening hypoxia level of tumor can greatly promote the chemotherapy efficacy of HAPs. Moreover, as the oxidation derivatives of BR-Chitosan, BV-Chitosan exhibits intense absorbance at the range from long wavelength of visible region to near-infrared region, which can be acted as an effective photothermal agent for photothermal therapy (PTT). This biodegradable and self-activating nanovesicle with concise formulation demonstrates greatly enhanced synergistic therapeutic outcome in the activatable chemo-thermo combined therapy, showing much promising in future clinical transformation.
Collapse
Affiliation(s)
- Shi-Xiong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fengfeng Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| | - Yichen Kuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Siyu Chen
- Department of Medical Imaging, The Third Affiliated Hospital, Orthopedic Hospital of Guangdong Province, Southern Medical University, Guangdong, 510000, PR China
| | - Danli Sheng
- Department of Ultrasound, Fudan University, Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China.
| |
Collapse
|
18
|
Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020; 49:9057-9094. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various therapeutic techniques have been studied for treating cancer precisely and effectively, such as targeted drug delivery, phototherapy, tumor-specific catalytic therapy, and synergistic therapy, which, however, evoke numerous challenges due to the inherent limitations of these therapeutic modalities and intricate biological circumstances as well. With the remarkable advances of nanotechnology, nanoplatform-based cascade engineering, as an efficient and booming strategy, has been tactfully introduced to optimize these cancer therapies. Based on the designed nanoplatforms, pre-supposed cascade processes could be triggered under specific conditions to generate/deliver more therapeutic species or produce stronger tumoricidal effects inside tumors, aiming to achieve cancer therapy with increased anti-tumor efficacy and diminished side effects. In this review, the recent advances in nanoplatform-based cascade engineering for cancer therapy are summarized and discussed, with an emphasis on the design of smart nanoplatforms with unique structures, compositions and properties, and the implementation of specific cascade processes by means of endogenous tumor microenvironment (TME) resources and/or exogenous energy inputs. This fascinating strategy presents unprecedented potential in the enhancement of cancer therapies, and offers better controllability, specificity and effectiveness of therapeutic functions compared to the corresponding single components/functions. In the end, challenges and prospects of such a burgeoning strategy in the field of cancer therapy will be discussed, hopefully to facilitate its further development to meet the personalized treatment demands.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | | | | | | |
Collapse
|
19
|
Zhou S, Hu X, Xia R, Liu S, Pei Q, Chen G, Xie Z, Jing X. A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angew Chem Int Ed Engl 2020; 59:23198-23205. [PMID: 32852145 DOI: 10.1002/anie.202008732] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The innate hypoxic microenvironment of most solid tumors has a major influence on tumor growth, invasiveness, and distant metastasis. Here, a hypoxia-activated self-immolative prodrug of paclitaxel (PTX2 -Azo) was synthesized and encapsulated by a peptide copolymer decorated with the photosensitizer chlorin e6 (Ce6) to prepare light-boosted PTX nanoparticle (Ce6/PTX2 -Azo NP). In this nanoparticle, PTX2 -Azo prevents premature drug leakage and realizes specific release in hypoxic tumor microenvironment and the photosensitizer Ce6 not only efficiently generates singlet oxygen under light irradiation but also acts as a positive amplifier to promote the release of PTX. The combination of photodynamic therapy (PDT) and chemotherapy results in excellent antitumor efficacy, demonstrating the great potential for synergistic cancer therapy.
Collapse
Affiliation(s)
- Shiyu Zhou
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Guang Chen
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
20
|
Zhou S, Hu X, Xia R, Liu S, Pei Q, Chen G, Xie Z, Jing X. A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shiyu Zhou
- Department of Thyroid Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Guang Chen
- Department of Thyroid Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
21
|
A kinetic study and mechanisms of reduction of N, N'-phenylene bis(salicyalideneiminato)cobalt(III) by L-ascorbic acid in DMSO-water medium. Heliyon 2020; 6:e04621. [PMID: 32939409 PMCID: PMC7479326 DOI: 10.1016/j.heliyon.2020.e04621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/17/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
The kinetics of reduction of N, N1-phenylenebis-(salicylideneiminato)cobalt (III), referred to as [Co(Salophen)]+ by L-ascorbic acid (H2A) was studied in mixed aqueous medium (DMSO:H2O; 1:4 v/v) under pseudo-first-order conditions at 33 ± 1 °C, μ = 0.1 mol dm−3 (NaCl) and λmax = 470 nm. L-ascorbic acid was oxidized to dehydroascorbic acid with kinetics that was first order in both the [H2A] and [Co(Salophen)+] and second-order overall. The reaction involves two parallel reaction pathways; an acid-dependent and the inverse acid-dependent pathways. The inverse acid pathway shows that there is a pre-equilibrium step before the rate determining-step in which a proton is lost. The kinetics followed negative Brønsted–Debye salt effect. Evidence was obtained for the presence of free radicals but none to support the formation of an intermediate complex of significant stability during the reaction. Overall, the data obtained suggest an outer-sphere mechanism for the reaction. A plausible mechanism is proposed.
Collapse
|
22
|
Hamis S, Kohandel M, Dubois LJ, Yaromina A, Lambin P, Powathil GG. Combining hypoxia-activated prodrugs and radiotherapy in silico: Impact of treatment scheduling and the intra-tumoural oxygen landscape. PLoS Comput Biol 2020; 16:e1008041. [PMID: 32745136 PMCID: PMC7425994 DOI: 10.1371/journal.pcbi.1008041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 08/13/2020] [Accepted: 06/11/2020] [Indexed: 12/30/2022] Open
Abstract
Hypoxia-activated prodrugs (HAPs) present a conceptually elegant approach to not only overcome, but better yet, exploit intra-tumoural hypoxia. Despite being successful in vitro and in vivo, HAPs are yet to achieve successful results in clinical settings. It has been hypothesised that this lack of clinical success can, in part, be explained by the insufficiently stringent clinical screening selection of determining which tumours are suitable for HAP treatments. Taking a mathematical modelling approach, we investigate how tumour properties and HAP-radiation scheduling influence treatment outcomes in simulated tumours. The following key results are demonstrated in silico: (i) HAP and ionising radiation (IR) monotherapies may attack tumours in dissimilar, and complementary, ways. (ii) HAP-IR scheduling may impact treatment efficacy. (iii) HAPs may function as IR treatment intensifiers. (iv) The spatio-temporal intra-tumoural oxygen landscape may impact HAP efficacy. Our in silico framework is based on an on-lattice, hybrid, multiscale cellular automaton spanning three spatial dimensions. The mathematical model for tumour spheroid growth is parameterised by multicellular tumour spheroid (MCTS) data.
Collapse
Affiliation(s)
- Sara Hamis
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland
- Department of Mathematics, College of Science, Swansea University, Swansea, Wales, United Kingdom
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Gibin G. Powathil
- Department of Mathematics, College of Science, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
23
|
Sun Y, Zhao D, Wang G, Wang Y, Cao L, Sun J, Jiang Q, He Z. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: opportunities, challenges, and future development. Acta Pharm Sin B 2020; 10:1382-1396. [PMID: 32963938 PMCID: PMC7488364 DOI: 10.1016/j.apsb.2020.01.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Hypoxia, a salient feature of most solid tumors, confers invasiveness and resistance to the tumor cells. Oxygen-consumption photodynamic therapy (PDT) suffers from the undesirable impediment of local hypoxia in tumors. Moreover, PDT could further worsen hypoxia. Therefore, developing effective strategies for manipulating hypoxia and improving the effectiveness of PDT has been a focus on antitumor treatment. In this review, the mechanism and relationship of tumor hypoxia and PDT are discussed. Moreover, we highlight recent trends in the field of nanomedicines to modulate hypoxia for enhancing PDT, such as oxygen supply systems, down-regulation of oxygen consumption and hypoxia utilization. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of PDT.
Collapse
Key Words
- 3O2, molecular oxygen
- APCs, antigen-presenting cells
- AQ4N, banoxantrone
- CaO2, calcium dioxide
- Cancer
- Ce6, chlorin e6
- CeO2, cerium oxide
- DC, dendritic cells
- DDS, drug delivery system
- DOX, doxorubicin
- EPR, enhanced permeability and retention
- FDA, U.S. Food and Drug Administration
- H2O, water
- H2O2, hydrogen peroxide
- HIF, hypoxia-inducible factor
- HIF-1α, hypoxia-inducible factor-1α
- HSA, human serum albumin
- Hb, hemoglobin
- Hypoxia
- MB, methylene blue
- MDR1, multidrug resistance 1
- MDSC, myeloid derived suppressive cells
- Mn-CDs, magnetofluorescent manganese-carbon dots
- MnO2, manganese dioxide
- NMR, nuclear magnetic resonance
- Nanomedicine delivery systems
- O2.−, superoxide anion
- OH., hydroxyl radical
- Oxygen
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PFH, perfluoroethane
- PS, photosensitizers
- Photodynamic therapy
- RBCs, red blood cells
- ROS, reactive oxygen species
- TAM, tumor-associated macrophages
- TPZ, tirapazamine
Collapse
Affiliation(s)
- Yixin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyang Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Linlin Cao
- Department of Pharmaceutics, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
24
|
Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett 2020; 492:116-135. [PMID: 32693200 DOI: 10.1016/j.canlet.2020.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The selectivity of photodynamic therapy (PDT) derived from the tailored accumulation of photosensitizing drug (photosensitizer; PS) in the tumor microenvironment (TME), and from local irradiation, turns it into a "magic bullet" for the treatment of resistant tumors without sparing the healthy tissue and possible adverse effects. However, locally-induced hypoxia is one of the undesirable consequences of PDT, which may contribute to the emergence of resistance and significantly reduce therapeutic outcomes. Therefore, the development of strategies using new approaches in nanotechnology and molecular biology can offer an increased opportunity to eliminate the disadvantages of hypoxia. Emerging evidence indicates that wisely designed phototherapeutic procedures, including: (i) ROS-tunable photosensitizers, (ii) organelle targeting, (iii) nano-based photoactive drugs and/or PS delivery nanosystems, as well as (iv) combining them with other strategies (i.e. PTT, chemotherapy, theranostics or the design of dual anticancer drug and photosensitizers) can significantly improve the PDT efficacy and overcome the resistance. This mini-review addresses the role of hypoxia and hypoxia-related molecular mechanisms of the HIF-1α pathway in the regulation of PDT efficacy. It also discusses the most recent achievements as well as future perspectives and potential challenges of PDT application against hypoxic tumors.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Agata Barzowska
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | | |
Collapse
|
25
|
Huo D, Jiang X, Hu Y. Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904337. [PMID: 31663198 DOI: 10.1002/adma.201904337] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Engineered nanomaterials have been extensively employed as therapeutics for tumor management. Meanwhile, the complex tumor niche along with multiple barriers at the cellular level collectively hinders the action of nanomedicines. Here, the advanced strategies that hold promise for overcoming the numerous biological barriers facing nanomedicines are summarized. Starting from tumor entry, methods that promote tissue penetration of nanomedicine and address the hypoxia issue are also highlighted. Then, emphasis is given to the significance of overcoming both physical barriers, such as membrane-associated efflux pumps, and biological features, such as resistance to apoptosis. The pros and cons for an individual approach are presented. In addition, the associated technical problems are discussed, along with the importance of balancing the therapeutic merits and the additional cost of sophisticated nanomedicine designs.
Collapse
Affiliation(s)
- Da Huo
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
26
|
Anastassova N, Stoyanov S, Mavrova A, Yancheva D. Spectroscopic and in silico study on the conversion of N,N'-disubstituted hydrazone derivatives of 5-nitrobenzimidazole-2-thione into anion and radical anion products: Implications in hepatotoxicity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118279. [PMID: 32217448 DOI: 10.1016/j.saa.2020.118279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
The conversion of N,N'-disubstituted hydrazone derivatives of 5-nitrobenzimidazole-2-thione into radical anion and dianion products was studied through infrared (IR) spectroscopy and computational methods. The electrochemical reduction of 3,3'-(5-nitro-2-thioxo-1H-benzo[d]imidazole-1,3(2H)-diyl)bis(N'-(2-methoxybenzylidene))propane-hydrazide was performed directly in the IR cell and the spectral changes were monitored over time in order to identify the spectral bands originating from the reduction product. In order to clarify whether the reduction leads to the generation of radical anion or deprotonated radical dianion, a second spectroscopic experiment was carried out where deprotonation was achieved by treatment with sodium methoxide. Both experiments resulted in distinctly different spectral features, giving evidence that the reduction to radical anion is not accompanied by deprotonation. In order to explain the experimentally observed differences in the hepatotoxicity within the series of N,N'-disubstituted derivatives of 5-nitrobenzimidazole-2-thione, several molecular electronic parameters such as frontier molecular orbitals, spin and charge distribution over fragments, and electron affinities of the studied hydrazone derivatives were compared to those of a previously studied ester derivative. Based on the estimated electronic parameters, it was shown that the type of the side chains (ester, hydrazone etc.) attached to the N-atoms in the nitrobenzimidazole derivatives do not change significantly the propensity of the compounds towards nitro reduction, but however the generated radical anions are characterized by different reactivity accounting for the different hepatotoxicity.
Collapse
Affiliation(s)
- N Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113 Sofia, Bulgaria
| | - S Stoyanov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113 Sofia, Bulgaria
| | - A Mavrova
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - D Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113 Sofia, Bulgaria.
| |
Collapse
|
27
|
Sun Z, Zhang H, Wu J, Gao F, Zhang C, Hu X, Liu Q, Wei Y, Zhuang J, Huang X. A Novel Model System for Understanding Anticancer Activity of Hypoxia-Activated Prodrugs. Mol Pharm 2020; 17:2072-2082. [PMID: 32352301 DOI: 10.1021/acs.molpharmaceut.0c00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reports on the comprehensive factors for design considerations of hypoxia-activated prodrugs (HAPs) are rare. We introduced a new model system composed of a series of highly water-soluble HAPs, providing a platform to comprehensively understand the interaction between HAPs and hypoxic biosystems. Specifically, four kinds of new HAPs were designed and synthesized, containing the same biologically active moiety but masked by different bioreductive groups. Our results demonstrated that the activity of the prodrugs was strongly dependent on not only the molecular structure but also the hypoxic tumor microenvironment. We found the presence of a direct linear relationship between cytotoxicity of the HAPs and the reduction potential of whole molecule/oxygen concentration/reductase expression. Moreover, limited blood vasculature in hypoxic regions was also a critical barrier for effective activation of the HAPs. This study offers a comprehensive insight into understanding the design factors required for HAPs.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Haoqi Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Fangli Gao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Congcong Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P.R. China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yonghua Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Jie Zhuang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Wang M, Chang M, Chen Q, Wang D, Li C, Hou Z, Lin J, Jin D, Xing B. Au 2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy / phototherapy. Biomaterials 2020; 252:120093. [PMID: 32422490 DOI: 10.1016/j.biomaterials.2020.120093] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
Although synergistic therapy for tumors has displayed significant promise for effective treatment of cancer, developing a simple and effective strategy to build a multi-functional nanoplatform is still a huge challenge. By virtue of the characteristics of tumor microenvironment, such as hypoxia, slight acidity and H2O2 overexpression, Au2Pt-PEG-Ce6 nanoformulation is constructed for collaborative chemodynamic/phototherapy of tumors. Specifically, the Au2Pt nanozymes with multiple functions are synthesized in one step at room temperature. The photosensitizer chlorin e6 (Ce6) is covalently linked to Au2Pt nanozymes for photodynamic therapy (PDT). Interestingly, the Au2Pt nanozymes possess catalase- and peroxidase-like activities simultaneously, which not only can generate O2 for relaxation of tumor hypoxia and enhancement of PDT efficiency but also can produce ∙OH for chemodynamic therapy (CDT). In addition, the high photothermal conversion efficiency (η = 31.5%) of Au2Pt-PEG-Ce6 nanoformulation provides the possibility for photoacoustic (PA) and photothermal (PT) imaging guided photothermal therapy (PTT). Moreover, the presence of high-Z elements (Au and Pt) in Au2Pt-PEG-Ce6 nanoformulation endows it with the ability to act as an X-ray computed tomography (CT) imaging contrast agent. All in all, the Au2Pt-PEG-Ce6 exhibits great potential in multimodal imaging-guided synergistic PTT/PDT/CDT with remarkably tumor specificity and enhanced therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute of Frontier and Interdisciplinarity Science and Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, PR China; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Qing Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Chunxia Li
- Institute of Frontier and Interdisciplinarity Science and Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, PR China; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| | - Zhiyao Hou
- Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong, 511436, PR China.
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Bengang Xing
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
29
|
Design strategy of optical probes for tumor hypoxia imaging. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1786-1797. [PMID: 32146696 DOI: 10.1007/s11427-019-1569-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Clinical manifestations of tumors indicate that malignant phenotypes developing in the hypoxic microenvironment lead to resistance to cancer treatment, rendering chemotherapy, radiotherapy, and photodynamic therapy less sensitive and effective in patients with tumor. Visualizing the oxygen level in the tumor environment has garnered much attention due to its implications in precision tumor therapy. Following the rapid development of biomaterials in nanotechnology, various nanomaterials have been designed to visualize the oxygen levels in tumors. Here, we review recent research on detecting oxygen levels in solid tumors for tumor hypoxia imaging. To monitor the hypoxic level of tumors, two main strategies were investigated: directly detecting oxygen levels in tumors and monitoring the hypoxia-assisted reduced microenvironment. We believe that hypoxia as a tumor-specific microenvironment can be a breakthrough in the clinical treatment of tumors.
Collapse
|
30
|
Johansson H, Hussain O, Allison SJ, Robinson TV, Phillips RM, Sejer Pedersen D. Revisiting Bromohexitols as a Novel Class of Microenvironment-Activated Prodrugs for Cancer Therapy. ChemMedChem 2020; 15:228-235. [PMID: 31769617 DOI: 10.1002/cmdc.201900578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/29/2019] [Indexed: 11/08/2022]
Abstract
Bromohexitols represent a potent class of DNA-alkylating carbohydrate chemotherapeutics that has been largely ignored over the last decades due to safety concerns. The limited structure-activity relationship data available reveals significant changes in cytotoxicity with even subtle changes in stereochemistry. However, no attempts have been made to improve the therapeutic window by rational drug design or by using a prodrug approach to exploit differences between tumour physiology and healthy tissue, such as acidic extracellular pH and hypoxia. Herein, we report the photochemical synthesis of highly substituted endoperoxides as key precursors for dibromohexitol derivatives and investigate their use as microenvironment-activated prodrugs for targeting cancer cells. One endoperoxide was identified to have a marked increased activity under hypoxic and low pH conditions, indicating that endoperoxides may serve as microenvironment-activated prodrugs.
Collapse
Affiliation(s)
- Henrik Johansson
- Department of Drug Design and Pharmacology Faculty of Health and Medical Science, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Omar Hussain
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Simon J Allison
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Tony V Robinson
- Department of Drug Design and Pharmacology Faculty of Health and Medical Science, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Roger M Phillips
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology Faculty of Health and Medical Science, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| |
Collapse
|
31
|
Wang M, Wang D, Chen Q, Li C, Li Z, Lin J. Recent Advances in Glucose-Oxidase-Based Nanocomposites for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903895. [PMID: 31747128 DOI: 10.1002/smll.201903895] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Glucose oxidase (GOx) can react with intracellular glucose and oxygen (O2 ) to produce hydrogen peroxide (H2 O2 ) and gluconic acid, which can cut off the nutrition source of cancer cells and consequently inhibit their proliferation. Therefore, GOx is recognised as an ideal endogenous oxido-reductase for cancer starvation therapy. This process can further regulate the tumor microenvironment by increasing the hypoxia and the acidity. Thus, GOx offers new possibilities for the elaborate design of multifunctional nanocomposites for tumor therapy. However, natural GOx is expensive to prepare and purify and exhibits immunogenicity, short in vivo half-life, and systemic toxicity. Furthermore, GOx is highly prone to degrade after exposure to biological conditions. These intrinsic shortcomings will undoubtedly limit its biomedical applications. Accordingly, some nanocarriers can be used to protect GOx from the surrounding environment, thus controlling or preserving the activity. A variety of nanocarriers including hollow mesoporous silica nanoparticles, metal-organic frameworks, organic polymers, and magnetic nanoparticles are summarized for the construction of GOx-based nanocomposites for multimodal synergistic cancer therapy. In addition, current challenges and promising developments in this area are highlighted.
Collapse
Affiliation(s)
- Man Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Qing Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
32
|
Zhao L, Xing Y, Wang R, Yu F, Yu F. Self-Assembled Nanomaterials for Enhanced Phototherapy of Cancer. ACS APPLIED BIO MATERIALS 2019; 3:86-106. [DOI: 10.1021/acsabm.9b00843] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Linlu Zhao
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yanlong Xing
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - FeiFei Yu
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Pharmacy, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
33
|
de Mello MVP, Cebrián-Torrejón G, Pereira JR, dos Santos Moreira C, Gomes CBDSMR, da Rocha DR, de Souza Fagundes EM, Ferreira GB, Lanznaster M. Evaluation of 5-hydroxy-1,4-naphthoquinone-cobalt(III) complexes for hypoxia-activated drug delivery. J Inorg Biochem 2019; 199:110756. [DOI: 10.1016/j.jinorgbio.2019.110756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
|
34
|
Zhu R, He H, Liu Y, Cao D, Yan J, Duan S, Chen Y, Yin L. Cancer-Selective Bioreductive Chemotherapy Mediated by Dual Hypoxia-Responsive Nanomedicine upon Photodynamic Therapy-Induced Hypoxia Aggravation. Biomacromolecules 2019; 20:2649-2656. [DOI: 10.1021/acs.biomac.9b00428] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rongying Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hua He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yong Liu
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Desheng Cao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jin Yan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Shanzhou Duan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yongbing Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
35
|
Sansom GN, Kirk NS, Guise CP, Anderson RF, Smaill JB, Patterson AV, Kelso MJ. Prototyping kinase inhibitor-cytotoxin anticancer mutual prodrugs activated by tumour hypoxia: A chemical proof of concept study. Bioorg Med Chem Lett 2019; 29:1215-1219. [PMID: 30885680 DOI: 10.1016/j.bmcl.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 01/16/2023]
Abstract
Amide- and ester-linked kinase inhibitor-cytotoxin conjugates were rationally designed and synthesised as prototype hypoxia-activated anticancer mutual prodrugs. Chemical reduction of an aryl nitro trigger moiety was shown to initiate a spontaneous cyclisation/fragmentation reaction that simultaneously released the kinase inhibitor semaxanib (SU5416) and the amine- or alcohol-linked cytotoxin from the prodrugs. Preliminary cell testing and reduction potential measurements support optimisation of the compounds towards tumour-selective mutual prodrugs.
Collapse
Affiliation(s)
- Geraud N Sansom
- Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Nicholas S Kirk
- Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Christopher P Guise
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Michael J Kelso
- Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
36
|
Zeng Y, Ma J, Zhan Y, Xu X, Zeng Q, Liang J, Chen X. Hypoxia-activated prodrugs and redox-responsive nanocarriers. Int J Nanomedicine 2018; 13:6551-6574. [PMID: 30425475 PMCID: PMC6202002 DOI: 10.2147/ijn.s173431] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is one of the marked features of malignant tumors, which is associated with several adaptation changes in the microenvironment of tumor cells. Therefore, targeting tumor hypoxia is a research hotspot for cancer therapy. In this review, we summarize the developing chemotherapeutic drugs for targeting hypoxia, including quinones, nitroaromatic/nitroimidazole, N-oxides, and transition metal complexes. In addition, redox-responsive bonds, such as nitroimidazole groups, azogroups, and disulfide bonds, are frequently used in drug delivery systems for targeting the redox environment of tumors. Both hypoxia-activated prodrugs and redox-responsive drug delivery nanocarriers have significant effects on targeting tumor hypoxia for cancer therapy. Hypoxia-activated prodrugs are commonly used in clinical trials with favorable prospects, while redox-responsive nanocarriers are currently at the experimental stage.
Collapse
Affiliation(s)
- Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Jingwen Ma
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, People's Republic of China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Xinyi Xu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| |
Collapse
|
37
|
Zhang R, Feng L, Dong Z, Wang L, Liang C, Chen J, Ma Q, Zhang R, Chen Q, Wang Y, Liu Z. Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials 2018; 162:123-131. [DOI: 10.1016/j.biomaterials.2018.02.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/08/2018] [Accepted: 02/02/2018] [Indexed: 12/24/2022]
|
38
|
Zhang C, Sutherland M, Herasymchuk K, Clarke RM, Thompson JR, Chiang L, Walsby CJ, Storr T. Octahedral Co(III) salen complexes: the role of peripheral ligand electronics on axial ligand release upon reduction. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of octahedral CoIII salen complexes (where salen represents a N2O2 bis-Schiff-base bis-phenolate framework) were prepared with axial imidazole ligating groups. When using 1-methylimidazole (1-MeIm) axial ligands, the CoIII/CoII reduction potential could be altered by 220 mV via variation of the electron-donating ability of the para-ring substituents (R = H (1), OMe (2), tBu (3), Br (4), NO2 (5), and CF3 (6)). In addition, the irreversibility of the reduction process suggested substantial geometrical changes and axial ligand exchange upon reduction to the more labile CoII oxidation state. Installing an imidazole-coumarin conjugate as the axial ligands resulted in fluorescence quenching when bound to the CoIII centre (R = H (7), OMe (8), and CF3 (9)). The redox properties and fluorescence increase upon ligand release for 7–9 were studied under reducing conditions and in the presence of excess competing ligand (1-MeIm). It was determined that the Lewis acidity of the CoIII centre was the dominant factor in controlling axial ligand exchange for this series of complexes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mathew Sutherland
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Khrystyna Herasymchuk
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ryan M. Clarke
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - John R. Thompson
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Charles J. Walsby
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
39
|
Song P, Yao X, Zhong T, Zhang S, Guo Y, Ren W, Huang D, Duan XC, Yin YF, Zhang SS, Zhang X. The anti-tumor efficacy of 3-(2-Nitrophenyl) propionic acid-paclitaxel (NPPA-PTX): a novel paclitaxel bioreductive prodrug. Oncotarget 2018; 7:48467-48480. [PMID: 27366947 PMCID: PMC5217032 DOI: 10.18632/oncotarget.10310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an important microenvironmental pressure present in the majority of solid tumors and, so, tumor hypoxia might be considered an attractive target for tumor therapy. One strategy for targeting hypoxia is to develop bioreductive prodrugs. In the present research, we synthesized a bioreductive paclitaxel prodrug, 3-(2-Nitrophenyl) propionic acid-paclitaxel (NPPA-PTX). The stability of NPPA-PTX in PBS and rat plasma was investigated. The anti-tumor activity of NPPA-PTX was also evaluated in vitro and in vivo. The results of our stability study indicated that NPPA-PTX was stable in PBS and rat plasma as well as in the blood circulation. The in vitro and in vivo anti-tumor activity of NPPA-PTX was confirmed in both KB cells and MDA-MB-231 cells. Our results also indicated that NPPA-PTX could completely convert to active PTX in tumor tissues and produced the anti-tumor activity in both KB and MDA-MB-231 tumor-bearing nude mice. We suggest that the dissociated PTX which converted from NPPA-PTX in tumor tissues played a key role in producing anti-tumor activity. Considering all our results, we suggest that NPPA-PTX is a novel bioreductive PTX prodrug which could undergo further evaluation.
Collapse
Affiliation(s)
- Ping Song
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ting Zhong
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Guo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Ren
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Huang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Chuan Duan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Fan Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shu-Shi Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
40
|
Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, Leijenaar RTH, Haibe-Kains B, Lambin P, Gillies RJ, Aerts HJWL. Defining the biological basis of radiomic phenotypes in lung cancer. eLife 2017; 6:e23421. [PMID: 28731408 PMCID: PMC5590809 DOI: 10.7554/elife.23421] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Medical imaging can visualize characteristics of human cancer noninvasively. Radiomics is an emerging field that translates these medical images into quantitative data to enable phenotypic profiling of tumors. While radiomics has been associated with several clinical endpoints, the complex relationships of radiomics, clinical factors, and tumor biology are largely unknown. To this end, we analyzed two independent cohorts of respectively 262 North American and 89 European patients with lung cancer, and consistently identified previously undescribed associations between radiomic imaging features, molecular pathways, and clinical factors. In particular, we found a relationship between imaging features, immune response, inflammation, and survival, which was further validated by immunohistochemical staining. Moreover, a number of imaging features showed predictive value for specific pathways; for example, intra-tumor heterogeneity features predicted activity of RNA polymerase transcription (AUC = 0.62, p=0.03) and intensity dispersion was predictive of the autodegration pathway of a ubiquitin ligase (AUC = 0.69, p<10-4). Finally, we observed that prognostic biomarkers performed highest when combining radiomic, genetic, and clinical information (CI = 0.73, p<10-9) indicating complementary value of these data. In conclusion, we demonstrate that radiomic approaches permit noninvasive assessment of both molecular and clinical characteristics of tumors, and therefore have the potential to advance clinical decision-making by systematically analyzing standard-of-care medical images.
Collapse
Affiliation(s)
- Patrick Grossmann
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Olya Stringfield
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States
| | - Nehme El-Hachem
- Integrative systems biology, Institut de recherches cliniques de Montreal, Montreal, Canada.
| | - Marilyn M Bui
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States
| | - Emmanuel Rios Velazquez
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Chintan Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Radiation Oncology, Research Institute GROW, Maastricht University, Maastricht, Netherlands
| | - Ralph TH Leijenaar
- Department of Radiation Oncology, Research Institute GROW, Maastricht University, Maastricht, Netherlands
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
- Medical Biophysics Department, University of Toronto, Toronto, Canada
| | - Philippe Lambin
- Department of Radiation Oncology, Research Institute GROW, Maastricht University, Maastricht, Netherlands
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States
| | - Hugo JWL Aerts
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
41
|
Ao X, Bright SA, Taylor NC, Elmes RBP. 2-Nitroimidazole based fluorescent probes for nitroreductase; monitoring reductive stress in cellulo. Org Biomol Chem 2017; 15:6104-6108. [PMID: 28715020 DOI: 10.1039/c7ob01406f] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two 2-nitroimidazole-1,8-naphthalimide conjugates, 1 and 2, have been synthesised as fluorescence probes for the detection of reductive stress in HeLa cells. The 4-substituted derivative 1 was shown to act as a highly sensitive and selective substrate for nitroreductase where it exhibited a clear blue to green ratiometric fluorescence response visible to the naked eye. Moreover, biological studies demonstrated 1 could be activated in cellulo where the impact of reductive stress was easily monitored using confocal microscopy and flow cytommetry.
Collapse
Affiliation(s)
- X Ao
- Department of Chemistry, Maynooth University, National, University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - S A Bright
- Trinity Biomedical Sciences Institute (TBSI), Trinity, College Dublin, Dublin 2, Ireland
| | - N C Taylor
- Trinity Biomedical Sciences Institute (TBSI), Trinity, College Dublin, Dublin 2, Ireland
| | - R B P Elmes
- Department of Chemistry, Maynooth University, National, University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
42
|
Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 2017; 46:3830-3852. [PMID: 28516983 PMCID: PMC5521825 DOI: 10.1039/c6cs00592f] [Citation(s) in RCA: 637] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanovehicles can efficiently carry and deliver anticancer agents to tumour sites. Compared with normal tissue, the tumour microenvironment has some unique properties, such as vascular abnormalities, hypoxia and acidic pH. There are many types of cells, including tumour cells, macrophages, immune and fibroblast cells, fed by defective blood vessels in the solid tumour. Exploiting the tumour microenvironment can benefit the design of nanoparticles for enhanced therapeutic effectiveness. In this review article, we summarized the recent progress in various nanoformulations for cancer therapy, with a special emphasis on tumour microenvironment stimuli-responsive ones. Numerous tumour microenvironment modulation strategies with promising cancer therapeutic efficacy have also been highlighted. Future challenges and opportunities of design consideration are also discussed in detail. We believe that these tumour microenvironment modulation strategies offer a good chance for the practical translation of nanoparticle formulas into clinic.
Collapse
Affiliation(s)
- Yunlu Dai
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen 361102, China. and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - Can Xu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - Xiaolian Sun
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
43
|
Liu JN, Bu W, Shi J. Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chem Rev 2017; 117:6160-6224. [DOI: 10.1021/acs.chemrev.6b00525] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jia-nan Liu
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Wenbo Bu
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jianlin Shi
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| |
Collapse
|
44
|
Feng L, Cheng L, Dong Z, Tao D, Barnhart TE, Cai W, Chen M, Liu Z. Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors Post-Photodynamic Therapy. ACS NANO 2017; 11:927-937. [PMID: 28027442 PMCID: PMC5372701 DOI: 10.1021/acsnano.6b07525] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photodynamic therapy (PDT), a noninvasive cancer therapeutic method triggered by light, would lead to severe tumor hypoxia after treatment. Utilizing a hypoxia-activated prodrug, AQ4N, which only shows toxicity to cancer cells under hypoxic environment, herein, a multipurpose liposome is prepared by encapsulating hydrophilic AQ4N and hydrophobic hexadecylamine conjugated chlorin e6 (hCe6), a photosensitizer, into its aqueous cavity and hydrophobic bilayer, respectively. After chelating a 64Cu isotope with Ce6, the obtained AQ4N-64Cu-hCe6-liposome is demonstrated to be an effective imaging probe for in vivo positron emission tomography, which together with in vivo fluorescence and photoacoustic imaging uncovers efficient passive homing of those liposomes after intravenous injection. After being irradiated with the 660 nm light-emitting diode light, the tumor bearing mice with injection of AQ4N-hCe6-liposome show severe tumor hypoxia, which in turn would trigger activation of AQ4N, and finally contributes to remarkably improved cancer treatment outcomes via sequential PDT and hypoxia-activated chemotherapy. This work highlights a liposome-based theranostic nanomedicine that could utilize tumor hypoxia, a side effect of PDT, to trigger chemotherapy, resulting in greatly improved efficacy compared to conventional cancer PDT.
Collapse
Affiliation(s)
- Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Danlei Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Todd E. Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Corresponding Authors: . .
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Corresponding Authors: . .
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Corresponding Authors: . .
| |
Collapse
|
45
|
Manoochehri Khoshinani H, Afshar S, Najafi R. Hypoxia: A Double-Edged Sword in Cancer Therapy. Cancer Invest 2016; 34:536-545. [PMID: 27824512 DOI: 10.1080/07357907.2016.1245317] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia is a common feature of malignant tumors. There is an interactive connection between hypoxia and chemoresistance, radioresistance, invasiveness, and angiogenesis. Therefore, tumor hypoxia has been considered as a validated target for treating cancer. This review focuses on the role of hypoxia on chemoresistance and radioresistance. In addition, we address several approaches targeting tumor hypoxia, known as hypoxia-targeted therapy.
Collapse
Affiliation(s)
| | - Saeid Afshar
- a Research Center for Molecular Medicine, Hamadan University of Medical Sciences , Hamadan , Iran
| | - Rezvan Najafi
- a Research Center for Molecular Medicine, Hamadan University of Medical Sciences , Hamadan , Iran
| |
Collapse
|
46
|
Basava Punna Rao A, Uma A, Chiranjeevi T, Bethu M, Yashwanth B, Venkateswara Rao J, Poluri KM, Kollipara MR. Synthesis, structural and in vitro functional characterization of arene ruthenium complexes with 1,3,5-tris(di-2-pyridylaminomethyl)benzene ligand. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Stokes AM, Hart CP, Quarles CC. Hypoxia Imaging With PET Correlates With Antitumor Activity of the Hypoxia-Activated Prodrug Evofosfamide (TH-302) in Rodent Glioma Models. Tomography 2016; 2:229-237. [PMID: 27752544 PMCID: PMC5065246 DOI: 10.18383/j.tom.2016.00259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High-grade gliomas are often characterized by hypoxia, which is associated with both poor long-term prognosis and therapy resistance. The adverse role hypoxia plays in treatment resistance and disease progression has led to the development of hypoxia imaging methods and hypoxia-targeted treatments. Here, we determined the tumor hypoxia and vascular perfusion characteristics of 2 rat orthotopic glioma models using 18-fluoromisonidozole positron emission tomography. In addition, we determined tumor response to the hypoxia-activated prodrug evofosfamide (TH-302) in these rat glioma models. C6 tumors exhibited more hypoxia and were less perfused than 9L tumors. On the basis of these differences in their tumor hypoxic burden, treatment with evofosfamide resulted in 4- and 2-fold decreases in tumor growth rates of C6 and 9L tumors, respectively. This work shows that imaging methods sensitive to tumor hypoxia and perfusion are able to predict response to hypoxia-targeted agents. This has implications for improved patient selection, particularly in clinical trials, for treatment with hypoxia-activated cytotoxic prodrugs, such as evofosfamide.
Collapse
Affiliation(s)
- Ashley M. Stokes
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
- Department of Imaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - Charles P. Hart
- Threshold Pharmaceuticals Inc., South San Francisco, California
| | - C. Chad Quarles
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
- Department of Imaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| |
Collapse
|
48
|
Patel A, Sant S. Hypoxic tumor microenvironment: Opportunities to develop targeted therapies. Biotechnol Adv 2016; 34:803-812. [PMID: 27143654 PMCID: PMC4947437 DOI: 10.1016/j.biotechadv.2016.04.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/13/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023]
Abstract
In recent years, there has been great progress in the understanding of tumor biology and its surrounding microenvironment. Solid tumors create regions with low oxygen levels, generally termed as hypoxic regions. These hypoxic areas offer a tremendous opportunity to develop targeted therapies. Hypoxia is not a random by-product of the cellular milieu due to uncontrolled tumor growth; rather it is a constantly evolving participant in overall tumor growth and fate. This article reviews current trends and recent advances in drug therapies and delivery systems targeting hypoxia in the tumor microenvironment. In the first part, we give an account of important physicochemical changes and signaling pathways activated in the hypoxic microenvironment. This is then followed by various treatment strategies including hypoxia-sensitive signaling pathways and approaches to develop hypoxia-targeted drug delivery systems.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
49
|
El-Sayed NS, Shirazi AN, El-Meligy MG, El-Ziaty AK, Nagieb ZA, Parang K, Tiwari RK. Design, synthesis, and evaluation of chitosan conjugated GGRGDSK peptides as a cancer cell-targeting molecular transporter. Int J Biol Macromol 2016; 87:611-22. [PMID: 26976071 DOI: 10.1016/j.ijbiomac.2016.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 12/26/2022]
Abstract
Targeting cancer cells using integrin receptor is one of the promising targeting strategies in drug delivery. In this study, we conjugated an integrin-binding ligand (GGRGDSK) peptide to chitosan oligosaccharide (COS) using sulfo-SMCC as a bifunctional linker to afford COS-SMCC-GGRGDSK. The conjugated polymer was characterized by FT-IR, (1)H NMR, (13)C NMR, and SEM. COS-SMCC-GGRGDSK did not show cytotoxicity up to a concentration of 1mg/mL in the human leukemia cell line (CCRF-CEM). The conjugate was evaluated for its ability to enhance the cellular uptake of a cell-impermeable cargo (e.g., F'-G(pY)EEI phosphopeptide) in CCRF-CEM, and human ovarian carcinoma (SK-OV-3) cancer cell lines. Additionally, RGD modified and unmodified COS polymers were used to prepare nanoparticles by ionic gelation and showed particle size ranging from 187 to 338nm, and zeta potential of 12.2-18.3mV using dynamic light scattering. The efficiency of COS-NPs and COS-SMCC-RGDSK NPs was assayed for translocation of two synthetic cytotoxic agents ((2-(2-aminoethylamino)-4-(4-chlorophenyl)-6-(1H-indol-3-yl) nicotinonitrile (ACIN), and 2-(2-aminoethylamino)-6-(1H-indol-3-yl)-4-(4-methoxyphenyl)-nicotinonitrile (AMIN)) into CCRF-CEM and human prostate (DU-145) cancer cell lines. The results showed a dramatic reduction in the cell viability on their treatment with RGD targeted COS NPs in comparison to paclitaxel (PTX), free drug, and drug-loaded COS NPs.
Collapse
Affiliation(s)
- Naglaa S El-Sayed
- Cellulose and Paper Department, National Research Center, Dokki 12622, Cairo, Egypt; Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Amir N Shirazi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Magda G El-Meligy
- Cellulose and Paper Department, National Research Center, Dokki 12622, Cairo, Egypt
| | - Ahmed K El-Ziaty
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Zenat A Nagieb
- Cellulose and Paper Department, National Research Center, Dokki 12622, Cairo, Egypt
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Rakesh K Tiwari
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States.
| |
Collapse
|
50
|
Rouault-Pierre K, Hamilton A, Bonnet D. Effect of hypoxia-inducible factors in normal and leukemic stem cell regulation and their potential therapeutic impact. Expert Opin Biol Ther 2016; 16:463-76. [PMID: 26679619 DOI: 10.1517/14712598.2016.1133582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Hypoxia inducible factors (HIF-1α and HIF-2α) are the main mediators of hypoxic responses that operate in both normal and pathological conditions. Recent evidence indicates that HIF-1α and HIF-2α could have overlapping, unique and even sometimes opposing activities in both normal physiology and disease. Despite an increase in our understanding of the different pathways regulated by HIF-1α and HIF-2α, the role played by each factor in HSC maintenance and leukemogenesis is still controversial. AREAS COVERED This review summarizes our current understanding of HIF-1α and HIF-2α activities and discusses the implications and challenges of using HIF inhibitors therapeutically in blood malignancies. EXPERT OPINION As HIF inhibitors are currently under clinical evaluation in different cancers, including hematological malignancies, a more thorough understanding of the unique roles performed by HIF-1α and HIF-2α in human neoplasia is warranted.
Collapse
Affiliation(s)
- Kevin Rouault-Pierre
- a Haematopoietic Stem Cell Laboratory , The Francis Crick Institute , London , UK
| | - Ashley Hamilton
- a Haematopoietic Stem Cell Laboratory , The Francis Crick Institute , London , UK
| | - Dominique Bonnet
- a Haematopoietic Stem Cell Laboratory , The Francis Crick Institute , London , UK
| |
Collapse
|