1
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Dong Y, He Y, Geng Y, Wei M, Zhou X, Lian J, Hallajzadeh J. Autophagy-related lncRNAs and exosomal lncRNAs in colorectal cancer: focusing on lncRNA-targeted strategies. Cancer Cell Int 2024; 24:328. [PMID: 39342235 PMCID: PMC11439232 DOI: 10.1186/s12935-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a cellular process that involves the degradation and recycling of cellular components, including damaged proteins and organelles. It is an important mechanism for maintaining cellular homeostasis and has been implicated in various diseases, including cancer. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but instead play regulatory roles in gene expression. Emerging evidence suggests that lncRNAs can influence autophagy and contribute to the development and progression of colorectal cancer (CRC). Several lncRNAs have been identified as key players in modulating autophagy in CRC. The dysregulation of autophagy and non-coding RNAs (ncRNAs) in CRC suggests a complex interplay between these two factors in the pathogenesis of the disease. Modulating autophagy may sensitize cancer cells to existing therapies or improve the efficacy of new treatment approaches. Additionally, targeting specific lncRNAs involved in autophagy regulation could potentially be used as a therapeutic intervention to inhibit tumor growth, metastasis, and overcome drug resistance in CRC. In this review, a thorough overview is presented, encompassing the functions and underlying mechanisms of autophagy-related lncRNAs in a range of critical areas within tumor biology. These include cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, and radiation resistance.
Collapse
Affiliation(s)
- Yan Dong
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yiwei He
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yanna Geng
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Meimei Wei
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Xiaomei Zhou
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Jianlun Lian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
3
|
Cheng L, Qiu Z, Wu X, Dong Z. Evaluation of circulating plasma proteins in prostate cancer using mendelian randomization. Discov Oncol 2024; 15:453. [PMID: 39287922 PMCID: PMC11408438 DOI: 10.1007/s12672-024-01331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The proteome is an important resource for exploring potential diagnostic and therapeutic targets for cancer. This study aimed to investigate the causal associations between plasma proteins and prostate cancer (PCa), and to explore the downstream phenotypes that plasma proteins may influence and potential upstream intervening factors. METHODS Proteome-wide Mendelian randomization was used to investigate the causal effects of plasma proteins on PCa. Colocalization analysis examined the common causal variants between plasma proteins and PCa. Summary-statistics-based Mendelian Randomization (SMR) analyses identified associations between the expression of protein-coding genes and PCa. Phenome-wide association study was performed to explore the effect of target proteins on downstream phenotypes. Finally, a systematic Mendelian randomization analysis between lifestyle factors and plasma proteins was performed to assess upstream intervening factors for plasma proteins. RESULTS The findings revealed a positive genetic association between the predicted plasma levels of nine proteins and an elevated risk of PCa, while four proteins exhibited an inverse association with PCa risk. SMR analyses revealed ZG16B, PEX14 in blood and ZG16B, NAPG in prostate tissue were potential drug targets for PCa. The genetic association of PEX14 with PCa was further supported by colocalization analysis. Further Phenome-wide association study showed possible side effects of ZG16B, PEX14 and NAPG as drug targets. 10 plasma proteins (RBP7, TPST1, NFASC, LAYN, HDGF, SERPIMA5, DLL4, EFNA3, LIMA1, and CCL27) could be modulated by lifestyle-related factors. CONCLUSION This study explores the genetic associations between plasma proteins and PCa, provides evidence that plasma proteins serve as potential drug targets and enhances the understanding of the molecular etiology, prevention and treatment of PCa.
Collapse
Affiliation(s)
- Long Cheng
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, 730030, Gansu, China
| | - Zeming Qiu
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, 730030, Gansu, China
| | - Xuewu Wu
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, 730030, Gansu, China
| | - Zhilong Dong
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China.
- Institute of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
- Gansu Province Clinical Research Center for urinary system disease, Lanzhou, 730030, Gansu, China.
- Department of Urology, The Second Hospital & Clinical School, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
4
|
Zhou CQ, Li A, Ri K, Sultan AS, Ren H. Anti-HDGF Antibody Targets EGFR Tyrosine Kinase Inhibitor-Tolerant Cells in NSCLC Patient-Derived Xenografts. CANCER RESEARCH COMMUNICATIONS 2024; 4:2308-2319. [PMID: 39041204 PMCID: PMC11370239 DOI: 10.1158/2767-9764.crc-24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Constitutively active mutant EGFR is one of the major oncogenic drivers in non-small cell lung cancer (NSCLC). Targeted therapy using EGFR tyrosine kinase inhibitor (TKI) is a first-line option in patients that have metastatic or recurring disease. However, despite the high response rate to TKI, most patients have a partial response, and the disease eventually progresses in 10 to 19 months. It is believed that drug-tolerant cells that survive TKI exposure during the progression-free period facilitate the emergence of acquired resistance. Thus, targeting the drug-tolerant cells could improve the treatment of NSCLC with EGFR mutations. We demonstrated here that EGFR-mutant patient-derived xenograft tumors responded partially to osimertinib despite near-complete inhibition of EGFR activation. Signaling in AKT/mTOR and MAPK pathways could be reactivated shortly after initial inhibition. As a result, many tumor cells escaped drug killing and regained growth following about 35 days of continuous osimertinib dosing. However, when an antibody to hepatoma-derived growth factor (HDGF) was given concurrently with osimertinib, tumors showed complete or near-complete responses. There was significant prolongation of progression-free survival of tumor-bearing mice as well. IHC and Western blot analysis of tumors collected in the early stages of treatment suggest that increased suppression of the AKT/mTOR and MAPK pathways could be a mechanism that results in enhanced efficacy of osimertinib when it is combined with an anti-HDGF antibody. SIGNIFICANCE These results suggest that HDGF could be critically involved in promoting tolerance to TKI in patient-derived xenografts of NSCLC tumors. Blocking HDGF signaling could be a potential means to enhance EGFR-targeted therapy of NSCLC that warrants further advanced preclinical and clinical studies.
Collapse
Affiliation(s)
- Cindy Q. Zhou
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Ariel Li
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Kaoru Ri
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| | - Hening Ren
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland.
| |
Collapse
|
5
|
Jia Y, Liu S, Zhang M, Wu X, Chen X, Xing M, Hou X, Jiang W. The m6A reader IGF2BP2 promotes ESCC progression by stabilizing HDGF mRNA. J Cancer Res Ther 2024; 20:1173-1185. [PMID: 39206979 DOI: 10.4103/jcrt.jcrt_2272_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/02/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to explore the role of IGF2BP2 in esophageal squamous cell carcinoma (ESCC) progression. MATERIALS AND METHODS The Cancer Genome Atlas (TCGA) dataset, transcriptome sequencing, and the Gene Expression Omnibus (GEO) dataset were used to detect the expression of m6A-associated genes in ESCC. The in vitro and in vivo assays were used to explore the role of IGF2BP2 in ESCC. RESULTS IGF2BP2 was significantly overexpressed in human ESCC specimens, which was confirmed by analyzing the GEO dataset. IGF2BP2 overexpression was correlated with poor prognosis in patients with ESCC. Altering the expression of IGF2BP2 influenced the proliferation, migration, and invasion of ESCC cells in vitro and tumorigenicity in vivo. IGF2BP2 could bind to and stabilize hepatoma-derived growth factor (HDGF) transcripts in ESCC in an m6A-dependent manner and promote HDGF expression. CONCLUSIONS These findings indicate that the novel IGF2BP2-HDGF axis is pivotal for ESCC cancer progression and can serve as a target for developing therapeutics.
Collapse
Affiliation(s)
- Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Road, Jinan, China
| | - Sujing Liu
- Department of Oncology, Shandong Provincial Third Hospital Shandong University, No. 12, Wu Ying Shan Zhong Road, Jinan, China
| | - Miao Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Road, Jinan, China
| | - Xia Wu
- Department of Oncology, Shandong Provincial Third Hospital Shandong University, No. 12, Wu Ying Shan Zhong Road, Jinan, China
| | - Xiangyu Chen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Road, Jinan, China
| | - Mengmeng Xing
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Road, Jinan, China
| | - Xianghui Hou
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Road, Jinan, China
| | - Wenpeng Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Road, Jinan, China
| |
Collapse
|
6
|
Khalafizadeh A, Hashemizadegan SD, Shokri F, Bakhshinejad B, Jabbari K, Motavaf M, Babashah S. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance. J Cell Mol Med 2024; 28:e18197. [PMID: 38506091 PMCID: PMC10951891 DOI: 10.1111/jcmm.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Fatemeh Shokri
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| |
Collapse
|
7
|
Shaji M, Tamada A, Fujimoto K, Muguruma K, Karsten SL, Yokokawa R. Deciphering potential vascularization factors of on-chip co-cultured hiPSC-derived cerebral organoids. LAB ON A CHIP 2024; 24:680-696. [PMID: 38284292 DOI: 10.1039/d3lc00930k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The lack of functional vascular system in stem cell-derived cerebral organoids (COs) limits their utility in modeling developmental processes and disease pathologies. Unlike other organs, brain vascularization is poorly understood, which makes it particularly difficult to mimic in vitro. Although several attempts have been made to vascularize COs, complete vascularization leading to functional capillary network development has only been achieved via transplantation into a mouse brain. Understanding the cues governing neurovascular communication is therefore imperative for establishing an efficient in vitro system for vascularized cerebral organoids that can emulate human brain development. Here, we used a multidisciplinary approach combining microfluidics, organoids, and transcriptomics to identify molecular changes in angiogenic programs that impede the successful in vitro vascularization of human induced pluripotent stem cell (iPSC)-derived COs. First, we established a microfluidic cerebral organoid (CO)-vascular bed (VB) co-culture system and conducted transcriptome analysis on the outermost cell layer of COs cultured on the preformed VB. Results revealed coordinated regulation of multiple pro-angiogenic factors and their downstream targets. The VEGF-HIF1A-AKT network was identified as a central pathway involved in the angiogenic response of cerebral organoids to the preformed VB. Among the 324 regulated genes associated with angiogenesis, six transcripts represented significantly regulated growth factors with the capacity to influence angiogenic activity during co-culture. Subsequent on-chip experiments demonstrated the angiogenic and vasculogenic potential of cysteine-rich angiogenic inducer 61 (CYR61) and hepatoma-derived growth factor (HDGF) as potential enhancers of organoid vascularization. Our study provides the first global analysis of cerebral organoid response to three-dimensional microvasculature for in vitro vascularization.
Collapse
Affiliation(s)
- Maneesha Shaji
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Atsushi Tamada
- Department of iPS Cell Applied Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka - 573-1010, Japan.
| | - Kazuya Fujimoto
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka - 573-1010, Japan.
| | - Stanislav L Karsten
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| |
Collapse
|
8
|
Dong W, Zhao H, Xiao S, Zheng L, Fan T, Wang L, Zhang H, Hu Y, Yang J, Wang T, Xiao W. Single-cell RNA-seq analyses inform necroptosis-associated myeloid lineages influence the immune landscape of pancreas cancer. Front Immunol 2023; 14:1263633. [PMID: 38149248 PMCID: PMC10749962 DOI: 10.3389/fimmu.2023.1263633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties in pancreatic ductal adenocarcinoma (PDAC) remain elusive. Method In this study, we conducted scRNA-seq data analysis of cells from 12 primary tumor (PT) tissues, 4 metastatic (Met) tumor tissues, 3 adjacent normal pancreas tissues (Para), and PBMC samples across 16 PDAC patients, and revealed a heterogeneous TIMs environment in PDAC. Result Systematic comparisons between tumor and non-tumor samples of myeloid lineages identified 10 necroptosis-associated genes upregulated in PDAC tumors compared to 5 upregulated in paratumor or healthy peripheral blood. A novel RTM (resident tissue macrophages), GLUL-SQSTM1- RTM, was found to act as a positive regulator of immunity. Additionally, HSP90AA1+HSP90AB1+ mast cells exhibited pro-immune characteristics, and JAK3+TLR4+ CD16 monocytes were found to be anti-immune. The findings were validated through clinical outcomes and cytokines analyses. Lastly, intercellular network reconstruction supported the associations between the identified novel clusters, cancer cells, and immune cell populations. Conclusion Our analysis comprehensively characterized major myeloid cell lineages and identified three subsets of myeloid-derived cells associated with necroptosis. These findings not only provide a valuable resource for understanding the multi-dimensional characterization of the tumor microenvironment in PDAC but also offer valuable mechanistic insights that can guide the design of effective immuno-oncology treatment strategies.
Collapse
Affiliation(s)
- Weiwei Dong
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huixia Zhao
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shanshan Xiao
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Liuqing Zheng
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Tongqiang Fan
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Li Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - He Zhang
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanyan Hu
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jingwen Yang
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Tao Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Wenhua Xiao
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
9
|
Fu L, Jung Y, Tian C, Ferreira RB, Cheng R, He F, Yang J, Carroll KS. Nucleophilic covalent ligand discovery for the cysteine redoxome. Nat Chem Biol 2023; 19:1309-1319. [PMID: 37248412 DOI: 10.1038/s41589-023-01330-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/07/2023] [Indexed: 05/31/2023]
Abstract
With an eye toward expanding chemistries used for covalent ligand discovery, we elaborated an umpolung strategy that exploits the 'polarity reversal' of sulfur when cysteine is oxidized to sulfenic acid, a widespread post-translational modification, for selective bioconjugation with C-nucleophiles. Here we present a global map of a human sulfenome that is susceptible to covalent modification by members of a nucleophilic fragment library. More than 500 liganded sulfenic acids were identified on proteins across diverse functional classes, and, of these, more than 80% were not targeted by electrophilic fragment analogs. We further show that members of our nucleophilic fragment library can impair functional protein-protein interactions involved in nuclear oncoprotein transport and DNA damage repair. Our findings reveal a vast expanse of ligandable sulfenic acids in the human proteome and highlight the utility of nucleophilic small molecules in the fragment-based covalent ligand discovery pipeline, presaging further opportunities using non-traditional chemistries for targeting proteins.
Collapse
Affiliation(s)
- Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Youngeun Jung
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Renan B Ferreira
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Ruifeng Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China.
| | - Kate S Carroll
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA.
| |
Collapse
|
10
|
Hu TH, Wu JC, Huang ST, Chu TH, Han AJ, Shih TW, Chang YC, Yang SM, Ko CY, Lin YW, Kung ML, Tai MH. HDGF stimulates liver tumorigenesis by enhancing reactive oxygen species generation in mitochondria. J Biol Chem 2023; 299:105335. [PMID: 37827291 PMCID: PMC10654039 DOI: 10.1016/j.jbc.2023.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Hepatoma-derived growth factor (HDGF) overexpression and uncontrolled reactive oxygen species (ROS) accumulation are involved in malignant transformation and poor prognosis in various types of cancer. However, the interplay between HDGF and ROS generation has not been elucidated in hepatocellular carcinoma. Here, we first analyzed the profile of HDGF expression and ROS production in newly generated orthotopic hepatomas by ultrasound-guided implantation. In situ superoxide detection showed that HDGF-overexpressing hepatomas had significantly elevated ROS levels compared with adjacent nontumor tissues. Consistently, liver tissues from HDGF-deficient mice exhibited lower ROS fluorescence than those from age- and sex-matched WT mice. ROS-detecting fluorescent dyes and flow cytometry revealed that recombinant HDGF (rHDGF) stimulated the production of superoxide anion, hydrogen peroxide, and mitochondrial ROS generation in cultured hepatoma cells in a dose-dependent manner. In contrast, the inactive Ser103Ala rHDGF mutant failed to promote ROS generation or oncogenic behaviors. Seahorse metabolic flux assays revealed that rHDGF dose dependently upregulated bioenergetics through enhanced basal and total oxygen consumption rate, extracellular acidification rate, and oxidative phosphorylation in hepatoma cells. Moreover, antioxidants of N-acetyl cysteine and MitoQ treatment significantly inhibited HDGF-mediated cell proliferation and invasive capacity. Genetic silencing of superoxide dismutase 2 augmented the HDGF-induced ROS generation and oncogenic behaviors of hepatoma cells. Finally, genetic knockdown nucleolin (NCL) and antibody neutralization of surface NCL, the HDGF receptor, abolished the HDGF-induced increase in ROS and mitochondrial energetics. In conclusion, this study has demonstrated for the first time that the HDGF/NCL signaling axis induces ROS generation by elevating ROS generation in mitochondria, thereby stimulating liver carcinogenesis.
Collapse
Affiliation(s)
- Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jian-Ching Wu
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Tsung Huang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ai-Jie Han
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ting-Wei Shih
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chou-Yuan Ko
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yu-Wei Lin
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Guo Y, Xu H, Huang M, Ruan Y. BLM promotes malignancy in PCa by inducing KRAS expression and RhoA suppression via its interaction with HDGF and activation of MAPK/ERK pathway. J Cell Commun Signal 2023; 17:757-772. [PMID: 36574142 PMCID: PMC10409945 DOI: 10.1007/s12079-022-00717-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) has long been the leading cause of cancer-associated deaths among male worldwide. Our previous studies have shown that Bloom syndrome protein (BLM) plays a vital role in PCa proliferation, yet the underlying molecular mechanism remains largely obscure. Mechanistically, BLM directly interacted with hepatoma-derived growth factor (HDGF). Functionally, BLM and HDGF knockdown resulted in the higher impairment of PC3 proliferation, clonogenicity, migration and invasion than that their counterpart with either BLM or HDGF knockdown exclusively. Of note, HDGF overexpression expedited, whereas its knockdown suppressed, PC3 proliferation, clonogenicity, migration and invasion. Additionally, the potentiation or attenuation was partially antagonized upon BLM depletion or overexpression. In line with the vitro data, the impact of BLM and HDGF on tumor growth was investigated in mouse xenograft models. ChIP-seq, dual-luciferase reporter and western blotting assays were employed to expound the regulatory network in PC3 cells. The results unveiled that HDGF activated KRAS and suppressed RhoA transcription, and that the function of HDGF was mediated, in part, by interaction with BLM. Accordingly, the MAPK/ERK pathway was activated. Moreover, the regulation of HDGF on KRAS and RhoA had a signal crosstalk. To recapitulate, BLM and HDGF may serve as novel prognostic markers and potential therapeutic targets in PCa.
Collapse
Affiliation(s)
- Yingchu Guo
- Department of Biomedicine, Medical College, Guizhou University, No. 2708, Huaxi Road South, Huaxi District, Guiyang, 550025, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, China
| | - Houqiang Xu
- Department of Biomedicine, Medical College, Guizhou University, No. 2708, Huaxi Road South, Huaxi District, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, China.
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China.
| | - Mengqiu Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yong Ruan
- Department of Biomedicine, Medical College, Guizhou University, No. 2708, Huaxi Road South, Huaxi District, Guiyang, 550025, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Krauze AV, Sierk M, Nguyen T, Chen Q, Yan C, Hu Y, Jiang W, Tasci E, Zgela TC, Sproull M, Mackey M, Shankavaram U, Meerzaman D, Camphausen K. Glioblastoma survival is associated with distinct proteomic alteration signatures post chemoirradiation in a large-scale proteomic panel. Front Oncol 2023; 13:1127645. [PMID: 37637066 PMCID: PMC10448824 DOI: 10.3389/fonc.2023.1127645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/20/2023] [Indexed: 08/29/2023] Open
Abstract
Background Glioblastomas (GBM) are rapidly progressive, nearly uniformly fatal brain tumors. Proteomic analysis represents an opportunity for noninvasive GBM classification and biological understanding of treatment response. Purpose We analyzed differential proteomic expression pre vs. post completion of concurrent chemoirradiation (CRT) in patient serum samples to explore proteomic alterations and classify GBM by integrating clinical and proteomic parameters. Materials and methods 82 patients with GBM were clinically annotated and serum samples obtained pre- and post-CRT. Serum samples were then screened using the aptamer-based SOMAScan® proteomic assay. Significant traits from uni- and multivariate Cox models for overall survival (OS) were designated independent prognostic factors and principal component analysis (PCA) was carried out. Differential expression of protein signals was calculated using paired t-tests, with KOBAS used to identify associated KEGG pathways. GSEA pre-ranked analysis was employed on the overall list of differentially expressed proteins (DEPs) against the MSigDB Hallmark, GO Biological Process, and Reactome databases with weighted gene correlation network analysis (WGCNA) and Enrichr used to validate pathway hits internally. Results 3 clinical clusters of patients with differential survival were identified. 389 significantly DEPs pre vs. post-treatment were identified, including 284 upregulated and 105 downregulated, representing several pathways relevant to cancer metabolism and progression. The lowest survival group (median OS 13.2 months) was associated with DEPs affiliated with proliferative pathways and exhibiting distinct oppositional response including with respect to radiation therapy related pathways, as compared to better-performing groups (intermediate, median OS 22.4 months; highest, median OS 28.7 months). Opposite signaling patterns across multiple analyses in several pathways (notably fatty acid metabolism, NOTCH, TNFα via NF-κB, Myc target V1 signaling, UV response, unfolded protein response, peroxisome, and interferon response) were distinct between clinical survival groups and supported by WGCNA. 23 proteins were statistically signficant for OS with 5 (NETO2, CST7, SEMA6D, CBLN4, NPS) supported by KM. Conclusion Distinct proteomic alterations with hallmarks of cancer, including progression, resistance, stemness, and invasion, were identified in serum samples obtained from GBM patients pre vs. post CRT and corresponded with clinical survival. The proteome can potentially be employed for glioma classification and biological interrogation of cancer pathways.
Collapse
Affiliation(s)
- Andra Valentina Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Michael Sierk
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - Trinh Nguyen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - Chunhua Yan
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - Ying Hu
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - William Jiang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Erdal Tasci
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Theresa Cooley Zgela
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Megan Mackey
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, United States
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
13
|
Han S, Tian Z, Tian H, Han H, Zhao J, Jiao Y, Wang C, Hao H, Wang S, Fu J, Xue D, Sun H, Li P. HDGF promotes gefitinib resistance by activating the PI3K/AKT and MEK/ERK signaling pathways in non-small cell lung cancer. Cell Death Discov 2023; 9:181. [PMID: 37301856 DOI: 10.1038/s41420-023-01476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatoma-derived growth factor (HDGF) expression is associated with poor prognosis in non-small cell lung cancer (NSCLC); however, whether HDGF affects gefitinib resistance in NSCLC remains unknown. This study aimed to explore the role of HDGF in gefitinib resistance in NSCLC and to discover the underlying mechanisms. Stable HDGF knockout or overexpression cell lines were generated to perform experiments in vitro and in vivo. HDGF concentrations were determined using an ELISA kit. HDGF overexpression exacerbated the malignant phenotype of NSCLC cells, while HDGF knockdown exerted the opposite effects. Furthermore, PC-9 cells, which were initially gefitinib-sensitive, became resistant to gefitinib treatment after HDGF overexpression, whereas HDGF knockdown enhanced gefitinib sensitivity in H1975 cells, which were initially gefitinib-resistant. Higher levels of HDGF in plasma or tumor tissue also indicated gefitinib resistance. The effects of HDGF on promoting the gefitinib resistance were largely attenuated by MK2206 (Akt inhibitor) or U0126 (ERK inhibitor). Mechanistically, gefitinib treatment provoked HDGF expression and activated the Akt and ERK pathways, which were independent of EGFR phosphorylation. In summary, HDGF contributes to gefitinib resistance by activating the Akt and ERK signaling pathways. The higher HDGF levels may predict poor efficacy for TKI treatment, thus it has the potential to serve as a new target for overcoming tyrosine kinase inhibitor resistance in combating NSCLC.
Collapse
Affiliation(s)
- Shuyan Han
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhihua Tian
- Central Laboratory, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Huifang Tian
- Central Laboratory, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Haibo Han
- The Tissue Bank, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jun Zhao
- Department of Thoracic Medical Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yanna Jiao
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chunli Wang
- Department of Oncology, Infectious Disease Hospital of Heilongjiang Province, Harbin, 150030, China
| | - Huifeng Hao
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shan Wang
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jialei Fu
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dong Xue
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hong Sun
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Pingping Li
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
14
|
Zheng L, Chen X, Yin Q, Gu J, Chen J, Chen M, Zhang Y, Dong M, Jiang H, Yin N, Chen H, Li X. RNA-m6A modification of HDGF mediated by Mettl3 aggravates the progression of atherosclerosis by regulating macrophages polarization via energy metabolism reprogramming. Biochem Biophys Res Commun 2022; 635:120-127. [DOI: 10.1016/j.bbrc.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
|
15
|
Fu JL, Hao HF, Wang S, Jiao YN, Li PP, Han SY. Marsdenia tenacissima extract disturbs the interaction between tumor-associated macrophages and non-small cell lung cancer cells by targeting HDGF. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115607. [PMID: 35973634 DOI: 10.1016/j.jep.2022.115607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marsdenia tenacissima (Roxb.) Wight et Arn. is a traditional Chinese herbal medicine, and its water-soluble ingredient Marsdenia tenacissima extract (MTE), was widely used for cancer treatment. The multi-pharmacological efficacies and mechanisms of MTE in directly inhibiting tumor cells have been extensively studied. However, the anti-tumor effects of MTE in the tumor-associated macrophages (TAMs) microenvironment remain unclear. AIM OF THE STUDY To uncover the role of hepatoma-derived growth factor (HDGF) in the interaction between TAMs and non-small cell lung cancer (NSCLC) cells. To evaluate the anti-tumor effects of MTE on the vicious crosstalk between TAMs and NSCLC by targeting HDGF. MATERIALS AND METHODS HDGF-overexpression PC-9 and H292 NSCLC cell lines were constructed and verified. RNA-sequencing (RNA-seq) was performed in HDGF-overexpression PC-9 cells to probe the differential expression of genes. THP-1-derived macrophages were characterized using specific markers after stimulation with phorbol-12-myristate 13-acetate (PMA) and rhIL-4 or rhHDGF. The role of HDGF both in NSCLC cells and TAMs was determined using approaches like Western blot, qRT-PCR, ELISA, and flow cytometry. The interaction between tumor cells and TAMs were assessed by indirect co-culture H1975, PC-9 cells with M2 type macrophages. The effects of MTE on anti-tumor and macrophage polarization were evaluated in vitro and in vivo. RESULTS RNA-seq results identified IL-4 as a critical response to HDGF in NSCLC. HDGF induced macrophages polarizing toward M2 type, and promoted NSCLC cells proliferation, migration and invasion in vitro. On the one hand, HDGF dose-dependently promoted IL-4 expression in NSCLC cells. On the other hand, HDGF induced M2 macrophage polarization through the IL-4/JAK1/STAT3 signaling pathway. MTE treatment significantly decreased the expression and secretion of HDGF in NSCLC cells. Meanwhile, MTE treatment led to M2 macrophage repolarization, as evidenced by decreased expression of M2 markers and increased levels of M1 markers. Importantly, MTE treatment significantly suppressed tumor development in C57BL/6 mice bearing Lewis lung cancer (LLC) cells in vivo, accompanied by decreased plasma HDGF levels, reduced M2 macrophages infiltration and increased M1 macrophages proportion in mice tumor tissues. CONCLUSIONS HDGF upregulated IL-4 expression in NSCLC cells, and promoted M2 polarization by the IL-4/JAK1/STAT3 signaling pathway in macrophages. MTE disturbed the interaction between NSCLC and TAMs in vitro, and inhibited tumor growth in vivo, at least in part, by suppressing HDGF. Therefore, our present study revealed a novel anti-tumor mechanism of MTE through inhibiting HDGF expression and enhancing macrophage polarization from M2 to M1 phenotype.
Collapse
Affiliation(s)
- Jia-Lei Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Shan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China.
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China.
| |
Collapse
|
16
|
Jin G, Zhang Z, Wan J, Wu X, Liu X, Zhang W. G3BP2: Structure and Function. Pharmacol Res 2022; 186:106548. [DOI: 10.1016/j.phrs.2022.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
17
|
Wang H, Liu J, Yang J, Wang Z, Zhang Z, Peng J, Wang Y, Hong L. A novel tumor mutational burden-based risk model predicts prognosis and correlates with immune infiltration in ovarian cancer. Front Immunol 2022; 13:943389. [PMID: 36003381 PMCID: PMC9393426 DOI: 10.3389/fimmu.2022.943389] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Tumor mutational burden (TMB) has been reported to determine the response to immunotherapy, thus affecting the patient’s prognosis in many cancers. However, it is unclear whether TMB or TMB-related signature could be used as prognostic indicators for ovarian cancer (OC), as its potential association with immune infiltration remains poorly understood. Therefore, this study aimed to develop a novel TMB-related risk model (TMBrisk) to predict the prognosis of OC patients on the basis of exploring TMB-related genes, and to explore the potential association between TMB/TMBrisk and immune infiltration. The mutational landscape, TMB scores, and correlations between TMB and clinical characteristics and immune infiltration were investigated in The Cancer Genome Atlas (TCGA)-OV cohort. Differentially expressed gene (DEG) analyses and weighted gene co-expression network analysis (WGCNA) were performed to derive TMB-related genes. TMBrisk was constructed by Cox regression and further validated in Gene Expression Omnibus (GEO) datasets. The mRNA and protein expression levels and biological functions of TMBrisk hub genes were verified through Gene Expression Profiling Interactive Analysis (GEPIA), GSCA Lite, the Human Protein Atlas (HPA) database, and RT-qPCR. TMBrisk-related biological phenotypes were analyzed in function enrichment and tumor immune infiltration signature. Potential therapeutic regimens were inferred utilizing the Genomics of Drug Sensitivity in Cancer (GDSC) database and connectivity map (CMap). According to our results, higher TMB was associated with better survival and higher CD8+ T cell, regulatory T cell, and NK cell infiltration. TMBrisk was developed based on CBWD1, ST7L, RFX5-AS1, C3orf38, LRFN1, LEMD1, and HMGB1. High TMBrisk was identified as a poor factor for prognosis in TCGA and GEO datasets; the high-TMBrisk group comprised more higher-grade (G2 and G3) and advanced clinical stage (stage III/IV) tumors. Meanwhile, higher TMBrisk was associated with an immunosuppressive phenotype, with less infiltration of a majority of immunocytes and less expression of several genes of the human leukocyte antigen (HLA) family. Moreover, a nomogram containing TMBrisk showed a strong predictive ability demonstrated by time-dependent ROC analysis. Overall, this novel TMB-related risk model (TMBrisk) could predict prognosis, evaluate immune infiltration, and discover new therapeutic regimens in OC, which is very promising in clinical promotion.
Collapse
|
18
|
Wooldridge LK, Keane JA, Rhoads ML, Ealy AD. Bioactive supplements influencing bovine in vitro embryo development. J Anim Sci 2022; 100:6620796. [PMID: 35772761 DOI: 10.1093/jas/skac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Ovum pickup and in vitro production (IVP) of bovine embryos are replacing traditional multiple ovulation embryo transfer (MOET) as the primary means for generating transferable embryos from genetically elite sires and dams. However, inefficiencies in the IVP process limit the opportunities to produce large numbers of transferable embryos. Also, the post-transfer competency of IVP embryos is inferior to embryos produced by artificial insemination or MOET. Numerous maternal, paternal, embryonic, and culture-related factors can have adverse effects on IVP success. This review will explore the various efforts made on describing how IVP embryo development and post-transfer competency may be improved by supplementing hormones, growth factors, cytokines, steroids and other bioactive factors found in the oviduct and uterus during early pregnancy. More than 40 of these factors, collectively termed as embryokines, are reviewed here. Several embryokines contain abilities to promote embryo development, including improving embryo survivability, improving blastomere cell numbers, and altering the distribution of blastomere cell types in blastocysts. A select few embryokines also can benefit pregnancy retention after IVP embryo transfer and improve neonatal calf health and performance, although very few embryokine-supplemented embryo transfer studies have been completed. Also, supplementing several embryokines at the same time holds promise for improving IVP embryo development and competency. However, more work is needed to explore the post-transfer consequences of adding these putative embryokines for any adverse outcomes, such as large offspring syndrome and poor postnatal health, and to specify the specific embryokine combinations that will best represent the ideal conditions found in the oviduct and uterus.
Collapse
Affiliation(s)
- Lydia K Wooldridge
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jessica A Keane
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michelle L Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
19
|
Long Noncoding RNAs and Circular RNAs in the Metabolic Reprogramming of Lung Cancer: Functions, Mechanisms, and Clinical Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4802338. [PMID: 35757505 PMCID: PMC9217624 DOI: 10.1155/2022/4802338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
As key regulators of gene function, long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are generally accepted to be involved in lung cancer pathogenesis and progression. Recent research has clarified the phenomenon of metabolic reprogramming in lung cancer because of its significant role in tumor proliferation, migration, invasion, metastasis, and other malignant biological behaviors. Emerging evidence has also shown a relationship between the aberrant expression of lncRNAs and circRNAs and metabolic reprogramming in lung cancer tumorigenesis. This review provides insight regarding the roles of different lncRNAs and circRNAs in lung cancer metabolic reprogramming, by how they target transporter proteins and key enzymes in glucose, lipid, and glutamine metabolic signaling pathways. The clinical potential of lncRNAs and circRNAs as early diagnostic biomarkers and components of therapeutic strategies in lung cancer is further discussed, including current challenges in their utilization from the bench to the bedside and how to adopt a proper delivery system for their therapeutic use.
Collapse
|
20
|
Huge N, Reinkens T, Buurman R, Sandbothe M, Bergmann A, Wallaschek H, Vajen B, Stalke A, Decker M, Eilers M, Schäffer V, Dittrich-Breiholz O, Gürlevik E, Kühnel F, Schlegelberger B, Illig T, Skawran B. MiR-129-5p exerts Wnt signaling-dependent tumor-suppressive functions in hepatocellular carcinoma by directly targeting hepatoma-derived growth factor HDGF. Cancer Cell Int 2022; 22:192. [PMID: 35578240 PMCID: PMC9109340 DOI: 10.1186/s12935-022-02582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In hepatocellular carcinoma (HCC), histone deacetylases (HDACs) are frequently overexpressed. This results in chromatin compaction and silencing of tumor-relevant genes and microRNAs. Modulation of microRNA expression is a potential treatment option for HCC. Therefore, we aimed to characterize the epigenetically regulated miR-129-5p regarding its functional effects and target genes to understand its relevance for HCC tumorigenesis. METHODS Global miRNA expression of HCC cell lines (HLE, HLF, Huh7, HepG2, Hep3B) and normal liver cell lines (THLE-2, THLE-3) was analyzed after HDAC inhibition by miRNA sequencing. An in vivo xenograft mouse model and in vitro assays were used to investigate tumor-relevant functional effects following miR-129-5p transfection of HCC cells. To validate hepatoma-derived growth factor (HDGF) as a direct target gene of miR-129-5p, luciferase reporter assays were performed. Survival data and HDGF expression were analyzed in public HCC datasets. After siRNA-mediated knockdown of HDGF, its cancer-related functions were examined. RESULTS HDAC inhibition induced the expression of miR-129-5p. Transfection of miR-129-5p increased the apoptosis of HCC cells, decreased proliferation, migration and ERK signaling in vitro and inhibited tumor growth in vivo. Direct binding of miR-129-5p to the 3'UTR of HDGF via a noncanonical binding site was validated by luciferase reporter assays. HDGF knockdown reduced cell viability and migration and increased apoptosis in Wnt-inactive HCC cells. These in vitro results were in line with the analysis of public HCC datasets showing that HDGF overexpression correlated with a worse survival prognosis, primarily in Wnt-inactive HCCs. CONCLUSIONS This study provides detailed insights into the regulatory network of the tumor-suppressive, epigenetically regulated miR-129-5p in HCC. Our results reveal for the first time that the therapeutic application of mir-129-5p may have significant implications for the personalized treatment of patients with Wnt-inactive, advanced HCC by directly regulating HDGF. Therefore, miR-129-5p is a promising candidate for a microRNA replacement therapy to prevent HCC progression and tumor metastasis.
Collapse
Affiliation(s)
- Nicole Huge
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thea Reinkens
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Reena Buurman
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Maria Sandbothe
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Anke Bergmann
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Hannah Wallaschek
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Beate Vajen
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Melanie Decker
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | | | - Engin Gürlevik
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Hannover Unified Biobank (HUB), Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
21
|
Extracellular vesicle proteomic analysis leads to the discovery of HDGF as a new factor in multiple myeloma biology. Blood Adv 2022; 6:3458-3471. [PMID: 35395072 PMCID: PMC9198912 DOI: 10.1182/bloodadvances.2021006187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
HDGF is secreted by and found in multiple myeloma cell extracellular vesicles; it activates AKT and sustains multiple myeloma cell growth. HDGF polarizes naïve macrophages to an M1 phenotype and generates immunosuppressive M-MDSC.
Identifying factors secreted by multiple myeloma (MM) cells that may contribute to MM tumor biology and progression is of the utmost importance. In this study, hepatoma-derived growth factor (HDGF) was identified as a protein present in extracellular vesicles (EVs) released from human MM cell lines (HMCLs). Investigation of the role of HDGF in MM cell biology revealed lower proliferation of HMCLs following HDGF knockdown and AKT phosphorylation following the addition of exogenous HDGF. Metabolic analysis demonstrated that HDGF enhances the already high glycolytic levels of HMCLs and significantly lowers mitochondrial respiration, indicating that HDGF may play a role in myeloma cell survival and/or act in a paracrine manner on cells in the bone marrow (BM) tumor microenvironment (ME). Indeed, HDGF polarizes macrophages to an M1-like phenotype and phenotypically alters naïve CD14+ monocytes to resemble myeloid-derived suppressor cells which are functionally suppressive. In summary, HDGF is a novel factor in MM biology and may function to both maintain MM cell viability as well as modify the tumor ME.
Collapse
|
22
|
NAP1L1 promotes tumor proliferation through HDGF/C-JUN signaling in ovarian cancer. BMC Cancer 2022; 22:339. [PMID: 35351053 PMCID: PMC8962469 DOI: 10.1186/s12885-022-09356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Nucleosome assembly protein 1-like 1 (NAP1L1) is highly expressed in various types of cancer and plays an important role in carcinogenesis, but its specific role in tumor development and progression remains largely unknown. In this study, we suggest the potential of NAP1L1 as a prognostic biomarker and therapeutic target for the treatment of ovarian cancer (OC). Methods In our study, a tissue microarray (TMA) slide containing specimens from 149 patients with OC and 11 normal ovarian tissues underwent immunohistochemistry (IHC) to analyze the correlation between NAP1L1 expression and clinicopathological features. Loss-of- function experiments were performed by transfecting siRNA and following lentiviral gene transduction into SKOV3 and OVCAR3 cells. Cell proliferation and the cell cycle were assessed by the Cell Counting Kit-8, EDU assay, flow cytometry, colony formation assay, and Western blot analysis. In addition, co-immunoprecipitation (Co-IP) and immunofluorescence assays were performed to confirm the relationship between NAP1L1 and its potential targets in SKOV3/OVCAR3 cells. Results High expression of NAP1L1 was closely related to poor clinical outcomes in OC patients. After knocking down NAP1L1 by siRNA or shRNA, both SKOV3 and OVCAR3 cells showed inhibition of cell proliferation, blocking of the G1/S phase, and increased apoptosis in vitro. Mechanism analysis indicated that NAP1L1 interacted with hepatoma-derived growth factor (HDGF) and they were co-localized in the cytoplasm. Furthermore, HDGF can interact with jun proto-oncogene (C-JUN), an oncogenic transformation factor that induces the expression of cyclin D1 (CCND1). Overexpressed HDGF in NAP1L1 knockdown OC cells not only increased the expression of C-JUN and CCND1, but it also reversed the suppressive effects of si-NAP1L1 on cell proliferation. Conclusions Our data demonstrated that NAP1L1 could act as a prognostic biomarker in OC and can interact with HDGF to mediate the proliferation of OC, and this process of triggered proliferation may contribute to the activation of HDGF/C-JUN signaling in OC cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09356-z.
Collapse
|
23
|
Eguchi R, Kawabe JI, Wakabayashi I. VEGF-Independent Angiogenic Factors: Beyond VEGF/VEGFR2 Signaling. J Vasc Res 2022; 59:78-89. [DOI: 10.1159/000521584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Tumors induce angiogenesis to acquire oxygen and nutrition from their adjacent microenvironment. Tumor angiogenesis has been believed to be induced primarily by the secretion of vascular endothelial growth factor-A (VEGF-A) from various tumors. VEGF-A binds to VEGF receptor 2 (VEGFR2), resulting in subsequent activation of cellular substances regulating cell proliferation, survival, and angiogenesis. Antiangiogenic therapies targeting the VEGF-A/VEGFR2 axis, including bevacizumab and ramucirumab, humanized monoclonal antibodies against VEGF-A and VEGFR2, respectively, have been proposed as a promising strategy aimed at preventing tumor growth, invasion, and metastasis. Phase III clinical trials using bevacizumab and ramucirumab have shown that not all tumor patients benefit from such antiangiogenic agents, and that some patients who initially benefit subsequently become less responsive to these antibodies, suggesting the possible existence of VEGF-independent angiogenic factors. In this review, we focus on VEGF-independent and VEGFR2-dependent tumor angiogenesis, as well as VEGFR2-independent tumor angiogenesis. Additionally, we discuss VEGF-independent angiogenic factors which have been reported in previous studies. Various molecular targeting drugs are currently being evaluated as potential antitumor therapies. We expect that precision medicine will permit the development of innovative antiangiogenic therapies targeting individual angiogenic factors selected on the basis of the genetic screening of tumors.
Collapse
|
24
|
Xia C, Li Q, Cheng X, Wu T, Gao P, Gu Y. Insulin-like growth factor 2 mRNA-binding protein 2-stabilized long non-coding RNA Taurine up-regulated gene 1 (TUG1) promotes cisplatin-resistance of colorectal cancer via modulating autophagy. Bioengineered 2022; 13:2450-2469. [PMID: 35014946 PMCID: PMC8973703 DOI: 10.1080/21655979.2021.2012918] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to influence the chemoresistance of colorectal cancer (CRC). Therefore, the study is designed to investigate the regulatory function and mechanism of Taurine up-regulated gene 1 (TUG1) in the cisplatin resistance of CRC. qRT-PCR checked the expressions of TUG1, Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), and miR-195-5p in CRC tissues and cells. The TUG1 or miR-195-5p overexpression model was engineered in CRC cells, followed by treatment with DDP or the autophagy inhibitor (Chloroquine, CQ). CCK8 (Cell Counting Kit-8) and the colony formation experiment monitored cell proliferation. Flow cytometry examined apoptosis, Transwell tracked migration and invasion, and Western blot ascertained the protein profiles of autophagy proteins (LC3I/LC3II and Beclin1) and the HDGF/DDX5/β-catenin pathway. Dual-luciferase gene reporter assay and RNA immunoprecipitation confirmed the binding correlation between TUG1 and miR-195-5p and between miR-195-5p and HDGF. Furthermore, in-vivo experiments in nude mice probed the function and mechanism of IGF2BP2 in CRC cell growth. The profiles of TUG1 and IGF2BP2 were elevated in CRC tissues, and IGF2BP2 enhanced TUG1's expression in CRC cells. TUG1 activated autophagy to facilitate CRC cells' resistance to DDP. TUG1 targets miR-195-5p, and miR-195-5p targets HDGF. Overexpression of miR-195-5p abated the cancer-promoting function of TUG1 and curbed the profile of the HDGF/DDX5/β-catenin axis. TUG1 stabilized by IGF2BP2 boosted CRC cell proliferation, migration, migration, and autophagy via the miR-195-5p/HDGF/DDX5/β-catenin axis, hence enhancing CRC cell's resistance to DDP.
Collapse
Affiliation(s)
- Cuifeng Xia
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Qiang Li
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Xianshuo Cheng
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Tao Wu
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Pin Gao
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Yongfang Gu
- Department of Hepatobiliary Surgery, The Second People’s Hospital of Qujing, Qujing, Yunnan, China
| |
Collapse
|
25
|
Chen W, Zhou Y, Wu G, Sun P. CCNI2 promotes the progression of human gastric cancer through HDGF. Cancer Cell Int 2021; 21:661. [PMID: 34895232 PMCID: PMC8665640 DOI: 10.1186/s12935-021-02352-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric cancer is a highly aggressive malignant tumor with heterogeneity and is still a global health problem. The present study aimed to investigate the role of Cyclin I-like (CCNI2) in the regulation of phenotype and tumorigenesis, as well as its underlying mechanisms. METHOD The expression profile of CCNI2 in gastric cancer was determined based on The Cancer Genome Atlas (TCGA) database and immunohistochemical staining. The effects of altered CCNI2 expression on the biological phenotypes such as proliferation, clone formation, apoptosis and migration of gastric cancer cell lines BGC-823 and SGC-7901 were investigated. Mice xenograft models were established to reveal the role of CCNI2 knockdown on tumorigenesis. The potential mechanism of CCNI2 regulating gastric cancer was preliminarily determined by RNA sequencing. RESULT CCNI2 was abundantly expressed in gastric cancer and was positively correlated with pathological stage. Knockdown of CCNI2 slowed down the malignant progression of gastric cancer by inhibiting tumor cell proliferation, increasing the susceptibility to apoptosis and suppressing migration. Moreover, downregulation of CCNI2 attenuated the ability of gastric cancer cells to form tumors in mice. Additionally, there was an interaction between CCNI2 and transcription factor hepatoma-derived growth factor (HDGF) in SGC-7901 cells. Knockdown of CCNI2 alleviated the promoting effects of HDGF overexpression in gastric cancer cells. CONCLUSIONS CCNI2 promoted the progression of human gastric cancer through HDGF, which drew further interest regarding its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yang Zhou
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
26
|
G3BP2 regulated by the lncRNA LINC01554 facilitates esophageal squamous cell carcinoma metastasis through stabilizing HDGF transcript. Oncogene 2021; 41:515-526. [PMID: 34782720 PMCID: PMC8782723 DOI: 10.1038/s41388-021-02073-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metastasis is the leading cause of death of patients with esophageal squamous cell carcinoma (ESCC). Although an increasing number of studies have demonstrated the involvement of G3BP2 in several human cancers, how G3BP2 interacts with long noncoding RNAs and regulates mRNA transcripts in mediating ESCC metastasis remains unclear. In this study, we uncovered that G3BP2 was upregulated in ESCC. Further analysis revealed that upregulation of G3BP2 was significantly correlated with lymph node metastasis, depth of tumor invasion and unfavorable outcomes in ESCC patients. Both in vitro and in vivo functional assays demonstrated that G3BP2 dramatically enhanced ESCC cell migration and invasion. Mechanistically, LINC01554 maintained the high G3BP2 expression in ESCC by protecting G3BP2 from degradation through ubiquitination and the interaction domains within LINC01554 and G3BP2 were identified. In addition, RNA-seq revealed that HDGF was regulated by G3BP2. G3BP2 bound to HDGF mRNA transcript to stabilize its expression. Ectopic expression of HDGF effectively abolished the G3BP2 depletion-mediated inhibitory effect on tumor cell migration. Intriguingly, introduction of compound C108 which can inhibit G3BP2 remarkedly suppressed ESCC cell metastasis in vitro and in vivo. Collectively, this study describes a newly discovered regulatory axis, LINC01554/G3BP2/HDGF, that facilitates ESCC metastasis and will provide novel therapeutic strategies for ESCC.
Collapse
|
27
|
The LEDGF/p75 Integrase Binding Domain Interactome Contributes to the Survival, Clonogenicity, and Tumorsphere Formation of Docetaxel-Resistant Prostate Cancer Cells. Cells 2021; 10:cells10102723. [PMID: 34685704 PMCID: PMC8534522 DOI: 10.3390/cells10102723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Patients with prostate cancer (PCa) receiving docetaxel chemotherapy invariably develop chemoresistance. The transcription co-activator lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 and PSIP1, is upregulated in several human cancers, including PCa and promotes resistance to docetaxel and other drugs. The C-terminal region of LEDGF/p75 contains an integrase binding domain (IBD) that tethers nuclear proteins, including the HIV-1 integrase and transcription factors, to active chromatin to promote viral integration and transcription of cellular survival genes. Here, we investigated the contribution of the LEDGF/p75 IBD interactome to PCa chemoresistance. Quantitative immunoblotting revealed that LEDGF/p75 and its IBD-interacting partners are endogenously upregulated in docetaxel-resistant PCa cell lines compared to docetaxel-sensitive parental cells. Using specific human autoantibodies, we co-immunoprecipitated LEDGF/p75 with its endogenous IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, and PogZ, as well as transcription factors c-MYC and HRP2, in docetaxel-resistant cells, and confirmed their nuclear co-localization by confocal microscopy. Depletion of LEDGF/p75 and selected interacting partners robustly decreased the survival, clonogenicity, and tumorsphere formation capacity of docetaxel-resistant cells. These results implicate the LEDGF/p75 IBD interactome in PCa chemoresistance and could lead to novel therapeutic strategies targeting this protein complex for the treatment of docetaxel-resistant tumors.
Collapse
|
28
|
Xu W, Che DD, Liu Q, Pan YW, Lv SQ, Chen BD. The inhibitory effect of miR-345 on glioma progression is closely related to circRNA-hsa_circ_0073237 and HDGF. Cells Tissues Organs 2021; 210:368-379. [PMID: 34348265 DOI: 10.1159/000518667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Wu Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Dan-Dan Che
- Department of Intensive Care Unit, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Wen Pan
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bao-Dong Chen
- Department of Neurosurgery, Shenzhen Hospital, Peking University, Shenzhen, China
| |
Collapse
|
29
|
Liu P, Wei J, Mao F, Xin Z, Duan H, Du Y, Wang X, Li Z, Qian J, Yao J. Establishment of a Prognostic Model for Hepatocellular Carcinoma Based on Endoplasmic Reticulum Stress-Related Gene Analysis. Front Oncol 2021; 11:641487. [PMID: 34094926 PMCID: PMC8175984 DOI: 10.3389/fonc.2021.641487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide and its incidence continues to increase year by year. Endoplasmic reticulum stress (ERS) caused by protein misfolding within the secretory pathway in cells and has an extensive and deep impact on cancer cell progression and survival. Growing evidence suggests that the genes related to ERS are closely associated with the occurrence and progression of HCC. This study aimed to identify an ERS-related signature for the prospective evaluation of prognosis in HCC patients. RNA sequencing data and clinical data of patients from HCC patients were obtained from The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC). Using data from TCGA as a training cohort (n=424) and data from ICGC as an independent external testing cohort (n=243), ERS-related genes were extracted to identify three common pathways IRE1, PEKR, and ATF6 using the GSEA database. Through univariate and multivariate Cox regression analysis, 5 gene signals in the training cohort were found to be related to ERS and closely correlated with the prognosis in patients of HCC. A novel 5-gene signature (including HDGF, EIF2S1, SRPRB, PPP2R5B and DDX11) was created and had power as a prognostic biomarker. The prognosis of patients with high-risk HCC was worse than that of patients with low-risk HCC. Multivariate Cox regression analysis confirmed that the signature was an independent prognostic biomarker for HCC. The results were further validated in an independent external testing cohort (ICGC). Also, GSEA indicated a series of significantly enriched oncological signatures and different metabolic processes that may enable a better understanding of the potential molecular mechanism mediating the progression of HCC. The 5-gene biomarker has a high potential for clinical applications in the risk stratification and overall survival prediction of HCC patients. In addition, the abnormal expression of these genes may be affected by copy number variation, methylation variation, and post-transcriptional regulation. Together, this study indicated that the genes may have potential as prognostic biomarkers in HCC and may provide new evidence supporting targeted therapies in HCC.
Collapse
Affiliation(s)
- Peng Liu
- Medical College of Yangzhou University, Yangzhou, China
| | - Jinhong Wei
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Feiyu Mao
- Medical College of Yangzhou University, Yangzhou, China
| | - Zechang Xin
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Heng Duan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Du
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaodong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Zhennan Li
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jianjun Qian
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jie Yao
- Medical College of Yangzhou University, Yangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
30
|
Fazio M, van Rooijen E, Mito JK, Modhurima R, Weiskopf E, Yang S, Zon LI. Recurrent co-alteration of HDGF and SETDB1 on chromosome 1q drives cutaneous melanoma progression and poor prognosis. Pigment Cell Melanoma Res 2021; 34:641-647. [PMID: 33064882 PMCID: PMC8050117 DOI: 10.1111/pcmr.12937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
A progressive increase in copy number variation (CNV) characterizes the natural history of cutaneous melanoma progression toward later disease stages, but our understanding of genetic drivers underlying chromosomal arm-level CNVs remains limited. To identify candidate progression drivers, we mined the TCGA SKCM dataset and identified HDGF as a recurrently amplified gene whose high mRNA expression correlates with poor patient survival. Using melanocyte-specific overexpression in the zebrafish BRAFV600E -driven MiniCoopR melanoma model, we show that HDGF accelerates melanoma development in vivo. Transcriptional analysis of HDGF compared to control EGFP tumors showed the activation of endothelial/angiogenic pathways. We validated this observation using an endothelial kdrl:mCherry reporter line which showed HDGF to increases tumor vasculature. HDGF is frequently co-altered with the established melanoma driver SETDB1. Both genes are located on chromosome 1q, and their co-amplification is observed in up to 13% of metastatic melanoma. TCGA patients with both genes amplified and/or overexpressed have a worse melanoma specific survival. We tested co-expression of HDGF and SETDB1 in the MiniCoopR model, which resulted in faster and more aggressive melanoma development than either gene individually. Our work identifies the co-amplification of HDGF and SETDB1 as a functional driver of melanoma progression and poor patient prognosis.
Collapse
Affiliation(s)
- Maurizio Fazio
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Boston Children’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ellen van Rooijen
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Boston Children’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jeffrey K. Mito
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Boston Children’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rodsy Modhurima
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Boston Children’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Erika Weiskopf
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Boston Children’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Song Yang
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Boston Children’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Leonard I. Zon
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Boston Children’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
31
|
Wang X, Zhang Y, Li W, Liu X. Knockdown of cir_RNA PVT1 Elevates Gastric Cancer Cisplatin Sensitivity via Sponging miR-152-3p. J Surg Res 2021; 261:185-195. [PMID: 33444948 DOI: 10.1016/j.jss.2020.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 11/08/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cisplatin (DDP) resistance is a key problem for effective treatment of gastric cancer (GC). Circular RNA PVT1 (circPVT1) acts as a vital regulator in the progression and development of various cancers. However, the in-depth mechanism of circPVT1 in GC resistance to DDP is still unclear. MATERIALS AND METHODS Quantitative real-time polymerase chain reaction was executed for the detection of the expression of circPVT1, miR-152-3p, and hepatoma-derived growth factor (HDGF) mRNA in GC tissues and cells. Western blot was used to detect the levels of HDGF protein, Bax, cleaved-casp-3, Bcl-2, p-PI3K, and p-AKT in tissue samples and/or cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to determine the viability, proliferation, and apoptosis of DDP-resistant GC cells. The relationship between miR-152-3p and circPVT1 or HDGF was confirmed by dual-luciferase reporter assay. The biological role of circPVT1 in vivo was confirmed with a xenograft tumor model. RESULTS CircPVT1 and HDGF mRNA were upregulated while miR-152-3p was downregulated in chemoresistance tissues and DDP-resistant GC cells. Both circPVT1 and HDGF inhibition elevated cell sensitivity to DDP, suppressed cell viability, proliferation, and induced cell apoptosis in DDP-resistant GC cells. The MiR-152-3p inhibitor reversed the influence of circPVT1 silencing on DDP sensitivity, viability, proliferation, and apoptosis of DDP-resistant GC cells. Moreover, circPVT1 regulated the HDGF/PI3K/AKT pathway through sponging miR-152-3p. In addition, circPVT1 knockdown reduced the malignancy of DDP-resistant GC cells in vivo. CONCLUSIONS CircPVT1 regulated the chemoresistance and malignancy of GC through modulating HDGF expression via sponging miR-152-3p, providing a theoretical basis for the development of effective therapeutic strategies for GC.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Oncology, Dongying People's Hospital, Dongying, Shandong Province, China
| | - Ying Zhang
- Department of Blood Transfusion, Dongying People's Hospital, Dongying, Shandong Province, China
| | - Wei Li
- Department of Clinical Laboratory, Dongying People's Hospital, Dongying, Shandong Province, China
| | - Xiaolei Liu
- Department of Clinical Laboratory, Dongying People's Hospital, Dongying, Shandong Province, China.
| |
Collapse
|
32
|
Koh HM, Hyun CL, Jang BG, Lee HJ. The relationship between hepatoma-derived growth factor and prognosis in non-small cell lung cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23837. [PMID: 33371164 PMCID: PMC7748309 DOI: 10.1097/md.0000000000023837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/22/2020] [Accepted: 11/22/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Hepatoma-derived growth factor (HDGF) promotes cancer progression and metastasis by interacting with vascular endothelial growth factor, thereby inducing epithelial-to-mesenchymal transition and angiogenesis. Recent studies have correlated increased HDGF levels with poor prognosis in various malignancies, including lung cancer. This meta-analysis systematically assessed the prognostic significance of HDGF expression in patients with non-small cell lung cancer (NSCLC). METHODS Eligible studies were identified by searching literature in PubMed, Embase, Scopus, and the Cochrane library until June 2020. The pooled hazard ratio (HR) or odds ratio (OR) with 95% confidence interval (CI) was determined to assess the relationship between HDGF expression and clinical outcome in patients with NSCLC. RESULTS The pooled HRs between high HDGF expression and clinical outcome were 2.20 (95% CI 1.75-2.76, P < .001) and 2.77 (95% CI 1.79-4.29, P < .001) for overall survival and disease-free survival, respectively. High HDGF expression was significantly correlated with a larger tumor size (OR 1.59, 95% CI 1.02-2.46, P = .040). CONCLUSION HDGF expression is related to clinical outcome and may be a prognostic marker in patients with NSCLC.
Collapse
Affiliation(s)
- Hyun Min Koh
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon
| | - Chang Lim Hyun
- Department of Pathology, Jeju National University School of Medicine
- Department of Pathology, Jeju National University Hospital, Jeju
| | - Bo Gun Jang
- Department of Pathology, Jeju National University School of Medicine
- Department of Pathology, Jeju National University Hospital, Jeju
| | - Hyun Ju Lee
- Department of Pathology, Soonchunhyang University College of Medicine, Cheonan
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| |
Collapse
|
33
|
Hu Q, Gu Y, Chen S, Tian Y, Yang S. Hsa_circ_0079480 promotes tumor progression in acute myeloid leukemia via miR-654-3p/HDGF axis. Aging (Albany NY) 2020; 13:1120-1131. [PMID: 33290265 PMCID: PMC7835062 DOI: 10.18632/aging.202240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Circular RNAs (circRNAs) are newly-discovered endogenous non-coding RNAs that have vital functions in regulating gene expression in tumorigenesis. Nonetheless, the function of circRNAs in acute myeloid leukemia (AML) are not yet clarified. In this analysis, hsa_circ_0079480, a novel circRNA, has been identified as being highly expressed in AML. Loss-of-function assays showed that reduction of hsa_circ_0079480 decreased the growth and stimulated apoptosis of AML cells in vitro. Furthermore, miR-654-3p was sponged by hsa_circ_0079480, and hepatoma-derived growth factor (HDGF) was targeted by miR-654-3p with respect to the fundamental mechanism. Moreover, the influence on growth and apoptosis of AML cells stimulated by hsa_circ_0079480 inhibition can be rescued by miR-654-3p inhibitor or HDGF overexpression. In summary, hsa_circ_0079480 is highly expressed in AML and drives by tumor progression via regulation of hsa_circ_0079480/miR-654-3p/HDGF axis, indicating that hsa_circ_0079480 may function as a new treatment target for AML therapy.
Collapse
Affiliation(s)
- Qingzhu Hu
- Department of Hematology, The First People’s Hospital of Shangqiu, Shangqiu 476100, Henan, China
| | - Yueli Gu
- Department of Hematology, The First People’s Hospital of Shangqiu, Shangqiu 476100, Henan, China
| | - Shuxia Chen
- Department of Hematology, The First People’s Hospital of Shangqiu, Shangqiu 476100, Henan, China
| | - Ying Tian
- Department of Hematology, The First People’s Hospital of Shangqiu, Shangqiu 476100, Henan, China
| | - Shuo Yang
- Department of Hematology, The First People’s Hospital of Shangqiu, Shangqiu 476100, Henan, China
| |
Collapse
|
34
|
Identification of an immune gene signature for predicting the prognosis of patients with uterine corpus endometrial carcinoma. Cancer Cell Int 2020; 20:541. [PMID: 33292199 PMCID: PMC7650210 DOI: 10.1186/s12935-020-01560-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background Uterine corpus endometrial carcinoma (UCEC) is a frequent gynecological malignancy with a poor prognosis particularly at an advanced stage. Herein, this study aims to construct prognostic markers of UCEC based on immune-related genes to predict the prognosis of UCEC. Methods We analyzed expression data of 575 UCEC patients from The Cancer Genome Atlas database and immune genes from the ImmPort database, which were used for generation and validation of the signature. We constructed a transcription factor regulatory network based on Cistrome databases, and also performed functional enrichment and pathway analyses for the differentially expressed immune genes. Moreover, the prognostic value of 410 immune genes was determined using the Cox regression analysis. We then constructed and verified a prognostic signature. Finally, we performed immune infiltration analysis using TIMER-generating immune cell content. Results The immune cell microenvironment as well as the PI3K-Akt, and MARK signaling pathways were involved in UCEC development. The established prognostic signature revealed a ten-gene prognostic signature, comprising of PDIA3, LTA, PSMC4, TNF, SBDS, HDGF, HTR3E, NR3C1, PGR, and CBLC. This signature showed a strong prognostic ability in both the training and testing sets and thus can be used as an independent tool to predict the prognosis of UCEC. In addition, levels of B cells and neutrophils were significantly correlated with the patient’s risk score, while the expression of ten genes was associated with immune cell infiltrates. Conclusions In summary, the ten-gene prognostic signature may guide the selection of the immunotherapy for UCEC.
Collapse
|
35
|
Enomoto H, Nakamura H, Nishikawa H, Nishimura T, Iwata Y, Nishiguchi S, Iijima H. Hepatocellular Carcinoma-associated microRNAs Induced by Hepatoma-derived Growth Factor Stimulation. In Vivo 2020; 34:2297-2301. [PMID: 32871753 DOI: 10.21873/invivo.12041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIM Hepatoma-derived growth factor (HDGF) is involved in the progression of hepatocellular carcinoma (HCC). The present study assessed the epigenomic changes in hepatoma-derived cells through HDGF stimulation. MATERIALS AND METHODS We used two hepatoma-derived cell lines (HepG2 and SK-Hep1) and searched for microRNAs whose expression commonly changed in response to HDGF administration. We further explored a genetic database to investigate the association of the candidate microRNAs with the survival of HCC patients. RESULTS Despite both HepG2 and SK-Hep1 cells being categorized as hepatoma-derived cells, the microRNA profile differed between these two lines. However, HepG2 and SK-Hep1 cells shared 30 up-regulated and 2 down-regulated microRNAs. Of these, miR-6072 and miR-3137 were significantly associated with a poor prognosis in HCC patients. CONCLUSION We identified two candidate microRNAs whose expression increased in response to HDGF stimulation. Both these molecules were associated with a poor prognosis of HCC patients.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Hideji Nakamura
- Department of Gastroenterology, Nippon Life Hospital, Osaka, Japan
| | - Hiroki Nishikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Nishimura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Yoshinori Iwata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | | | - Hiroko Iijima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| |
Collapse
|
36
|
Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, Jiang Z, Zhang Y, Xu G, Zhang J, Zhou J, Sun B, Zou X, Wang S. METTL3-mediated m 6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 2020; 69:1193-1205. [PMID: 31582403 DOI: 10.1136/gutjnl-2019-319639] [Citation(s) in RCA: 527] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE N6-methyladenosine (m6A) RNA methylation and its associated methyltransferase METTL3 are involved in tumour initiation and progression via the regulation of RNA function. This study explored the biological function and clinical significance of METTL3 in gastric cancer (GC). DESIGN The prognostic value of METTL3 expression was evaluated using tissue microarray and immunohistochemical staining analyses in a human GC cohort. The biological role and mechanism of METTL3 in GC tumour growth and liver metastasis were determined in vitro and in vivo. RESULTS The level of m6A RNA was significantly increased in GC, and METTL3 was the main regulator involved in the abundant m6A RNA modification. METTL3 expression was significantly elevated in GC tissues and associated with poor prognosis. Multivariate Cox regression analysis revealed that METTL3 expression was an independent prognostic factor and effective predictor in human patients with GC. Moreover, METTL3 overexpression promoted GC proliferation and liver metastasis in vitro and in vivo. Mechanistically, P300-mediated H3K27 acetylation activation in the promoter of METTL3 induced METTL3 transcription, which stimulated m6A modification of HDGF mRNA, and the m6A reader IGF2BP3 then directly recognised and bound to the m6A site on HDGF mRNA and enhanced HDGF mRNA stability. Secreted HDGF promoted tumour angiogenesis, while nuclear HDGF activated GLUT4 and ENO2 expression, followed by an increase in glycolysis in GC cells, which was correlated with subsequent tumour growth and liver metastasis. CONCLUSIONS Elevated METTL3 expression promotes tumour angiogenesis and glycolysis in GC, indicating that METTL3 expression is a potential prognostic biomarker and therapeutic target for human GC.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Chen Chen
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Qingqing Ding
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yan Zhao
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Junjie Chen
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zerun Jiang
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Guifang Xu
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaoping Zou
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China .,Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.,Center for Public Health Research, Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
37
|
Enomoto H, Nakamura H, Nishikawa H, Nishiguchi S, Iijima H. Hepatoma-Derived Growth Factor: An Overview and Its Role as a Potential Therapeutic Target Molecule for Digestive Malignancies. Int J Mol Sci 2020; 21:ijms21124216. [PMID: 32545762 PMCID: PMC7352308 DOI: 10.3390/ijms21124216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatoma-derived growth factor (HDGF) was identified in research seeking to find a novel growth factor for hepatoma cells. Subsequently, four HDGF-related proteins were identified, and these proteins are considered to be members of a new gene family. HDGF has a growth-stimulating role, an angiogenesis-inducing role, and a probable anti-apoptotic role. HDGF is ubiquitously expressed in non-cancerous tissues, and participates in organ development and in the healing of damaged tissues. In addition, the high expression of HDGF was reported to be closely associated with unfavorable clinical outcomes in several malignant diseases. Thus, HDGF is considered to contribute to the development and progression of malignant disease. We herein provide a brief overview of the factor and its functions in relation to benign and malignant cells. We also describe its possible role as a target molecule for digestive malignancies.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
- Correspondence: ; Tel.: +81-798-45-6111
| | - Hideji Nakamura
- Department of Gastroenterology and Hepatology, Nippon Life Hospital, Osaka 550-0006, Japan;
| | - Hiroki Nishikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Kano General Hospital, Oska 531-0041, Japan;
| | - Hiroko Iijima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
| |
Collapse
|
38
|
Eguchi R, Wakabayashi I. HDGF enhances VEGF‑dependent angiogenesis and FGF‑2 is a VEGF‑independent angiogenic factor in non‑small cell lung cancer. Oncol Rep 2020; 44:14-28. [PMID: 32319650 PMCID: PMC7251661 DOI: 10.3892/or.2020.7580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for over 80% of all diagnosed lung cancer cases. Lung cancer is the leading cause of cancer-related deaths worldwide. Most NSCLC cells overexpress vascular endothelial growth factor-A (VEGF-A) which plays a pivotal role in tumour angiogenesis. Anti-angiogenic therapies including VEGF-A neutralisation have significantly improved the response rates, progression-free survival and overall survival of patients with NSCLC. However, the median survival of these patients is shorter than 18 months, suggesting that NSCLC cells secrete VEGF-independent angiogenic factors, which remain unknown. We aimed to explore these factors in human NSCLC cell lines, A549, Lu99 and EBC-1 using serum-free culture, to which only EBC-1 cells could adapt. By mass spectrometry, we identified 1,007 proteins in the culture supernatant derived from EBC-1 cells. Among the identified proteins, interleukin-8 (IL-8), macrophage migration inhibitory factor (MIF), galectin-1, midkine (MK), IL-18, galectin-3, VEGF-A, hepatoma-derived growth factor (HDGF), osteopontin (OPN), connective tissue growth factor (CTGF) and granulin (GRN) are known to be involved in angiogenesis. Tube formation, neutralisation and RNA interference assays revealed that VEGF-A and HDGF function as angiogenic factors in EBC-1 cells. To confirm whether VEGF-A and HDGF also regulate angiogenesis in the other NSCLC cell lines, we established a novel culture method. NSCLC cells were embedded in collagen gel and cultured three-dimensionally. Tube formation, neutralisation and RNA interference assays using the three-dimensional (3D) culture supernatant showed that VEGF-A and HDGF were not angiogenic factors in Lu99 cells. By gene microarray in EBC-1 and Lu99 cells, we identified 61 mRNAs expressed only in Lu99 cells. Among these mRNAs, brain-derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF-2) and FGF-5 are known to be involved in angiogenesis. Tube formation and neutralisation assays clarified that FGF-2 functions as an angiogenic factor in Lu99 cells. These results indicate that HDGF enhances VEGF-dependent angiogenesis and that FGF-2 is a VEGF-independent angiogenic factor in human NSCLC cells.
Collapse
Affiliation(s)
- Ryoji Eguchi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Ichiro Wakabayashi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| |
Collapse
|
39
|
Ortiz-Hernandez GL, Sanchez-Hernandez ES, Casiano CA. Twenty years of research on the DFS70/LEDGF autoantibody-autoantigen system: many lessons learned but still many questions. AUTOIMMUNITY HIGHLIGHTS 2020; 11:3. [PMID: 32127038 PMCID: PMC7065333 DOI: 10.1186/s13317-020-0126-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
The discovery and initial characterization 20 years ago of antinuclear autoantibodies (ANAs) presenting a dense fine speckled (DFS) nuclear pattern with strong staining of mitotic chromosomes, detected by indirect immunofluorescence assay in HEp-2 cells (HEp-2 IIFA test), has transformed our view on ANAs. Traditionally, ANAs have been considered as reporters of abnormal immunological events associated with the onset and progression of systemic autoimmune rheumatic diseases (SARD), also called ANA-associated rheumatic diseases (AARD), as well as clinical biomarkers for the differential diagnosis of these diseases. However, based on our current knowledge, it is not apparent that autoantibodies presenting the DFS IIF pattern fall into these categories. These antibodies invariably target a chromatin-associated protein designated as dense fine speckled protein of 70 kD (DFS70), also known as lens epithelium-derived growth factor protein of 75 kD (LEDGF/p75) and PC4 and SFRS1 Interacting protein 1 (PSIP1). This multi-functional protein, hereafter referred to as DFS70/LEDGF, plays important roles in the formation of transcription complexes in active chromatin, transcriptional activation of specific genes, regulation of mRNA splicing, DNA repair, and cellular survival against stress. Due to its multiple functions, it has emerged as a key protein contributing to several human pathologies, including acquired immunodeficiency syndrome (AIDS), leukemia, cancer, ocular diseases, and Rett syndrome. Unlike other ANAs, "monospecific" anti-DFS70/LEDGF autoantibodies (only detectable ANA in serum) are not associated with SARD and have been detected in healthy individuals and some patients with non-SARD inflammatory conditions. These observations have led to the hypotheses that these antibodies could be considered as negative biomarkers of SARD and might even play a protective or beneficial role. In spite of 20 years of research on this autoantibody-autoantigen system, its biological and clinical significance still remains enigmatic. Here we review the current state of knowledge of this system, focusing on the lessons learned and posing emerging questions that await further scrutiny as we continue our quest to unravel its significance and potential clinical and therapeutic utility.
Collapse
Affiliation(s)
- Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Evelyn S Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA. .,Department of Medicine/Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, USA.
| |
Collapse
|
40
|
Betancourt LH, Szasz AM, Kuras M, Rodriguez Murillo J, Sugihara Y, Pla I, Horvath Z, Pawłowski K, Rezeli M, Miharada K, Gil J, Eriksson J, Appelqvist R, Miliotis T, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Horvatovich P, Welinder C, Wieslander E, Kwon HJ, Malm J, Nemeth IB, Jönsson G, Fenyö D, Sanchez A, Marko-Varga G. The Hidden Story of Heterogeneous B-raf V600E Mutation Quantitative Protein Expression in Metastatic Melanoma-Association with Clinical Outcome and Tumor Phenotypes. Cancers (Basel) 2019; 11:E1981. [PMID: 31835364 PMCID: PMC6966659 DOI: 10.3390/cancers11121981] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
In comparison to other human cancer types, malignant melanoma exhibits the greatest amount of heterogeneity. After DNA-based detection of the BRAF V600E mutation in melanoma patients, targeted inhibitor treatment is the current recommendation. This approach, however, does not take the abundance of the therapeutic target, i.e., the B-raf V600E protein, into consideration. As shown by immunohistochemistry, the protein expression profiles of metastatic melanomas clearly reveal the existence of inter- and intra-tumor variability. Nevertheless, the technique is only semi-quantitative. To quantitate the mutant protein there is a fundamental need for more precise techniques that are aimed at defining the currently non-existent link between the levels of the target protein and subsequent drug efficacy. Using cutting-edge mass spectrometry combined with DNA and mRNA sequencing, the mutated B-raf protein within metastatic tumors was quantitated for the first time. B-raf V600E protein analysis revealed a subjacent layer of heterogeneity for mutation-positive metastatic melanomas. These were characterized into two distinct groups with different tumor morphologies, protein profiles and patient clinical outcomes. This study provides evidence that a higher level of expression in the mutated protein is associated with a more aggressive tumor progression. Our study design, comprised of surgical isolation of tumors, histopathological characterization, tissue biobanking, and protein analysis, may enable the eventual delineation of patient responders/non-responders and subsequent therapy for malignant melanoma.
Collapse
Affiliation(s)
- Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - A. Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
- Cancer Center, Semmelweis University, Budapest 1083, Hungary
| | - Magdalena Kuras
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (M.K.); (I.P.); (K.P.); (J.M.); (A.S.)
| | - Jimmy Rodriguez Murillo
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden; (J.R.M.); (Y.S.)
| | - Yutaka Sugihara
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden; (J.R.M.); (Y.S.)
| | - Indira Pla
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (M.K.); (I.P.); (K.P.); (J.M.); (A.S.)
| | - Zsolt Horvath
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - Krzysztof Pawłowski
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (M.K.); (I.P.); (K.P.); (J.M.); (A.S.)
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - Kenichi Miharada
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, Sölvegatan 17, 221 84 Lund, Sweden;
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - Jonatan Eriksson
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| | - Tasso Miliotis
- Translational Science, Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, 431 50 Gothenburg, Sweden;
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Skåne University Hospital, 222 42 Lund, Sweden;
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, 9712 CP Groningen, The Netherlands;
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - Elisabet Wieslander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - Ho Jeong Kwon
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (M.K.); (I.P.); (K.P.); (J.M.); (A.S.)
| | - Istvan Balazs Nemeth
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary;
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (B.B.); (H.O.); (L.L.); (C.W.); (E.W.); (G.J.)
| | - David Fenyö
- Institute for Systems Genetics, NYU School of Medicine, 550 1st Ave, New York, NY 10016, USA;
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (M.K.); (I.P.); (K.P.); (J.M.); (A.S.)
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical, Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (L.H.B.); (Z.H.); (M.R.); (J.G.); (J.E.); (R.A.); (G.M.-V.)
| |
Collapse
|
41
|
Ma Y, Xu XL, Huang HG, Li YF, Li ZG. LncRNA TDRG1 promotes the aggressiveness of gastric carcinoma through regulating miR-873-5p/HDGF axis. Biomed Pharmacother 2019; 121:109425. [PMID: 31726370 DOI: 10.1016/j.biopha.2019.109425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric carcinoma (GC) is still one of the most common digestive system neoplasms and the primary reason for malignant cancer-associated death. Long non-coding RNAs (lncRNAs) have been reported to play critical roles in GC progression. In this study, we demonstrated that lncRNA testis development-related gene 1 (TDRG1) is markedly upregulated in clinical GC tissues and GC cells. High level of lncRNA TDRG1 correlates with the metastasis and prognosis of patients with GC. Overexpression of lncRNA TDRG1 promotes GC growth and metastatic-related traits in vitro and in vivo, and silencing TDRG1 causes opposite results. We future find that TDRG1 is inversely associated with miR-873-5p and positively modulates the expression of hepatoma-derived growth factor (HDGF), a functional target gene of miR-873-5p. Finally, lncRNA TDRG1 regulates the progression of GC through regulating miR-873-5p/HDGF pathway. Taken together, our data uncover the crucial function of TDRG1-miR-873-5p-HDGF axis in human gastric cancer.
Collapse
Affiliation(s)
- Yan Ma
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xiu Lian Xu
- The First Department of General Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hai Ge Huang
- Department of Gastroenterological Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Yan Feng Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| | - Zhi Guo Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
42
|
Hou Y, Zhang R, Sun X. Enhancer LncRNAs Influence Chromatin Interactions in Different Ways. Front Genet 2019; 10:936. [PMID: 31681405 PMCID: PMC6807612 DOI: 10.3389/fgene.2019.00936] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
More than 98% of the human genome does not encode proteins, and the vast majority of the noncoding regions have not been well studied. Some of these regions contain enhancers and functional non-coding RNAs. Previous research suggested that enhancer transcripts could be potent independent indicators of enhancer activity, and some enhancer lncRNAs (elncRNAs) have been proven to play critical roles in gene regulation. Here, we identified enhancer–promoter interactions from high-throughput chromosome conformation capture (Hi-C) data. We found that elncRNAs were highly enriched surrounding chromatin loop anchors. Additionally, the interaction frequency of elncRNA-associated enhancer–promoter pairs was significantly higher than the interaction frequency of other enhancer–promoter pairs, suggesting that elncRNAs may reinforce the interactions between enhancers and promoters. We also found that elncRNA expression levels were positively correlated with the interaction frequency of enhancer–promoter pairs. The promoters interacting with elncRNA-associated enhancers were rich in RNA polymerase II and YY1 transcription factor binding sites. We clustered enhancer–promoter pairs into different groups to reflect the different ways in which elncRNAs could influence enhancer–promoter pairs. Interestingly, G-quadruplexes were found to potentially mediate some enhancer–promoter interaction pairs, and the interaction frequency of these pairs was significantly higher than that of other enhancer–promoter pairs. We also found that the G-quadruplexes on enhancers were highly related to the expression of elncRNAs. G-quadruplexes located in the promoters of elncRNAs led to high expression of elncRNAs, whereas G-quadruplexes located in the gene bodies of elncRNAs generally resulted in low expression of elncRNAs.
Collapse
Affiliation(s)
- Yue Hou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Rongxin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
43
|
Zhang C, Chang X, Chen D, Yang F, Li Z, Li D, Yu N, Yan L, Liu H, Xu Z. Downregulation of HDGF inhibits the tumorigenesis of bladder cancer cells by inactivating the PI3K-AKT signaling pathway. Cancer Manag Res 2019; 11:7909-7923. [PMID: 31692549 PMCID: PMC6710542 DOI: 10.2147/cmar.s215341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/28/2019] [Indexed: 12/29/2022] Open
Abstract
Background Hepatoma-derived growth factor (HDGF) is a heparin-binding protein that has been observed to be abnormally expressed in numerous malignancies, but the definite role of HDGF in bladder cancer (BCa) has not been clarified. Here, we conduct the present study to evaluate correlations between HDGF and BCa. Methods Bioinformatics analysis was used to evaluate HDGF expression levels in BCa tissues. The effect of HDGF on cell proliferation, migration, invasion, cell cycle and apoptosis was analyzed utilizing CCK-8, clone formation, Transwell assays and flow cytometry, respectively. In addition, the xenograft tumor model was established. Results Based on bioinformatics analysis, we noticed that HDGF was highly expressed in BCa tissues and was positively correlated with poor prognosis in patients. Knockdown of HDGF markedly reduced tumorigenesis in BCa cells. Furthermore, the results of flow cytometry showed that HDGF deletion enhanced apoptosis in T24 and 253J cells and led to cell cycle arrest in G1 phase. In further studies, we found that tumor growth was inhibited in xenograft nude mouse models with HDGF deletion. The results of RNA-seq analysis revealed that the PI3K-AKT signaling pathway-related genes were obviously changed in HDGF-deficient 253J cells, and this result was further confirmed by Western blot analysis. Conclusion In summary, we suggest that HDGF plays a substantial role in BCa and promotes tumor development and progression by regulating the PI3K-AKT signaling pathway, which provides a promising target for BCa treatment.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Jinan, People's Republic of China
| | - Xiangping Chang
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Dongshan Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Feilong Yang
- Department of Urology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Zeyan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Dawei Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Nengwang Yu
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Lei Yan
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Hainan Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
44
|
Stoichiogenomics reveal oxygen usage bias, key proteins and pathways associated with stomach cancer. Sci Rep 2019; 9:11344. [PMID: 31383879 PMCID: PMC6683168 DOI: 10.1038/s41598-019-47533-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Stomach cancer involves hypoxia-specific microenvironments. Stoichiogenomics explores environmental resource limitation on biological macromolecules in terms of element usages. However, the patterns of oxygen usage by proteins and the ways that proteins adapt to a cancer hypoxia microenvironment are still unknown. Here we compared the oxygen and carbon contents ([C]) between proteomes of stomach cancer (hypoxia) and two stomach glandular cells (normal). Key proteins, genome locations, pathways, and functional dissection associated with stomach cancer were also studied. An association of oxygen content ([O]) and protein expression level was revealed in stomach cancer and stomach glandular cells. For differentially expressed proteins (DEPs), oxygen contents in the up regulated proteins were3.2%higherthan that in the down regulated proteins in stomach cancer. A total of 1,062 DEPs were identified; interestingly none of these proteins were coded on Y chromosome. The up regulated proteins were significantly enriched in pathways including regulation of actin cytoskeleton, cardiac muscle contraction, pathway of progesterone-mediated oocyte maturation, etc. Functional dissection of the up regulated proteins with high oxygen contents showed that most of them were cytoskeleton, cytoskeleton associated proteins, cyclins and signaling proteins in cell cycle progression. Element signature of resource limitation could not be detected in stomach cancer for oxygen, just as what happened in plants and microbes. Unsaved use of oxygen by the highly expressed proteins was adapted to the rapid growth and fast division of the stomach cancer cells. In addition, oxygen usage bias, key proteins and pathways identified in this paper laid a foundation for application of stoichiogenomics in precision medicine.
Collapse
|
45
|
In Silico Analysis of Gene Expression Change Associated with Copy Number of Enhancers in Pancreatic Adenocarcinoma. Int J Mol Sci 2019; 20:ijms20143582. [PMID: 31336658 PMCID: PMC6679006 DOI: 10.3390/ijms20143582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Understanding the gene regulatory network governing cancer initiation and progression is necessary, although it remains largely unexplored. Enhancer elements represent the center of this regulatory circuit. The study aims to identify the gene expression change driven by copy number variation in enhancer elements of pancreatic adenocarcinoma (PAAD). The pancreatic tissue specific enhancer and target gene data were taken from EnhancerAtlas. The gene expression and copy number data were taken from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) and copy number variations (CNVs) were identified between matched tumor-normal samples of PAAD. Significant CNVs were matched onto enhancer coordinates by using genomic intersection functionality from BEDTools. By combining the gene expression and CNV data, we identified 169 genes whose expression shows a positive correlation with the CNV of enhancers. We further identified 16 genes which are regulated by a super enhancer and 15 genes which have high prognostic potential (Z-score > 1.96). Cox proportional hazard analysis of these genes indicates that these are better predictors of survival. Taken together, our integrative analytical approach identifies enhancer CNV-driven gene expression change in PAAD, which could lead to better understanding of PAAD pathogenesis and to the design of enhancer-based cancer treatment strategies.
Collapse
|
46
|
Tian W, Yan P, Xu N, Chakravorty A, Liefke R, Xi Q, Wang Z. The HRP3 PWWP domain recognizes the minor groove of double-stranded DNA and recruits HRP3 to chromatin. Nucleic Acids Res 2019; 47:5436-5448. [PMID: 31162607 PMCID: PMC6547440 DOI: 10.1093/nar/gkz294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
HDGF-related protein 3 (HRP3, also known as HDGFL3) belongs to the family of HDGF-related proteins (HRPs) and plays an essential role in hepatocellular carcinoma pathogenesis. All HRPs have a PWWP domain at the N-terminus that binds both histone and DNA substrates. Despite previous advances in PWWP domains, the molecular basis by which HRP3 interacts with chromatin is unclear. In this study, we solved the crystal structures of the HRP3 PWWP domain in complex with various double-stranded DNAs with/without bound histone peptides. We found that HRP3 PWWP bound to the phosphate backbone of the DNA minor groove and showed a preference for DNA molecules bearing a narrow minor groove width. In addition, HRP3 PWWP preferentially bound to histone peptides bearing the H3K36me3/2 modification. HRP3 PWWP uses two adjacent surfaces to bind both DNA and histone substrates simultaneously, enabling us to generate a model illustrating the recruitment of PWWP to H3K36me3-containing nucleosomes. Cell-based analysis indicated that both DNA and histone binding by the HRP3 PWWP domain is important for HRP3 recruitment to chromatin in vivo. Our work establishes that HRP3 PWWP is a new family of minor groove-specific DNA-binding proteins, which improves our understanding of HRP3 and other PWWP domain-containing proteins.
Collapse
Affiliation(s)
- Wei Tian
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Peiqiang Yan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Xu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Arghya Chakravorty
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, 35043 Marburg, Germany
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| |
Collapse
|
47
|
Min X, Wen J, Zhao L, Wang K, Li Q, Huang G, Liu J, Zhao X. Role of hepatoma-derived growth factor in promoting de novo lipogenesis and tumorigenesis in hepatocellular carcinoma. Mol Oncol 2018; 12:1480-1497. [PMID: 30004626 PMCID: PMC6120245 DOI: 10.1002/1878-0261.12357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 01/05/2023] Open
Abstract
Although identified as a growth factor, the mechanism by which hepatoma‐derived growth factor (HDGF) promotes cancer development remains unclear. We found that nuclear but not cytoplasmic HDGF is closely associated with prognosis of hepatocellular carcinoma (HCC). RNA‐sequencing analysis further demonstrated that the nuclear role of HDGF involved regulation of transcription of lipid metabolism genes. HDGF‐induced expression of lipogenic genes was mainly associated with activation of sterol regulatory element binding protein (SREBP) transcription factor. Coexpression of SREBP‐1 and nuclear HDGF predicts poor prognosis for HCC. In addition, by changing the first amino acid of the PWWP domain from proline to alanine, the type of PWWP domain changed from P‐ to A‐type, resulting in inability to induce SREBP‐1‐mediated gene transcription. The type of PWWP domain affects the recruitment of the C‐terminal binding protein‐1 transcriptional repressor on the promoter of the lipogenic gene. Our data indicate that HDGF acts as a coactivator of SREBP1‐mediated transcription of lipogenic genes. The PWWP domain is crucial for HDGF to promote lipogenesis. Moreover, transcriptional regulation of nuclear HDGF plays important roles in the development of HCC.
Collapse
Affiliation(s)
- Xuejie Min
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Wen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Kaiying Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Qingli Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Gang Huang
- Shanghai University of Medicine & Health Sciences, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
48
|
Zhu W, Ma Y, Zhuang X, Jin X. MicroRNA-425 is downregulated in nasopharyngeal carcinoma and regulates tumor cell viability and invasion by targeting hepatoma-derived growth factor. Oncol Lett 2018; 15:6345-6351. [PMID: 29616111 PMCID: PMC5876440 DOI: 10.3892/ol.2018.8128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC), which arises from the nasopharynx epithelium, is most common in Southeast Asia, particularly in Southern China. To date, a variety of microRNAs have been demonstrated to serve key functions in the progression and development of NPC. microRNA-425 (miR-425) has previously been reported to be frequently abnormally expressed in a number of different types of human cancer, including lung, gastric, cervical, breast and prostate cancer. However, to the best of our knowledge, the expression patterns, functions and underlying mechanisms of miR-425 in NPC remain largely unexplored. In the present study, the expression of miR-425 was revealed to be low in NPC tissues and cell line. Resumption of miR-425 expression suppressed cell viability and invasion in NPC. Hepatoma-derived growth factor (HDGF) was identified as a direct target gene of miR-425 in NPC. HDGF was highly expressed at mRNA and protein levels in NPC tissues. Additionally, HDGF mRNA was negatively correlated with miR-425 expression in NPC tissues. Furthermore, overexpression of HDGF almost completely rescued the tumor-suppressing effects of miR-425 on NPC cell viability and invasion. Taken together, these results demonstrated that miR-425 acted as a tumor suppressor in NPC by targeting HDGF, suggesting that it may be a novel therapeutic target for the treatments of patients with NPC.
Collapse
Affiliation(s)
- Wenyan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yongchi Ma
- Department of Otolaryngology-Head and Neck Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xuqin Zhuang
- Department of Pharmacy, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xin Jin
- Department of Otolaryngology-Head and Neck Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
49
|
Downregulated expression of hepatoma-derived growth factor inhibits migration and invasion of prostate cancer cells by suppressing epithelial-mesenchymal transition and MMP2, MMP9. PLoS One 2018; 13:e0190725. [PMID: 29300772 PMCID: PMC5754131 DOI: 10.1371/journal.pone.0190725] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/19/2017] [Indexed: 12/24/2022] Open
Abstract
Hepatoma-derived growth factor (HDGF) is commonly over-expressed and plays critical roles in the development and progression in a variety of cancers. It has previously been shown that HDGF is overregulated in prostate cancer cells compared to normal prostate cells, which is correlated with cellular migration and invasion of prostate cancer. Here, the molecular mechanisms of HDGF in prostate cancer is investigated. It is shown that HDGF knockdown reduces prostate cancer cellular migration and invasion in both androgen-sensitive LNCaP cells and androgen-insensitive DU145 and PC3 cells. Furthermore, Western blot analysis reveals that HDGF knockdown inhibits epithelial-mesenchymal transition (EMT) of prostate cancer cells by upregulation of protein E-cadherin and downregulation of proteins N-cadherin, Vimentin, Snail and Slug. In addition, mechanistic studies reveal that proteins MMP2 and MMP9 are down-regulated. In conclusion, our data suggested that HDGF knockdown inhibits cellular migration and invasion in vitro of prostate cancer via modulating epithelial-mesenchymal transition (EMT) signaling pathway, as well as MMP2 and MMP9 signaling pathway. These results supported that HDGF is a relevant protein in the progression of prostate cancer and may serve as a potentially therapeutic target for prostate cancer as well as its downstream targets.
Collapse
|
50
|
Wang Z, Zhao K, Hackert T, Zöller M. CD44/CD44v6 a Reliable Companion in Cancer-Initiating Cell Maintenance and Tumor Progression. Front Cell Dev Biol 2018; 6:97. [PMID: 30211160 PMCID: PMC6122270 DOI: 10.3389/fcell.2018.00097] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the leading cause of cancer death, tumor progression proceeding through emigration from the primary tumor, gaining access to the circulation, leaving the circulation, settling in distant organs and growing in the foreign environment. The capacity of a tumor to metastasize relies on a small subpopulation of cells in the primary tumor, so called cancer-initiating cells (CIC). CIC are characterized by sets of markers, mostly membrane anchored adhesion molecules, CD44v6 being the most frequently recovered marker. Knockdown and knockout models accompanied by loss of tumor progression despite unaltered primary tumor growth unraveled that these markers are indispensable for CIC. The unexpected contribution of marker molecules to CIC-related activities prompted research on underlying molecular mechanisms. This review outlines the contribution of CD44, particularly CD44v6 to CIC activities. A first focus is given to the impact of CD44/CD44v6 to inherent CIC features, including the crosstalk with the niche, apoptosis-resistance, and epithelial mesenchymal transition. Following the steps of the metastatic cascade, we report on supporting activities of CD44/CD44v6 in migration and invasion. These CD44/CD44v6 activities rely on the association with membrane-integrated and cytosolic signaling molecules and proteases and transcriptional regulation. They are not restricted to, but most pronounced in CIC and are tightly regulated by feedback loops. Finally, we discuss on the engagement of CD44/CD44v6 in exosome biogenesis, loading and delivery. exosomes being the main acteurs in the long-distance crosstalk of CIC with the host. In brief, by supporting the communication with the niche and promoting apoptosis resistance CD44/CD44v6 plays an important role in CIC maintenance. The multifaceted interplay between CD44/CD44v6, signal transducing molecules and proteases facilitates the metastasizing tumor cell journey through the body. By its engagement in exosome biogenesis CD44/CD44v6 contributes to disseminated tumor cell settlement and growth in distant organs. Thus, CD44/CD44v6 likely is the most central CIC biomarker.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Kun Zhao
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
- *Correspondence: Margot Zöller
| |
Collapse
|