1
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
2
|
Della Corte CM, Ciaramella V, Ramkumar K, Vicidomini G, Fiorelli A, Nardone V, Cappabianca S, Cozzolino I, Zito Marino F, Di Guida G, Wang Q, Cardnell R, Gay CM, Ciardiello D, Martinelli E, Troiani T, Martini G, Napolitano S, Wang J, Byers LA, Ciardiello F, Morgillo F. Triple blockade of Ido-1, PD-L1 and MEK as a potential therapeutic strategy in NSCLC. J Transl Med 2022; 20:541. [PMID: 36419183 PMCID: PMC9682755 DOI: 10.1186/s12967-022-03730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Despite the recent progress in the treatment and outcome of Non Small Cell Lung Cancer (NSCLC), immunotherapy has still significant limitations reporting a significant proportion of patients not benefiting from therapy, even in patients with high PD-L1 expression. We have previously demonstrated that the combined inhibition of MEK and PD-L1 in NSCLC patients derived three dimensional cultures exerted significant synergistic effect in terms of immune-dependent cancer cell death. However, subsequent experiments analyzing the expression of Indoleamine 2,3-dioxygenase-1 (Ido-1) gene expression demonstrated that Ido-1 resulted unaffected by the MEK inhibition and even increased after the combined inhibition of MEK and PD-L1 thus representing a potential escape mechanism to this combination. METHODS We analyzed transcriptomic profile of NSCLC lung adenocarcinoma cohort of TCGA (The Cancer Genome Atlas), stratifying tumors based on EMT (Epithelial mesenchymal Transition) score; in parallel, we investigated the activation of Ido-1 pathway and modulation of immune cytokines productions both in NSCLC cells lines, in peripheral blood mononuclear cells (PBMCs) and in ex-vivo NSCLC spheroids induced by triple inhibition with an anti-PD-L1 monoclonal antibody, the MEK inhibitor and the Ido-1 inhibitor. RESULTS In NSCLC lung adenocarcinoma patient cohort (from TCGA) Ido-1 gene expression was significantly higher in samples classified as mesenchymal according EMT score. Similarly, on a selected panel of NSCLC cell lines higher expression of MEK and Ido-1 related genes was detected in cells with mesenchymal phenotype according EMT score, thus suggesting a potential correlation of co-activation of these two pathways in the context of EMT, with cancer cells sustaining an immune-suppressive microenvironment. While exerting an antitumor activity, the dual blockade of MEK and PD-L1 enhances the secretion of pro-inflammatory cytokines (IFNγ, TNFα, IL-12 and IL-6) and, consequently, the expression of new immune checkpoints such as Ido-1. The triple inhibition with an anti-PD-L1 monoclonal antibody, the MEK inhibitor and the Ido-1 inhibitor demonstrated significant antiproliferative and proapoptotic activity on ex-vivo NSCLC samples; at the same time the triple combination kept increased the levels of pro-inflammatory cytokines produced by both PBMCs and tumor spheroids in order to sustain the immune response and simultaneously decreased the expression of other checkpoint (such as CTLA-4, Ido-1 and TIM-3) thus promoting an immune-reactive and inflamed micro-environment. CONCLUSIONS We show that Ido-1 activation is a possible escape mechanism to immune-mediated cell death induced by combination of PD-L1 and MEK inhibitors: also, we show that triple combination of anti-PD-L1, anti-MEK and anti-Ido-1 drugs may overcome this negative feedback and restore anti-tumor immune response in NSCLC patients' derived three dimensional cultures.
Collapse
Affiliation(s)
- Carminia Maria Della Corte
- grid.9841.40000 0001 2200 8888Medical Oncology, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Vincenza Ciaramella
- grid.9841.40000 0001 2200 8888Medical Oncology, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Kavya Ramkumar
- grid.240145.60000 0001 2291 4776Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Giovanni Vicidomini
- grid.9841.40000 0001 2200 8888Thoracic Surgery Unit, Department of Traslational Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Alfonso Fiorelli
- grid.9841.40000 0001 2200 8888Thoracic Surgery Unit, Department of Traslational Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Valerio Nardone
- grid.9841.40000 0001 2200 8888Radiology and Radiotherapy, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Salvatore Cappabianca
- grid.9841.40000 0001 2200 8888Radiology and Radiotherapy, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Immacolata Cozzolino
- grid.9841.40000 0001 2200 8888Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Federica Zito Marino
- grid.9841.40000 0001 2200 8888Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Gaetano Di Guida
- grid.9841.40000 0001 2200 8888Medical Oncology, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Qi Wang
- grid.240145.60000 0001 2291 4776Department of Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Robert Cardnell
- grid.240145.60000 0001 2291 4776Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Carl Michael Gay
- grid.240145.60000 0001 2291 4776Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Davide Ciardiello
- grid.9841.40000 0001 2200 8888Medical Oncology, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Erika Martinelli
- grid.9841.40000 0001 2200 8888Medical Oncology, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Teresa Troiani
- grid.9841.40000 0001 2200 8888Medical Oncology, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Giulia Martini
- grid.9841.40000 0001 2200 8888Medical Oncology, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Stefania Napolitano
- grid.9841.40000 0001 2200 8888Medical Oncology, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Jing Wang
- grid.240145.60000 0001 2291 4776Department of Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lauren Averett Byers
- grid.240145.60000 0001 2291 4776Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Fortunato Ciardiello
- grid.9841.40000 0001 2200 8888Medical Oncology, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Floriana Morgillo
- grid.9841.40000 0001 2200 8888Medical Oncology, Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| |
Collapse
|
3
|
Dai C, Zhou X, Wang L, Tan R, Wang W, Yang B, Zhang Y, Shi H, Chen D, Wei L, Chen Z. Rocaglamide Prolonged Allograft Survival by Inhibiting Differentiation of Th1/Th17 Cells in Cardiac Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2048095. [PMID: 35087613 PMCID: PMC8787457 DOI: 10.1155/2022/2048095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Aglaia (Meliaceae) species are used for treating autoimmune disorders and allergic diseases in Asian countries. Rocaglamide, an extract obtained from Aglaia species, exhibits suppressive effect by regulating the T cell subset balance and cytokine network in cancer. However, whether it can be used in organ transplantation is unknown. In this study, we investigated the antirejection effect and mechanism of action of rocaglamide in a mouse cardiac allograft model. METHODS Survival studies were performed by administering mice with phosphate-buffered saline (PBS) (n = 6) and rocaglamide (n = 8). Heart grafts were monitored until they stopped beating. After grafting, the mice were sacrificed on day 7 for histological, mixed lymphocyte reaction (MLR), enzyme-linked immunosorbent assay (ELISA), and flow cytometric analyses. RESULTS Rocaglamide administration significantly prolonged the median survival of the grafts from 7 to 25 days compared with PBS treatment (P < 0.001). On posttransplantation day 7, the rocaglamide-treated group showed a significant decrease in the percentage of Th1 cells (7.9 ± 0.9% vs. 1.58 ± 0.5%, P < 0.001) in the lymph nodes and spleen (8.0 ± 2.5% vs. 2.4 ± 1.3%, P < 0.05). Rocaglamide treatment also significantly inhibited the production of Th17 cells (6.4 ± 1.0% vs. 1.8 ± 0.4%, P < 0.01) in the lymph nodes and spleen (5.9 ± 0.3% vs. 2.9 ± 0.8%, P < 0.01). Furthermore, the prolonged survival of the grafts was associated with a significant decrease in IFN-γ and IL-17 levels. Our results also showed that NF-AT activation was inhibited by rocaglamide, which also induced p38 and Jun N-terminal kinase (JNK) phosphorylation in Jurkat T cells. Furthermore, by using inhibitors that suppressed p38 and JNK phosphorylation, rocaglamide-mediated reduction in NF-AT protein levels was prevented. CONCLUSION We identified a new immunoregulatory property of rocaglamide, wherein it was found to regulate oxidative stress response and reduce inflammatory cell infiltration and organ injury, which have been associated with the inhibition of NF-AT activation in T cells.
Collapse
Affiliation(s)
- Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Rumeng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Wei Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Huibo Shi
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China 430030
| |
Collapse
|
4
|
Sosa AC, Kariuki B, Gan Q, Knutsen AP, Bellone CJ, Guzmán MA, Barrera LA, Tomatsu S, Chauhan AK, Armbrecht E, Montaño AM. Oral immunotherapy tolerizes mice to enzyme replacement therapy for Morquio A syndrome. J Clin Invest 2020; 130:1288-1300. [PMID: 31743109 DOI: 10.1172/jci125607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
Immune response to therapeutic enzymes poses a detriment to patient safety and treatment outcome. Enzyme replacement therapy (ERT) is a standard therapeutic option for some types of mucopolysaccharidoses, including Morquio A syndrome caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. Current protocols tolerize patients using cytotoxic immunosuppressives, which can cause adverse effects. Here we show development of tolerance in Morquio A mice via oral delivery of peptide or GALNS for 10 days prior to ERT. Our results show that using an immunodominant peptide (I10) or the complete GALNS enzyme to orally induce tolerance to GALNS prior to ERT resulted in several improvements to ERT in mice: (a) decreased splenocyte proliferation after in vitro GALNS stimulation, (b) modulation of the cytokine secretion profile, (c) decrease in GALNS-specific IgG or IgE in plasma, (d) decreased GAG storage in liver, and (e) fewer circulating immune complexes in plasma. This model could be extrapolated to other lysosomal storage disorders in which immune response hinders ERT.
Collapse
Affiliation(s)
- Angela C Sosa
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Saint Louis University, St. Louis, Missouri, USA.,Instituto de Errores Innatos del Metabolismo, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Barbara Kariuki
- Department of Pediatrics, Division of Allergy and Immunology
| | - Qi Gan
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Alan P Knutsen
- Department of Pediatrics, Division of Allergy and Immunology
| | | | - Miguel A Guzmán
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Luis A Barrera
- Instituto de Errores Innatos del Metabolismo, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Division of Rheumatology, School of Medicine
| | | | - Adriana M Montaño
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Saint Louis University, St. Louis, Missouri, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Amat F, Labbé A. [Allergic immunotherapy in children and adolescents]. REVUE FRANCAISE D ALLERGOLOGIE 2020; 60:554-558. [PMID: 32922566 PMCID: PMC7474839 DOI: 10.1016/j.reval.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/21/2022]
Abstract
L’immunothérapie spécifique allergénique nécessite l’administration répétée d’allergènes dans le but de provoquer une tolérance clinique et immunologique. C’est la seule thérapeutique à visée étiologique qui permet de modifier l’évolution de la maladie en assurant une rémission après l’interruption de la procédure. La prévention de nouvelles sensibilisations par l’immunothérapie reste discutée. Nous envisagerons dans cette revue les principaux mécanismes immunologiques et les indications de l’immunothérapie chez l’enfant et l’adolescent.
Collapse
Affiliation(s)
- F Amat
- Service de pneumologie et d'allergologie pédiatrique-CRCM, hôpital Robert-Debré, Inserm UMRS1136 EPAR, Paris, France
| | - A Labbé
- UFR de médecine et des professions paramédicales, université Clermont-Auvergne, France
| |
Collapse
|
6
|
Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res 2020; 39:89. [PMID: 32423420 PMCID: PMC7236372 DOI: 10.1186/s13046-020-01586-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor-infiltrating immune cells play a key role against cancer. However, malignant cells are able to evade the immune response and establish a very complex balance in which different immune subtypes may drive tumor progression, metastatization and resistance to therapy. New immunotherapeutic approaches aim at restoring the natural balance and increase immune response against cancer by different mechanisms. The complexity of these interactions and the heterogeneity of immune cell subpopulations are a real challenge when trying to develop new immunotherapeutics and evaluate or predict their efficacy in vivo. To this purpose, molecular imaging can offer non-invasive diagnostic tools like radiopharmaceuticals, contrast agents or fluorescent dyes. These agents can be useful for preclinical and clinical purposes and can overcome [18F]FDG limitations in discriminating between true-progression and pseudo-progression. This review provides a comprehensive overview of immune cells involved in microenvironment, available immunotherapies and imaging agents to highlight the importance of new therapeutic biomarkers and their in vivo evaluation to improve the management of cancer patients.
Collapse
Affiliation(s)
- Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, S. Andrea University Hospital, Roma, Italy.
| | - Jesus Vera Aguilera
- Department of oncology and Department of Immunology, Mayo Clinic, (MN), Rochester, USA
| | - Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Svetomir N Markovic
- Department of oncology and Department of Immunology, Mayo Clinic, (MN), Rochester, USA
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, S. Andrea University Hospital, Roma, Italy
| |
Collapse
|
7
|
Marchan J. In silico identification of epitopes present in human heat shock proteins (HSPs) overexpressed by tumour cells. J Immunol Methods 2019; 471:34-45. [PMID: 31129262 DOI: 10.1016/j.jim.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 11/26/2022]
Abstract
Although many of heat shock proteins (HSPs) are crucial in homeostasis due to their role in maintaining cellular proteostasis by the integration of two pivotal processes-folding and degradation, several decades of cancer proteomics suggest that HSPs may improve cancer establishment and progression. Therefore, it is imperative to explore how these molecules impact patient outcomes and whether their interaction with the immune systems improves the protumour or antitumour environment. Here, using an immunoinformatics approach were investigated the best probable epitopes from ten HSPs (HSP90α, HSP90β, HSPA1A, HSPA1L, HSPA2, HSPA5, HSPA6, HSPB1, HSPB5 and HSP60/HSP10). To achieve this aim, antigenicity, immunogenicity (prediction of continuous and discontinuous B cell epitopes, binding peptides to HLA class I and HLA class II, and overlapping epitopes), analysis of conservancy and population coverage, and prediction of IgE epitopes were evaluated. According to the physicochemical properties used for their prediction (hydrophilicity, flexibility, accessibility and antigenicity propensity), ten continuous epitopes (one per HSPs) were considered as the best and also several regions of each molecule were identified as B discontinuous epitopes. Interestingly, peptides of HSP90β, HSPA2, HSPB1, and HSPB5 were predicted as both continuous and discontinuous B cell epitopes. For all the HSPs evaluated were identified potential overlapping epitopes ("NTFYSNKEI", "TTYSCVGVF", "TADRWRVSL", "VKHFSPEEL" and "CEFQDAYVL"). Moreover, these peptides were negative for IgE epitopes and showed a large coverage in the human population (HLA-A*02, HLA-B*15, HLA-C*03, and HLA-C*12). Taken together, these data indicate that such epitopes may activate both the humoral and cell-mediated response, and thus serve as therapeutic targets for cancer. However, it must be assessed their efficacy and safety in vitro and in vivo before their translation in clinical trials.
Collapse
Affiliation(s)
- Jose Marchan
- Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
8
|
Dendritic Cells Treated with Exogenous Indoleamine 2,3-Dioxygenase Maintain an Immature Phenotype and Suppress Antigen-specific T cell Proliferation. ACTA ACUST UNITED AC 2019; 5. [PMID: 31788580 DOI: 10.1016/j.regen.2019.100015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO), an intracellular enzyme responsible for catalyzing the rate limiting step of tryptophan catabolism, plays a critical role in immune cell suppression and tolerance. Indoleamine 2,3-dioxygenase-mediated depletion of the essential amino acid tryptophan increases susceptibility of T cells to apoptosis, while kynurenine and its downstream metabolites, such as 3-hydroxyanthranilic acid and quinolinic acid, have a direct cytotoxic effect on conventional effector T cells. Additionally, IDO-expressing antigen presenting cells (APCs) induce proliferation of regulatory T cells. When expressed by an APC, the immunosuppressive effects of IDO may act directly on the APC as well as indirectly upon local T cells. One approach to elicit immune tolerance or reduce inflammation therefore is to promote expression of IDO. However, this approach is constrained by several factors including the potential for deleterious biologic effects of conventional IDO-inducing agents such as interferon gamma (IFNγ), and the potential limitations of constitutive gene transfection. Alternatively, direct action of recombinant IDO enzyme supplied exogenously as a potential therapeutic in the extracellular space has not been investigated previously, and is the focus of this work. Results indicate exogenous recombinant human IDO supplementation influences murine dendritic cell (DC) maturation and ability to suppress antigen specific T cell proliferation. Following treatment, DCs were refractory to maturation by LPS as defined by co-stimulatory molecule expression (CD80 and CD86) and major histocompatibility complex II (MHC-II) expression. Dendritic cells exhibited skewing toward an anti-inflammatory cytokine release profile, with reduced secretion of IL-12p70 and maintained basal level of secreted IL-10. Notably, IDO-treated DCs suppressed proliferation of ovalbumin (OVA) antigen-specific CD4+ and CD8+ T cells in the presence of cognate antigen presentation in a manner dependent on active enzyme, as introduction of IDO inhibitor 1-methyl-tryptophan, restored T cell proliferation. Defined media experiments indicate a cumulative role for both tryptophan depletion and kynurenine presence, in the suppressive programming of DCs. In sum, we report that exogenously supplied IDO maintains immunoregulatory function on DCs, suggesting that IDO may have potential as a therapeutic protein for suppressive programming with application toward inflammation and tolerance.
Collapse
|
9
|
Yang R, Gao N, Chang Q, Meng X, Wang W. The role of IDO, IL-10, and TGF-β in the HCV-associated chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Med Virol 2018; 91:265-271. [PMID: 29611873 DOI: 10.1002/jmv.25083] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Indoleamine-2,3-dioxygenase (IDO) is an enzyme that catalyzes tryptophan to kynurenine and studies have revealed that IDO play a vital role in regulation of liver immunity and inflammation activities. This study investigated the association between plasma IDO and disease severity and the possible marker role of IDO in the inflammatory process of hepatitis C. In this study, 80 individuals with HCV infection were retrospectively selected. Plasma levels of IDO, IL-10, and TGF-β were assayed by ELISA. Clinical characteristics of patients, including the levels of ALT, AST, and total bilirubin (TBil) were collected from clinical databases. HCV-related liver cirrhosis (HC-Cirr) and HCV-related Hepatocellular carcinoma (HCV-HCC) had significantly high plasma levels of IDO compared to other patient groups and healthy controls. Plasma IL-10 level were significantly greater in all chronic liver disease groups and with respect to TGF-β, the level was high in all the selected patients with HCV infection compare with controls. Moreover, HCV-HCC patients showed highest values for both IL-10 and TGF-β, with significant difference compared with other groups. In addition, plasma IDO was positively correlated with TGF-β among all patients with HCV infection (r = 0.4509, P < 0.0001), with IL-10 in CHC patients (r = 0.4787, P = 0.0047), with TBil in HCV-Cirr patients (r = 0.4671; P = 0.0093). High level of IDO and TGF-β is associated with hepatocyte necrosis and intrahepatic inflammation, and may be used as an index of disease progression for patients with chronic HCV infection.
Collapse
Affiliation(s)
- Ruonan Yang
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, P.R. China
| | - Nan Gao
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, P.R. China
| | - Qian Chang
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, P.R. China
| | - Xianchun Meng
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, P.R. China
| | - Wanhai Wang
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, P.R. China
| |
Collapse
|
10
|
Zhang J, Chen J, Newton GK, Perrior TR, Robinson C. Allergen Delivery Inhibitors: A Rationale for Targeting Sentinel Innate Immune Signaling of Group 1 House Dust Mite Allergens through Structure-Based Protease Inhibitor Design. Mol Pharmacol 2018; 94:1007-1030. [PMID: 29976563 PMCID: PMC6064784 DOI: 10.1124/mol.118.112730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022] Open
Abstract
Diverse evidence from epidemiologic surveys and investigations into the molecular basis of allergenicity have revealed that a small cadre of "initiator" allergens promote the development of allergic diseases, such as asthma, allergic rhinitis, and atopic dermatitis. Pre-eminent among these initiators are the group 1 allergens from house dust mites (HDM). In mites, group 1 allergens function as cysteine peptidase digestive enzymes to which humans are exposed by inhalation of HDM fecal pellets. Their protease nature confers the ability to activate high gain signaling mechanisms which promote innate immune responses, leading to the persistence of allergic sensitization. An important feature of this process is that the initiator drives responses both to itself and to unrelated allergens lacking these properties through a process of collateral priming. The clinical significance of group 1 HDM allergens in disease, their serodominance as allergens, and their IgE-independent bioactivities in innate immunity make these allergens interesting therapeutic targets in the design of new small-molecule interventions in allergic disease. The attraction of this new approach is that it offers a powerful, root-cause-level intervention from which beneficial effects can be anticipated by interference in a wide range of effector pathways associated with these complex diseases. This review addresses the general background to HDM allergens and the validation of group 1 as putative targets. We then discuss structure-based drug design of the first-in-class representatives of allergen delivery inhibitors aimed at neutralizing the proteolytic effects of HDM group 1 allergens, which are essential to the development and maintenance of allergic diseases.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Jie Chen
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Gary K Newton
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Trevor R Perrior
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Clive Robinson
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| |
Collapse
|
11
|
Richards T, Brin E. Cell based functional assays for IDO1 inhibitor screening and characterization. Oncotarget 2018; 9:30814-30820. [PMID: 30112109 PMCID: PMC6089395 DOI: 10.18632/oncotarget.25720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a new immune-oncology target and its inhibitors have shown promise in the clinic especially in combination with other immune-stimulating agents. Here we describe two robust cell-based assays for screening IDO1 inhibitors. Both assays can be easily adopted by most laboratories and utilized for screening of IDO1 inhibitors. Endogenous IDO1 expression is induced in a cancer cell line with interferon gamma and its activity is assessed by measuring kynurenine secreted into the media. The effect of cancer cell IDO1 induction and inhibition on T cell activation is evaluated in a co-culture assay using Jurkat T cell line. Additional readouts assessing cell viability are employed for early detection of false positive IDO1 inhibitors and toxic compounds. Clinical candidates epacadostat and BMS-986205 were evaluated in the assays as control compounds, the former can completely inhibit IDO1 activity while the maximum effect of the later is limited (to about 80% in our system) consistent with the differences in their interaction with IDO1. Nanomolar concentrations of both compounds rescued IDO1 mediated inhibition of T cell activation. However, treatment with micromolar concentrations of BMS-986205 blocked Jurkat T cell activation and after prolonged incubation induced cell death.
Collapse
Affiliation(s)
| | - Elena Brin
- Polaris Pharmaceuticals, San Diego, CA, USA
| |
Collapse
|
12
|
Johnson BA, Yarchoan M, Lee V, Laheru DA, Jaffee EM. Strategies for Increasing Pancreatic Tumor Immunogenicity. Clin Cancer Res 2018; 23:1656-1669. [PMID: 28373364 DOI: 10.1158/1078-0432.ccr-16-2318] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022]
Abstract
Immunotherapy has changed the standard of care for multiple deadly cancers, including lung, head and neck, gastric, and some colorectal cancers. However, single-agent immunotherapy has had little effect in pancreatic ductal adenocarcinoma (PDAC). Increasing evidence suggests that the PDAC microenvironment is comprised of an intricate network of signals between immune cells, PDAC cells, and stroma, resulting in an immunosuppressive environment resistant to single-agent immunotherapies. In this review, we discuss differences between immunotherapy-sensitive cancers and PDAC, the complex interactions between PDAC stroma and suppressive tumor-infiltrating cells that facilitate PDAC development and progression, the immunologic targets within these complex networks that are druggable, and data supporting combination drug approaches that modulate multiple PDAC signals, which should lead to improved clinical outcomes. Clin Cancer Res; 23(7); 1656-69. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."
Collapse
Affiliation(s)
- Burles A Johnson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Valerie Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Daniel A Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland. .,Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
13
|
Mangaonkar A, Mondal AK, Fulzule S, Pundkar C, Park EJ, Jillella A, Kota V, Xu H, Savage NM, Shi H, Munn D, Kolhe R. A novel immunohistochemical score to predict early mortality in acute myeloid leukemia patients based on indoleamine 2,3 dioxygenase expression. Sci Rep 2017; 7:12892. [PMID: 29038460 PMCID: PMC5643528 DOI: 10.1038/s41598-017-12940-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Indoleamine 2,3 dioxygenase-1 (IDO-1) is an enzyme in the kynurenine pathway which augments tumor-induced immune tolerance. Previous studies in childhood acute myeloid leukemia (AML) have shown a negative correlation of IDO-1 mRNA expression with outcomes. The aim of our study was to develop a practical and objective immunohistochemical technique to quantify IDO-1 expression on diagnostic bone marrow biopsies of AML patients in order to facilitate its use in routine clinical practice. IDO-1 mRNA was extracted from diagnostic bone marrow specimens from 29 AML patients. IDO-1 protein expression was assessed in 40 cases via immunohistochemistry and quantified by a novel ‘composite IDO-1 score’. In a univariate analysis, higher age (p = 0.0018), male gender (p = 0.019), high risk cytogenetics (p = 0.002), higher IDO-1 mRNA (p = 0.005), higher composite IDO-1 score (p < 0.0001) and not undergoing allogeneic stem cell transplant (SCT, p = 0.0005) predicted poor overall survival. In a multivariate model that included the aforementioned variables, higher composite IDO-1 score (p = 0.007) and not undergoing allogeneic SCT (p = 0.007) was found to significantly predict poor outcomes. Further, patients who failed induction had higher composite IDO-1 score (p = 0.01). In conclusion, ‘composite IDO-1 score’ is a prognostic tool that can help identify a certain subset of AML patients with ‘early mortality’. This unique subset of patients can potentially benefit from specific IDO-1 inhibitor therapy, currently in clinical trials.
Collapse
Affiliation(s)
| | - Ashis Kumar Mondal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, USA
| | - Sadanand Fulzule
- Department of Orthopedics, Medical College of Georgia at Augusta University, Augusta, USA
| | - Chetan Pundkar
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, USA
| | - Eun Jeong Park
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, USA
| | - Anand Jillella
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, USA
| | - Vamsi Kota
- Department of Hematology and Medical Oncology, Emory University, Atlanta, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, USA
| | - Natasha M Savage
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, USA
| | - David Munn
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, USA.,Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, USA.
| |
Collapse
|
14
|
Fayyad-Kazan M, Najar M, Fayyad-Kazan H, Raicevic G, Lagneaux L. Identification and Evaluation of New Immunoregulatory Genes in Mesenchymal Stromal Cells of Different Origins: Comparison of Normal and Inflammatory Conditions. Med Sci Monit Basic Res 2017; 23:87-96. [PMID: 28336906 PMCID: PMC5378277 DOI: 10.12659/msmbr.903518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) possess potent immunomodulatory properties that increase their value as a cell-based therapeutic tool for managing various immune-based disorders. Over the past years, accumulated results from trials using MSCs-based therapy have shown substantial contradictions. Although the reasons underlying these discrepancies are still not completely understood, it is well known that the immunomodulatory activities mediated by distinct MSCs differ in a manner dependent on their tissue origin and adequate response to inflammation priming. Thus, characterization of new molecular pathway(s) through which distinct MSC populations can exert their immunomodulatory effects, particularly during inflammation, will undoubtedly enhance their therapeutic potential. Material/Methods After confirming their compliance with ISCT criteria, quantitative real time-PCR (qRT-PCR) was used to screen new immunoregulatory genes in MSCs, derived from adipose tissue, foreskin, Wharton’s jelly or the bone-marrow, after being cultivated under normal and inflammatory conditions. Results FGL2, GAL, SEMA4D, SEMA7A, and IDO1 genes appeared to be differentially transcribed in the different MSC populations. Moreover, these genes were not similarly modulated following MSCs-exposure to inflammatory signals. Conclusions Our observations suggest that these identified immunoregulatory genes may be considered as potential candidates to be targeted in order to enhance the immunomodulatory properties of MSCs towards more efficient clinical use.
Collapse
Affiliation(s)
- Mohammad Fayyad-Kazan
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| |
Collapse
|
15
|
Eminel S, Jin N, Rostami M, Dibbert S, Mrowietz U, Suhrkamp I. Dimethyl- and monomethylfumarate regulate indoleamine 2,3-dioxygenase (IDO) activity in human immune cells. Exp Dermatol 2016; 26:685-690. [DOI: 10.1111/exd.13138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Sevgi Eminel
- Psoriasis-Center; Department of Dermatology; University Medical Center Schleswig- Holstein; Kiel Germany
| | - Na Jin
- Psoriasis-Center; Department of Dermatology; University Medical Center Schleswig- Holstein; Kiel Germany
| | - Martin Rostami
- Psoriasis-Center; Department of Dermatology; University Medical Center Schleswig- Holstein; Kiel Germany
| | - Stefan Dibbert
- Psoriasis-Center; Department of Dermatology; University Medical Center Schleswig- Holstein; Kiel Germany
| | - Ulrich Mrowietz
- Psoriasis-Center; Department of Dermatology; University Medical Center Schleswig- Holstein; Kiel Germany
| | - Ina Suhrkamp
- Psoriasis-Center; Department of Dermatology; University Medical Center Schleswig- Holstein; Kiel Germany
| |
Collapse
|
16
|
Expression Pattern and Clinicopathological Relevance of the Indoleamine 2,3-Dioxygenase 1/Tryptophan 2,3-Dioxygenase Protein in Colorectal Cancer. DISEASE MARKERS 2016; 2016:8169724. [PMID: 27578919 PMCID: PMC4992785 DOI: 10.1155/2016/8169724] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/03/2016] [Indexed: 02/08/2023]
Abstract
Aims. Cancer cells use the indoleamine 2,3-dioxygenase 1 (IDO1) pathway to suppress the host's immune response in order to facilitate survival, growth, invasion, and metastasis of malignant cells. Higher IDO1 expression was shown to be involved in colorectal cancer (CRC) progression and to be correlated with impaired clinical outcome. However, the potential correlation between the expression of IDO1 in a CRC population with a low mutation rate of the APC gene remains unknown. Material and Methods. Tissues and blood samples were collected from 192 CRC patients. The expressions of IDO1, tryptophan 2,3-dioxygenase (TDO2), and beta-catenin proteins were analyzed by immunohistochemistry. Microsatellite instability (MSI) was determined by PCR amplification of microsatellite loci. Results. The results showed that high IDO1 or TDO2 protein expression was associated with characteristics of more aggressive phenotypes of CRC. For the first time, they also revealed a positive correlation between the abnormal expression of beta-catenin and IDO1 or TDO2 proteins in a CRC population with a low mutation rate of APC. Conclusion. We concluded that an IDO1-regulated molecular pathway led to abnormal expression of beta-catenin in the nucleus/cytoplasm of CRC patients with low mutation rate of APC, making IDO1 an interesting target for immunotherapy in CRC.
Collapse
|
17
|
Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol 2016; 7:290. [PMID: 27531998 PMCID: PMC4970383 DOI: 10.3389/fimmu.2016.00290] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Collapse
Affiliation(s)
- Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University , Cleveland, OH , USA
| | - Ashley Trotter
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
18
|
de Aquino MTP, Malhotra A, Mishra MK, Shanker A. Challenges and future perspectives of T cell immunotherapy in cancer. Immunol Lett 2015; 166:117-33. [PMID: 26096822 PMCID: PMC4499494 DOI: 10.1016/j.imlet.2015.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/10/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Abstract
Since the formulation of the tumour immunosurveillance theory, considerable focus has been on enhancing the effectiveness of host antitumour immunity, particularly with respect to T cells. A cancer evades or alters the host immune response by various ways to ensure its development and survival. These include modifications of the immune cell metabolism and T cell signalling. An inhibitory cytokine milieu in the tumour microenvironment also leads to immune suppression and tumour progression within a host. This review traces the development in the field and attempts to summarize the hurdles that the approach of adoptive T cell immunotherapy against cancer faces, and discusses the conditions that must be improved to allow effective eradication of cancer.
Collapse
Affiliation(s)
- Maria Teresa P de Aquino
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anshu Malhotra
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Manoj K Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; Tumor-Host Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Blanco Ayala T, Lugo Huitrón R, Carmona Aparicio L, Ramírez Ortega D, González Esquivel D, Pedraza Chaverrí J, Pérez de la Cruz G, Ríos C, Schwarcz R, Pérez de la Cruz V. Alternative kynurenic acid synthesis routes studied in the rat cerebellum. Front Cell Neurosci 2015; 9:178. [PMID: 26041992 PMCID: PMC4435238 DOI: 10.3389/fncel.2015.00178] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/24/2015] [Indexed: 01/18/2023] Open
Abstract
Kynurenic acid (KYNA), an astrocyte-derived, endogenous antagonist of α7 nicotinic acetylcholine and excitatory amino acid receptors, regulates glutamatergic, GABAergic, cholinergic and dopaminergic neurotransmission in several regions of the rodent brain. Synthesis of KYNA in the brain and elsewhere is generally attributed to the enzymatic conversion of L-kynurenine (L-KYN) by kynurenine aminotransferases (KATs). However, alternative routes, including KYNA formation from D-kynurenine (D-KYN) by D-amino acid oxidase (DAAO) and the direct transformation of kynurenine to KYNA by reactive oxygen species (ROS), have been demonstrated in the rat brain. Using the rat cerebellum, a region of low KAT activity and high DAAO activity, the present experiments were designed to examine KYNA production from L-KYN or D-KYN by KAT and DAAO, respectively, and to investigate the effect of ROS on KYNA synthesis. In chemical combinatorial systems, both L-KYN and D-KYN interacted directly with peroxynitrite (ONOO(-)) and hydroxyl radicals (OH•), resulting in the formation of KYNA. In tissue homogenates, the non-specific KAT inhibitor aminooxyacetic acid (AOAA; 1 mM) reduced KYNA production from L-KYN and D-KYN by 85.1 ± 1.7% and 27.1 ± 4.5%, respectively. Addition of DAAO inhibitors (benzoic acid, kojic acid or 3-methylpyrazole-5-carboxylic acid; 5 μM each) attenuated KYNA formation from L-KYN and D-KYN by ~35% and ~66%, respectively. ONOO(-) (25 μM) potentiated KYNA production from both L-KYN and D-KYN, and these effects were reduced by DAAO inhibition. AOAA attenuated KYNA production from L-KYN + ONOO(-) but not from D-KYN + ONOO(-). In vivo, extracellular KYNA levels increased rapidly after perfusion of ONOO(-) and, more prominently, after subsequent perfusion with L-KYN or D-KYN (100 μM). Taken together, these results suggest that different mechanisms are involved in KYNA production in the rat cerebellum, and that, specifically, DAAO and ROS can function as alternative routes for KYNA production.
Collapse
Affiliation(s)
- Tonali Blanco Ayala
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A.México D.F., Mexico
| | - Rafael Lugo Huitrón
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A.México D.F., Mexico
| | | | - Daniela Ramírez Ortega
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A.México D.F., Mexico
| | - Dinora González Esquivel
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A.México D.F., Mexico
| | - José Pedraza Chaverrí
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de MéxicoMéxico D.F., Mexico
| | - Gonzalo Pérez de la Cruz
- Facultad de Ciencias, Departmento de Matemáticas, Universidad Nacional Autónoma de MéxicoMéxico D.F., Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A.México D.F., Mexico
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of MedicineBaltimore, MD, USA
| | - Verónica Pérez de la Cruz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A.México D.F., Mexico
| |
Collapse
|
20
|
Bischoff L, Alvarez S, Dai DL, Soukhatcheva G, Orban PC, Verchere CB. Cellular mechanisms of CCL22-mediated attenuation of autoimmune diabetes. THE JOURNAL OF IMMUNOLOGY 2015; 194:3054-64. [PMID: 25740943 DOI: 10.4049/jimmunol.1400567] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmune destruction of insulin-producing β cells in type 1 diabetes and islet transplantation involves a variety of immune pathways but is primarily mediated by self-reactive T cells. Chemokines can modulate local immune responses in inflammation and tumors by recruiting immune cells. We have reported that expression of the chemokine CCL22 in pancreatic β cells in the NOD mouse prevents autoimmune attack by recruiting T regulatory cells (Tregs), protecting mice from diabetes. In this study we show that invariant NKT cells are also recruited to CCL22-expressing islet transplants and are required for CCL22-mediated protection from autoimmunity. Moreover, CCL22 induces an influx of plasmacytoid dendritic cells, which correlates with higher levels of IDO in CCL22-expressing islet grafts. In addition to its chemotactic properties, we found that CCL22 activates Tregs and promotes their ability to induce expression of IDO by dendritic cells. Islet CCL22 expression thus produces a tolerogenic milieu through the interplay of Tregs, invariant NKT cells, and plasmacytoid dendritic cells, which results in suppression of effector T cell responses and protection of β cells. The immunomodulatory properties of CCL22 could be harnessed for prevention of graft rejection and type 1 diabetes as well as other autoimmune disorders.
Collapse
Affiliation(s)
- Loraine Bischoff
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Sigrid Alvarez
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Derek L Dai
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Galina Soukhatcheva
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Paul C Orban
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - C Bruce Verchere
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
21
|
Díez Zuluaga LS, Cardona Villa R, Restrepo Colorado MN, Sánchez Caraballo JM. Inmunoterapia con alérgenos, ¿cuándo y por qué? IATREIA 2014. [DOI: 10.17533/udea.iatreia.17755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
La inmunoterapia específica con alérgenos es el único tratamiento que modifica el curso natural de algunas enfermedades alérgicas como asma, rinitis, conjuntivitis, dermatitis atópica y alergia al veneno de himenópteros. Sin embargo, aún existe cierta controversia respecto a su seguridad y su utilidad clínica. En el presente artículo se presenta una revisión de los mecanismos moleculares, las indicaciones y contraindicaciones de dicha inmunoterapia, y se evalúan su seguridad y eficacia en cada una de estas enfermedades mediante casos ilustrativos y una breve revisión del tema.
Collapse
|
22
|
Lemos H, Huang L, McGaha T, Mellor AL. STING, nanoparticles, autoimmune disease and cancer: a novel paradigm for immunotherapy? Expert Rev Clin Immunol 2014; 11:155-65. [PMID: 25521938 DOI: 10.1586/1744666x.2015.995097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA has potent immunogenic properties that are useful to enhance vaccine efficacy. DNA also incites hyperinflammation and autoimmunity if DNA sensing is not regulated. Paradoxically, DNA regulates immunity and autoimmunity when administered systemically as DNA nanoparticles. DNA nanoparticles regulated immunity via cytosolic DNA sensors that activate the signaling adaptor stimulator of interferon genes. In this review, we describe how DNA sensing to activate stimulator of interferon genes promotes regulatory responses and discuss the biological and clinical implications of these responses for understanding disease progression and designing better therapies for patients with chronic inflammatory diseases, such as autoimmune syndromes or cancer.
Collapse
Affiliation(s)
- Henrique Lemos
- Cancer immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, 1120 15th St, Augusta GA 30912, USA
| | | | | | | |
Collapse
|
23
|
Jin GB, Winans B, Martin KC, Paige Lawrence B. New insights into the role of the aryl hydrocarbon receptor in the function of CD11c⁺ cells during respiratory viral infection. Eur J Immunol 2014; 44:1685-1698. [PMID: 24519489 DOI: 10.1002/eji.201343980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 01/06/2023]
Abstract
The aryl hydrocarbon receptor (AHR) has garnered considerable attention as a modulator of CD4(+) cell lineage development and function. It also regulates antiviral CD8(+) T-cell responses, but via indirect mechanisms that have yet to be determined. Here, we show that during acute influenza virus infection, AHR activation skews dendritic-cell (DC) subsets in the lung-draining lymph nodes, such that there are fewer conventional CD103(+) DCs and CD11b(+) DCs. Sorting DC subsets reveals AHR activation reduces immunostimulatory function of CD103(+) DCs in the mediastinal lymph nodes, and decreases their frequency in the lung. DNA-binding domain Ahr mutants demonstrate that alterations in DC subsets require the ligand-activated AHR to contain its inherent DNA-binding domain. To evaluate the intrinsic role of AHR in DCs, conditional knockouts were created using Cre-LoxP technology, which revealed that AHR in CD11c(+) cells plays a key role in controlling the acquisition of effector CD8(+) T cells in the infected lung. However, AHR within other leukocyte lineages contributes to diminished naïve CD8(+) T-cell activation in the draining lymphoid nodes. These findings indicate DCs are among the direct targets of AHR ligands in vivo, and AHR signaling modifies host responses to a common respiratory pathogen by affecting the complex interplay of multiple cell types.
Collapse
Affiliation(s)
- Guang-Bi Jin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kyle C Martin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
24
|
Reynolds G, Cooles FAH, Isaacs JD, Hilkens CMU. Emerging immunotherapies for rheumatoid arthritis. Hum Vaccin Immunother 2014; 10:822-37. [PMID: 24535556 DOI: 10.4161/hv.27910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Novel treatments in development for rheumatoid arthritis target 3 broad areas: cytokines, cells, and signaling pathways. Therapies from each domain share common advantages (for example previously demonstrated efficacy, potential long-term immunomodulation, and oral administration respectively) that have stimulated research in each area but also common obstacles to their development. In this review recent progress in each area will be discussed alongside the factors that have impeded their path to clinical use.
Collapse
Affiliation(s)
- Gary Reynolds
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - Faye A H Cooles
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - John D Isaacs
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| | - Catharien M U Hilkens
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| |
Collapse
|
25
|
Cavia-Saiz M, Muñiz Rodríguez P, Llorente Ayala B, García-González M, Coma-Del Corral MJ, García Girón C. The role of plasma IDO activity as a diagnostic marker of patients with colorectal cancer. Mol Biol Rep 2014; 41:2275-9. [PMID: 24435977 DOI: 10.1007/s11033-014-3080-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 01/04/2014] [Indexed: 12/23/2022]
Abstract
High levels of indoleamine 2,3-dioxygenase (IDO) are involved in tumour escape mechanisms. The aim of this study is the evaluation of L-kynurenine of plasma as marker of diagnostic and prognostic in patients with colorectal cancer. The study included 78 patients with colorectal cancer, of whom 15 % were in stage I/II, 30 % in stage III, and 55 % in stage IV, and was compared with a control group of 70 healthy subjects. The receiver operating characteristic (ROC) curve analysis showed an area under the curve of 0.917, with a specificity of 100 % and with a sensitivity to detect cancer of the colon of 85.2 %, taking 1.83 μM as a cut-off point. The overall survival analysis also indicated that patients with low levels of L-kynurenine in plasma increased survival rate after 45 months of follow-up (P = 0.032). These results show that the plasma levels of L-kynurenine could be a good biomarker to differentiate individuals with colorectal cancer from healthy individuals.
Collapse
Affiliation(s)
- M Cavia-Saiz
- Research Unit, University Hospital of Burgos, Burgos, Spain,
| | | | | | | | | | | |
Collapse
|
26
|
A method for the determination of D-kynurenine in biological tissues. Anal Bioanal Chem 2013; 405:9747-54. [PMID: 24158577 DOI: 10.1007/s00216-013-7399-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 02/02/2023]
Abstract
D-kynurenine (D-KYN), a metabolite of D-tryptophan, can serve as the bioprecursor of kynurenic acid (KYNA) and 3-hydroxykynurenine, two neuroactive compounds that are believed to play a role in the pathophysiology of several neurological and psychiatric diseases. In order to investigate the possible presence of D-KYN in biological tissues, we developed a novel assay based on the conversion of D-KYN to KYNA by purified D-amino acid oxidase (D-AAO). Samples were incubated with D-AAO under optimal conditions for measuring D-AAO activity (100 mM borate buffer, pH 9.0), and newly produced KYNA was detected by high-performance liquid chromatography (HPLC) with fluorimetric detection. The detection limit for D-KYN was 300 fmol, and linearity of the assay was ascertained up to 300 pmol. No assay interference was noted when other D-amino acids, including D-serine and D-aspartate, were present in the incubation mixture at 50-fold higher concentrations than D-KYN. Using this new method, D-KYN was readily detected in the brain, liver, and plasma of mice treated systemically with D-KYN (300 mg/kg). In these experiments, enantioselectivity was confirmed by determining total kynurenine levels in the same samples using a conventional HPLC assay. Availability of a sensitive, specific, and simple method for D-KYN measurement will be instrumental for evaluating whether D-KYN should be considered for a role in physiology and pathology.
Collapse
|
27
|
Li Y, Kilani RT, Rahmani-Neishaboor E, Jalili RB, Ghahary A. Kynurenine increases matrix metalloproteinase-1 and -3 expression in cultured dermal fibroblasts and improves scarring in vivo. J Invest Dermatol 2013; 134:643-650. [PMID: 23877570 DOI: 10.1038/jid.2013.303] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that the formation of hypertrophic scarring on the wounds of a rabbit ear fibrotic model was significantly reduced by grafting a bilayer skin substitute expressing indoleamine 2,3-dioxygenase (IDO). Here, we hypothesize that the improved healing quality is due to extracellular matrix modulatory effect of IDO-mediated tryptophan metabolites. To test this hypothesis, a series of in vitro and in vivo experiments were conducted and the findings revealed a significant increase in the expression of matrix metalloproteinase 1 (MMP-1) in fibroblasts either transduced with human IDO gene or cultured with conditioned media obtained from IDO-expressing cells. Consistent with this finding, kynurenine (Kyn) treatment markedly increased the levels of MMP-1 and MMP-3 expression through activation of the MEK (mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase)-ERK1/2 MAPK signaling pathway. On the other hand, Kyn significantly suppressed the expression of type I collagen in fibroblasts as compared with that of control. To test the anti-fibrogenic effect of Kyn in an in vivo model, rabbit ear fibrotic wounds were topically treated with cream containing 50 μg Kyn per l00 μl of cream per wound. The result showed a marked improvement in scar formation relative to the controls. These findings collectively suggest that Kyn can potentially be used as an anti-fibrogenic agent for treating hypertrophic scarring.
Collapse
Affiliation(s)
- Yunyuan Li
- Department of Surgery, BC Professional Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ruhangiz T Kilani
- Department of Surgery, BC Professional Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elham Rahmani-Neishaboor
- Department of Surgery, BC Professional Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza B Jalili
- Department of Surgery, BC Professional Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aziz Ghahary
- Department of Surgery, BC Professional Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
28
|
Tung J, Sant AJ. Orchestration of CD4 T cell epitope preferences after multipeptide immunization. THE JOURNAL OF IMMUNOLOGY 2013; 191:764-72. [PMID: 23772029 DOI: 10.4049/jimmunol.1300312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A detailed understanding of the molecular and cellular mechanisms that underlie epitope preferences in T cell priming is important for vaccines designed to elicit a broad T cell response. Protein vaccinations generally elicit CD4 T cell responses that are skewed toward a small fraction of epitopes, a phenomenon known as immunodominance. This characteristic of T cell responses, which limits the diversity of CD4 T cell recognition, is generally attributed to intracellular Ag processing. However, we recently discovered that immunodominance hierarchies persist even after vaccination with synthetic peptides. In this study, we probed the regulatory mechanisms that cause diminished CD4 T cell responses to subdominant peptides after such multipeptide immunization in mice. We have found that the delivery of subdominant and dominant epitopes on separate dendritic cells rescues expansion of less favored CD4 T cells. Furthermore, through the use of genetic models and inhibitors, we have found that selective losses in CD4 T cell responses are mediated by an IFN-γ-induced pathway, involving IDO, and that regulatory T cell activities may also regulate preferences in CD4 T cell specificity. We propose that after multipeptide immunization, the expansion and differentiation of dominant T cells initiate complex regulatory events that determine the final peptide specificity of the elicited CD4 T cell response.
Collapse
Affiliation(s)
- Jacqueline Tung
- David H Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
29
|
Roy S, Barik S, Banerjee S, Bhuniya A, Pal S, Basu P, Biswas J, Goswami S, Chakraborty T, Bose A, Baral R. Neem leaf glycoprotein overcomes indoleamine 2,3 dioxygenase mediated tolerance in dendritic cells by attenuating hyperactive regulatory T cells in cervical cancer stage IIIB patients. Hum Immunol 2013; 74:1015-23. [PMID: 23628394 DOI: 10.1016/j.humimm.2013.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/12/2013] [Accepted: 04/10/2013] [Indexed: 12/20/2022]
Abstract
Tolerogenic dendritic cells (DCs) are a subset of DCs characterized by abundant indoleamine 2,3 dioxygenase (IDO) expressions. IDO may be co-operatively induced in DCs by regulatory T (Tregs) cells and various DC maturation agents. Tregs are markedly amplified in the physiological system of cancer patients, inducing over tolerance in DCs that leads to the hyper accumulation of immunosuppressive IDO in tumor microenvironment, thereby, hampering anti-tumor immunity. Consequently, a major focus of current immunotherapeutic strategies in cancer is to minimize IDO, which is possible by reducing Tregs and using various IDO inhibitors. Neem leaf glycoprotein (NLGP), a natural and nontoxic immunomodulator, demonstrated several unique immunoregulatory activities. Noteworthy activities of NLGP are to mature DCs and to inhibit Tregs. As Tregs are inducer of IDO in DCs and hyperactive Tregs is a hallmark of cancer, we anticipated that NLGP might abrogate IDO induction in DCs by inhibiting Tregs. Evidences are presented here that in a co-culture of DCs and Tregs isolated from cervical cancer stage IIIB (CaCx-IIIB) patients, NLGP does inhibit IDO induction in DCs by curtailing the over expression of Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) on Tregs and concomitantly induces optimal DC maturation. In contrast, in the presence of LPS as maturation agent the DCs displays a tolerogenic profile. This finding suggests the reduction of tolerogenecity of DCs in CaCx-IIIB patients by reducing the IDO pool using NLGP. Accordingly, this study sheds more light on the diverse immunomodulatory repertoire of NLGP.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Departmant of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700026, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Alberts-Grill N, Denning TL, Rezvan A, Jo H. The role of the vascular dendritic cell network in atherosclerosis. Am J Physiol Cell Physiol 2013; 305:C1-21. [PMID: 23552284 DOI: 10.1152/ajpcell.00017.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A complex role has been described for dendritic cells (DCs) in the potentiation and control of vascular inflammation and atherosclerosis. Resident vascular DCs are found in the intima of atherosclerosis-prone vascular regions exposed to disturbed blood flow patterns. Several phenotypically and functionally distinct vascular DC subsets have been described. The functional heterogeneity of these cells and their contributions to vascular homeostasis, inflammation, and atherosclerosis are only recently beginning to emerge. Here, we review the available literature, characterizing the origin and function of known vascular DC subsets and their important role contributing to the balance of immune activation and immune tolerance governing vascular homeostasis under healthy conditions. We then discuss how homeostatic DC functions are disrupted during atherogenesis, leading to atherosclerosis. The effectiveness of DC-based "atherosclerosis vaccine" therapies in the treatment of atherosclerosis is also reviewed. We further provide suggestions for distinguishing DCs from macrophages and discuss important future directions for the field.
Collapse
Affiliation(s)
- Noah Alberts-Grill
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
31
|
Harden JL, Egilmez NK. Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol Invest 2013; 41:738-64. [PMID: 23017144 DOI: 10.3109/08820139.2012.676122] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This article summarizes the molecular and cellular mechanisms that regulate the activity of indoleamine 2,3-dioxygenase (IDO), a potent immune-suppressive enzyme, in dendritic cells (DCs). Specific attention is given to differential up-regulation of IDO in distinct DC subsets, its function in immune homeostasis/autoimmunity, infection and cancer; and the associated immunological outcomes. The review will conclude with a discussion of the poorly defined mechanisms that mediate the long-term maintenance of IDO-expression in response to inflammatory stimuli and how selective modulation of IDO activity may be used in the treatment of disease.
Collapse
Affiliation(s)
- Jamie L Harden
- The State University of New York at Buffalo, Buffalo, New York 14214, USA.
| | | |
Collapse
|
32
|
McGaha TL, Huang L, Lemos H, Metz R, Mautino M, Prendergast GC, Mellor AL. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol Rev 2013; 249:135-57. [PMID: 22889220 DOI: 10.1111/j.1600-065x.2012.01149.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field.
Collapse
Affiliation(s)
- Tracy L McGaha
- Immunotherapy Center, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Ye J, Liu H, Hu Y, Li P, Zhang G, Li Y. Tumoral indoleamine 2,3-dioxygenase expression predicts poor outcome in laryngeal squamous cell carcinoma. Virchows Arch 2012. [DOI: 10.1007/s00428-012-1340-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Bassal NK, Hughes BP, Costabile M. Arachidonic acid and its COX1/2 metabolites inhibit interferon-γ mediated induction of indoleamine-2,3 dioxygenase in THP-1 cells and human monocytes. Prostaglandins Leukot Essent Fatty Acids 2012; 87:119-26. [PMID: 22947424 DOI: 10.1016/j.plefa.2012.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 02/05/2023]
Abstract
Using human acute monocytic leukaemic THP-1 cells and human primary monocytes, this study examined the ability of arachidonic acid (AA) to modulate the activity of the IFNγ signalling cascade and its downstream effector indoleamine 2,3-dioxygenase (IDO). We established that AA inhibited IDO enzyme activity with an IC(50) of 20 μM in THP-1 cells and 12 μM in monocytes, and this was due to reduced expression of INDO1 mRNA and reduced level of IDO protein. Further mechanistic analysis revealed that AA interfered with the transcriptional function of the IFNγ signalling pathway by reducing phosphorylation of signal transducer and activator of transcription (STAT1) on tyrosine 701. The importance of AA metabolism via the COX and LOX pathways was investigated using inhibitors. Indomethacin, but not nordihydroguaiaretic acid, prevented the AA-mediated inhibition of STAT1 phosphorylation and thereby IDO enzymatic activity in THP-1 cells and monocytes. This is the first study to demonstrate that AA inhibits the IFNγ/STAT/IDO pathway, and this function is mediated by COX1/2 produced metabolites of AA. We now have evidence demonstrating that the AA metabolites, prostaglandins A(2) and D(2,) were highly inhibitory towards the IFNγ pathway, while prostaglandin E(2) had no effect. Together, these results indicate that the fatty acid AA has the potential to modulate the immunosuppressive activity of IDO and may form the basis of novel inhibitory compounds.
Collapse
Affiliation(s)
- Nesrine Kamal Bassal
- University of South Australia, School of Pharmacy and Medical Sciences, North Terrace, Adelaide 5000 Australia
| | | | | |
Collapse
|
35
|
Littrell JL. Taking the Perspective that a Depressive State Reflects Inflammation: Implications for the Use of Antidepressants. Front Psychol 2012; 3:297. [PMID: 22912626 PMCID: PMC3421432 DOI: 10.3389/fpsyg.2012.00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/30/2012] [Indexed: 12/30/2022] Open
Abstract
This paper reviews both the evidence that supports the characterization of depression as an inflammatory disorder and the different biochemical mechanisms that have been postulated for the connection between inflammation and depression. This association offers credible explanation for the short term efficacy of antidepressants, which have short term anti-inflammatory effects. Evidence for those anti-inflammatory effects is discussed. Evidence of the contrary long-term effects of antidepressants, which increase rather than decrease inflammation, is also reviewed. It is argued that this increase in inflammation would predict an increase in chronicity among depressed patients that have been treated with antidepressants drugs, which has been noted in the literature. A brief discussion of alternatives for decreasing inflammation, some of which have demonstrated efficacy in ameliorating depression, is presented.
Collapse
|
36
|
Döring Y, Zernecke A. Plasmacytoid dendritic cells in atherosclerosis. Front Physiol 2012; 3:230. [PMID: 22754539 PMCID: PMC3385355 DOI: 10.3389/fphys.2012.00230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of the vessel wall and the underlying cause of cardiovascular disease, is initiated and maintained by innate and adaptive immunity. Accumulating evidence suggests an important contribution of autoimmune responses to this disease. Plasmacytoid dendritic cells (pDCs), a specialized cell type known to produce large amounts of type I interferons (IFNs) in response to bacterial and viral infections, have recently been revealed to play important roles in atherosclerosis. For example, the development of autoimmune complexes consisting of self-DNA and antimicrobial peptides, which trigger chronic type I IFN production by pDCs, promote early atherosclerotic lesion formation. pDCs and pDC-derived type I IFNs can also induce the maturation of conventional DCs and macrophages, and the development of autoreactive B cells and antibody production. These mechanisms, known to play a role in the pathogenesis of other autoimmune diseases such as systemic lupus erythematosus and psoriasis, may also affect the development and progression of atherosclerotic lesion formation. This review discusses emerging evidence showing a contribution of pDCs in the onset and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich Munich, Germany
| | | |
Collapse
|
37
|
Towards curative cancer immunotherapy: overcoming posttherapy tumor escape. Clin Dev Immunol 2012; 2012:124187. [PMID: 22778760 PMCID: PMC3386616 DOI: 10.1155/2012/124187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023]
Abstract
The past decade has witnessed the evolvement of cancer immunotherapy as an increasingly effective therapeutic modality, evidenced by the approval of two immune-based products by the FDA, that is, the cancer vaccine Provenge (sipuleucel-T) for prostate cancer and the antagonist antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) ipilimumab for advanced melanoma. In addition, the clinical evaluations of a variety of promising immunotherapy drugs are well under way. Benefiting from more efficacious immunotherapeutic agents and treatment strategies, a number of recent clinical studies have achieved unprecedented therapeutic outcomes in some patients with certain types of cancers. Despite these advances, however, the efficacy of most cancer immunotherapies currently under clinical development has been modest. A recurring scenario is that therapeutic maneuvers initially led to measurable antitumor immune responses in cancer patients but ultimately failed to improve patient outcomes. It is increasingly recognized that tumor cells can antagonize therapy-induced immune attacks through a variety of counterregulation mechanisms, which represent a fundamental barrier to the success of cancer immunotherapy. Herein we summarize the findings from some recent preclinical and clinical studies, focusing on how tumor cells advance their survival and expansion by hijacking therapy-induced immune effector mechanisms that would otherwise mediate their destruction.
Collapse
|
38
|
Huang L, Lemos HP, Li L, Li M, Chandler PR, Baban B, McGaha TL, Ravishankar B, Lee JR, Munn DH, Mellor AL. Engineering DNA nanoparticles as immunomodulatory reagents that activate regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:4913-20. [PMID: 22516958 DOI: 10.4049/jimmunol.1103668] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nanoparticles containing DNA complexed with the cationic polymer polyethylenimine are efficient vehicles to transduce DNA into cells and organisms. DNA/polyethylenimine nanoparticles (DNPs) also elicit rapid and systemic release of proinflammatory cytokines that promote antitumor immunity. In this study, we report that DNPs possess previously unrecognized immunomodulatory attributes due to rapid upregulation of IDO enzyme activity in lymphoid tissues of mice. IDO induction in response to DNP treatment caused dendritic cells and regulatory T cells (Tregs) to acquire potent regulatory phenotypes. As expected, DNP treatment stimulated rapid increase in serum levels of IFN type I (IFN-αβ) and II (IFN-γ), which are both potent IDO inducers. IDO-mediated Treg activation was dependent on IFN type I receptor signaling, whereas IFN-γ receptor signaling was not essential for this response. Moreover, systemic IFN-γ release was caused by TLR9-dependent activation of NK cells, whereas TLR9 signaling was not required for IFN-αβ release. Accordingly, DNPs lacking immunostimulatory TLR9 ligands in DNA stimulated IFN-αβ production, induced IDO, and promoted regulatory outcomes, but did not stimulate potentially toxic, systemic release of IFN-γ. DNP treatment to induce IDO and activate Tregs blocked Ag-specific T cell responses elicited in vivo following immunization and suppressed joint pathology in a model of immune-mediated arthritis. Thus, DNPs lacking TLR9 ligands may be safe and effective reagents to protect healthy tissues from immune-mediated destruction in clinical hyperimmune syndromes.
Collapse
Affiliation(s)
- Lei Huang
- Immunotherapy Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xin L, Shelite TR, Gong B, Mendell NL, Soong L, Fang R, Walker DH. Systemic treatment with CpG-B after sublethal rickettsial infection induces mouse death through indoleamine 2,3-dioxygenase (IDO). PLoS One 2012; 7:e34062. [PMID: 22470514 PMCID: PMC3314704 DOI: 10.1371/journal.pone.0034062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/25/2012] [Indexed: 11/21/2022] Open
Abstract
Due to its strong immune stimulatory effects through TLR9, CpG-containing oligodeoxynucleotides (CpG ODN) have been tested in multiple clinical trials as vaccine adjuvant for infectious diseases and cancer. However, immune suppression induced by systemic administration of CpGs has been reported recently. In this study, we evaluated the impact of CpGs in an acute rickettsiosis model. We found that systemic treatment with type B CpG (CpG-B), but not type A CpG (CpG-A), at 2 days after sublethal R. australis infection induced mouse death. Although wild-type (WT) B6 and IDO−/− mice showed similar survival rates with three different doses of R. australis infection, treatment with CpG-B after sublethal infection consistently induced higher mortality with greater tissue bacterial loads in WT but not IDO−/− mice. Also, CpG-B treatment promoted the development of higher serum concentrations of proinflammatory cytokines/chemokines through IDO. Furthermore, while T cell-mediated immune responses enhanced by CpG-B were independent of IDO, treatment with CpG-B promoted T cell activation, PD-1 expression and cell apoptosis partially through IDO. A depletion study using anti-mPDCA-1 mAb indicated that plasmacytoid dendritic cells (pDC) were not required for CpG-B-induced death of R. australis-infected mice. Additionally, the results in iNOS−/− mice suggested that nitric oxide (NO) was partially involved in CpG-B-induced death of R. australis-infected mice. Surprisingly, pre-treatment with CpG-B before administration of a lethal dose of R. australis provided effective immunity in WT, IDO−/− and iNOS−/− mice. Taken together, our study provides evidence that CpGs exert complex immunological effects by both IDO-dependent and -independent mechanisms, and that systemic treatment with CpGs before or after infection has a significant and distinct impact on disease outcomes.
Collapse
Affiliation(s)
- Lijun Xin
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas R. Shelite
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bin Gong
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nicole L. Mendell
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rong Fang
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Kynurenic acid and 3-hydroxykynurenine production from D-kynurenine in mice. Brain Res 2012; 1455:1-9. [PMID: 22498176 DOI: 10.1016/j.brainres.2012.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/06/2012] [Accepted: 03/12/2012] [Indexed: 02/02/2023]
Abstract
Kynurenic acid (KYNA), an antagonist of the α7 nicotinic acetylcholine receptor and the N-methyl-D-aspartate receptor, and 3-hydroxykynurenine (3-HK), a generator of reactive oxygen species, are neuroactive metabolites of the kynurenine pathway of tryptophan degradation. In the mammalian brain as elsewhere, both compounds derive from a common bioprecursor, L-kynurenine (L-KYN). Recent studies in rats demonstrated that D-kynurenine (D-KYN), a metabolite of the bacterial amino acid D-tryptophan, can also function as a bioprecursor of brain KYNA. We now investigated the conversion of systemically administered D-KYN to KYNA in mice and also explored the possible production of 3-HK in the same animals. Thirty min after an injection of D-KYN or L-KYN (30 mg/kg, i.p.), newly produced KYNA and 3-HK were recovered from plasma, liver, forebrain and cerebellum in all cases. Using a new chiral separation method, 3-HK produced from D-KYN was positively identified as D-3-HK. L-KYN was the more effective precursor of KYNA in all tissues and also exceeded D-KYN as a precursor of brain 3-HK. In contrast, D-KYN was more potent as a precursor of 3-HK in the liver. The production of both KYNA and 3-HK from D-KYN was rapid in all tissues, peaking at 15-30 min following a systemic injection of D-KYN. These results show that biosynthetic routes other than those classically ascribed to L-KYN can account for the synthesis of both KYNA and 3-HK in vivo. This new insight may be of significant physiological or pathological relevance.
Collapse
|
41
|
Cytokine-like factor 1 gene expression is enriched in idiopathic pulmonary fibrosis and drives the accumulation of CD4+ T cells in murine lungs: evidence for an antifibrotic role in bleomycin injury. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1963-78. [PMID: 22429962 DOI: 10.1016/j.ajpath.2012.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 11/22/2011] [Accepted: 01/20/2012] [Indexed: 11/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and typically fatal lung disease. To gain insight into the pathogenesis of IPF, we reanalyzed our previously published gene expression data profiling IPF lungs. Cytokine receptor-like factor 1 (CRLF1) was among the most highly up-regulated genes in IPF lungs, compared with normal controls. The protein product (CLF-1) and its partner, cardiotrophin-like cytokine (CLC), function as members of the interleukin 6 (IL-6) family of cytokines. Because of earlier work implicating IL-6 family members in IPF pathogenesis, we tested whether CLF-1 expression contributes to inflammation in experimental pulmonary fibrosis. In IPF, we detected CLF-1 expression in both type II alveolar epithelial cells and macrophages. We found that the receptor for CLF-1/CLC signaling, ciliary neurotrophic factor receptor (CNTFR), was expressed only in type II alveolar epithelial cells. Administration of CLF-1/CLC to both uninjured and bleomycin-injured mice led to the pulmonary accumulation of CD4(+) T cells. We also found that CLF-1/CLC administration increased inflammation but decreased pulmonary fibrosis. CLF-1/CLC leads to significantly enriched expression of T-cell-derived chemokines and cytokines, including the antifibrotic cytokine interferon-γ. We propose that, in IPF, CLF-1 is a selective stimulus of type II alveolar epithelial cells and may potentially drive an antifibrotic response by augmenting both T-helper-1-driven and T-regulatory-cell-driven inflammatory responses in the lung.
Collapse
|
42
|
Pérez-de la Cruz V, Amori L, Sathyasaikumar KV, Wang XD, Notarangelo FM, Wu HQ, Schwarcz R. Enzymatic transamination of D-kynurenine generates kynurenic acid in rat and human brain. J Neurochem 2012; 120:1026-35. [PMID: 22224417 DOI: 10.1111/j.1471-4159.2012.07653.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the mammalian brain, the α7 nicotinic and NMDA receptor antagonist kynurenic acid is synthesized by irreversible enzymatic transamination of the tryptophan metabolite l-kynurenine. d-kynurenine, too, serves as a bioprecursor of kynurenic acid in several organs including the brain, but the conversion is reportedly catalyzed through oxidative deamination by d-amino acid oxidase. Using brain and liver tissue homogenates from rats and humans, and conventional incubation conditions for kynurenine aminotransferases, we show here that kynurenic acid production from d-kynurenine, like the more efficient kynurenic acid synthesis from l-kynurenine, is blocked by the aminotransferase inhibitor amino-oxyacetic acid. In vivo, focal application of 100 μM d-kynurenine by reverse microdialysis led to a steady rise in extracellular kynurenic acid in the rat striatum, causing a 4-fold elevation after 2 h. Attesting to functional significance, this increase was accompanied by a 36% reduction in extracellular dopamine. Both of these effects were duplicated by perfusion of 2 μM l-kynurenine. Co-infusion of amino-oxyacetic acid (2 mM) significantly attenuated the in vivo effects of d-kynurenine and essentially eliminated the effects of l-kynurenine. Thus, enzymatic transamination accounts in part for kynurenic acid synthesis from d-kynurenine in the brain. These results are discussed with regard to implications for brain physiology and pathology.
Collapse
Affiliation(s)
- Veronica Pérez-de la Cruz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Participation of blood vessel cells in human adaptive immune responses. Trends Immunol 2011; 33:49-57. [PMID: 22030237 DOI: 10.1016/j.it.2011.09.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 12/29/2022]
Abstract
Circulating T cells contact blood vessels either when they extravasate across the walls of microvessels into inflamed tissues or when they enter into the walls of larger vessels in inflammatory diseases such as atherosclerosis. The blood vessel wall is largely composed of three cell types: endothelial cells lining the entire vascular tree; pericytes supporting the endothelium of microvessels; and smooth muscle cells forming the bulk of large vessel walls. Each of these cell types interacts with and alters the behavior of infiltrating T cells in different ways, making these cells active participants in the processes of immune-mediated inflammation. In this review, we compare and contrast what is known about the nature of these interactions in humans.
Collapse
|
44
|
Marttila S, Jylhävä J, Eklund C, Hervonen A, Jylhä M, Hurme M. Aging-associated increase in indoleamine 2,3-dioxygenase (IDO) activity appears to be unrelated to the transcription of the IDO1 or IDO2 genes in peripheral blood mononuclear cells. IMMUNITY & AGEING 2011; 8:9. [PMID: 21989355 PMCID: PMC3198939 DOI: 10.1186/1742-4933-8-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/11/2011] [Indexed: 11/24/2022]
Abstract
Background Old age is associated with increased levels of circulating pro-inflammatory cytokines, a phenomenon termed inflamm-aging. Elevated levels of pro-inflammatory cytokines have been associated with several age-associated diseases and with a shortened lifespan. Indoleamine 2,3-dioxygenase (IDO) has immunomodulatory properties and its activity is elevated in inflammation, autoimmune disorders and malignancies. We have previously shown that IDO activity is increased in nonagenarians compared to young individuals and that high IDO activity is associated with mortality at old age. Findings In this study our aim was to assess whether this difference in IDO activity in the plasma was due to the differential expression of either the IDO1 or IDO2 gene in peripheral blood mononuclear cells. Our results show that IDO1 and IDO2 are not differently expressed in nonagenarians compared to controls and that the expression of IDO genes is not associated with the level of IDO activity in the plasma. Conclusion The level of IDO activity in the plasma is not regulated through the expression of IDO1 or IDO2 in the peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Saara Marttila
- Department of Microbiology and Immunology, The School of Medicine, University of Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
45
|
Baban B, Chandler PR, Johnson BA, Huang L, Li M, Sharpe ML, Francisco LM, Sharpe AH, Blazar BR, Munn DH, Mellor AL. Physiologic control of IDO competence in splenic dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2329-35. [PMID: 21813777 DOI: 10.4049/jimmunol.1100276] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dendritic cells (DCs) competent to express the regulatory enzyme IDO in mice are a small but distinctive subset of DCs. Previously, we reported that a high-dose systemic CpG treatment to ligate TLR9 in vivo induced functional IDO exclusively in splenic CD19(+) DCs, which stimulated resting Foxp3-lineage regulatory T cells (Tregs) to rapidly acquire potent suppressor activity. In this paper, we show that IDO was induced in spleen and peripheral lymph nodes after CpG treatment in a dose-dependent manner. Induced IDO suppressed local T cell responses to exogenous Ags and inhibited proinflammatory cytokine expression in response to TLR9 ligation. IDO induction did not occur in T cell-deficient mice or in mice with defective B7 or programmed death (PD)-1 costimulatory pathways. Consistent with these findings, CTLA4 or PD-1/PD-ligand costimulatory blockade abrogated IDO induction and prevented Treg activation via IDO following high-dose CpG treatment. Consequently, CD4(+)CD25(+) T cells uniformly expressed IL-17 shortly after TLR9 ligation. These data support the hypothesis that constitutive interactions from activated T cells or Tregs and IDO-competent DCs via concomitant CTLA4→B7 and PD-1→PD-ligand signals maintain the default potential to regulate T cell responsiveness via IDO. Acute disruption of these nonredundant interactions abrogated regulation via IDO, providing novel perspectives on the proinflammatory effects of costimulatory blockade therapies. Moreover, interactions between IDO-competent DCs and activated T cells in lymphoid tissues may attenuate proinflammatory responses to adjuvants such as TLR ligands.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Parolini O, Alviano F, Betz AG, Bianchi DW, Götherström C, Manuelpillai U, Mellor AL, Ofir R, Ponsaerts P, Scherjon SA, Weiss ML, Wolbank S, Wood KJ, Borlongan CV. Meeting report of the first conference of the International Placenta Stem Cell Society (IPLASS). Placenta 2011; 32 Suppl 4:S285-90. [PMID: 21575989 DOI: 10.1016/j.placenta.2011.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 12/14/2022]
Abstract
The International Placenta Stem Cell Society (IPLASS) was founded in June 2010. Its goal is to serve as a network for advancing research and clinical applications of stem/progenitor cells isolated from human term placental tissues, including the amnio-chorionic fetal membranes and Wharton's jelly. The commitment of the Society to champion placenta as a stem cell source was realized with the inaugural meeting of IPLASS held in Brescia, Italy, in October 2010. Officially designated as an EMBO-endorsed scientific activity, international experts in the field gathered for a 3-day meeting, which commenced with "Meet with the experts" sessions, IPLASS member and board meetings, and welcome remarks by Dr. Ornella Parolini, President of IPLASS. The evening's highlight was a keynote plenary lecture by Dr. Diana Bianchi. The subsequent scientific program consisted of morning and afternoon oral and poster presentations, followed by social events. Both provided many opportunities for intellectual exchange among the 120 multi-national participants. This allowed a methodical and deliberate evaluation of the status of placental cells in research in regenerative and reparative medicine. The meeting concluded with Dr. Parolini summarizing the meeting's highlights. This further prepared the fertile ground on which to build the promising potential of placental cell research. The second IPLASS meeting will take place in September 2012 in Vienna, Austria. This meeting report summarizes the thought-provoking lectures delivered at the first meeting of IPLASS.
Collapse
Affiliation(s)
- O Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R. The new '5-HT' hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:702-21. [PMID: 21185346 DOI: 10.1016/j.pnpbp.2010.12.017] [Citation(s) in RCA: 475] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/07/2010] [Accepted: 12/16/2010] [Indexed: 02/07/2023]
Abstract
This paper reviews the body of evidence that not only tryptophan and consequent 5-HT depletion, but also induction of indoleamine 2,3-dioxygenase (IDO) and the detrimental effects of tryptophan catabolites (TRYCATs) play a role in the pathophysiology of depression. IDO is induced by interferon (IFN)γ, interleukin-6 and tumor necrosis factor-α, lipopolysaccharides and oxidative stress, factors that play a role in the pathophysiology of depression. TRYCATs, like kynurenine and quinolinic acid, are depressogenic and anxiogenic; activate oxidative pathways; cause mitochondrial dysfunctions; and have neuroexcitatory and neurotoxic effects that may lead to neurodegeneration. The TRYCAT pathway is also activated following induction of tryptophan 2,3-dioxygenase (TDO) by glucocorticoids, which are elevated in depression. There is evidence that activation of IDO reduces plasma tryptophan and increases TRYCAT synthesis in depressive states and that TDO activation may play a role as well. The development of depressive symptoms during IFNα-based immunotherapy is strongly associated with IDO activation, increased production of detrimental TRYCATs and lowered levels of tryptophan. Women show greater IDO activation and TRYCAT production following immune challenge than men. In the early puerperium, IDO activation and TRYCAT production are associated with the development of affective symptoms. Clinical depression is accompanied by lowered levels of neuroprotective TRYCATs or increased levels or neurotoxic TRYCATs, and lowered plasma tryptophan, which is associated with indices of immune activation and glucocorticoid hypersecretion. Lowered tryptophan and increased TRYCATs induce T cell unresponsiveness and therefore may exert a negative feedback on the primary inflammatory response in depression. It is concluded that activation of the TRYCAT pathway by IDO and TDO may be associated with the development of depressive symptoms through tryptophan depletion and the detrimental effects of TRYCATs. Therefore, the TRYCAT pathway should be a new drug target in depression. Direct inhibitors of IDO are less likely to be useful drugs than agents, such as kynurenine hydroxylase inhibitors; drugs which block the primary immune response; compounds that increase the protective effects of kynurenic acid; and specific antioxidants that target IDO activation, the immune and oxidative pathways, and 5-HT as well.
Collapse
Affiliation(s)
- M Maes
- Maes Clinics @ TRIA, Piyavate Hospital, 998 Rimklongsamsen Road, Bangkok 10310, Thailand.
| | | | | | | | | |
Collapse
|
48
|
Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 2011; 130:226-38. [PMID: 21334376 DOI: 10.1016/j.pharmthera.2011.01.014] [Citation(s) in RCA: 799] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 02/06/2023]
Abstract
There has been an explosion in our knowledge of the pathways and mechanisms by which the immune system can influence the brain and behavior. In the context of inflammation, pro-inflammatory cytokines can access the central nervous system and interact with a cytokine network in the brain to influence virtually every aspect of brain function relevant to behavior including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits that regulate mood, motor activity, motivation, anxiety and alarm. Behavioral consequences of these effects of the immune system on the brain include depression, anxiety, fatigue, psychomotor slowing, anorexia, cognitive dysfunction and sleep impairment; symptoms that overlap with those which characterize neuropsychiatric disorders, especially depression. Pathways that appear to be especially important in immune system effects on the brain include the cytokine signaling molecules, p38 mitogen-activated protein kinase and nuclear factor kappa B; indoleamine 2,3 dioxygenase and its downstream metabolites, kynurenine, quinolinic acid and kynurenic acid; the neurotransmitters, serotonin, dopamine and glutamate; and neurocircuits involving the basal ganglia and anterior cingulate cortex. A series of vulnerability factors including aging and obesity as well as chronic stress also appears to interact with immune to brain signaling to exacerbate immunologic contributions to neuropsychiatric disease. The elucidation of the mechanisms by which the immune system influences behavior yields a host of targets for potential therapeutic development as well as informing strategies for the prevention of neuropsychiatric disease in at risk populations.
Collapse
Affiliation(s)
- Lucile Capuron
- Laboratory of Nutrition and Integrative Neurobiology, NutriNeuro, INRA UMR 1286, University Victor Segalen Bordeaux 2, Bordeaux, France.
| | | |
Collapse
|
49
|
Makala LHC, Baban B, Lemos H, El-Awady AR, Chandler PR, Hou DY, Munn DH, Mellor AL. Leishmania major attenuates host immunity by stimulating local indoleamine 2,3-dioxygenase expression. J Infect Dis 2011; 203:715-25. [PMID: 21282196 DOI: 10.1093/infdis/jiq095] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inflammation stimulates immunity but can create immune privilege in some settings. Here, we show that cutaneous Leishmania major infection stimulated expression of the immune regulatory enzyme indoleamine 2,3 dioxygenase (IDO) in local lymph nodes. Induced IDO attenuated the T cell stimulatory functions of dendritic cells and suppressed local T cell responses to exogenous and nominal parasite antigens. IDO ablation reduced local inflammation and parasite burdens, as did pharmacologic inhibition of IDO in mice with established infections. IDO ablation also enhanced local expression of proinflammatory cytokines and induced some CD4(+) T cells to express interleukin (IL) 17. These findings showed that IDO induced by L. major infection attenuated innate and adaptive immune responses. Thus, IDO acts as a molecular switch regulating host responses, and IDO inhibitor drugs are a potential new approach to enhance host immunity to established leishmania infections.
Collapse
Affiliation(s)
- Levi H C Makala
- Immunotherapy Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kurz K, Schroecksnadel S, Weiss G, Fuchs D. Association between increased tryptophan degradation and depression in cancer patients. Curr Opin Clin Nutr Metab Care 2011; 14:49-56. [PMID: 21076293 DOI: 10.1097/mco.0b013e328340d849] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW A high percentage of patients with malignant disease develops mood disorders or even depression. This review provides an overview, how immune activation and tryptophan degradation might contribute to the development of depression. RECENT FINDINGS Neurobiochemical changes caused by immune activation are supposed to be involved in the development of mood disorders, especially depression, in cancer patients. Within Th1-type immune response the enzyme indoleamine 2,3-dioxygenase (IDO) is induced, which degrades the essential amino acid tryptophan to form kynurenine derivatives. Enhanced immune-mediated tryptophan degradation is reflected by decreased plasma tryptophan levels and increased kynurenine concentrations in parallel with elevated concentrations of Th1-type immune activation marker neopterin. IDO activation has been demonstrated in patients with various kinds of cancer, and it has also been shown to predict a worse outcome of patients. Recent data also indicate strongly, that immune-mediated tryptophan degradation is crucially involved in the development of depression: IDO activation leads to the accumulation of neurotoxic metabolites, which are supposed to induce depressive-like behaviour. Furthermore immune-mediated tryptophan deprivation might also impair serotonin synthesis, as tryptophan is the precursor of this important neurotransmitter. SUMMARY Immune-mediated tryptophan degradation appears to be crucially involved in the development of depression.
Collapse
Affiliation(s)
- Katharina Kurz
- Clinical Immunology and Infectious Diseases, Department of Internal Medicine I, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|