1
|
Engineered exosome-mediated messenger RNA and single-chain variable fragment delivery for human chimeric antigen receptor T-cell engineering. Cytotherapy 2023; 25:615-624. [PMID: 36828738 DOI: 10.1016/j.jcyt.2023.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND AIMS Most current chimeric antigen receptor (CAR) T cells are generated by viral transduction, which induces persistent expression of CARs and may cause serious undesirable effects. Messenger RNA (mRNA)-based approaches in manufacturing CAR T cells are being developed to overcome these challenges. However, the most common method of delivering mRNA to T cells is electroporation, which can be toxic to cells. METHODS The authors designed and engineered an exosome delivery platform using the bacteriophage MS2 system in combination with the highly expressed protein lysosome-associated membrane protein 2 isoform B on exosomes. RESULTS The authors' delivery platform achieved specific loading and delivery of mRNA into target cells and achieved expression of specific proteins, and anti-CD3/CD28 single-chain variable fragments (scFvs) expressed outside the exosomal membrane effectively activated primary T cells in a similar way to commercial magnetic beads. CONCLUSIONS The delivery of CAR mRNA and anti-CD3/CD28 scFvs via designed exosomes can be used for ex vivo production of CAR T cells with cancer cell killing capacity. The authors' results indicate the potential applications of the engineered exosome delivery platform for direct conversion of primary T cells to CAR T cells while providing a novel strategy for producing CAR T cells in vivo.
Collapse
|
2
|
Lamture G, Baer A, Fischer JW, Colon-Moran W, Bhattarai N. TCR-independent Activation in Presence of a Src-family Kinase Inhibitor Improves CAR-T Cell Product Attributes. J Immunother 2022; 45:139-149. [PMID: 34802014 PMCID: PMC8906249 DOI: 10.1097/cji.0000000000000402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Chimeric antigen receptor expressing T cells (CAR-T cells) have shown remarkable efficacy against some blood cancers and have potential to treat many other human diseases. During CAR-T cell manufacturing, T cells are activated via engagement of the T-cell receptor (TCR); however, persistent TCR engagement can induce unchecked activation, differentiation, and exhaustion, which can negatively affect CAR-T cell product quality and in vivo potency. In addition, T cells may not uniformly respond to TCR-dependent activation (TCRD) contributing to lot-to-lot variability, poor expansion, and manufacturing failures. TCRD also presents challenges during manufacturing of allogeneic CAR-T cells when endogenous TCR is deleted to prevent graft-versus-host disease. Thus, novel strategies to activate T cells may help improve CAR-T cell product attributes and reduce manufacturing failures. In this study, we compared the effect of TCRD and TCR-independent activation (TCRI) on CAR-T cell product attributes. We found that TCRI in presence of a Src-kinase inhibitor significantly improved CAR-T cell expansion and yield without affecting viability and CD4/CD8 ratio. Markers of T-cell activation, exhaustion and differentiation were also reduced in these CAR-T cells compared with CAR-T cells manufactured by TCRD. TCRI did not affect CAR-T cell in vitro potency; however, following co-culture with target cells, CAR-T cells manufactured by TCRI released significantly less inflammatory cytokines compared with CAR-T cells manufactured by TCRD. Together, these data suggest that manufacturing CAR-T cells by TCRI activation in the presence of a Src-kinase inhibitor improves product quality attributes and may help reduce manufacturing failures and improve CAR-T cell safety and efficacy in vivo.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Chimeric antigen receptor (CAR) T-cell therapy is an innovative form of adoptive cellular immunotherapy targeting CD19 in its most advanced form. Up to 30% of infused patients achieve long-term survival, meaning that 70% of patients still fail to respond or relapse after therapy. This review will address the unresolved issues relating to responders' characterization, relapse prediction, and prevention, CAR T-cell construct optimization, rational combination with other therapies and treatment toxicity, focusing on the management of relapsed/refractory lymphoma patients. RECENT FINDINGS Many new antigenic targets are currently investigated and raise the hope of broader successes. However, literature data report that treatment failure is not only related to CAR T construct and infusion but is also due to hostile tumor microenvironment and poor interaction with the host effector cells. Further research should not only target CAR T structure, toxicity and associated therapies, but also tumor-related and host-related microenvironment interactions that lead to treatment failure in relapsed/refractory lymphoma patients. SUMMARY Poor persistence of CAR T and loss of CD19 antigen are well established mechanisms of relapse in Acute Lymphoblastic Leukemia (ALL). A fourth generation of CAR T construct is currently investigated to overcome this issue. In non-Hodgkin lymphoma, mechanisms of treatment failure remain poorly understood but tumor and host microenvironment are undoubtedly involved and should be further investigated. A deeper understanding of CAR T-cell therapy failure in individuals will help personalize CAR T-cell therapy in the future.
Collapse
|
4
|
Zhu L, Yang X, Zhong D, Xie S, Shi W, Li Y, Hou X, HuaYao, Zhou H, Zhao M, Ding Z, Zhao X, Mo F, Yin S, Liu A, Lu X. Single-Domain Antibody-Based TCR-Like CAR-T: A Potential Cancer Therapy. J Immunol Res 2020; 2020:2454907. [PMID: 32964055 PMCID: PMC7492946 DOI: 10.1155/2020/2454907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Retargeting the antigen-binding specificity of T cells to intracellular antigens that are degraded and presented on the tumor surface by engineering chimeric antigen receptor (CAR), also named TCR-like antibody CAR-T, remains limited. With the exception of the commercialized CD19 CAR-T for hematological malignancies and other CAR-T therapies aiming mostly at extracellular antigens achieving great success, the rareness and scarcity of TCR-like CAR-T therapies might be due to their current status and limitations. This review provides the probable optimized initiatives for improving TCR-like CAR-T reprogramming and discusses single-domain antibodies administered as an alternative to conventional scFvs and secreted by CAR-T cells, which might be of great value to the development of CAR-T immunotherapies for intracellular antigens.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Epitopes, T-Lymphocyte/immunology
- Genetic Engineering
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Single-Chain Antibodies/immunology
- Single-Domain Antibodies/genetics
- Single-Domain Antibodies/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Lichen Zhu
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomei Yang
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dani Zhong
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Chemotherapy, Affiliated Cancer Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shenxia Xie
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wei Shi
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yangzi Li
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoqiong Hou
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - HuaYao
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huihui Zhou
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Minlong Zhao
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ziqiang Ding
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xinyue Zhao
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fengzhen Mo
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shihua Yin
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Aiqun Liu
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoling Lu
- Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
5
|
Escape From ALL-CARTaz: Leukemia Immunoediting in the Age of Chimeric Antigen Receptors. ACTA ACUST UNITED AC 2020; 25:217-222. [PMID: 31135529 DOI: 10.1097/ppo.0000000000000381] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has been transformative for the treatment of B-cell malignancies, with CD19- and CD22-directed CARs being prime examples. However, immunoediting and ensuing antigen loss remain the major obstacles to curative therapy in up to 25% of patients. For example, to achieve the CD19-negative phenotype, malignant cells can pick from a broad array of mechanisms, including focal loss-of-function mutations, dysregulated trafficking to the cell surface, alternative splicing, and lineage switching. In other cases, where resistance is mediated by insufficient antigen density, trogocytosis has been proposed as a possible underlying mechanism. To overcome these barriers, compensatory strategies will be needed, which could include using combinatorial CARs, harnessing epitope spreading, and targeting tumor neoantigens.
Collapse
|
6
|
Emerging role of microbiota in immunomodulation and cancer immunotherapy. Semin Cancer Biol 2020; 70:37-52. [PMID: 32580024 DOI: 10.1016/j.semcancer.2020.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
Gut microbiota is emerging as a key modulator of the immune system. Alteration of gut microbiota impacts functioning of the immune system and pathophysiology of several diseases, including cancer. Growing evidence indicates that gut microbiota is not only involved in carcinogenesis but also has an impact on the efficacy and toxicity of cancer therapy. Recently, several pre-clinical and clinical studies across diverse cancer types reported the influence of gut microbiota on the host immune response to immunotherapy. Advancement in our understanding of the mechanism behind microbiota-mediated modulation of immune response is paramount for their utilization as cancer therapeutics. These microbial therapies in combination with conventional immunotherapeutic methods have the potential to transform the pre-existing treatment strategies to personalized cancer therapy. In this review, we have summarized the current status of research in the field and discussed the role of microbiota as an immune system modulator in context of cancer and their impact on immunotherapy.
Collapse
|
7
|
Ghosh S, Lalani R, Patel V, Bardoliwala D, Maiti K, Banerjee S, Bhowmick S, Misra A. Combinatorial nanocarriers against drug resistance in hematological cancers: Opportunities and emerging strategies. J Control Release 2019; 296:114-139. [DOI: 10.1016/j.jconrel.2019.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
|
8
|
Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy. Int J Mol Sci 2019; 20:ijms20020317. [PMID: 30646574 PMCID: PMC6358726 DOI: 10.3390/ijms20020317] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells that can be activated rapidly to target abnormal and virus-infected cells without prior sensitization. With significant advancements in cell biology technologies, many NK cell lines have been established. Among these cell lines, NK-92 cells are not only the most widely used but have also been approved for clinical applications. Additionally, chimeric antigen receptor-modified NK-92 cells (CAR-NK-92 cells) have shown strong antitumor effects. In this review, we summarize established human NK cell lines and their biological characteristics, and highlight the applications of NK-92 cells and CAR-NK-92 cells in tumor immunotherapy.
Collapse
|
9
|
Rotolo A, Karadimitris A, Ruella M. Building upon the success of CART19: chimeric antigen receptor T cells for hematologic malignancies. Leuk Lymphoma 2018; 59:2040-2055. [PMID: 29165008 PMCID: PMC6814196 DOI: 10.1080/10428194.2017.1403024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chimeric antigen receptor T cell (CART) therapy has dramatically changed the therapeutic prospects for B cell malignancies. Over the last decade CD19-redirected CART have demonstrated the ability to induce deep, long-lasting remissions and possibly cure patients with relapsing B cell neoplasms. Such impressive results with CART19 fostered efforts to expand this technology to other incurable malignancies that naturally do not express CD19, such as acute myeloid leukemia (AML), Hodgkin lymphoma (HL) and multiple myeloma (MM). However, to reach this goal, several hurdles have to be overcome, in particular: (i) the apparent lack of suitable targets as effective as CD19; (ii) the immunosuppressive tumor microenvironment; (iii) intra-tumoral heterogeneity and antigen-negative relapses. Therefore, new strategies that allow safer and more potent CART platforms are under development and may provide grounds for new exciting breakthroughs in the field.
Collapse
Affiliation(s)
- Antonia Rotolo
- Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Abstract
The concept that progression of cancer is regulated by interactions of cancer cells with their microenvironment was postulated by Stephen Paget over a century ago. Contemporary tumour microenvironment (TME) research focuses on the identification of tumour-interacting microenvironmental constituents, such as resident or infiltrating non-tumour cells, soluble factors and extracellular matrix components, and the large variety of mechanisms by which these constituents regulate and shape the malignant phenotype of tumour cells. In this Timeline article, we review the developmental phases of the TME paradigm since its initial description. While illuminating controversies, we discuss the importance of interactions between various microenvironmental components and tumour cells and provide an overview and assessment of therapeutic opportunities and modalities by which the TME can be targeted.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment. Protein Cell 2017; 8:896-925. [PMID: 28466386 PMCID: PMC5712290 DOI: 10.1007/s13238-017-0400-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) is a recombinant immunoreceptor combining an antibody-derived targeting fragment with signaling domains capable of activating cells, which endows T cells with the ability to recognize tumor-associated surface antigens independent of the expression of major histocompatibility complex (MHC) molecules. Recent early-phase clinical trials of CAR-modified T (CAR-T) cells for relapsed or refractory B cell malignancies have demonstrated promising results (that is, anti-CD19 CAR-T in B cell acute lymphoblastic leukemia (B-ALL)). Given this success, broadening the clinical experience of CAR-T cell therapy beyond hematological malignancies has been actively investigated. Here we discuss the basic design of CAR and review the clinical results from the studies of CAR-T cells in B cell leukemia and lymphoma, and several solid tumors. We additionally discuss the major challenges in the further development and strategies for increasing anti-tumor activity and safety, as well as for successful commercial translation.
Collapse
|
12
|
Abstract
Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have yielded unprecedented efficacy in B cell malignancies, most remarkably in anti-CD19 CAR-T cells for B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate. However, tumor antigen escape has emerged as a main challenge for the long-term disease control of this promising immunotherapy in B cell malignancies. In addition, this success has encountered significant hurdles in translation to solid tumors, and the safety of the on-target/off-tumor recognition of normal tissues is one of the main reasons. In this mini-review, we characterize some of the mechanisms for antigen loss relapse and new strategies to address this issue. In addition, we discuss some novel CAR designs that are being considered to enhance the safety of CAR-T cell therapy in solid tumors.
Collapse
|
13
|
Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans 2016; 44:412-8. [PMID: 27068948 DOI: 10.1042/bst20150291] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Indexed: 12/14/2022]
Abstract
Chimaeric antigen receptor (CAR) T-cells are T-cells that have been genetically modified to express an artificial construct consisting of a synthetic T-cell receptor (TCR) targeted to a predetermined antigen expressed on a tumour. Coupling the T-cell receptor to a CD3ζ signalling domain paved the way for first generation CAR T-cells that were efficacious against cluster of differentiation (CD)19-expressing B-cell malignancies. Optimization with additional signalling domains such as CD28 or 4-1BB in addition to CD3ζ provided T-cell activation signal 2 and further improved the efficacy and persistence of these second generation CAR T-cells. Third generation CAR T-cells which utilize two tandem costimulatory domains have also been reported. In this review, we discuss a different approach to optimization of CAR T-cells. Through additional genetic modifications, these resultant armored CAR T-cells are typically modified second generation CAR T-cells that have been further optimized to inducibly or constitutively secrete active cytokines or express ligands that further armor CAR T-cells to improve efficacy and persistence. The choice of the 'armor' agent is based on knowledge of the tumour microenvironment and the roles of other elements of the innate and adaptive immune system. Although there are several variants of armored CAR T-cells under investigation, here we focus on three unique approaches using interleukin-12 (IL-12), CD40L and 4-1BBL. These agents have been shown to further enhance CAR T-cell efficacy and persistence in the face of a hostile tumour microenvironment via different mechanisms.
Collapse
|
14
|
Lin XC, Liu XG, Zhang YM, Li N, Yang ZG, Fu WY, Lan LB, Zhang HT, Dai Y. Integrated analysis of microRNA and transcription factor reveals important regulators and regulatory motifs in adult B-cell acute lymphoblastic leukemia. Int J Oncol 2016; 50:671-683. [PMID: 28101583 DOI: 10.3892/ijo.2016.3832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/16/2016] [Indexed: 11/06/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (B‑ALL) is an aggressive hematological malignancy and a leading cause of cancer-related mortality in children and young adults. The molecular mechanisms involved in the regulation of its gene expression has yet to be fully elucidated. In the present study, we performed large scale expression profiling of microRNA (miRNA) and transcription factor (TF) by Illumina deep‑sequencing and TF array technology, respectively, and identified 291 differentially expressed miRNAs and 201 differentially expressed TFs in adult B‑ALL samples relative to their controls. After integrating expression profile data with computational prediction of miRNA and TF targets from different databases, we construct a comprehensive miRNA‑TF regulatory network specifically for adult B‑ALL. Network function analysis revealed 25 significantly enriched pathways, four pathways are well‑known to be involved in B‑ALL, such as PI3K‑Akt signaling pathway, Jak‑STAT signaling pathway, Ras signaling pathway and cell cycle pathway. By analyzing the network topology, we identified 28 hub miRNAs and 19 hub TFs in the network, and found nine potential B‑ALL regulators among these hub nodes. We also constructed a Jak‑STAT signaling sub‑network for B‑ALL. Based on the sub‑network analysis and literature survey, we proposed a cellular model to discuss MYC/miR‑15a‑5p/FLT3 feed-forward loop (FFL) with Jak‑STAT signaling pathway in B‑ALL. These findings enhance our understanding of this disease at the molecular level, as well as provide putative therapeutic targets for B-ALL.
Collapse
Affiliation(s)
- Xiao-Cong Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xin-Guang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yu-Ming Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ning Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zhi-Gang Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Wei-Yu Fu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Liu-Bo Lan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hai-Tao Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
15
|
Rotiroti MC, Arcangeli S, Casucci M, Perriello V, Bondanza A, Biondi A, Tettamanti S, Biagi E. Acute Myeloid Leukemia Targeting by Chimeric Antigen Receptor T Cells: Bridging the Gap from Preclinical Modeling to Human Studies. Hum Gene Ther 2016; 28:231-241. [PMID: 27967241 DOI: 10.1089/hum.2016.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acute myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric high-risk patients, thus demanding advanced and personalized therapies. In this regard, different targeted immunotherapeutic approaches are available, ranging from naked monoclonal antibodies (mAb) to conjugated and multifunctional mAbs (i.e., BiTEs and DARTs). Recently, researchers have focused their attention on novel techniques of genetic manipulation specifically to redirect cytotoxic T cells endowed with chimeric antigen receptors (CARs) toward selected tumor associated antigens. So far, CAR T cells targeting the CD19 antigen expressed by B-cell origin hematological cancers have gained impressive clinical results, leading to the possibility of translating the CAR platform to treat other hematological malignancies such as AML. However, one of the main concerns in the field of AML CAR immunotherapy is the identification of an ideal target cell surface antigen, being highly expressed on tumor cells but minimally present on healthy tissues, together with the design of an anti-AML CAR appropriately balancing efficacy and safety profiles. The current review focuses mainly on AML target antigens and the related immunotherapeutic approaches developed so far, deeply dissecting methods of CAR T cell safety improvements, when designing novel CARs approaching human studies.
Collapse
Affiliation(s)
- Maria Caterina Rotiroti
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Silvia Arcangeli
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Monica Casucci
- 2 Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Vita-Salute San Raffaele University , Milan, Italy
| | - Vincenzo Perriello
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Attilio Bondanza
- 2 Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Vita-Salute San Raffaele University , Milan, Italy
| | - Andrea Biondi
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Sarah Tettamanti
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Ettore Biagi
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| |
Collapse
|
16
|
Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells. Blood Cells Mol Dis 2016; 62:49-63. [DOI: 10.1016/j.bcmd.2016.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/05/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
|
17
|
Abstract
Sotillo and colleagues describe the molecular events associated with apparent loss of target antigen expression following CAR T-cell therapy. We propose that broader immune activation is required to prevent outgrowth of tumor antigen escape variants following targeted therapies.
Collapse
Affiliation(s)
- Hollie J Jackson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York. Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
18
|
Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol 2016; 103:62-77. [DOI: 10.1016/j.critrevonc.2016.04.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/13/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
|
19
|
Tian G, Courtney AN, Jena B, Heczey A, Liu D, Marinova E, Guo L, Xu X, Torikai H, Mo Q, Dotti G, Cooper LJ, Metelitsa LS. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. J Clin Invest 2016; 126:2341-55. [PMID: 27183388 DOI: 10.1172/jci83476] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/22/2016] [Indexed: 12/25/2022] Open
Abstract
Vα24-invariant natural killer T cells (NKTs) localize to tumors and have inherent antitumor properties, making them attractive chimeric antigen receptor (CAR) carriers for redirected cancer immunotherapy. However, clinical application of CAR-NKTs has been impeded, as mechanisms responsible for NKT expansion and the in vivo persistence of these cells are unknown. Here, we demonstrated that antigen-induced expansion of primary NKTs in vitro associates with the accumulation of a CD62L+ subset and exhaustion of CD62L- cells. Only CD62L+ NKTs survived and proliferated in response to secondary stimulation. When transferred to immune-deficient NSG mice, CD62L+ NKTs persisted 5 times longer than CD62L- NKTs. Moreover, CD62L+ cells transduced with a CD19-specific CAR achieved sustained tumor regression in a B cell lymphoma model. Proliferating CD62L+ cells downregulated or maintained CD62L expression when activated via T cell receptor alone or in combination with costimulatory receptors. We generated HLAnull K562 cell clones that were engineered to express CD1d and costimulatory ligands. Clone B-8-2 (HLAnullCD1dmedCD86high4-1BBLmedOX40Lhigh) induced the highest rates of NKT expansion and CD62L expression. B-8-2-expanded CAR-NKTs exhibited prolonged in vivo persistence and superior therapeutic activities in models of lymphoma and neuroblastoma. Therefore, we have identified CD62L as a marker of a distinct NKT subset endowed with high proliferative potential and have developed artificial antigen-presenting cells that generate CD62L-enriched NKTs for effective cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Cytokines/biosynthesis
- Cytotoxicity, Immunologic
- Humans
- Immunotherapy, Adoptive
- L-Selectin/metabolism
- Lymphocyte Activation
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Natural Killer T-Cells/classification
- Natural Killer T-Cells/immunology
- Neuroblastoma/immunology
- Neuroblastoma/therapy
- Receptors, Antigen/immunology
- Recombinant Fusion Proteins/immunology
- Xenograft Model Antitumor Assays
Collapse
|
20
|
The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13:273-90. [PMID: 26977780 DOI: 10.1038/nrclinonc.2016.25] [Citation(s) in RCA: 736] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, advances in the use of monoclonal antibodies (mAbs) and adoptive cellular therapy to treat cancer by modulating the immune response have led to unprecedented responses in patients with advanced-stage tumours that would otherwise have been fatal. To date, three immune-checkpoint-blocking mAbs have been approved in the USA for the treatment of patients with several types of cancer, and more patients will benefit from immunomodulatory mAb therapy in the months and years ahead. Concurrently, the adoptive transfer of genetically modified lymphocytes to treat patients with haematological malignancies has yielded dramatic results, and we anticipate that this approach will rapidly become the standard of care for an increasing number of patients. In this Review, we highlight the latest advances in immunotherapy and discuss the role that it will have in the future of cancer treatment, including settings for which testing combination strategies and 'armoured' CAR T cells are recommended.
Collapse
|
21
|
Hematopoietic stem cell transplantation for patients with AML in first complete remission. Blood 2016; 127:62-70. [DOI: 10.1182/blood-2015-07-604546] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/07/2015] [Indexed: 12/31/2022] Open
Abstract
Abstract
Postremission therapy in patients with acute myeloid leukemia (AML) may consist of continuing chemotherapy or transplantation using either autologous or allogeneic stem cells. Patients with favorable subtypes of AML generally receive chemotherapeutic consolidation, although recent studies have also suggested favorable outcome after hematopoietic stem cell transplantation (HSCT). Although allogeneic HSCT (alloHSCT) is considered the preferred type of postremission therapy in poor- and very-poor-risk AML, the place of alloHSCT in intermediate-risk AML is being debated, and autologous HSCT is considered a valuable alternative that may be preferred in patients without minimal residual disease after induction chemotherapy. Here, we review postremission transplantation strategies using either autologous or allogeneic stem cells. Recent developments in the field of alternative donors, including cord blood and haploidentical donors, are highlighted, and we discuss reduced-intensity alloHSCT in older AML recipients who represent the predominant category of patients with AML who have a high risk of relapse in first remission.
Collapse
|
22
|
Smyth MJ, Ngiow SF, Ribas A, Teng MWL. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 2015; 13:143-58. [PMID: 26598942 DOI: 10.1038/nrclinonc.2015.209] [Citation(s) in RCA: 676] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evidence suggests that cancer immunotherapy will be a major part of the combination treatment plan for many patients with many cancer types in the near future. There are many types of immune processes involving different antitumour and tumour-promoting leucocytes, and tumour cells use many strategies to evade the immune response. The tumour microenvironment can help determine which immune suppressive pathways become activated to restrain antitumour immunity. This includes immune checkpoint receptors on effector T-cells and myeloid cells, and release of inhibitory cytokines and metabolites. Therapeutic approaches that target these pathways, particularly immune-checkpoint receptors, can induce durable antitumour responses in patients with advanced-stage cancers, including melanoma. Nevertheless, many patients do not have a good response to monotherapy approaches and alternative strategies are required to achieve optimal therapeutic benefit. These strategies include eliminating the bulk of tumour cells to provoke tumour-antigen release and antigen-presenting cell (APC) function, using adjuvants to enhance APC function, and using agents that enhance effector-cell activity. In this Review, we discuss the stratification of the tumour microenvironment according to tumour-infiltrating lymphocytes and PD-L1 expression in the tumour, and how this stratification enables the design of optimal combination cancer therapies tailored to target different tumour microenvironments.
Collapse
Affiliation(s)
- Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Queensland, Australia
| | - Shin Foong Ngiow
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Queensland, Australia
| | - Antoni Ribas
- Department of Medicine, Division of Haematology/Oncology, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California 90095, USA
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory QIMR Berghofer Medical Research Institute, Herston, 4006 Queensland, Australia
| |
Collapse
|
23
|
Rezvani K, Rouce RH. The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer. Front Immunol 2015; 6:578. [PMID: 26635792 PMCID: PMC4648067 DOI: 10.3389/fimmu.2015.00578] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo-expanded, chimeric antigen receptor (CAR)-engineered, or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated antitumor effect can be achieved in the absence of graft-vs.-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer, such as the failure of infused NK cells to expand and persist in vivo. Therefore, efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors, and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next few years.
Collapse
Affiliation(s)
- Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Rayne H Rouce
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston, TX , USA ; Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children's Hospital , Houston, TX , USA
| |
Collapse
|