1
|
Márquez-Rodas I, Muñoz Couselo E, Rodríguez Moreno JF, Arance Fernández AM, Berciano Guerrero MÁ, Campos Balea B, de la Cruz Merino L, Espinosa Arranz E, García Castaño A, Berrocal Jaime A. SEOM-GEM clinical guidelines for cutaneous melanoma (2023). Clin Transl Oncol 2024; 26:2841-2855. [PMID: 38748192 PMCID: PMC11467041 DOI: 10.1007/s12094-024-03497-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 10/11/2024]
Abstract
Cutaneous melanoma incidence is rising. Early diagnosis and treatment administration are key for increasing the chances of survival. For patients with locoregional advanced melanoma that can be treated with complete resection, adjuvant-and more recently neoadjuvant-with targeted therapy-BRAF and MEK inhibitors-and immunotherapy-anti-PD-1-based therapies-offer opportunities to reduce the risk of relapse and distant metastases. For patients with advanced disease not amenable to radical treatment, these treatments offer an unprecedented increase in overall survival. A group of medical oncologists from the Spanish Society of Medical Oncology (SEOM) and Spanish Multidisciplinary Melanoma Group (GEM) has designed these guidelines, based on a thorough review of the best evidence available. The following guidelines try to cover all the aspects from the diagnosis-clinical, pathological, and molecular-staging, risk stratification, adjuvant therapy, advanced disease therapy, and survivor follow-up, including special situations, such as brain metastases, refractory disease, and treatment sequencing. We aim help clinicians in the decision-making process.
Collapse
Affiliation(s)
| | - Eva Muñoz Couselo
- Hospital Vall d'Hebron & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | | | | | - Luis de la Cruz Merino
- Cancer Immunotherapy, Biomedicine Institute of Seville (IBIS)/CSIC, Clinical Oncology Department, University Hospital Virgen Macarena and School of Medicine, University of Seville, Seville, Spain
| | | | | | | |
Collapse
|
2
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
3
|
Russano F, Rastrelli M, Dall'Olmo L, Del Fiore P, Gianesini C, Vecchiato A, Mazza M, Tropea S, Mocellin S. Therapeutic Treatment Options for In-Transit Metastases from Melanoma. Cancers (Basel) 2024; 16:3065. [PMID: 39272923 PMCID: PMC11394241 DOI: 10.3390/cancers16173065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
In-transit metastases (ITM) in melanoma present a significant therapeutic challenge due to their advanced stage and complex clinical nature. From traditional management with surgical resection, ITM treatment has evolved with the advent of systemic therapies such as immune checkpoint inhibitors and targeted therapies, which have markedly improved survival outcomes. This study aims to review and highlight the efficacy of both systemic and locoregional treatment approaches for ITM. Methods include a comprehensive review of clinical studies examining the impact of treatments like immune checkpoint inhibitors, targeted therapies, Isolated Limb Perfusion, and electrochemotherapy. The results indicate that combining systemic therapies with locoregional treatments enhances both local disease control and overall survival rates. The introduction of modern immunotherapies has not diminished the effectiveness of locoregional therapies but rather improved patient outcomes when used in conjunction. The conclusions emphasize that a multidisciplinary approach integrating systemic and locoregional therapies offers a promising strategy for optimizing the management of ITM in melanoma patients. This integrated treatment model not only improves survival rates but also enhances the quality of life for patients, suggesting a shift in standard care practices toward more comprehensive therapeutic regimens.
Collapse
Affiliation(s)
- Francesco Russano
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Marco Rastrelli
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Luigi Dall'Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Carlomaria Gianesini
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| | - Antonella Vecchiato
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Marcodomenico Mazza
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Saveria Tropea
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy
| |
Collapse
|
4
|
Folly D, Candido da Silva S, Dinis G, Ouverney G, Freimann Wermelinger G, Silva Abreu L, Kaufmann Robbs B, Rocha L. Pyrones Isolated from Annona Acutiflora Exhibit Promising Cytotoxic Effects on Cancer Cell Lines. Chem Biodivers 2024; 21:e202400572. [PMID: 38839566 DOI: 10.1002/cbdv.202400572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
This work discusses the ongoing challenge of cancer, focusing on therapy issues such as chemotherapy resistance and adverse drug effects. It emphasizes the need for new anticancer agents with improved efficacy and fewer side effects, exploring natural products from plant sources. The Annonaceae family, specifically the Annona genus, is highlighted for its medicinal properties, including anti-inflammatory and anticancer effects. The study focuses on the isolation and elucidation of the substances present in Annona acutiflora leaves. The methodology involves chromatographic and spectroscopy techniques. The isolated compounds, (6S)-5'-oxohepten-1'E,3'E-dienyl)-5,6-dihydro-2H-pyran-2-one (1), (6R)-5'-oxohepten-1'Z,3'E-dienyl)-5,6-dihydro-2H-pyran-2-one (2) and (6R)-5'-oxohepten-1'Z,3'E-dienyl)-5,6-dihydro-2H-pyran-2-one (3) were investigated for cytotoxicity assays on cancer cell lines and normal cells. Results show promising cytotoxic activity, particularly with compound 3, demonstrating potential activity against oral cancer (43.18 μM), hepatocarcinoma (17.24 μM), melanoma (5.39 μM), and colon cancer (59.03 μM). The compound outperforms carboplatin in selectivity against oral cancer (S. I. 2.15) and melanoma (S. I. 17.22). The study concludes by suggesting the potential of these α-pyrones as effective and less toxic alternatives for cancer therapy.
Collapse
Affiliation(s)
- Diogo Folly
- Laboratório de Tecnologia de Produtos Naturais, LTPN, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua, Mario Viana, 523, CEP: 24241-000, Santa Rosa, Niterói, RJ, Brazil
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica e Cosméticos, CEP: 24241-000, Niterói-RJ, Brazil
- Laboratório de Química de Produtos Naturais, Universidade Federal Fluminense, Rua São João Batista, 2-188, CEP: 24020-141, Niterói, RJ, Brazil
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Samille Candido da Silva
- Department of Basic Science, Campus Universitário de Nova Friburgo, Federal Fluminense, University Nova, Friburgo, CEP 28625-650, Brazil
- Universidade Federal Fluminense, Department of Basic Sciences, Nova Friburgo Health Institute, CEP 28625-650, Nova Friburgo-RJ, Brazil
| | - Gabriela Dinis
- Laboratório de Química de Produtos Naturais, Universidade Federal Fluminense, Rua São João Batista, 2-188, CEP: 24020-141, Niterói, RJ, Brazil
| | - Gabriel Ouverney
- Postgraduate Program in Sciences Applied to Health Products, Faculty of Pharmacy, Federal Fluminense University, Niterói, CEP 24020-141, RJ, Brazil
| | - Guilherme Freimann Wermelinger
- Department of Basic Science, Campus Universitário de Nova Friburgo, Federal Fluminense, University Nova, Friburgo, CEP 28625-650, Brazil
- Universidade Federal Fluminense, Department of Basic Sciences, Nova Friburgo Health Institute, CEP 28625-650, Nova Friburgo-RJ, Brazil
| | - Lucas Silva Abreu
- Laboratório de Química de Produtos Naturais, Universidade Federal Fluminense, Rua São João Batista, 2-188, CEP: 24020-141, Niterói, RJ, Brazil
| | - Bruno Kaufmann Robbs
- Department of Basic Science, Campus Universitário de Nova Friburgo, Federal Fluminense, University Nova, Friburgo, CEP 28625-650, Brazil
- Universidade Federal Fluminense, Department of Basic Sciences, Nova Friburgo Health Institute, CEP 28625-650, Nova Friburgo-RJ, Brazil
| | - Leandro Rocha
- Laboratório de Tecnologia de Produtos Naturais, LTPN, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua, Mario Viana, 523, CEP: 24241-000, Santa Rosa, Niterói, RJ, Brazil
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica e Cosméticos, CEP: 24241-000, Niterói-RJ, Brazil
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Vieira EG, de Paiva REF, Miguel RB, de Oliveira APA, Franco de Melo Bagatelli F, Oliveira CC, Tuna F, da Costa Ferreira AM. An engineered POSS drug delivery system for copper(II) anticancer metallodrugs in a selective application toward melanoma cells. Dalton Trans 2024; 53:12567-12581. [PMID: 39005067 DOI: 10.1039/d4dt00535j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In this work, a polyhedral silsesquioxane (POSS) was used as an engineered drug delivery system for two oxindolimine-copper(II) anticancer complexes, [Cu(isaepy)]+ and [Cu(isapn)]+. The interest in hybrid POSS comes from the necessity of developing materials that can act as adjuvants to improve the cytotoxicity of non-soluble metallodrugs. Functionalization of POSS with a triazole ligand (POSS-atzac) permitted the anchorage of such copper complexes, producing hybrid materials with efficient cytotoxic effects. Structural and morphological characterizations of these copper-POSS systems were performed by using different techniques (IR, NMR, thermogravimetric analysis). A combination of continuous-wave (CW) and pulsed EPR (HYSCORE) spectroscopies conducted at the X-band have enabled the complete characterization of the coordination environment of the copper ion in the POSS-atzac matrix. Additionally, the cytotoxic effects of the loaded materials, [Cu(isapn)]@POSS-atzac and [Cu(isaepy)]@POSS-atzac, were assessed toward melanomas (SK-MEL), in comparison to non-tumorigenic cells (fibroblast P4). Evaluation of their nuclease activity or ability to facilitate cleavage of DNA indicated concentrations as low as 0.6 μg mL-1, while complete DNA fragmentation was observed at 25 μg mL-1. By using adequate scavengers, investigations on active intermediates responsible for their cytotoxicity were performed, both in the absence and in the presence of ascorbate as a reducing agent. Based on the observed selective cytotoxicity of these materials toward melanomas, investigations on the reactivity of these complexes and corresponding POSS-materials with melanin, a molecule that contributes to melanoma resistance to chemotherapy, were carried out. Results indicated the main role of the binuclear copper species, formed at the surface of the silica matrix, in the observed reactivity and selectivity of these copper-POSS systems.
Collapse
Affiliation(s)
- Eduardo Guimarães Vieira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Raphael Enoque Ferraz de Paiva
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Rodrigo Bernardi Miguel
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Ana Paula Araujo de Oliveira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Felipe Franco de Melo Bagatelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Carla Columbano Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Floriana Tuna
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Tang HKC, Rao A, Peters C, Ambulkar T, Ho MFX, Wang B, Patel P. 'Immunotherapeutic Strategies for Intra-cranial Metastatic Melanoma - a Meta-analysis and Systematic Review'. J Cancer 2024; 15:3495-3509. [PMID: 38817862 PMCID: PMC11134445 DOI: 10.7150/jca.93306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/27/2024] [Indexed: 06/01/2024] Open
Abstract
Immune-activating anti-CTLA4 and anti-PD1 monoclonal antibodies (alone or in combination) are being used to treat advanced melanoma patients and can lead to durable remissions, and long-term overall survival may be achieved in between 50-60% of patients. Although intracranial metastases are very common in melanoma (about 50-75% of all patients with advanced disease), most of the pivotal prospective clinical trials exclude patients with intra-cranial metastases, certainly if their lesions are symptomatic and steroid-requiring and the degree of sensitivity of intra-cranial melanoma to immunotherapy remains uncertain, and requires further investigation especially in view of the demonstrable activity of RAF-MEK inhibitors in this clinical setting and the emergence of stereotactic radiotherapy. Our study aimed to evaluate the efficacy and toxicity of immunotherapy against advanced melanoma patients with brain metastases. In terms of comparative studies, only retrospective analyses could be identified. Based on 3 retrospective studies, treatment of patients with melanoma brain metastases with immunotherapeutic approaches improves overall survival substantially compared with supportive measures alone (no active anticancer treatment). The efficacy of targeted therapy appeared to be comparable to that of immune therapy in terms of overall survival, based on a small number of patients. The combination of concurrent radiation therapy to the brain and systemic immunotherapy led to improved overall survival compared to radiotherapy alone, suggesting potential synergism between the approaches, and combination treatment could be delivered safely. Our review supports the use of immunotherapeutic strategies for these patients although treatment efficacy appears to be lower for symptomatic lesions. In view of the extremely high efficacy of stereotactic radiotherapy approaches in the brain, understanding the interaction between radiotherapy and immunotherapy is vital and should be an area of active investigation.
Collapse
Affiliation(s)
- Hiu Kwan Carolyn Tang
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Ankit Rao
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Christina Peters
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Tanvi Ambulkar
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Michael FX Ho
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Bo Wang
- Trinity Hall, University of Cambridge, Cambridge, CB2 1TJ, United Kingdom
| | - Poulam Patel
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| |
Collapse
|
7
|
Caraban BM, Aschie M, Deacu M, Cozaru GC, Pundiche MB, Orasanu CI, Voda RI. A Narrative Review of Current Knowledge on Cutaneous Melanoma. Clin Pract 2024; 14:214-241. [PMID: 38391404 PMCID: PMC10888040 DOI: 10.3390/clinpract14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Cutaneous melanoma is a public health problem. Efforts to reduce its incidence have failed, as it continues to increase. In recent years, many risk factors have been identified. Numerous diagnostic systems exist that greatly assist in early clinical diagnosis. The histopathological aspect illustrates the grim nature of these cancers. Currently, pathogenic pathways and the tumor microclimate are key to the development of therapeutic methods. Revolutionary therapies like targeted therapy and immune checkpoint inhibitors are starting to replace traditional therapeutic methods. Targeted therapy aims at a specific molecule in the pathogenic chain to block it, stopping cell growth and dissemination. The main function of immune checkpoint inhibitors is to boost cellular immunity in order to combat cancer cells. Unfortunately, these therapies have different rates of effectiveness and side effects, and cannot be applied to all patients. These shortcomings are the basis of increased incidence and mortality rates. This study covers all stages of the evolutionary sequence of melanoma. With all these data in front of us, we see the need for new research efforts directed at therapies that will bring greater benefits in terms of patient survival and prognosis, with fewer adverse effects.
Collapse
Affiliation(s)
- Bogdan Marian Caraban
- Clinical Department of Plastic Surgery, Microsurgery-Reconstructive, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Mariana Aschie
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Academy of Medical Sciences of Romania, 030171 Bucharest, Romania
- The Romanian Academy of Scientists, 030167 Bucharest, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| | - Mariana Deacu
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
- Clinical Service of Pathology, Departments of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Mihaela Butcaru Pundiche
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Department of General Surgery, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Cristian Ionut Orasanu
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| |
Collapse
|
8
|
Dunsche L, Ivanisenko N, Riemann S, Schindler S, Beissert S, Angeli C, Kreis S, Tavassoli M, Lavrik I, Kulms D. A cytosolic mutp53(E285K) variant confers chemoresistance of malignant melanoma. Cell Death Dis 2023; 14:831. [PMID: 38097548 PMCID: PMC10721616 DOI: 10.1038/s41419-023-06360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Malignant melanoma (MM) is known to be intrinsically chemoresistant, even though only ~20% of MM carry mutations of the tumor suppressor p53. Despite improvement of systemic therapy the mortality rate of patients suffering from metastatic MM is still ~70%, highlighting the need for alternative treatment options or for the re-establishment of conventional therapeutic approaches, including chemotherapy. Screening the p53 mutation status in a cohort of 19 patient-derived melanoma samples, we identified one rarely described missense mutation of p53 leading to E285K amino acid exchange (mutp53(E285K)). Employing structural and computational analysis we revealed a major role of E285 residue in maintaining stable conformation of wild-type p53 (wtp53). E285K mutation was predicted to cause interruption of a salt-bridge network affecting the conformation of the C-terminal helix of the DNA-binding domain (DBD) thereby preventing DNA interaction. In this context, a cluster of frequently mutated amino acid residues in cancer was identified to putatively lead to similar structural effects as E285K substitution (E285 cluster). Functional analysis, including knockdown of endogenous p53 and reconstitution with diverse p53 missense mutants confirmed mutp53(E285K) to have lost transcriptional activity, to be localized in the cytosol of cancer cells, by both means conferring chemoresistance. Re-sensitization to cisplatin-induced cell death was achieved using clinically approved compounds aiming to restore p53 wild-type function (PRIMA1-Met), or inhibition of AKT-driven MAPK survival pathways (afuresertib), in both cases being partially due to ferroptosis induction. Consequently, active ferroptosis induction using the GPX4 inhibitor RSL3 proved superior in tumorselectively fighting MM cells. Due to high prevalence of the E285-cluster mutations in MM as well as in a variety of other tumor types, we conclude this cluster to serve an important function in tumor development and therapy and suggest new implications for ferroptosis induction in therapeutic applications fighting MM in particular and cancer in general.
Collapse
Affiliation(s)
- Luise Dunsche
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Nikita Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, 39106, Magdeburg, Germany
| | - Shamala Riemann
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Sebastian Schindler
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany
| | - Stefan Beissert
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany
| | - Cristian Angeli
- Department of Life Science and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Stephanie Kreis
- Department of Life Science and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Molecular Oncology, Guy's Hospital, Kings College London, London, SE1 1UL, UK
| | - Inna Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University, 39106, Magdeburg, Germany
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, 01307, Dresden, Germany.
- National Center for Tumor Diseases, TU-Dresden, 01307, Dresden, Germany.
| |
Collapse
|
9
|
Ma W, Zhang X, Zhuang L. Exogenous Hydrogen Sulfide Induces A375 Melanoma Cell Apoptosis Through Overactivation of the Unfolded Protein Response. Clin Cosmet Investig Dermatol 2023; 16:1641-1651. [PMID: 37396710 PMCID: PMC10314752 DOI: 10.2147/ccid.s412588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
Purpose Melanomas are highly malignant and rapidly develop drug resistance due to dysregulated apoptosis. Therefore, pro-apoptotic agents could be effective for the management of melanoma. Hydrogen sulfide is ubiquitous in the body, and exogenous hydrogen sulfide has been reported to show inhibitory and pro-apoptotic effects on cancer cells. However, whether high concentrations of exogenous hydrogen sulfide have pro-apoptotic effects on melanoma and its mechanisms remain unknown. Hence, this study aimed to explore the pro-apoptotic effects and mechanisms of exogenous hydrogen sulfide on the A375 melanoma cell line treated with a hydrogen sulfide donor (NaHS). Methods The cell proliferation test, flow cytometric analysis, Hoechst 33258 staining, and Western blotting of B-cell lymphoma 2 and cleaved caspase-3 were used to explore the pro-apoptotic effects of hydrogen sulfide on A375 cells. The transcriptional profile of NaHS-treated A375 cells was further explored via high-throughput sequencing. Western blotting of phosphorylated inositol-requiring enzyme 1α (p-IRE1α), phosphorylated protein kinase R-like ER kinase (p-PERK), phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α), C/EBP homologous protein, glucose-regulating protein 78, IRE1α, PERK, and eIF2α was performed to verify the changes in the transcriptional profile. Results NaHS inhibited A375 melanoma cell proliferation and induced apoptosis. The endoplasmic reticulum stress unfolded protein response and apoptosis-associated gene expression was upregulated in NaHS-treated A375 melanoma cells. The overactivation of the unfolded protein response and increase in endoplasmic reticulum stress was verified at the protein level. Conclusion Treatment with NaHS increased endoplasmic reticulum stress, which triggered the overactivation of the unfolded protein response and ultimately lead to melanoma cell apoptosis. The pro-apoptotic effect of NaHS suggests that it can be explored as a potential therapeutic agent in melanoma.
Collapse
Affiliation(s)
- Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Xiuwen Zhang
- Department of Dermatology, Weihai Municipal Hospital, Weihai, Shandong Province, People’s Republic of China
| | - Le Zhuang
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
10
|
Tirsoaga A, Cojocaru V, Badea M, Badea IA, Rostas AM, Stoica R, Bacalum M, Chifiriuc MC, Olar R. Copper (II) Species with Improved Anti-Melanoma and Antibacterial Activity by Inclusion in β-Cyclodextrin. Int J Mol Sci 2023; 24:ijms24032688. [PMID: 36769008 PMCID: PMC9916925 DOI: 10.3390/ijms24032688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
To improve their biological activity, complexes [Cu(bipy)(dmtp)2(OH2)](ClO4)2·dmtp (1) and [Cu(phen)(dmtp)2(OH2)](ClO4)2·dmtp (2) (bipy 2,2'-bipyridine, phen: 1,10-phenantroline, and dmtp: 5,7-dimethyl-1,2,4-triazolo [1,5-a]pyrimidine) were included in β-cyclodextrins (β-CD). During the inclusion, the co-crystalized dmtp molecule was lost, and UV-Vis spectra together with the docking studies indicated the synthesis of new materials with 1:1 and 1:2 molar ratios between complexes and β-CD. The association between Cu(II) compounds and β-CD has been proven by the identification of the components' patterns in the IR spectra and powder XRD diffractograms, while solid-state UV-Vis and EPR spectra analysis highlighted a slight modification of the square-pyramidal stereochemistry around Cu(II) in comparison with precursors. The inclusion species are stable in solution and exhibit the ability to scavenge or trap ROS species (O2·- and HO·) as indicated by the EPR experiments. Moreover, the two inclusion species exhibit anti-proliferative activity against murine melanoma B16 cells, which has been more significant for (2)@β-CD in comparison with (2). This behavior is associated with a cell cycle arrest in the G0/G1 phase. Compared with precursors, (1a)@β-CD and (2a)@β-CD exhibit 17 and 26 times more intense activity against planktonic Escherichia coli, respectively, while (2a)@β-CD is 3 times more active against the Staphylococcus aureus strain.
Collapse
Affiliation(s)
- Alina Tirsoaga
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
| | - Victor Cojocaru
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
| | - Mihaela Badea
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
| | - Irinel Adriana Badea
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
- Correspondence: (I.A.B.); (R.O.)
| | - Arpad Mihai Rostas
- National Institute for Research and Development of Isotopic and Molecular Technologies, Department of Physics of Nanostructured Systems, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Roberta Stoica
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independenței Str., District 5, 050085 Bucharest, Romania
- Biological Sciences Division, The Romanian Academy, 25 Calea Victoriei, Sector 1, District 1, 010071 Bucharest, Romania
| | - Rodica Olar
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
- Correspondence: (I.A.B.); (R.O.)
| |
Collapse
|
11
|
Pedra NS, Canuto KM, de Queiroz Souza AS, Ribeiro PRV, Bona NP, Ramos-Sobrinho R, de Souza PO, Spanevello RM, Braganhol E. Endophytic Fungus of Achyrocline satureioides: Molecular Identification, Chemical Characterization, and Cytotoxic Evaluation of its Metabolites in Human Melanoma cell line. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04328-w. [PMID: 36652091 DOI: 10.1007/s12010-023-04328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Endophytic fungi are important sources of anticancer compounds. An endophytic fungus was isolated from the medicinal plant Achyrocline satureioides, and molecularly identified as Biscogniauxia sp. (family Xylariaceae) based on partial nucleotide sequences of the internal transcribed spacer genomic region (GenBank Accession No. ON257911). The chemical characterization and cytotoxic properties of secondary metabolites produced by Biscogniauxia sp. were evaluated in a human melanoma cell line (A375). The fungus was grown in potato-dextrose liquid medium for 25 days, and the extracted compounds were subjected to solid-phase fractionation to obtain the purified FDCM fraction, for which the metabolites were elucidated via ultra-performance chromatography coupled to a mass spectrometer. In the present study, 17 secondary metabolites of Biscogniauxia sp., including nine polyketide derivatives, five terpenoids, and three isocoumarins, were putatively identified. This is the first study to report of the ability of Biscogniauxia sp. in the production of isocoumarin orthosporin; the terpenoids nigriterpene A and 10-xylariterpenoid; the polyketide derivatives daldinin C, 7'dechloro-5'-hydroxygriseofulvin, daldinone D, Sch-642305, curtachalasin A, cytochalasin E, epoxycytochalasins Z8, Z8 isomer, and Z17. Furthermore, this study has reported the biosynthesis of Sch-642305 by a Xylariaceae fungus for the first time. FDCM significantly reduced the viability and proliferation of human melanoma cells at half-maximal inhibitory concentrations of 10.34 and 6.89 µg/mL, respectively, and induced late apoptosis/necrosis and cell cycle arrest in G2/M phase after 72 h of treatment. Given its ability to produce unique metabolites with promising cytotoxic effects, Biscogniauxia sp. of A. satureioides may be a reservoir of compounds with important therapeutic applications.
Collapse
Affiliation(s)
- Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Campus Capão do Leão s/n, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | | | | | | | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Roberto Ramos-Sobrinho
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Priscila Oliveira de Souza
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Campus Capão do Leão s/n, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Rao Y, Zhu J, Zheng H, Dong W, Lin Q. A novel melanoma prognostic model based on the ferroptosis-related long non-coding RNA. Front Oncol 2022; 12:929960. [PMID: 36313708 PMCID: PMC9598429 DOI: 10.3389/fonc.2022.929960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/23/2022] [Indexed: 08/27/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death related to the biological process of many kinds of tumors. Long noncoding RNAs (LncRNA) have been found to play essential roles in the tumor, and their functions in the ferroptosis of tumor cells have been partially discovered. However, there is no summary of ferroptosis-related LncRNA and its functions in melanoma. In the present study, we aim to explore the expression profile of ferroptosis-related LncRNA genes and their value in melanoma prognosis by bioinformatics analysis. The expression of ferroptosis-related gene (FRG) from melanoma clinical data was extracted based on the Cancer Genome Atlas (TCGA) database. By screening the RNA expression data of 472 cases of melanoma and 810 cases of normal skin, eighteen ferroptosis-related differential genes were found to be related to the overall survival rate. Furthermore, 384 ferroptosis-related LncRNAs were discovered through constructing the mRNA-LncRNA co-expression network, and ten of them were found with prognostic significance in melanoma by multivariate Cox analysis. Risk assessment showed that the high expression of LncRNA00520 is associated with poor prognosis, while the increased expression of the other LncRNA is beneficial to the prognosis of patients with melanoma. From univariate and multivariate Cox regression analysis, there were ten ferroptosis-related LncRNA risk models towards to be significant independent prognostic factors for patients with melanoma and valuable predictive factors for overall survival (OS)(P<0.05). The ROC curve further suggested that the risk score has relatively reliable predictive ability (AUC=0.718). The protein level of ferroptosis-related genes was verified by the HPA database and IHC test, leading to the discovery that the expressions of ALOX5, PEBP1, ACSL4, and ZEB1 proteins up-regulated in tumor tissues, and existed differences between tumor tissues and normal tissues. In conclusion, we identified ten ferroptosis-related LncRNA and constructed a prognosis model base.
Collapse
Affiliation(s)
- Yamin Rao
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Zhu
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Zheng
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Dong
- Department of Pathology, Eastern Hepatobilliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Qingyuan Lin
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Chen MH, Lee CH, Liang HK, Huang SC, Li JP, Lin CAJ, Chen JK. Integrating the microneedles with carboplatin to facilitate the therapeutic effect of radiotherapy for skin cancers. BIOMATERIALS ADVANCES 2022; 141:213113. [PMID: 36099811 DOI: 10.1016/j.bioadv.2022.213113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/12/2022] [Accepted: 09/03/2022] [Indexed: 12/18/2022]
Abstract
In most skin cancer patients, excisional surgery is required to remove tumorous tissue. However, the risk of locoregional recurrence after surgery alone is relatively high, particularly for a locally advanced stage of melanoma. Therefore, additional adjuvant treatments, such as radiotherapy, can be used after surgery to inhibit recurrent melanoma after surgical removal. To enhance local radiotherapy, we present the combined X-ray radiation and radiosensitizers (carboplatin) through microneedles (MNs) to treat melanoma. The MNs could be beneficial to precisely delivering carboplatin into the sub-epidermal layer of the melanoma region and alleviate patients' fear and discomfort during the drug administration compared to the traditional local injection. The carboplatin was loaded into the tips of dissolving gelatin MNs (carboplatin-MNs) through the molding method. The results show gelatin MNs have sufficient mechanical strength and can successfully administer carboplatin into the skin. Both in vitro and in vivo studies suggest that carboplatin can enhance radiotherapy in melanoma treatment. With a combination of radiotherapy and carboplatin, the inhibition effect of carboplatin delivered into the B16F10 murine melanoma model through MNs administration (1.2 mg/kg) is equivalent to that through an intravenous route (5 mg/kg). The results demonstrate a promise of combined carboplatin and X-ray radiation treatment in treating melanoma by MNs administration.
Collapse
Affiliation(s)
- Min-Hua Chen
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan; Center for Biomedical Engineering in Cancer, Chung Yuan Christian University, Taoyuan City 320314, Taiwan.
| | - Chun-Hung Lee
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Hsiang-Kuang Liang
- Department of Biomedical Engineering, National Taiwan University, Taipei City 10617, Taiwan; Division of Radiation Oncology, National Taiwan University Hospital, Taipei City 100225, Taiwan; Department of Radiation Oncology, Cancer Center Branch, National Taiwan University Hospital, Taipei City 100225, Taiwan
| | - Su-Chin Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Jui-Ping Li
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Cheng-An J Lin
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan; Center for Biomedical Engineering in Cancer, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung City 40227, Taiwan; Graduated Institute of Life Sciences, National Defense Medical Center, Taipei City 11490, Taiwan.
| |
Collapse
|
14
|
Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers (Basel) 2022; 14:4652. [PMID: 36230575 PMCID: PMC9562203 DOI: 10.3390/cancers14194652] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the deadliest skin cancer, whose morbidity and mortality indicators show an increasing trend worldwide. In addition to its great heterogeneity, melanoma has a high metastatic potential, resulting in very limited response to therapies currently available, which were restricted to surgery, radiotherapy and chemotherapy for many years. Advances in knowledge about the pathophysiological mechanisms of the disease have allowed the development of new therapeutic classes, such as immune checkpoint and small molecule kinase inhibitors. However, despite the incontestable progress in the quality of life and survival rates of the patients, effectiveness is still far from desired. Some adverse side effects and resistance mechanisms are the main barriers. Thus, the search for better options has resulted in many clinical trials that are now investigating new drugs and/or combinations. The low water solubility of drugs, low stability and rapid metabolism limit the clinical potential and therapeutic use of some compounds. Thus, the research of nanotechnology-based strategies is being explored as the basis for the broad application of different types of nanosystems in the treatment of melanoma. Future development focus on challenges understanding the mechanisms that make these nanosystems more effective.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
15
|
Li X, Yu W, Yang J, Chen Y, Qian X, Wang J, Wang Y, Ji J. Microneedle patch with "spongy coating" to co-load multiple drugs to treat multidrug-resistant melanoma. Biomater Sci 2022; 10:6282-6290. [PMID: 36129142 DOI: 10.1039/d2bm01275h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Melanoma is the most aggressive skin malignancy that continues to increase in worldwide. The transferability and multidrug resistance lead to a high fatality rate. Synergistic administration of hydrophilic carboplatin (CBP) and hydrophobic vorinostat (SAHA) can be a reliable way to treat multidrug-resistant melanoma. However, the different physicochemical properties of multiple drugs make it difficult to achieve a convenient co-loading and an ideal synergistic treatment efficacy. To solve the problem, a microneedle patch with a porous "spongy coating" (PF-MNP) was fabricated. Firstly, (polyacrylic acid/polyethyleneimine)10 multilayers were fabricated on polymethyl methacrylate MNP. Then a "spongy coating" was achieved by acid treatment and freeze-drying. Due to the capillary effect, hydrophobic SAHA and hydrophilic CBP could be conveniently adsorbed step-by-step. The two drugs could distribute evenly on the surface, and the morphology of MNP remained good. The loading content of SAHA and CBP was easily regulated by adjusting the concentration of the adsorption solution, and MNP could quickly release most drugs within 30 min. The final in vivo experiments proved that CBP/SAHA co-loaded PF-MNP had the best therapeutic efficiency for multidrug-resistant melanoma. The MNP with a "spongy coating" showed potential to be a safe and efficient transdermal delivery platform for multiple drugs.
Collapse
Affiliation(s)
- Xinfang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Weijiang Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Jingshuang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Yonghang Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Xuedan Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Jing Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| |
Collapse
|
16
|
Olar R, Maxim C, Badea M, Bacalum M, Raileanu M, Avram S, Korošin NČ, Burlanescu T, Rostas AM. Antiproliferative Copper(II) Complexes Bearing Mixed Chelating Ligands: Structural Characterization, ROS Scavenging, In Silico Studies, and Anti-Melanoma Activity. Pharmaceutics 2022; 14:pharmaceutics14081692. [PMID: 36015318 PMCID: PMC9416163 DOI: 10.3390/pharmaceutics14081692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Melanoma is a skin cancer characterized by rapid growth and spread for which current therapies produce both resistance and increased risk of infection. To develop new anti-melanoma biocompatible species, the series of complexes Cu(N-N)(bzac)(X)⋅nH2O (N-N: 1,10-phenanthroline/2,2′-bipyridine, Hbzac: 1-phenyl-1,3-butanedione, X: NO3/ClO4, and n = 0, 1) was studied. Single-crystal X-ray diffraction revealed a mononuclear structure for all complexes. The ability of the complexes to scavenge or trap reactive oxygen species such as O2⋅− and HO⋅ was proved by EPR spectroscopy experiments. All complexes inhibited B16 murine melanoma cells in a dose-dependent and nanomolar range, but the complexes with 1,10-phenanthroline were more active. Moreover, comparative activity on B16 and healthy BJ cells revealed a therapeutic index of 1.27–2.24. Bioinformatic methods were used to calculate the drug-likeness, pharmacokinetic, pharmacogenomic, and pharmacodynamic profiles of the compounds. The results showed that all compounds exhibit drug-likeness features, as well as promising absorption, distribution, metabolism, and excretion (ADME) properties, and no toxicity. The pharmacodynamics results showed that the neutral species appear to be good candidates for antitumor molecular targets (Tyrosyl-DNA phosphodiesterase 1, DNA-(apurinic or apyrimidinic site) lyase or Kruppel-like factor 5). Furthermore, the pharmacogenomic results showed a good affinity of the copper(II) complexes for the human cytochrome. These results recommend complexes bearing 1,10-phenanthroline as good candidates for developing drugs to melanoma alternative treatment.
Collapse
Affiliation(s)
- Rodica Olar
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania
- Correspondence: (R.O.); (S.A.)
| | - Catalin Maxim
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania
| | - Mihaela Badea
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
| | - Mina Raileanu
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
- Faculty of Physics, Department of Electricity, Solid State and Biophysics, University of Bucharest, 405A Atomiștilor Str., 077125 Magurele-Ilfov, Romania
| | - Speranta Avram
- Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, 91-95, Splaiul Independenței, 050095 Bucharest, Romania
- Correspondence: (R.O.); (S.A.)
| | - Nataša Čelan Korošin
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Teodora Burlanescu
- Laboratory of Optical Processes in Nanostructure Materials, National Institute of Materials Physics, 405A Atomiștilor Str., 077125 Magurele-Ilfov, Romania
| | - Arpad Mihai Rostas
- Laboratory of Atomic Structures and Defects in Advanced Materials, LASDAM, National Institute of Materials Physics, 405A Atomiștilor Str., 077125 Magurele-Ilfov, Romania
| |
Collapse
|
17
|
|
18
|
Zhang Y, Zhou Y, Zhang H, Tian L, Hao J, Yuan Y, Li W, Liu Y. DNA binding and evaluation of anticancer activity in vitro and in vivo of iridium(III) polypyridyl complexes. J Inorg Biochem 2021; 224:111580. [PMID: 34438219 DOI: 10.1016/j.jinorgbio.2021.111580] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 01/25/2023]
Abstract
In this report, we synthesized three new iridium(III) complexes: [Ir(piq)2(apip)]PF6 (Ir1, piq = 1-phenylisoquinoline, apip = 2-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(piq)2(maip)]PF6 (Ir2, maip = 3-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(piq)2(paip)]PF6 (Ir3, paip = 4-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline). The DNA binding was investigated. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to detect the cytotoxic activity of Ir1, Ir2 and Ir3, the complexes show highly active against B16 cells with IC50 values of 0.3 ± 0.2 μM, 3.7 ± 0.2 μM and 4.6 ± 1.1 μM, respectively. Subsequently, cellular uptake suggested that the cytotoxicity of the complexes is attributed to their differences in cellular uptake levels. In addition, complexes Ir1, Ir2 and Ir3 induce cell cycle arrest at the G0/G1 phase and regulate the cell cycle mediators such as cyclin D1, CDK6 (cyclin-dependent kinase 6), CDK4 and p21, leading to the inhibition of B16 cells proliferation. The autophagy was investigated by monodansylcadaverine (MDC) staining. The complexes can promote the change from LC3-I to LC3-II, up-regulate levels of Beclin-1 and down-regulate expression of p62. The complexes induced apoptosis by regulating the expression levels of related indicators such as PARP (poly ADP-ribose polymerase), PI3K (phosphoinositide-3 kinase), AKT (protein kinase B), Caspase, Bcl-2 (B-cell lymphoma-2), Bad (Bcl2 associated death promoter), Bax (Bcl2-associated X) and Cyto C (cytochrome C). Additionally, Ir1 exerted significant antitumor activity in the suppression of malignant melanoma proliferation in vivo. As indicated in the above results, these complexes were highly effective for malignant melanoma treatment through the intrinsic pathway and provided much insight into anticancer drugs for tumor therapy.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
19
|
Serra F, Barruscotti S, Dominioni T, Zuccarini A, Pedrazzoli P, Chiellino S. Treatment Following Progression in Metastatic Melanoma: the State of the Art from Scientific Literature to Clinical Need. Curr Oncol Rep 2021; 23:84. [PMID: 34009481 DOI: 10.1007/s11912-021-01065-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION In the last few years, the advent of targeted therapy and immunotherapy has improved the management and the prognosis of metastatic melanoma, but the spread of resistance mechanisms can lead to disease progression. The clinical management in this setting can be challenging because the oncologist has to decide what is the best treatment strategy among therapy beyond progression (TBP), therapy change, and the rechallenge approach. This review of the relevant scientific literature is intended to clarify which patients with progressing metastatic melanoma will benefit from continuation of ongoing therapy and which ones will not. The data are based on a total of about 4300 patients coming from the main retrospective studies in the chosen field. The article body is divided into four sections which analyze respectively the targeted therapy beyond progression, the immunotherapy beyond progression, the possible treatment sequences, and finally the rechallenge strategy. RECENT FINDINGS Despite the possible approaches of TBP or rechallenge, the patient may not have an optimal response and may need new therapy, which is currently missing. To broaden the pharmacological offer in the fight against melanoma, cancer research is studying new disease targets, like the NRAS, PI3K, and cKIT pathways or combination treatment of targeted therapy plus immunotherapy. Despite the limitations of this work, mainly due to the limited number of studies, their retrospective nature and the lack of comparative studies, the analysis performed allows us to draw some important conclusions: therapy beyond progression, both targeted therapy and immunotherapy, represents a valid treatment option with positive effects on disease control and survival outcomes for patients with low clinical risk, expressed as low disease burden, normal LDH levels, and good performance status; moreover, the prognosis and quality of life of these patients improve when TBP is associated with locoregional treatments. In patients with progressive metastatic melanoma and high clinical risk (high disease burden, high LDH levels, and poor performance status), it is recommended to change therapy, without ever forgetting the possibility of enrolling the patient in a clinical trial. Finally, an efficacious treatment alternative is the rechallenge strategy; this approach consists in a re-treatment with the same drug after a variable interval of discontinuation. Preliminary studies seem to have demonstrated that patients retreated with targeted therapy achieved a greater benefit if they had a low clinical risk and if the drug doublet (BRAF + MEK inhibitors) was used. On the side of immunotherapy, the rechallenge strategy produced a major benefit in patients who prior experienced a severe toxic episode.
Collapse
Affiliation(s)
- F Serra
- Medical Oncology Unit, IRCCS Policlinico San Matteo, Pavia, Italy
| | - S Barruscotti
- Dermatology Unit, IRCCS Policlinico San Matteo, Pavia, Italy
| | - T Dominioni
- General Surgery Unit, IRCCS Policlinico San Matteo, Pavia, Italy
| | - A Zuccarini
- Medical Oncology Unit, IRCCS Policlinico San Matteo, Pavia, Italy
| | - P Pedrazzoli
- Medical Oncology Unit, IRCCS Policlinico San Matteo, Pavia, Italy
| | - S Chiellino
- Medical Oncology Unit, IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
20
|
Targeting SIRT2 Sensitizes Melanoma Cells to Cisplatin via an EGFR-Dependent Mechanism. Int J Mol Sci 2021; 22:ijms22095034. [PMID: 34068624 PMCID: PMC8126047 DOI: 10.3390/ijms22095034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 01/29/2023] Open
Abstract
Melanoma cells are resistant to most anticancer chemotherapeutics. Despite poor response rates and short-term efficacy, chemotherapy remains the main approach to treating this cancer. The underlying mechanisms of the intrinsic chemoresistance of melanoma remain unclear, but elucidating these mechanisms is important to improve the efficacy of chemotherapy regimens. Increasing evidence suggests that sirtuin 2 (SIRT2) plays a key role in the response of melanoma cells to chemotherapeutics; thus, in the present study, we evaluated the impact of shRNA-mediated and pharmacological inhibition of SIRT2 on the sensitivity of melanoma cells to cisplatin, which is used in several regimens to treat melanoma patients. We found that cells with SIRT2 inhibition revealed increased sensitivity to cisplatin and exhibited increased accumulation of γ-H2AX and reduced EGFR-AKT-RAF-ERK1/2 (epidermal growth factor receptor-protein B kinase-RAF kinase-extracellular signal-regulated kinase 1/2) pathway signaling compared to control cells. Thus, our results show that sirtuin 2 inhibition increased the in vitro efficacy of cisplatin against melanoma cells.
Collapse
|
21
|
Resistance to Molecularly Targeted Therapies in Melanoma. Cancers (Basel) 2021; 13:cancers13051115. [PMID: 33807778 PMCID: PMC7961479 DOI: 10.3390/cancers13051115] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is the most aggressive type of skin cancer with invasive growth patterns. In 2021, 106,110 patients are projected to be diagnosed with melanoma, out of which 7180 are expected to die. Traditional methods like surgery, radiation therapy, and chemotherapy are not effective in the treatment of metastatic and advanced melanoma. Recent approaches to treat melanoma have focused on biomarkers that play significant roles in cell growth, proliferation, migration, and survival. Several FDA-approved molecular targeted therapies such as tyrosine kinase inhibitors (TKIs) have been developed against genetic biomarkers whose overexpression is implicated in tumorigenesis. The use of targeted therapies as an alternative or supplement to immunotherapy has revolutionized the management of metastatic melanoma. Although this treatment strategy is more efficacious and less toxic in comparison to traditional therapies, targeted therapies are less effective after prolonged treatment due to acquired resistance caused by mutations and activation of alternative mechanisms in melanoma tumors. Recent studies focus on understanding the mechanisms of acquired resistance to these current therapies. Further research is needed for the development of better approaches to improve prognosis in melanoma patients. In this article, various melanoma biomarkers including BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K are described, and their potential mechanisms for drug resistance are discussed.
Collapse
|
22
|
Huang XF, Gao HW, Lee SC, Chang KF, Tang LT, Tsai NM. Juniperus indica Bertol. extract synergized with cisplatin against melanoma cells via the suppression of AKT/mTOR and MAPK signaling and induction of cell apoptosis. Int J Med Sci 2021; 18:157-168. [PMID: 33390784 PMCID: PMC7738970 DOI: 10.7150/ijms.49423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/15/2020] [Indexed: 01/05/2023] Open
Abstract
Juniperus indica Bertol. is an herbal plant that belongs to the genus Juniperus, which is commonly used in traditional medicine to refresh the mind and for diuretic use. However, few studies have reported the function of J. indica Bertol. Hence, this study aimed to investigate the anti-tumor and synergistic potential of J. indica Bertol. extract (JIB extract) for melanoma cells. Our results indicated the anti-melanoma activity of JIB extract. JIB extract induced cell cycle arrest at the G0/G1 phase and decreased cyclin and cdk protein expressions. In addition, AKT/mTOR signaling and MAPK signaling were inhibited by JIB extract to suppress melanoma cell growth and proliferation. Additionally, JIB extract induced B16/F10 cell apoptosis via the caspase cascade. According to the JIB extract's anti-melanoma capacity, to assess the synergistic effects of cisplatin and JIB extract. The results demonstrated that JIB extract combined with cisplatin enhanced the inhibition of cell growth, proliferation, and survival through the obstruction of cell cycle progression and AKT/mTOR and MAPK signaling as well as the induction of cell apoptosis. Collectively, our results indicate that JIB extract showed anti-tumor effects and synergized with cisplatin against B16/F10 cells, indicating the possibility of JIB extract to be developed as adjuvant therapy for melanoma.
Collapse
Affiliation(s)
- Xiao-Fan Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC.,Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC
| | - Hong-Wei Gao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan, ROC
| | - Shan-Chih Lee
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC.,Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan, ROC
| | - Kai-Fu Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC.,Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC
| | - Li-Ting Tang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, 40201, Taiwan, ROC.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan, ROC
| |
Collapse
|
23
|
Sood S, Jayachandiran R, Pandey S. Current Advancements and Novel Strategies in the Treatment of Metastatic Melanoma. Integr Cancer Ther 2021; 20:1534735421990078. [PMID: 33719631 PMCID: PMC8743966 DOI: 10.1177/1534735421990078] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 02/03/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer in the world with a growing incidence in North America. Contemporary treatments for melanoma include surgical resection, chemotherapy, and radiotherapy. However, apart from resection in early melanoma, the prognosis of patients using these treatments is typically poor. In the past decade, there have been significant advancements in melanoma therapies. Immunotherapies such as ipilimumab and targeted therapies such as vemurafenib have emerged as a promising option for patients as seen in both scientific and clinical research. Furthermore, combination therapies are starting to be administered in the form of polychemotherapy, polyimmunotherapy, and biochemotherapy, of which some have shown promising outcomes in relative efficacy and safety due to their multiple targets. Alongside these treatments, new research has been conducted into the evidence-based use of natural health products (NHPs) and natural compounds (NCs) on melanoma which may provide a long-term and non-toxic form of complementary therapy. Nevertheless, there is a limited consolidation of the research conducted in emerging melanoma treatments which may be useful for researchers and clinicians. Thus, this review attempts to evaluate the therapeutic efficacy of current advancements in metastatic melanoma treatment by surveying new research into the molecular and cellular basis of treatments along with their clinical efficacy. In addition, this review aims to elucidate novel strategies that are currently being used and have the potential to be used in the future.
Collapse
|
24
|
Song LB, Zhang QJ, Hou XY, Xiu YY, Chen L, Song NH, Lu Y. A twelve-gene signature for survival prediction in malignant melanoma patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:312. [PMID: 32355756 PMCID: PMC7186619 DOI: 10.21037/atm.2020.02.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Melanoma is defined as a highly mutational heterogeneous disease containing numerous alternations of the molecule. However, due to the phenotypically and genetically heterogeneity of malignant melanoma, conventional clinical characteristics remain restricted or limited in the ability to accurately predict individual outcomes and survival. This study aimed to establish an accurate gene expression signature to predict melanoma prognosis. Methods In this study, we established an RNA sequencing-based 12-gene signature data of melanoma patients obtained from 2 independent databases: the Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. We evaluated the quality of each gene to predict survival conditions in each database by employing univariate and multivariate regression models. A prognostic risk score based on a prognostic signature was determined. This prognostic gene signature further classified patients into low-risk and high-risk groups. Results Based on a prognostic signature, a prognostic risk score was determined. This prognostic gene signature further divided the patients into low-risk and high-risk groups. In the chemotherapy and radiotherapy groups of the TCGA cohort and V-raf murine sarcoma viral oncogene homolog B1 (BRAF) expression group in the GEO cohort, patients in the low-risk group had a longer survival duration compared to patients in the high-risk group. Nevertheless, the immunotherapy group in the TCGA database and neuroblastoma RAS viral oncogene homolog (NRAS) expression group in the GEO database had no significant differences in statistics. Moreover, this gene signature was associated with patient prognosis regardless of whether the Breslow depth was greater than or less than 3.75 mm. Stratified gene set enrichment analysis (GSEA) revealed that certain immune-related pathways, such as the T-cell signaling pathway, chemokine signaling pathway, and primary immunodeficiency, were significantly enriched in the low-risk group of both TCGA and GEO cohorts. This information implied the immune-related properties of the 12-gene signature. Conclusions Our study emphasizes the significance of the gene expression signature in that it may be an indispensable prognostic predictor in melanoma and has great potential for application in personalized treatment.
Collapse
Affiliation(s)
- Le-Bin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Yuan Hou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan-Yan Xiu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lin Chen
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ning-Hong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
25
|
Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma. Cell Death Dis 2020; 11:124. [PMID: 32054850 PMCID: PMC7018795 DOI: 10.1038/s41419-020-2309-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
Despite the introduction of novel targeted therapies, chemotherapy still remains the primary treatment for metastatic melanoma in poorly funded healthcare environments or in case of disease relapse, with no reliable molecular markers for progression-free survival (PFS) available. As chemotherapy primarily eliminates cancer cells by apoptosis, we here evaluated if the expression of key apoptosis regulators (Bax, Bak, Bcl-2, Bcl-xL, Smac, Procaspase-9, Apaf-1, Procaspase-3 and XIAP) allows prognosticating PFS in stage III/IV melanoma patients. Following antibody validation, marker expression was determined by automated and manual scoring of immunohistochemically stained tissue microarrays (TMAs) constructed from treatment-naive metastatic melanoma biopsies. Interestingly and counter-intuitively, low expression of the pro-apoptotic proteins Bax, Bak and Smac indicated better prognosis (log-rank p < 0.0001, p = 0.0301 and p = 0.0227 for automated and p = 0.0422, p = 0.0410 and p = 0.0073 for manual scoring). These findings were independently validated in the cancer genome atlas (TCGA) metastatic melanoma cohort (TCGA-SKCM) at transcript level (log-rank p = 0.0004, p = 0.0104 and p = 0.0377). Taking expression heterogeneity between the markers in individual tumour samples into account allowed defining combinatorial Bax, Bak, Smac signatures that were associated with significantly increased PFS (p = 0.0002 and p = 0.0028 at protein and transcript level, respectively). Furthermore, combined low expression of Bax, Bak and Smac allowed predicting prolonged PFS (> 12 months) on a case-by-case basis (area under the receiver operating characteristic curve (ROC AUC) = 0.79). Taken together, our results therefore suggest that Bax, Bak and Smac jointly define a signature with potential clinical utility in chemotherapy-treated metastatic melanoma.
Collapse
|
26
|
Brusco I, Li Puma S, Chiepe KB, da Silva Brum E, de David Antoniazzi CT, de Almeida AS, Camponogara C, Silva CR, De Logu F, de Andrade VM, Ferreira J, Geppetti P, Nassini R, Oliveira SM, Trevisan G. Dacarbazine alone or associated with melanoma-bearing cancer pain model induces painful hypersensitivity by TRPA1 activation in mice. Int J Cancer 2019; 146:2797-2809. [PMID: 31456221 DOI: 10.1002/ijc.32648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
Antineoplastic therapy has been associated with pain syndrome development characterized by acute and chronic pain. The chemotherapeutic agent dacarbazine, used mainly to treat metastatic melanoma, is reported to cause painful symptoms, compromising patient quality of life. Evidence has proposed that transient receptor potential ankyrin 1 (TRPA1) plays a critical role in chemotherapy-induced pain syndrome. Here, we investigated whether dacarbazine causes painful hypersensitivity in naive or melanoma-bearing mice and the involvement of TRPA1 in these models. Mouse dorsal root ganglion (DRG) neurons and human TRPA1-transfected HEK293 (hTRPA1-HEK293) cells were used to evaluate the TRPA1-mediated calcium response evoked by dacarbazine. Mechanical and cold allodynia were evaluated after acute or repeated dacarbazine administration in naive mice or after inoculation of B16-F10 melanoma cells in C57BL/6 mice. TRPA1 involvement was investigated by using pharmacological and genetic tools (selective antagonist or antisense oligonucleotide treatment and Trpa1 knockout mice). Dacarbazine directly activated TRPA1 in hTRPA1-HEK293 cells and mouse DRG neurons and appears to sensitize TRPA1 indirectly by generating oxidative stress products. Moreover, dacarbazine caused mechanical and cold allodynia in naive but not Trpa1 knockout mice. Also, dacarbazine-induced nociception was reduced by the pharmacological TRPA1 blockade (antagonism), antioxidants, and by ablation of TRPA1 expression. TRPA1 pharmacological blockade also reduced dacarbazine-induced nociception in a tumor-associated pain model. Thus, dacarbazine causes nociception by TRPA1 activation, indicating that this receptor may represent a pharmacological target for treating chemotherapy-induced pain syndrome in cancer patients submitted to antineoplastic treatment with dacarbazine.
Collapse
Affiliation(s)
- Indiara Brusco
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Simone Li Puma
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Kelly Braga Chiepe
- Graduate Program in Health Science, University of the Extreme South of Santa Catarina-Unesc, Criciúma, Brazil
| | - Evelyne da Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Amanda Spring de Almeida
- Graduate Program in Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Cássia Regina Silva
- Graduate Program in Genetics and Biochemistry, Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Brazil
| | - Francesco De Logu
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Vanessa Moraes de Andrade
- Graduate Program in Health Science, University of the Extreme South of Santa Catarina-Unesc, Criciúma, Brazil
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | - Romina Nassini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gabriela Trevisan
- Graduate Program in Health Science, University of the Extreme South of Santa Catarina-Unesc, Criciúma, Brazil.,Graduate Program in Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
27
|
Putzer D, Schullian P, Bale R. Locoregional ablative treatment of melanoma metastases. Int J Hyperthermia 2019; 36:59-63. [DOI: 10.1080/02656736.2019.1647353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Daniel Putzer
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Peter Schullian
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Reto Bale
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Abstract
The incidence of melanoma continues to rise worldwide. Prior to 2010, there had been no progress in the treatment of advanced melanoma in living memory. Since then, immunotherapy has become a standard of care in the treatment of advanced melanoma. Nivolumab is a fully human monoclonal antibody against PD-1, which is a negative regulatory checkpoint in the T cells. The clinical benefit of nivolumab as a single agent is well established, with response rates of ≥40%, durable responses and a favorable tolerability profile. The combination of nivolumab and ipilimumab has also become a standard of care and the role of nivolumab in the adjuvant setting for high-risk patients has been recently confirmed.
Collapse
Affiliation(s)
- Fabio Gomes
- The Christie NHS Foundation Trust, Manchester, UK
| | | | - Paul Lorigan
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|