1
|
Um‐e‐Kalsoom, Wang S, Qu J, Liu L. Innovative optical imaging strategies for monitoring immunotherapy in the tumor microenvironments. Cancer Med 2024; 13:e70155. [PMID: 39387259 PMCID: PMC11465031 DOI: 10.1002/cam4.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a critical role in cancer progression and response to immunotherapy. Immunotherapy targeting the immune system has emerged as a promising treatment modality, but challenges in understanding the TME limit its efficacy. Optical imaging strategies offer noninvasive, real-time insights into the interactions between immune cells and the TME. OBJECTIVE This review assesses the progress of optical imaging technologies in monitoring immunotherapy within the TME and explores their potential applications in clinical trials and personalized cancer treatment. METHODS This is a comprehensive literature review based on the advances in optical imaging modalities including fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI). These modalities were analyzed for their capacity to provide high-resolution, real-time imaging of immune cell dynamics, tumor vasculature, and other critical components of the TME. RESULTS Optical imaging techniques have shown significant potential in tracking immune cell infiltration, assessing immune checkpoint inhibitors, and visualizing drug delivery within the TME. Technologies like FLI and BLI are pivotal in tracking immune responses in preclinical models, while PAI provides functional imaging with deeper tissue penetration. The integration of these modalities with immunotherapy holds promise for improving treatment monitoring and outcomes. CONCLUSION Optical imaging is a powerful tool for understanding the complexities of the TME and optimizing immunotherapy. Further advancements in imaging technologies, combined with nanomaterial-based approaches, could pave the way for enhanced diagnostic accuracy and therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Um‐e‐Kalsoom
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Shiqi Wang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| |
Collapse
|
2
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
3
|
Woodall RT, Esparza CC, Gutova M, Wang M, Cunningham JJ, Brummer AB, Stine CA, Brown CC, Munson JM, Rockne RC. Model discovery approach enables noninvasive measurement of intra-tumoral fluid transport in dynamic MRI. APL Bioeng 2024; 8:026106. [PMID: 38715647 PMCID: PMC11075764 DOI: 10.1063/5.0190561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/26/2024] [Indexed: 05/15/2024] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a routine method to noninvasively quantify perfusion dynamics in tissues. The standard practice for analyzing DCE-MRI data is to fit an ordinary differential equation to each voxel. Recent advances in data science provide an opportunity to move beyond existing methods to obtain more accurate measurements of fluid properties. Here, we developed a localized convolutional function regression that enables simultaneous measurement of interstitial fluid velocity, diffusion, and perfusion in 3D. We validated the method computationally and experimentally, demonstrating accurate measurement of fluid dynamics in situ and in vivo. Applying the method to human MRIs, we observed tissue-specific differences in fluid dynamics, with an increased fluid velocity in breast cancer as compared to brain cancer. Overall, our method represents an improved strategy for studying interstitial flows and interstitial transport in tumors and patients. We expect that our method will contribute to the better understanding of cancer progression and therapeutic response.
Collapse
Affiliation(s)
- Ryan T. Woodall
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd., Duarte, California 91010, USA
| | - Cora C. Esparza
- Fralin Biomedical Research Institute, Virginia Institute of Technology at Virginia Tech Carilion, Virginia Tech, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd., Duarte, California 91010, USA
| | - Maosen Wang
- Fralin Biomedical Research Institute, Virginia Institute of Technology at Virginia Tech Carilion, Virginia Tech, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Jessica J. Cunningham
- Fralin Biomedical Research Institute, Virginia Institute of Technology at Virginia Tech Carilion, Virginia Tech, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Alexander B. Brummer
- Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, South Carolina 29424, USA
| | - Caleb A. Stine
- Fralin Biomedical Research Institute, Virginia Institute of Technology at Virginia Tech Carilion, Virginia Tech, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | | | - Jennifer M. Munson
- Fralin Biomedical Research Institute, Virginia Institute of Technology at Virginia Tech Carilion, Virginia Tech, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Russell C. Rockne
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd., Duarte, California 91010, USA
| |
Collapse
|
4
|
Chen M, Wang S. Preclinical development and clinical studies of targeted JAK/STAT combined Anti-PD-1/PD-L1 therapy. Int Immunopharmacol 2024; 130:111717. [PMID: 38387193 DOI: 10.1016/j.intimp.2024.111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Programmed cell death protein 1 (PD-1) binds to its ligand to help tumours evade the immune system and promote tumour progression. Although anti-PD-1/PD-L1 therapies show powerful effects in some patients, most patients are unable to benefit from this treatment due to treatment resistance. Therefore, it is important to overcome tumour resistance to PD-1/PD-L1 blockade. There is substantial evidence suggesting that the JAK/STAT signalling pathway plays a significant role in PD-1/PD-L1 expression and anti-PD-1/PD-L1 treatment. Herein, we describe the effects of the JAK/STAT signalling pathway on PD-1/PD-L1. Subsequently, the relationship between molecular mutations in the JAK/STAT signalling pathway and immune resistance was analysed. Finally, the latest advancements in drugs targeting the JAK/STAT pathway combined with PD1/PD-L1 inhibitors are summarised.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Siliang Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
5
|
Bakhshi P, Ho JQ, Zanganeh S. Sex-specific outcomes in cancer therapy: the central role of hormones. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1320690. [PMID: 38362126 PMCID: PMC10867131 DOI: 10.3389/fmedt.2024.1320690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| | - Jim Q. Ho
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Steven Zanganeh
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| |
Collapse
|
6
|
Li C, Deng T, Cao J, Zhou Y, Luo X, Feng Y, Huang H, Liu J. Identifying ITGB2 as a Potential Prognostic Biomarker in Ovarian Cancer. Diagnostics (Basel) 2023; 13:diagnostics13061169. [PMID: 36980477 PMCID: PMC10047357 DOI: 10.3390/diagnostics13061169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Epithelial ovarian cancer is by far the most lethal gynecological malignancy. The exploration of promising immunomarkers to predict prognosis in ovarian cancer patients remains challenging. In our research, we carried out an integrated bioinformatic analysis of genome expressions and their immune characteristics in the ovarian cancer microenvironment with validation in different experiments. We filtrated 332 differentially expressed genes with 10 upregulated hub genes from the Gene Expression Omnibus database. These genes were closely related to ovarian tumorigenesis. Subsequently, the survival and immune infiltration analysis demonstrated that the upregulation of five candidate genes, ITGB2, VEGFA, CLDN4, OCLN, and SPP1, were correlated with an unfavorable clinical outcome and increased immune cell infiltration in ovarian cancer. Of these genes, ITGB2 tended to be the gene most correlated with various immune cell infiltrations and had a strong correlation with significant M2 macrophages infiltration (r = 0.707, p = 4.71 × 10-39), while it had a moderate correlation with CD4+/CD8+ T cells and B cells. This characteristic explains why the high expression of ITGB2 was accompanied by immune activation but did not reverse carcinogenesis. Additionally, we confirmed that ITGB2 was over-expressed in ovarian cancer tissues and was mainly located in cytoplasm, detected by Western blotting and the immunohistochemical method. In summary, ITGB2 may serve as a prognostic immunomarker for ovarian cancer patients.
Collapse
Affiliation(s)
- Chanyuan Li
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Ting Deng
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Junya Cao
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Yun Zhou
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaolin Luo
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Yanling Feng
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - He Huang
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Jihong Liu
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
7
|
|
8
|
Wei Y, Wang Z, Yang J, Xu R, Deng H, Ma S, Fang T, Zhang J, Shen Q. Reactive oxygen species / photothermal therapy dual-triggered biomimetic gold nanocages nanoplatform for combination cancer therapy via ferroptosis and tumor-associated macrophage repolarization mechanism. J Colloid Interface Sci 2022; 606:1950-1965. [PMID: 34695762 DOI: 10.1016/j.jcis.2021.09.160] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022]
Abstract
With the continuous development of cancer nanotechnology, an important trend in the research is to combine the broad application prospects of functional nanomaterials with recent biological discoveries and technological advances. Herein, a cancer cell membrane-camouflaged gold nanocage loading doxorubicin (DOX) and l-buthionine sulfoximine (BSO) (denoted as m@Au-D/B NCs) was constructed as an innovative nanoplatform to confer promising cancer combination therapy by evoking effective ferroptosis and immune responses. Briefly, the loading of BSO and DOX could induce ferroptosis through simultaneous effective glutathione (GSH) consumption and reactive oxygen species (ROS) accumulation. Gold nanocages (AuNCs) with distinct anti-tumor application performance was utilized as ideal nanocarrier for drug loading, evoking photothermal effects and photochemical catalysis to generate more ROS under near-infrared (NIR) irradiation. Moreover, m@Au-D/B NCs-mediated photothermal therapy (PTT) combined with ROS production could repolarize the tumor-associated macrophages (TAMs) from pro-tumor (M2) phenotype to anti-tumor (M1) phenotype, thus improving tumor-suppressive immune environment and then promoting the activation of effector cells and release of pro-inflammatory cytokines, in which the antitumor responses were evoked robustly in a methodical approach. The anti-tumor effects in vivo implied that m@Au-D/B NCs could significantly inhibit tumor growth without severe toxicity. Hence, this homotypic targeting nanosystem could offer an auspicious anticancer access by triggering combination cancer therapy via ferroptosis and tumor-associated macrophage repolarization mechanism.
Collapse
Affiliation(s)
- Yawen Wei
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhihua Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rui Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huizi Deng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Siyu Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tianxu Fang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
9
|
Mueller CG, Gaiddon C, Venkatasamy A. Current Clinical and Pre-Clinical Imaging Approaches to Study the Cancer-Associated Immune System. Front Immunol 2021; 12:716860. [PMID: 34539653 PMCID: PMC8446654 DOI: 10.3389/fimmu.2021.716860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/16/2021] [Indexed: 02/01/2023] Open
Abstract
In the light of the success and the expected growth of its arsenal, immuno-therapy may become the standard neoadjuvant procedure for many cancers in the near future. However, aspects such as the identity, organization and the activation status of the peri- and intra-tumoral immune cells would represent important elements to weigh in the decision for the appropriate treatment. While important progress in non-invasive imaging of immune cells has been made over the last decades, it falls yet short of entering the clinics, let alone becoming a standard procedure. Here, we provide an overview of the different intra-vital imaging approaches in the clinics and in pre-clinical settings and discuss their benefits and drawbacks for assessing the activity of the immune system, globally and on a cellular level. Stimulated by further research, the future is likely to see many technological advances both on signal detection and emission as well as image specificity and resolution to tackle current hurdles. We anticipate that the ability to precisely determine an immune stage of cancer will capture the attention of the oncologist and will create a change in paradigm for cancer therapy.
Collapse
Affiliation(s)
- Christopher G Mueller
- CNRS UPR 3572, University of Strasbourg, Immunologie-Immunopathologie-Chimie Thérapeutique, Strasbourg, France
| | - Christian Gaiddon
- Inserm UMR_S 1113, University of Strasbourg, Interface de Recherche Fondamentale et Appliquée en Cancérologie (IRFAC), Strasbourg, France
| | - Aïna Venkatasamy
- Inserm UMR_S 1113, University of Strasbourg, Interface de Recherche Fondamentale et Appliquée en Cancérologie (IRFAC), Strasbourg, France.,IHU-Strasbourg (Institut Hospitalo-Universitaire), Strasbourg, France
| |
Collapse
|
10
|
Atashgah RB, Ghasemi A, Raoufi M, Abdollahifar MA, Zanganeh S, Nejadnik H, Abdollahi A, Sharifi S, Lea B, Cuerva M, Akbarzadeh M, Alvarez-Lorenzo C, Ostad SN, Theus AS, LaRock DL, LaRock CN, Serpooshan V, Sarrafi R, Lee KB, Vali H, Schönherr H, Gould L, Taboada P, Mahmoudi M. Restoring Endogenous Repair Mechanisms to Heal Chronic Wounds with a Multifunctional Wound Dressing. Mol Pharm 2021; 18:3171-3180. [PMID: 34279974 DOI: 10.1021/acs.molpharmaceut.1c00400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current treatment of chronic wounds has been critically limited by various factors, including bacterial infection, biofilm formation, impaired angiogenesis, and prolonged inflammation. Addressing these challenges, we developed a multifunctional wound dressing-based three-pronged approach for accelerating wound healing. The multifunctional wound dressing, composed of nanofibers, functional nanoparticles, natural biopolymers, and selected protein and peptide, can target multiple endogenous repair mechanisms and represents a promising alternative to current wound healing products.
Collapse
Affiliation(s)
- Rahimeh B Atashgah
- Colloids and Polymers Physics Group, Particle Physics Department, Faculty of Physics and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Amir Ghasemi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169-43551, Iran
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169-43551, Iran.,Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen 57076, Germany
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19395-4719, Iran
| | - Steven Zanganeh
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, United States
| | - Hossein Nejadnik
- Department of Radiology, University of Pennsylvania, Philladelphia, Pennsylvania 19104, United States
| | - Alieh Abdollahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Shahriar Sharifi
- Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Baltazar Lea
- Colloids and Polymers Physics Group, Particle Physics Department, Faculty of Physics and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Miguel Cuerva
- NANOMAG Group, Technological Research Institute (IIT), Physical Chemistry Department, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Mehdi Akbarzadeh
- Sadra Wound, Ostomy and Osteomyelitis Specialist Center, Tehran, Iran
| | - Carmen Alvarez-Lorenzo
- R+D Pharma Group, Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Seyed Nasser Ostad
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Andrea S Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| | - Doris L LaRock
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, United States.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30309, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | | | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen 57076, Germany
| | - Lisa Gould
- Brown University School of Medicine, Providence, Rhode Island 02903, United States.,South Shore Health System Center for Wound Healing, Weymouth, Massachusetts 02189, United States
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Particle Physics Department, Faculty of Physics and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Anesthesiology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States.,Mary Horrigan Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Paus C, van der Voort R, Cambi A. Nanomedicine in cancer therapy: promises and hurdles of polymeric nanoparticles. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limitations of current cancer treatments have stimulated the application of nanotechnology to develop more effective and safer cancer therapies. Remarkable progress has been made in the development of nanomedicine to overcome issues associated with conventional cancer treatment, including low drug solubility, insufficient targeting, and drug resistance. The modulation of nanoparticles allows the improvement of drug pharmacokinetics, leading to improved targeting and reduced side effects. In addition, nanoparticles can be conjugated to ligands that specifically target cancer cells. Furthermore, strategies that exploit tumor characteristics to locally trigger drug release have shown to increase targeted drug delivery. However, although some clinical successes have been achieved, most nanomedicines fail to reach the clinic. Factors that hinder clinical translation vary from the complexity of design, incomplete understanding of biological mechanisms, and high demands during the manufacturing process. Clinical translation might be improved by combining knowledge from different disciplines such as cell biology, chemistry, and tumor pathophysiology. An increased understanding on how nanoparticle modifications affect biological systems is pivotal to improve design, eventually aiding development of more effective nanomedicines. This review summarizes the key successes that have been made in nanomedicine, including improved drug delivery and release by polymeric nanoparticles as well as the introduction of strategies that overcome drug resistance. In addition, the application of nanomedicine in immunotherapy is discussed, and several remaining challenges addressed.
Collapse
|
12
|
Muñoz-Garcia J, Cochonneau D, Télétchéa S, Moranton E, Lanoe D, Brion R, Lézot F, Heymann MF, Heymann D. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics 2021; 11:1568-1593. [PMID: 33408768 PMCID: PMC7778581 DOI: 10.7150/thno.50683] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are specialized cells that control tissue homeostasis. They include non-resident and tissue-resident macrophage populations which are characterized by the expression of particular cell surface markers and the secretion of molecules with a wide range of biological functions. The differentiation and polarization of macrophages relies on specific growth factors and their receptors. Macrophage-colony stimulating factor (CSF-1) and interleukine-34 (IL-34), also known as "twin" cytokines, are part of this regluatory landscape. CSF-1 and IL-34 share a common receptor, the macrophage-colony stimulating factor receptor (CSF-1R), which is activated in a similar way by both factors and turns on identical signaling pathways. However, there is some discrete differential activation leading to specific activities. In this review, we disscuss recent progress in understanding of the role of the twin cytokines in macrophage differentiation, from their interaction with CSF-1R and the activation of signaling pathways, to their implication in macrophage polarization of non-resident and tissue-resident macrophages. A special focus on IL-34, its involvement in pathophsyiological contexts, and its potential as a theranostic target for macrophage therapy will be proposed.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- SATT Ouest Valorisation, Nantes, France
| | - Denis Cochonneau
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | | | - Emilie Moranton
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Didier Lanoe
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Régis Brion
- Université de Nantes, INSERM, U1238, Nantes, France
| | | | | | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Qin Y, Guo Q, Wu S, Huang C, Zhang Z, Zhang L, Zhang L, Zhu D. LHRH/TAT dual peptides-conjugated polymeric vesicles for PTT enhanced chemotherapy to overcome hepatocellular carcinoma. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Tang Q, Cao S, Ma T, Xiang X, Luo H, Borovskikh P, Rodriguez RD, Guo Q, Qiu L, Cheng C. Engineering Biofunctional Enzyme‐Mimics for Catalytic Therapeutics and Diagnostics. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202007475] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qing Tang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Sujiao Cao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Tian Ma
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Xi Xiang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Pavel Borovskikh
- Martin‐Luther‐University Halle‐Wittenberg Universitätsplatz 10 Halle (Saale) 06108 Germany
| | | | - Quanyi Guo
- Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Li Qiu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| |
Collapse
|
15
|
Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002054. [PMID: 32856350 DOI: 10.1002/adma.202002054] [Citation(s) in RCA: 527] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/13/2020] [Indexed: 05/23/2023]
Abstract
Macrophages play an important role in cancer development and metastasis. Proinflammatory M1 macrophages can phagocytose tumor cells, while anti-inflammatory M2 macrophages such as tumor-associated macrophages (TAMs) promote tumor growth and invasion. Modulating the tumor immune microenvironment through engineering macrophages is efficacious in tumor therapy. M1 macrophages target cancerous cells and, therefore, can be used as drug carriers for tumor therapy. Herein, the strategies to engineer macrophages for cancer immunotherapy, such as inhibition of macrophage recruitment, depletion of TAMs, reprograming of TAMs, and blocking of the CD47-SIRPα pathway, are discussed. Further, the recent advances in drug delivery using M1 macrophages, macrophage-derived exosomes, and macrophage-membrane-coated nanoparticles are elaborated. Overall, there is still significant room for development in macrophage-mediated immune modulation and macrophage-mediated drug delivery, which will further enhance current tumor therapies against various malignant solid tumors, including drug-resistant tumors and metastatic tumors.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Lang Rao
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Huimin Yao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Zhongliang Wang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Pengbo Ning
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
16
|
Zhang X, Zang X, Qiao M, Zhao X, Hu H, Chen D. Targeted Delivery of Dasatinib to Deplete Tumor-Associated Macrophages by Mannosylated Mixed Micelles for Tumor Immunotherapy. ACS Biomater Sci Eng 2020; 6:5675-5684. [PMID: 33320562 DOI: 10.1021/acsbiomaterials.0c01046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumor-associated macrophages (TAMs) are abundant in tumors and predominately show protumor M2-type fostering tumor progression. Specific depletion of TAMs is conceivably favorable for antitumor therapy. In this study, mannosylated mixed micelles (DAS-MMic) were developed to specifically deliver dasatinib (DAS) to eliminate TAMs for tumor immunotherapy. In vitro and in vivo results showed that DAS-MMic could effectively eradicate TAMs, decrease angiogenesis, reprogram the immunosuppressive tumor microenvironment, and finally suppress tumor progression. These data suggest the potential of direct elimination of TAMs by DAS-MMic for tumor immunotherapy.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 PR China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 266071, PR China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 PR China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 PR China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 PR China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 PR China
| |
Collapse
|
17
|
Lin Q, Li Z, Ji C, Yuan Q. Electronic structure engineering and biomedical applications of low energy-excited persistent luminescence nanoparticles. NANOSCALE ADVANCES 2020; 2:1380-1394. [PMID: 36132298 PMCID: PMC9417836 DOI: 10.1039/c9na00817a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/17/2020] [Indexed: 06/13/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) are new luminescent materials that can store the excitation energy quickly and persistently emit it after ceasing excitation sources. Due to the advantages of long-lasting luminescence without constant excitation, PLNPs have been widely used in biomedical applications. Visible light excitable PLNPs (VPLNPs) and near-infrared excitable PLNPs (NPLNPs) are two kinds of novel and promising PLNPs. Compared to conventional PLNPs, VPLNPs and NPLNPs have the characteristics of low tissue damage, deep tissue penetration, and high signal-to-noise ratio. With these special features, they have great potential in applications such as long-term tracing, deep-tissue bioimaging, and precise treatment. In this review, we introduce the common strategy of constructing VPLNPs and NPLNPs based on electronic structure engineering and the applications of VPLNPs and NPLNPs in biomedicine. This review article aims to offer valuable information about the progress and development direction of VPLNPs and NPLNPs, promoting more applications in biomedicine, materials science, energy engineering, and environmental technologies in the future.
Collapse
Affiliation(s)
- Qiaosong Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chenhui Ji
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| |
Collapse
|
18
|
Geng T, Yan Y, Xu L, Cao M, Xu Y, Pu J, Yan JC. CD137 signaling induces macrophage M2 polarization in atherosclerosis through STAT6/PPARδ pathway. Cell Signal 2020; 72:109628. [PMID: 32247042 DOI: 10.1016/j.cellsig.2020.109628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
CD137 signaling plays an important role in the formation and development of atherosclerotic plaques. The purpose of the present study was to investigate the effects of CD137 signaling on macrophage polarization during atherosclerosis and to explore the underlying mechanisms. The effect of CD137 signaling on macrophage phenotype in atherosclerotic plaques was determined by intraperitoneal injection of agonist-CD137 recombinant protein in apolipoprotein E-deficient (ApoE-/-) mice, an established in vivo model of atherosclerosis. Murine peritoneal macrophages and RAW 264.7 cells were treated with AS1517499 and siPPARδ (peroxisome proliferator-activated receptor δ) to study the role of STAT6 (signal transducers and activators of transcription 6)/PPARδ signaling in CD137-induced M2 macrophage polarization in vitro. Results from both in vivo and in vitro experiments showed that CD137 signaling can transform macrophages into the M2 phenotype during the process of atherosclerotic plaque formation and regulate the angiogenic features of M2 macrophages. Furthermore, activation of the CD137 signaling pathway induces phosphorylation of STAT6 and enhances the expression of PPARδ. We further found that macrophage M2 polarization is reduced when the STAT6/PPARδ pathway is inhibited. Together, these data show a role for the STAT6/PPARδ signaling pathway in the CD137 signaling-induced M2 macrophage polarization pathway.
Collapse
Affiliation(s)
- Tianxin Geng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Yang Yan
- Department of Cardiology, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China
| | - Liangjie Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Mengfei Cao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Yu Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China
| | - Jin Chuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China.
| |
Collapse
|
19
|
Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. MICROBIOME 2020; 8:36. [PMID: 32169105 PMCID: PMC7071638 DOI: 10.1186/s40168-020-00821-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/02/2020] [Indexed: 05/03/2023]
Abstract
Coronary artery disease (CAD) is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Over the past decade, it has become clear that the inhabitants of our gut, the gut microbiota, play a vital role in human metabolism, immunity, and reactions to diseases, including CAD. Although correlations have been shown between CAD and the gut microbiota, demonstration of potential causal relationships is much more complex and challenging. In this review, we will discuss the potential direct and indirect causal roots between gut microbiota and CAD development via microbial metabolites and interaction with the immune system. Uncovering the causal relationship of gut microbiota and CAD development can lead to novel microbiome-based preventative and therapeutic interventions. However, an interdisciplinary approach is required to shed light on gut bacterial-mediated mechanisms (e.g., using advanced nanomedicine technologies and incorporation of demographic factors such as age, sex, and ethnicity) to enable efficacious and high-precision preventative and therapeutic strategies for CAD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada.
| |
Collapse
|
20
|
Saeed M, Xu Z, De Geest BG, Xu H, Yu H. Molecular Imaging for Cancer Immunotherapy: Seeing Is Believing. Bioconjug Chem 2020; 31:404-415. [PMID: 31951380 DOI: 10.1021/acs.bioconjchem.9b00851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The importance of the immune system in cancer therapy has been reaffirmed by the success of the immune checkpoint blockade. The complex tumor microenvironment and its interaction with the immune system, however, remain mysteries. Molecular imaging may shed light on fundamental aspects of the immune response to elucidate the mechanism of cancer immunotherapy. In this review, we discuss various imaging approaches that offer in-depth insight into the tumor microenvironment, checkpoint blockade therapy, and T cell-mediated antitumor immune responses. Recent advances in the molecular imaging modalities, including magnetic resonance imaging (MRI), positron electron tomography (PET), and optical imaging (e.g., fluorescence and intravital imaging) for in situ tracking of the immune response, are discussed. It is envisaged that the integration of imaging with immunotherapy may broaden our understanding to predict a particular antitumor immune response.
Collapse
Affiliation(s)
- Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Bruno G De Geest
- Department of Pharmaceutics and Cancer Research Institute Ghent (CRIG) , Ghent University , Ghent 9000 , Belgium
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute , Tongji University School of Medicine, Tongji University Cancer Center , Shanghai 200072 , China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| |
Collapse
|
21
|
Ramesh A, Kumar S, Nandi D, Kulkarni A. CSF1R- and SHP2-Inhibitor-Loaded Nanoparticles Enhance Cytotoxic Activity and Phagocytosis in Tumor-Associated Macrophages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904364. [PMID: 31659802 DOI: 10.1002/adma.201904364] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/03/2019] [Indexed: 05/06/2023]
Abstract
Immune modulation of macrophages has emerged as an attractive approach for anti-cancer therapy. However, there are two main challenges in successfully utilizing macrophages for immunotherapy. First, macrophage colony stimulating factor (MCSF) secreted by cancer cells binds to colony stimulating factor 1 receptor (CSF1-R) on macrophages and in turn activates the downstream signaling pathway responsible for polarization of tumor-associated macrophages (TAMs) to immunosuppressive M2 phenotype. Second, ligation of signal regulatory protein α (SIRPα) expressed on myeloid cells to CD47, a transmembrane protein overexpressed on cancer cells, activates the Src homology region 2 (SH2) domain -phosphatases SHP-1 and SHP-2 in macrophages. This results in activation of "eat-me-not" signaling pathway and inhibition of phagocytosis. Here, it is reported that self-assembled dual-inhibitor-loaded nanoparticles (DNTs) target M2 macrophages and simultaneously inhibit CSF1R and SHP2 pathways. This results in efficient repolarization of M2 macrophages to an active M1 phenotype, and superior phagocytic capabilities as compared to individual drug treatments. Furthermore, suboptimal dose administration of DNTs in highly aggressive breast cancer and melanoma mouse models show enhanced anti-tumor efficacy without any toxicity. These studies demonstrate that the concurrent inhibition of CSF1-R and SHP2 signaling pathways for macrophage activation and phagocytosis enhancement could be an effective strategy for macrophage-based immunotherapy.
Collapse
Affiliation(s)
- Anujan Ramesh
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003-9364, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003-9364, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003-9364, USA
| | - Dipika Nandi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003-9364, USA
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003-9364, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003-9364, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003-9364, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003-9364, USA
| |
Collapse
|
22
|
Du Y, Qi Y, Jin Z, Tian J. Noninvasive imaging in cancer immunotherapy: The way to precision medicine. Cancer Lett 2019; 466:13-22. [DOI: 10.1016/j.canlet.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/13/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
|
23
|
Hajipour MJ, Mehrani M, Abbasi SH, Amin A, Kassaian SE, Garbern JC, Caracciolo G, Zanganeh S, Chitsazan M, Aghaverdi H, Shahri SMK, Ashkarran A, Raoufi M, Bauser-Heaton H, Zhang J, Muehlschlegel JD, Moore A, Lee RT, Wu JC, Serpooshan V, Mahmoudi M. Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chem Rev 2019; 119:11352-11390. [PMID: 31490059 PMCID: PMC7003249 DOI: 10.1021/acs.chemrev.8b00323] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adult myocardium has a limited regenerative capacity following heart injury, and the lost cells are primarily replaced by fibrotic scar tissue. Suboptimal efficiency of current clinical therapies to resurrect the infarcted heart results in injured heart enlargement and remodeling to maintain its physiological functions. These remodeling processes ultimately leads to ischemic cardiomyopathy and heart failure (HF). Recent therapeutic approaches (e.g., regenerative and nanomedicine) have shown promise to prevent HF postmyocardial infarction in animal models. However, these preclinical, clinical, and technological advancements have yet to yield substantial enhancements in the survival rate and quality of life of patients with severe ischemic injuries. This could be attributed largely to the considerable gap in knowledge between clinicians and nanobioengineers. Development of highly effective cardiac regenerative therapies requires connecting and coordinating multiple fields, including cardiology, cellular and molecular biology, biochemistry and chemistry, and mechanical and materials sciences, among others. This review is particularly intended to bridge the knowledge gap between cardiologists and regenerative nanomedicine experts. Establishing this multidisciplinary knowledge base may help pave the way for developing novel, safer, and more effective approaches that will enable the medical community to reduce morbidity and mortality in HF patients.
Collapse
Affiliation(s)
| | - Mehdi Mehrani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Amin
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | | | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, 00161, Rome, Italy
| | - Steven Zanganeh
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, United States
| | - Mitra Chitsazan
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | - Haniyeh Aghaverdi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyed Mehdi Kamali Shahri
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Aliakbar Ashkarran
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mohammad Raoufi
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering, University of Siegen, Siegen, Germany
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jochen D. Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Medicine, Division of Cardiology, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, United States
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Connors Center for Women’s Health & Gender Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
24
|
Lazaro-Carrillo A, Filice M, Guillén MJ, Amaro R, Viñambres M, Tabero A, Paredes KO, Villanueva A, Calvo P, Del Puerto Morales M, Marciello M. Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110262. [PMID: 31761230 DOI: 10.1016/j.msec.2019.110262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/06/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022]
Abstract
Magnetic resonance imaging (MRI) is the most powerful technique for non-invasive diagnosis of human diseases and disorders. Properly designed contrast agents can be accumulated in the damaged zone and be internalized by cells, becoming interesting cellular MRI probes for disease tracking and monitoring. However, this approach is sometimes limited by the relaxation rates of contrast agents currently in clinical use, which show neither optimal pharmacokinetic parameters nor toxicity. In this work, a suitable contrast agent candidate, based on iron oxide nanoparticles (IONPs) coated with polyethyleneglycol, was finely designed, prepared and fully characterized under a physical, chemical and biological point of view. To stand out the real potential of our study, all the experiments were performed in comparison with Ferumoxytol, a FDA approved IONPs. IONPs with a core size of 15 nm and coated with polyethyleneglycol of 5 kDa (OD15-P5) resulted the best ones, being able to be uptaken by both tumoral cells and macrophages and showing no toxicity for in vitro and in vivo experiments. In vitro and in vivo MRI results for OD15-P5 showed r2 relaxivity values higher than Ferumoxitol. Furthermore, the injected OD15-P5 were completely retained at the tumor site for up to 24 h showing high potential as MRI contrast agents for real time long-lasting monitoring of the tumor evolution.
Collapse
Affiliation(s)
- Ana Lazaro-Carrillo
- Department of Biology, Universidad Autónoma de Madrid (UAM), Darwin 2, Cantoblanco, 28049, Madrid, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain; Biomedical Research Networking Center for Respiratory Diseases (CIBERES), C/Melchor Fernandez-Almagro 3, 28029, Madrid, Spain; Fundacion Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - María José Guillén
- Research Department, PharmaMar S.A, Colmenar Viejo, 28770, Madrid, Spain
| | - Rebeca Amaro
- Department of Energy, Environment and Health, Institute of Materials Science of Madrid, ICMM-CSIC, Sor Juana Inés de La Cruz 3, Cantoblanco, 28049, Madrid, Spain
| | - Mario Viñambres
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain; Department of Energy, Environment and Health, Institute of Materials Science of Madrid, ICMM-CSIC, Sor Juana Inés de La Cruz 3, Cantoblanco, 28049, Madrid, Spain
| | - Andrea Tabero
- Department of Biology, Universidad Autónoma de Madrid (UAM), Darwin 2, Cantoblanco, 28049, Madrid, Spain
| | - Karina Ovejero Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain; Fundacion Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Angeles Villanueva
- Department of Biology, Universidad Autónoma de Madrid (UAM), Darwin 2, Cantoblanco, 28049, Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Faraday 9, Campus Universitario de Cantoblanco, 28049, Madrid, Spain
| | - Pilar Calvo
- Research Department, PharmaMar S.A, Colmenar Viejo, 28770, Madrid, Spain
| | - Maria Del Puerto Morales
- Department of Energy, Environment and Health, Institute of Materials Science of Madrid, ICMM-CSIC, Sor Juana Inés de La Cruz 3, Cantoblanco, 28049, Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain; Department of Energy, Environment and Health, Institute of Materials Science of Madrid, ICMM-CSIC, Sor Juana Inés de La Cruz 3, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
25
|
Zanganeh S, Georgala P, Corbo C, Arabi L, Ho JQ, Javdani N, Sepand MR, Cruickshank K, Campesato LF, Weng C, Hemayat S, Andreou C, Alvim R, Hutter G, Rafat M, Mahmoudi M. Immunoengineering in glioblastoma imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1575. [DOI: 10.1002/wnan.1575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Steven Zanganeh
- Sloan Kettering Institute for Cancer Research New York New York
| | | | - Claudia Corbo
- School of Medicine and Surgery, Nanomedicine Center NANOMIB University of Milano‐Bicocca Milan Italy
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Jim Q. Ho
- Albert Einstein College of Medicine Bronx New York
| | - Najme Javdani
- Institute De Recherche Clinique De Montreal Montreal Quebec Canada
| | | | | | | | - Chien‐Huan Weng
- Sloan Kettering Institute for Cancer Research New York New York
| | | | - Chrysafis Andreou
- Department of Electrical and Computer Engineering University of Cyprus Nicosia Cyprus
| | - Ricardo Alvim
- Sloan Kettering Institute for Cancer Research New York New York
| | - Gregor Hutter
- School of Medicine and Surgery, Nanomedicine Center NANOMIB University of Milano‐Bicocca Milan Italy
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville Tennessee
- Department of Biomedical Engineering Vanderbilt University Nashville Tennessee
- Department of Radiation Oncology Vanderbilt University Medical Center Nashville Tennessee
| | - Morteza Mahmoudi
- Precision Health Program Michigan State University East Lansing Michigan
| |
Collapse
|
26
|
Kasten BB, Udayakumar N, Leavenworth JW, Wu AM, Lapi SE, McConathy JE, Sorace AG, Bag AK, Markert JM, Warram JM. Current and Future Imaging Methods for Evaluating Response to Immunotherapy in Neuro-Oncology. Theranostics 2019; 9:5085-5104. [PMID: 31410203 PMCID: PMC6691392 DOI: 10.7150/thno.34415] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/20/2019] [Indexed: 12/28/2022] Open
Abstract
Imaging plays a central role in evaluating responses to therapy in neuro-oncology patients. The advancing clinical use of immunotherapies has demonstrated that treatment-related inflammatory responses mimic tumor growth via conventional imaging, thus spurring the development of new imaging approaches to adequately distinguish between pseudoprogression and progressive disease. To this end, an increasing number of advanced imaging techniques are being evaluated in preclinical and clinical studies. These novel molecular imaging approaches will serve to complement conventional response assessments during immunotherapy. The goal of these techniques is to provide definitive metrics of tumor response at earlier time points to inform treatment decisions, which has the potential to improve patient outcomes. This review summarizes the available immunotherapy regimens, clinical response criteria, current state-of-the-art imaging approaches, and groundbreaking strategies for future implementation to evaluate the anti-tumor and immune responses to immunotherapy in neuro-oncology applications.
Collapse
Affiliation(s)
- Benjamin B. Kasten
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Neha Udayakumar
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna M. Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan E. McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Asim K. Bag
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jason M. Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
27
|
Wang W, Saeed M, Zhou Y, Yang L, Wang D, Yu H. Non‐viral gene delivery for cancer immunotherapy. J Gene Med 2019; 21:e3092. [DOI: 10.1002/jgm.3092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Weiqi Wang
- School of PharmacyNantong University Nantong China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai China
| | - Yao Zhou
- School of PharmacyNantong University Nantong China
| | - Lili Yang
- School of PharmacyNantong University Nantong China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
28
|
Ovais M, Guo M, Chen C. Tailoring Nanomaterials for Targeting Tumor-Associated Macrophages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808303. [PMID: 30883982 DOI: 10.1002/adma.201808303] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/07/2019] [Indexed: 05/17/2023]
Abstract
Advances in the field of nanotechnology together with an increase understanding of tumor immunology have paved the way for the development of more personalized cancer immuno-nanomedicines. Nanovehicles, due to their specific physicochemical properties, are emerging as key translational moieties in tackling tumor-promoting, M2-like tumor-associated macrophages (TAMs). Cancer immuno-nanomedicines target TAMs primarily by blocking M2-like TAM survival or affecting their signaling cascades, restricting macrophage recruitment to tumors and re-educating tumor-promoting M2-like TAMs to the tumoricidal, M1-like phenotype. Here, the TAM effector mechanisms and strategies for targeting TAMs are summarized, followed by a focus on the mechanistic considerations in the development of novel immuno-nanomedicines. Furthermore, imaging TAMs with nanoparticles so as to forecast a patient's clinical outcome, describing treatment options, and observing therapy responses is also discussed. At present, strategies that target TAMs are being investigated not only at the basic research level but also in early clinical trials. The significance of TAM-targeting biomaterials is highlighted, with the goal of facilitating future clinical translation.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- School of Nanoscience and Technology, College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- School of Nanoscience and Technology, College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- School of Nanoscience and Technology, College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Abstract
BACKGROUND Melanoma-associated antigen-A (MAGE-A) was recognized as high-expressed in many solid tumors including esophageal carcinoma (EC), nevertheless, was reported to be low/not-expressed in normal tissues. Thus, it was considered as an extraordinary appropriate target for treatment especially in immunotherapy. Therefore, it demanded more detail knowledge on the precise function of MAGE-A. METHODS In this study, we used the data from the Cancer Genome Atlas dataset (TCGA-ESCA) to analyze the expression and survival for MAGE A3/4/11 (the subtype of MAGE-A) using the online tool of UALCAN. Furthermore, the high-throughput sequencing data of the patients with esophageal squamous-cell carcinoma (ESCC) from TCGA dataset were performed to analyze the correlation test, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of MAGE A3/4/9/11 using LinkeDomics (online tool) and ClueGO (inner software of Cytoscape). Finally, relative gene expressions of MAGE A3/4/9/11 were verified by quantitative real-time PCR (q-PCR) in the patients with EC. RESULTS MAGE A3/4/11 was high-expressed in tissues of patients with ESCC, and there was no difference in survival time for patients between the high-expressed with the low/medium-expressed. The Go enrichment analysis showed that the 4 MAGE-A subtypes (MAGE-A3/4/9/11) were enriched in the regulation of the adaptive immune response, translational initiation, interleukin-4 production, response to type I interferon, and skin development, respectively. The KEGG results showed that they were enriched in T cell receptor signaling pathway (MAGE-A3), Th1 and Th2 differentiation, antigen processing and presentation (MAGE-A4), cytokine-cytokine receptor interaction (MAGE-A9), and chemokine signaling pathway (MAGE-A11). CONCLUSION MAGE A3/4/9/11 was high-expressed in EC, and were enrolled in the regulation of immune response. They may consider as candidate immune target for EC treatment and provided the messages for further research in the function of MAGE-A.
Collapse
Affiliation(s)
- Xiaohua Chen
- Oncology of Panyu Central Hospital, Panyu Cancer Institute
| | - Sina Cai
- Oncology of The Hospital of Third Affiliated Southern Medical University, Guangzhou, Guangdong
| | - Liping Wang
- The First People's Hospital of Chenzhou, Chenzhou, Hunan
| | - Xiaona Zhang
- Graceland Medical Center, The Sixth Affiliated Hospital of Sun Yat–Sen University, Guangzhou, Guangdong, China
| | - Wenhui Li
- Oncology of Panyu Central Hospital, Panyu Cancer Institute
| | - Xiaolong Cao
- Oncology of Panyu Central Hospital, Panyu Cancer Institute
| |
Collapse
|
30
|
Dong D, Zhang G, Yang J, Zhao B, Wang S, Wang L, Zhang G, Shang P. The role of iron metabolism in cancer therapy focusing on tumor-associated macrophages. J Cell Physiol 2018; 234:8028-8039. [PMID: 30362549 DOI: 10.1002/jcp.27569] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient in mammalian cells for basic processes such as DNA synthesis, cell cycle progression, and mitochondrial activity. Macrophages play a vital role in iron metabolism, which is tightly linked to their phagocytosis of senescent and death erythrocytes. It is now recognized that the polarization process of macrophages determines the expression profile of genes associated with iron metabolism. Although iron metabolism is strictly controlled by physiology, cancer has recently been connected with disordered iron metabolism. Moreover, in the environment of cancer, tumor-associated macrophages (TAMs) exhibit an iron release phenotype, which stimulates tumor cell survival and growth. Usually, the abundance of TAMs in the tumor is implicated in poor disease prognosis. Therefore, important attention has been drawn toward the development of tumor immunotherapies targeting these TAMs focussing on iron metabolism and reprogramming polarized phenotypes. Although further systematic research is still required, these efforts are almost certainly valuable in the search for new and effective cancer treatments.
Collapse
Affiliation(s)
- Dandan Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi'an Shanxi, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an Shanxi, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an Shanxi, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| | - Bin Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an Shanxi, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| | - Shenghang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an Shanxi, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| | - Luyao Wang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China
| | - Peng Shang
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China.,Key Laboratory for Space Biosciences and Biotechnology, Xi'an Shanxi, China
| |
Collapse
|
31
|
Zheng B, Bai Y, Chen H, Pan H, Ji W, Gong X, Wu X, Wang H, Chang J. Near-Infrared Light-Excited Upconverting Persistent Nanophosphors in Vivo for Imaging-Guided Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19514-19522. [PMID: 29757597 DOI: 10.1021/acsami.8b05706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optical imaging for biological applications is in need of more sensitive tool. Persistent luminescent nanophosphors enable highly sensitive in vivo optical detection and almost completely avoid tissue autofluorescence. Nevertheless, the actual persistent luminescent nanophosphors necessitate ex vivo activation before systemic operation, which severely restricted the use of long-term imaging in vivo. Hence, we introduced a novel generation of optical nanophosphors, based on (Zn2SiO4:Mn):Y3+, Yb3+, Tm3+ upconverting persistent luminescent nanophosphors; these nanophosphors can be excited in vivo through living tissues by highly penetrating near-infrared light. We can trace labeled tumor therapeutic macrophages in vivo after endocytosing these nanophosphors in vitro and follow macrophages biodistribution by a simple whole animal optical detection. These nanophosphors will open novel potentials for cell therapy research and for a variety of applications in diagnosis in vivo.
Collapse
Affiliation(s)
- Bin Zheng
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Yang Bai
- Department of Stomatology , Tianjin Medical University General Hospital , 154 Anshan Road , Heping District, Tianjin 300052 , P. R. China
| | - Hongbin Chen
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Huizhuo Pan
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Wanying Ji
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Xiaoqun Gong
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Xiaoli Wu
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Hanjie Wang
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Jin Chang
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| |
Collapse
|
32
|
Eichhorn F, Harms A, Warth A, Muley T, Winter H, Eichhorn ME. PD-L1 expression in large cell neuroendocrine carcinoma of the lung. Lung Cancer 2018; 118:76-82. [PMID: 29572007 DOI: 10.1016/j.lungcan.2018.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Large cell neuroendocrine carcinoma of the lung (LCNEC) is associated with an unfavorable prognosis and only few patients are eligible for surgery. In most patients, chemotherapy is recommended alone or in addition to resection. Novel immunotherapies blocking the PD-L1 pathway have been introduced into therapeutic regimens for NSCLC with great success. In order to evaluate a possible efficacy of an anti-PD-L1 therapy, we analyzed the frequency of PD-L1 expression in LCNEC. MATERIAL AND METHODS We retrospectively reviewed data from 76 patients with LCNEC treated in our institution between 1998 and 2010. The expression of PD-L1 was examined on the tumor cells and the tumor surrounding tissue by immunohistochemistry. An expression of >1% was considered as positive. Statistical analysis was performed to determine significant predictors for survival. RESULTS 56 of 76 patients with LCNEC were treated with a potentially therapeutic surgical approach. Tumor-specific survival (TSS) of the entire cohort was 29% at five years. 17 patients (22.3%) had PD-L1 positive tumors and 12 of these had no additional PD-L1 expression in the adjacent immune cell infiltrate. Tumor-flanking immune cells were found PD-L1 positive 28 patients; 16 of these had no additional expression on the tumor cells. The most considerable difference in survival was found when comparing patients with isolated PD-L1 expression on tumor cells and PD-L1 negative immune cell infiltrate to their counterpart (positive immune-cell infiltrate and PD-L1 negative tumor cell surface; 5-year TSS: 0% vs. 60%; p < 0.017). CONCLUSION PD-L1 expression in LCNEC was associated with poorer survival whereas PD-L1 expression in the tumor microenvironment seemed to have a beneficial effect. Therapeutic approaches have to be evaluated in future.
Collapse
Affiliation(s)
- F Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany.
| | - A Harms
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - A Warth
- Institute of Pathology, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center (TLRC), Heidelberg, Member of German Center for Lung Research (DZL), Germany
| | - T Muley
- Section Translational Research (STF), Thoraxklinik, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center (TLRC), Heidelberg, Member of German Center for Lung Research (DZL), Germany
| | - H Winter
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center (TLRC), Heidelberg, Member of German Center for Lung Research (DZL), Germany
| | - M E Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany; Translational Lung Research Center (TLRC), Heidelberg, Member of German Center for Lung Research (DZL), Germany
| |
Collapse
|