1
|
Kappelhoff J, Greve B, Jüstel T. On the temperature dependent photoluminescence of nanoscale LuPO 4:Eu 3+ and their application for bioimaging. RSC Adv 2024; 14:29992-29998. [PMID: 39309651 PMCID: PMC11413621 DOI: 10.1039/d4ra01190b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/21/2024] [Indexed: 09/25/2024] Open
Abstract
This work concerns a synthesis method for efficiently luminescent LuPO4:Eu3+ nanoscale particles (∼100 nm) as well as their temperature (77-500 K) and time dependent photoluminescence. In addition, the incubation of these particles into cells of a human lung adenocarcinomic cell line A549 is briefly presented. This points to the application for bioimaging and detection of cancer cells in the field of medical diagnostics. The emission spectra of Eu3+ doped LuPO4 nanoparticles show four [Xe]4f6 → [Xe]4f6 transition multiplets between 580 and 720 nm, which are typically for Eu3+ comprising luminescent materials, however the most intense one is the 5D0 → 7F4 (696.40 nm, 1.78 eV) transition due to the crystallographic position point symmetry D 2d of Eu3+ in xenotime LuPO4. Such an Eu3+ spectrum is rather useful for diagnostics due to the high penetration depth of 700 nm radiation into tissue.
Collapse
Affiliation(s)
- Jan Kappelhoff
- Department of Chemical Engineering, Münster University of Applied Sciences Stegerwaldstraße 39 D-48565 Steinfurt Germany
| | - Burkhard Greve
- Department of Radiotherapy - Radiooncology, University Hospital Münster Albert-Schweitzer-Campus 1 D-48149 Münster Germany
| | - Thomas Jüstel
- Department of Chemical Engineering, Münster University of Applied Sciences Stegerwaldstraße 39 D-48565 Steinfurt Germany
| |
Collapse
|
2
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
3
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
4
|
Chormey DS, Zaman BT, Borahan Kustanto T, Erarpat Bodur S, Bodur S, Tekin Z, Nejati O, Bakırdere S. Biogenic synthesis of novel nanomaterials and their applications. NANOSCALE 2023; 15:19423-19447. [PMID: 38018389 DOI: 10.1039/d3nr03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the many benefits derived from the unique features and practicality of nanoparticles, the release of their toxic by-products or products from the synthesis stage into the environment could negatively impact natural resources and organisms. The physical and chemical methods for nanoparticle synthesis involve high energy consumption and the use of hazardous chemicals, respectively, going against the principles of green chemistry. Biological methods of synthesis that rely on extracts from a broad range of natural plants, and microorganisms, such as fungi, bacteria, algae, and yeast, have emerged as viable alternatives to the physical and chemical methods. Nanoparticles synthesized through biogenic pathways are particularly useful for biological applications that have high concerns about contamination. Herein, we review the physical and chemical methods of nanoparticle synthesis and present a detailed overview of the biogenic methods used for the synthesis of different nanoparticles. The major points discussed in this study are the following: (1) the fundamentals of the physical and chemical methods of nanoparticle syntheses, (2) the use of different biological precursors (microorganisms and plant extracts) to synthesize gold, silver, selenium, iron, and other metal nanoparticles, and (3) the applications of biogenic nanoparticles in diverse fields of study, including the environment, health, material science, and analytical chemistry.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 İstanbul, Türkiye
- İstinye University, Scientific and Technological Research Application and Research Center, 34010 İstanbul, Türkiye
| | - Zeynep Tekin
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Omid Nejati
- İstinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Türkiye
| |
Collapse
|
5
|
Hasan MZ, Yan J, Yi Z, Korfhage MO, Tong S, Zhu C. Low-cost compact optical spectroscopy and novel spectroscopic algorithm for point-of-care real-time monitoring of nanoparticle delivery in biological tissue models. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2023; 29:7100208. [PMID: 36341280 PMCID: PMC9635618 DOI: 10.1109/jstqe.2022.3205862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Objective Real-time monitoring of nanoparticle delivery in biological models is essential to optimize nanoparticle-mediated therapies. However, few techniques are available for convenient real-time monitoring of nanoparticle concentrations in tissue samples. This work reported novel optical spectroscopic approaches for low-cost point-of-care real-time quantification of nanoparticle concentrations in biological tissue samples. Methods Fiber probe measured diffuse reflectance can be described with a simple analytical model by introducing an explicit dependence on the reduced scattering coefficient. Relying on this, the changes on the inverse of diffuse reflectance are proportional to absorption change when the scattering perturbation is negligible. We developed this model with proper wavelength pairs and implemented it with both a standard optical spectroscopy platform and a low-cost compact spectroscopy device for near real-time quantification of nanoparticle concentrations in biological tissue models. Results Both tissue-mimicking phantom and ex vivo tissue sample studies showed that our optical spectroscopic techniques could quantify nanoparticle concentrations in near real-time with high accuracies (less than 5% error) using only a pair of narrow wavelengths (530 nm and 630 nm). Conclusion Novel low-cost point-of-care optical spectroscopic techniques were demonstrated for rapid accurate quantification of nanoparticle concentrations in tissue-mimicking medium and ex vivo tissue samples using optical signals measured at a pair of narrow wavelengths. Significance Our methods will potentially facilitate real-time monitoring of nanoparticle delivery in biological models using low-cost point-of-care optical spectroscopy platforms, which will significantly advance nanomedicine in cancer research.
Collapse
Affiliation(s)
- Md Zahid Hasan
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Yan
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Zhongchao Yi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Madison O Korfhage
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Sheng Tong
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
6
|
Evstigneeva SS, Chumakov DS, Tumskiy RS, Khlebtsov BN, Khlebtsov NG. Detection and imaging of bacterial biofilms with glutathione-stabilized gold nanoclusters. Talanta 2023; 264:124773. [PMID: 37320983 DOI: 10.1016/j.talanta.2023.124773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Bacterial biofilms colonize chronic wounds and surfaces of medical devices, thus making the development of reliable methods for imaging and detection of biofilms crucial. Although fluorescent identification of bacteria is sensitive and non-destructive, the lack of biofilm-specific fluorescent dyes limits the application of this technique to biofilm detection. Here, we demonstrate, for the first time, that fluorescent glutathione-stabilized gold nanoclusters (GSH-AuNCs) without targeting ligands can specifically interact with extracellular matrix components of Gram-negative and Gram-positive bacterial biofilms resulting in fluorescent staining of bacterial biofilms. By contrast, fluorescent bovine serum albumin-stabilized gold nanoclusters and 11-mercaptoundecanoic acid - stabilized gold nanoclusters do not stain the extracellular matrix of biofilms. According to molecular docking studies, GSH-AuNCs show affinity to several targets in extracellular matrix, including amyloid-anchoring proteins, matrix proteins and polysaccharides. Some experimental evidence was obtained for the interaction of GSH-AuNCs with the lipopolysaccharide (LPS) that was isolated from the matrix of Azospirillum baldaniorum biofilms. Based on GSH-AuNCs properties, we propose a new fluorescent method for the measurement of biofilm biomass with a limit of detection 1.7 × 105 CFU/mL. The sensitivity of the method is 10-fold higher than the standard biofilm quantification with the crystal violet assay. There is a good linear relationship between the fluorescence intensity from the biofilms and the number of CFU from the biofilms in the range from 2.6 × 105 to 6.7 × 107 CFU/mL. The developed nanocluster-mediated method of biofilm staining was successfully applied for quantitative detection of biofilm formation on urinary catheter surface. The presented data suggest that fluorescent GSH-AuNCs can be used to diagnose medical device-associated infections.
Collapse
Affiliation(s)
- S S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia.
| | - D S Chumakov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - R S Tumskiy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia; Institute of Physics, Saratov State University, 410012, Saratov, Russia
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia; Institute of Physics, Saratov State University, 410012, Saratov, Russia
| |
Collapse
|
7
|
Kudaibergen D, Park HS, Park J, Im GB, Lee JR, Joung YK, Bhang SH, Kim JH. Silica-Based Advanced Nanoparticles For Treating Ischemic Disease. Tissue Eng Regen Med 2023; 20:177-198. [PMID: 36689072 PMCID: PMC10070585 DOI: 10.1007/s13770-022-00510-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 01/24/2023] Open
Abstract
Recently, various attempts have been made to apply diverse types of nanoparticles in biotechnology. Silica nanoparticles (SNPs) have been highlighted and studied for their selective accumulation in diseased parts, strong physical and chemical stability, and low cytotoxicity. SNPs, in particular, are very suitable for use in drug delivery and bioimaging, and have been sought as a treatment for ischemic diseases. In addition, mesoporous silica nanoparticles have been confirmed to efficiently deliver various types of drugs owing to their porous structure. Moreover, there have been innovative attempts to treat ischemic diseases using SNPs, which utilize the effects of Si ions on cells to improve cell viability, migration enhancement, and phenotype modulation. Recently, external stimulus-responsive treatments that control the movement of magnetic SNPs using external magnetic fields have been studied. This review addresses several original attempts to treat ischemic diseases using SNPs, including particle synthesis methods, and presents perspectives on future research directions.
Collapse
Affiliation(s)
- Dauletkerey Kudaibergen
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jinwook Park
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju-Ro Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoungbuk-Gu, Seoul, 02792, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoungbuk-Gu, Seoul, 02792, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae-Hyuk Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
8
|
Shih CP, Tang X, Kuo CW, Chueh DY, Chen P. Design principles of bioinspired interfaces for biomedical applications in therapeutics and imaging. Front Chem 2022; 10:990171. [PMID: 36405322 PMCID: PMC9673126 DOI: 10.3389/fchem.2022.990171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/08/2022] [Indexed: 09/29/2023] Open
Abstract
In the past two decades, we have witnessed rapid developments in nanotechnology, especially in biomedical applications such as drug delivery, biosensing, and bioimaging. The most commonly used nanomaterials in biomedical applications are nanoparticles, which serve as carriers for various therapeutic and contrast reagents. Since nanomaterials are in direct contact with biological samples, biocompatibility is one of the most important issues for the fabrication and synthesis of nanomaterials for biomedical applications. To achieve specific recognition of biomolecules for targeted delivery and biomolecular sensing, it is common practice to engineer the surfaces of nanomaterials with recognition moieties. This mini-review summarizes different approaches for engineering the interfaces of nanomaterials to improve their biocompatibility and specific recognition properties. We also focus on design strategies that mimic biological systems such as cell membranes of red blood cells, leukocytes, platelets, cancer cells, and bacteria.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Xiaofang Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Tomeh MA, Hadianamrei R, Xu D, Brown S, Zhao X. Peptide-functionalised magnetic silk nanoparticles produced by a swirl mixer for enhanced anticancer activity of ASC-J9. Colloids Surf B Biointerfaces 2022; 216:112549. [PMID: 35636321 DOI: 10.1016/j.colsurfb.2022.112549] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Silk fibroin is an FDA approved biopolymer for clinical applications with great potential in nanomedicine. However, silk-based nanoformulations are still facing several challenges in processing and drug delivery efficiency (such as reproducibility and targetability), especially in cancer therapy. To address these challenges, robust and controllable production methods are required for generating nanocarriers with desired properties. This study aimed to develop a novel method for the production of peptide-functionalized magnetic silk nanoparticles with higher selectivity for cancer cells for targeted delivery of the hydrophobic anticancer agent ASC-J9. A new microfluidic device with a swirl mixer was designed to fabricate magnetic silk nanoparticles (MSNP) with desired size and narrow size distribution. The surface of MSNPs was functionalized with a cationic amphiphilic anticancer peptide, G(IIKK)3I-NH2 (G3), to enhance their selectivity towards cancer cells. The G3-MSNPs increased the cellular uptake and anticancer activity of G3 in HCT 116 colorectal cancer cells compared to free G3. Moreover, the G3-MSNPs exhibited considerably higher cellular uptake and cytotoxicity in HCT 116 colorectal cancer cells compared to normal cells (HDFs). Encapsulating ASC-J9 in G3-MSNPs resulted in augmented anticancer activity compared to free ASC-J9 and non-functionalized ASC-J9 loaded MSNPs within its biological half-life. Hence, functionalizing MSNPs with G3 enabled targeted delivery of ASC-J9 to cancer cells and enhanced its anticancer effect. Functionalization of nanoparticles with anticancer peptides could be regarded as a new strategy for targeted delivery and enhanced efficiency of anticancer drugs. Furthermore, the microfluidic device introduced in this paper offers a robust and reproducible method for fabrication of small sized homogenous nanoparticles.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, Sheffield S1 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
10
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
11
|
Szwajca A, Juszczyńska S, Jarzębski M, Baryła-Pankiewicz E. Incorporation of Fluorescent Fluorinated Methacrylate Nano-Sized Particles into Chitosan Matrix Formed as a Membranes or Beads. Polymers (Basel) 2022; 14:polym14132750. [PMID: 35808794 PMCID: PMC9268857 DOI: 10.3390/polym14132750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Fluorescent particles are of particular interest as probes and active agents for biomedical, pharmaceutical, and food applications. Here, we present two strategies for incorporation of core-shell acrylic fluorescent nanoparticles (NPs) with Rhodamine B (RhB) as a dye into a chitosan (CS) matrix. We selected two variants of NPsRhB immobilisation in a CS membrane and biopolymeric CS beads. Modification of the method for production of the biopolymer cover/transporter of nanoparticles allowed two series of hydrogels loaded with nanoparticles to be obtained with a similar concentration of the aqueous solution of the nanoparticles. Microscopic analysis showed that the NPs were nonuniformly distributed in millimetre-sized CS beads, as well as membranes, but the fluorescence signal was strong. The composition of CS layers loaded with nanoparticles (CS/NPsRhB) showed water vapour barrier properties, characterised by the contact angle of 71.8°. Finally, we incorporated NPsRhBCS beads into a gelatine matrix to check their stability. The results confirmed good stability of the NPsRhBCS complex system, and no dye leakage was observed from the beads and the membranes. The proposed complex system demonstrated promising potential for further use in bioimaging and, thus, for the development of advanced diagnostic tools.
Collapse
Affiliation(s)
- Anna Szwajca
- Department of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Correspondence:
| | - Sandra Juszczyńska
- Department of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland;
| | - Elżbieta Baryła-Pankiewicz
- Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland;
| |
Collapse
|
12
|
Vepris O, Eich C, Feng Y, Fuentes G, Zhang H, Kaijzel EL, Cruz LJ. Optically Coupled PtOEP and DPA Molecules Encapsulated into PLGA-Nanoparticles for Cancer Bioimaging. Biomedicines 2022; 10:biomedicines10051070. [PMID: 35625807 PMCID: PMC9138547 DOI: 10.3390/biomedicines10051070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 01/10/2023] Open
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) nanoparticles (NPs) have emerged as imaging probes and therapeutic probes in recent years due to their excellent optical properties. In contrast to lanthanide ion-doped inorganic materials, highly efficient TTA-UC can be generated by low excitation power density, which makes it suitable for clinical applications. In the present study, we used biodegradable poly(lactic-co-glycolic acid) (PLGA)-NPs as a delivery vehicle for TTA-UC based on the heavy metal porphyrin Platinum(II) octaethylporphyrin (PtOEP) and the polycyclic aromatic hydrocarbon 9,10-diphenylanthracene (DPA) as a photosensitizer/emitter pair. TTA-UC-PLGA-NPs were successfully synthesized according to an oil-in-water emulsion and solvent evaporation method. After physicochemical characterization, UC-efficacy of TTA-UC-PLGA-NPs was assessed in vitro and ex vivo. TTA-UC could be detected in the tumour area 96 h after in vivo administration of TTA-UC-PLGA-NPs, confirming the integrity and suitability of PLGA-NPs as a TTA-UC in vivo delivery system. Thus, this study provides proof-of-concept that the advantageous properties of PLGA can be combined with the unique optical properties of TTA-UC for the development of advanced nanocarriers for simultaneous in vivo molecular imaging and drug delivery.
Collapse
Affiliation(s)
- Olena Vepris
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
| | - Christina Eich
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
| | - Yansong Feng
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Y.F.); (H.Z.)
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
- Department of Ceramic and Metallic Biomaterials, Biomaterials Center, University of Havana, Ave Universidad e/G y Ronda, Vedado, Plaza, La Habana 10400, Cuba
| | - Hong Zhang
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Y.F.); (H.Z.)
| | - Eric L. Kaijzel
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
- Correspondence:
| |
Collapse
|
13
|
Si Y, Grazon C, Clavier G, Audibert JF, Sclavi B, Méallet-Renault R. FRET-mediated quenching of BODIPY fluorescent nanoparticles by methylene blue and its application to bacterial imaging. Photochem Photobiol Sci 2022; 21:1249-1255. [PMID: 35428949 DOI: 10.1007/s43630-022-00215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
High resolution and a good signal to noise ratio are a requirement in cell imaging. However, after labelling with fluorescent entities, and after several washing steps, there is often an unwanted fluorescent background that reduces the images resolution. For this purpose, we developed an approach to remove the signal from extra-cellular fluorescent nanoparticles (FNPs) during bacteria imaging, without the need for any washing steps. Our idea is to use methylene blue to quench > 90% of the emission of BODIPY-based fluorescent polymer nanoparticle by a FRET process. This "Hide-and-Seek Game" approach offers a novel strategy to apply fluorescence quenching in bioimaging to improve image accuracy.
Collapse
Affiliation(s)
- Yang Si
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,LBPA, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,Epigenetic Chemical Biology, CNRS UMR3523, Institut Pasteur, 28 Rue du Dr Roux, 75015, Paris, France
| | - Chloé Grazon
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400, Talence, France
| | - Gilles Clavier
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | | | - Bianca Sclavi
- LBPA, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France. .,LCQB, CNRS UMR 7238, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| | - Rachel Méallet-Renault
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France. .,ISMO, Université Paris-Saclay, CNRS, 91405, Orsay, France.
| |
Collapse
|
14
|
Wanderi K, Cui Z. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning. EXPLORATION (BEIJING, CHINA) 2022; 2:20210097. [PMID: 37323884 PMCID: PMC10191020 DOI: 10.1002/exp.20210097] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/06/2022] [Indexed: 06/15/2023]
Abstract
Illumination of biological events with near-infrared II sub-channel (NIR-IIb, 1500-1700 nm) enhances the transparency of biological tissues, which is very attractive for deep imaging. Due to the long-wavelength, which reduces optical damage, suppresses autofluorescence, and obviates light scattering, NIR-IIb nanoprobes afford deep tissue penetration with unprecedented spatiotemporal resolution. Hence, NIR-IIb imaging facilitates deep learning and decipherment of biological proceedings in living organisms with astounding high clarity. In comparison to its predecessors in the visible-near-infrared spectrum, imaging in the NIR-IIb has shown great potential for tissue imaging and extrapolating imaging applications for clinical studies. However, the use of organic fluorescent nanoprobes (OFNPs) in the NIR-IIb region is still rare since it is in its early stages. Thus, herein we aim to survey the recent development of different organic fluorescent nanomaterials with NIR-IIb characteristics, their unique photophysical properties, and their utilization in deep imaging in animal models. Further, practical researches on organic fluorescent nanoprobes with NIR-IIb emission and their transition to clinical applications are highlighted.
Collapse
Affiliation(s)
- Kevin Wanderi
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
- Department of Analytical Microbiology and NanobiologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Zongqiang Cui
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| |
Collapse
|
15
|
Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:457. [PMID: 35159802 PMCID: PMC8839643 DOI: 10.3390/nano12030457] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023]
Abstract
In the last few decades, the vast potential of nanomaterials for biomedical and healthcare applications has been extensively investigated. Several case studies demonstrated that nanomaterials can offer solutions to the current challenges of raw materials in the biomedical and healthcare fields. This review describes the different nanoparticles and nanostructured material synthesis approaches and presents some emerging biomedical, healthcare, and agro-food applications. This review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets, nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity), nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. As toxicological assessment depends on sizes and morphologies, stringent regulation is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives for an industrial breakthrough of nanomaterials are related to the optimization of production and processing conditions.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Ain Helwan, Cairo 11795, Egypt
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
| |
Collapse
|
16
|
Watson ER, Taherian Fard A, Mar JC. Computational Methods for Single-Cell Imaging and Omics Data Integration. Front Mol Biosci 2022; 8:768106. [PMID: 35111809 PMCID: PMC8801747 DOI: 10.3389/fmolb.2021.768106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Integrating single cell omics and single cell imaging allows for a more effective characterisation of the underlying mechanisms that drive a phenotype at the tissue level, creating a comprehensive profile at the cellular level. Although the use of imaging data is well established in biomedical research, its primary application has been to observe phenotypes at the tissue or organ level, often using medical imaging techniques such as MRI, CT, and PET. These imaging technologies complement omics-based data in biomedical research because they are helpful for identifying associations between genotype and phenotype, along with functional changes occurring at the tissue level. Single cell imaging can act as an intermediary between these levels. Meanwhile new technologies continue to arrive that can be used to interrogate the genome of single cells and its related omics datasets. As these two areas, single cell imaging and single cell omics, each advance independently with the development of novel techniques, the opportunity to integrate these data types becomes more and more attractive. This review outlines some of the technologies and methods currently available for generating, processing, and analysing single-cell omics- and imaging data, and how they could be integrated to further our understanding of complex biological phenomena like ageing. We include an emphasis on machine learning algorithms because of their ability to identify complex patterns in large multidimensional data.
Collapse
Affiliation(s)
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica Cara Mar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Pang S, Kapur A, Zhou K, Anastasiadis P, Ballirano N, Kim AJ, Winkles JA, Woodworth GF, Huang H. Nanoparticle-assisted, image-guided laser interstitial thermal therapy for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1826. [PMID: 35735205 PMCID: PMC9540339 DOI: 10.1002/wnan.1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light-tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Sumiao Pang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anshika Kapur
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Keri Zhou
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Pavlos Anastasiadis
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Nicholas Ballirano
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anthony J. Kim
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Jeffrey A. Winkles
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Graeme F. Woodworth
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Huang‐Chiao Huang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| |
Collapse
|
18
|
Hamad EM, Khaffaf A, Yasin O, Abu El-Rub Z, Al-Gharabli S, Al-Kouz W, Chamkha AJ. Review of Nanofluids and Their Biomedical Applications. JOURNAL OF NANOFLUIDS 2021. [DOI: 10.1166/jon.2021.1806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous researchers have reported significant improvements in nanofluid (NF) heat transfer (HT), suspension stability, thermal conductivity (TC), and rheological and mass transfer properties. As a result, nanofluids (NFs) play an important role in a variety of applications, including
the health and biomedical engineering industries. The majority of the nanofluids (NFs) literature focuses on analyzing and comprehending the behavior of nanofluid models as heating or cooling mechanisms in various fields. This article represents a comprehensive study on nanofluids (NFs). It
involves commonly used nanoparticles (NPs), magnetic nanofluids (MNFs), thermal conductivity (TC) enhancement, heat transfer (HT) enhancement, nanofluids (NFs) synthesis methods, stability evaluation methods, stability enhancement, nanofluids (NFs) applications in the biomedical field, and
their impact on health and the environment. Nanofluids (NFs) play vital role in biomedical applications. It can be implemented in drug delivery systems, hyperthermia, sterilization processes, bioimaging, lubrication of orthopedic implants, and micro-pumping systems for drugs and hormones.
Collapse
Affiliation(s)
- Eyad M. Hamad
- Biomedical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, 11180 Jordan
| | - Aseel Khaffaf
- Biomedical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, 11180 Jordan
| | - Omar Yasin
- Biomedical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, 11180 Jordan
| | - Ziad Abu El-Rub
- Pharmaceutical and Chemical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, 11180 Jordan
| | - Samer Al-Gharabli
- Pharmaceutical and Chemical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, 11180 Jordan
| | - Wael Al-Kouz
- Mechanical and Maintenance Engineering Department, School of Applied Technical Sciences, German Jordanian University, Amman, 11180 Jordan
| | - Ali J. Chamkha
- Faculty of Engineering, Kuwait College of Science and Technology, Doha District, 35004 Kuwait
| |
Collapse
|
19
|
Xiao D, Qi H, Teng Y, Pierre D, Kutoka PT, Liu D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. NANOSCALE RESEARCH LETTERS 2021; 16:167. [PMID: 34837561 PMCID: PMC8626755 DOI: 10.1186/s11671-021-03613-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 05/18/2023]
Abstract
With the rapid development of nanotechnology, new types of fluorescent nanomaterials (FNMs) have been springing up in the past two decades. The nanometer scale endows FNMs with unique optical properties which play a critical role in their applications in bioimaging and fluorescence-dependent detections. However, since low selectivity as well as low photoluminescence efficiency of fluorescent nanomaterials hinders their applications in imaging and detection to some extent, scientists are still in search of synthesizing new FNMs with better properties. In this review, a variety of fluorescent nanoparticles are summarized including semiconductor quantum dots, carbon dots, carbon nanoparticles, carbon nanotubes, graphene-based nanomaterials, noble metal nanoparticles, silica nanoparticles, phosphors and organic frameworks. We highlight the recent advances of the latest developments in the synthesis of FNMs and their applications in the biomedical field in recent years. Furthermore, the main theories, methods, and limitations of the synthesis and applications of FNMs have been reviewed and discussed. In addition, challenges in synthesis and biomedical applications are systematically summarized as well. The future directions and perspectives of FNMs in clinical applications are also presented.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Haixiang Qi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Dramou Pierre
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Dong Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, School of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Moon Island, Lu'an, 237012, Anhui, China.
| |
Collapse
|
20
|
Géloën A, Mussabek G, Kharin A, Serdiuk T, Alekseev SA, Lysenko V. Impact of Carbon Fluoroxide Nanoparticles on Cell Proliferation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3168. [PMID: 34947519 PMCID: PMC8708860 DOI: 10.3390/nano11123168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022]
Abstract
Cytotoxicity of fluorescent carbon fluoroxide (CFO) nanoparticles (NPs) was studied in a label-free manner on several cancer and non-cancer cell lines. A direct cytotoxic effect of the CFO NPs was clearly observed by a suppression of cell proliferation. The real-time measurement of cell activities allowed to quantify the impact of the uptaken NPs on cell proliferation and after washout of the NPs from the cell culture medium. The results show more toxic effects of the CFO NPs on cancer than on non-cancer cell lines. The notion of NPs biocompatibility must be related to a maximum concentration value of the NPs acceptable for a given cell type. Furthermore, the cytotoxicity effects of NPs should be studied not only during their direct exposure to cells but also after their washout from the culture medium.
Collapse
Affiliation(s)
- Alain Géloën
- UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, VetAgro Sup, Research Team “Bacterial Opportunistic Pathogens and Environment” (BPOE), Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; (A.G.); (A.K.); (T.S.)
| | - Gauhar Mussabek
- Faculty of Physics and Technology, Al-Farabi Kazakh National University, 71, al-Farabi Ave., Almaty 050040, Kazakhstan
- Institute of Information and Computational Technologies, 125, Pushkin Str., Almaty 050000, Kazakhstan
- Institute of Engineering Physics for Biomedicine, Laboratory “Bionanophotonics”, National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, 115409 Moscow, Russia;
| | - Alexander Kharin
- UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, VetAgro Sup, Research Team “Bacterial Opportunistic Pathogens and Environment” (BPOE), Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; (A.G.); (A.K.); (T.S.)
- Institute of Engineering Physics for Biomedicine, Laboratory “Bionanophotonics”, National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, 115409 Moscow, Russia;
| | - Tetiana Serdiuk
- UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, VetAgro Sup, Research Team “Bacterial Opportunistic Pathogens and Environment” (BPOE), Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; (A.G.); (A.K.); (T.S.)
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Sergei A. Alekseev
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine;
| | - Vladimir Lysenko
- Institute of Engineering Physics for Biomedicine, Laboratory “Bionanophotonics”, National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, 115409 Moscow, Russia;
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon, 2 rue Victor Grignard, 69622 Villeurbanne, France
| |
Collapse
|
21
|
Lin Z, Zhou J, Qu Y, Pan S, Han Y, Lafleur RPM, Chen J, Cortez-Jugo C, Richardson JJ, Caruso F. Luminescent Metal-Phenolic Networks for Multicolor Particle Labeling. Angew Chem Int Ed Engl 2021; 60:24968-24975. [PMID: 34528750 DOI: 10.1002/anie.202108671] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Indexed: 12/22/2022]
Abstract
The development of fluorescence labeling techniques has attracted widespread interest in various fields, including biomedical science as it can facilitate high-resolution imaging and the spatiotemporal understanding of various biological processes. We report a supramolecular fluorescence labeling strategy using luminescent metal-phenolic networks (MPNs) constructed from metal ions, phenolic ligands, and common and commercially available dyes. The rapid labeling process (<5 min) produces ultrathin coatings (≈10 nm) on diverse particles (e.g., organic, inorganic, and biological entities) with customized luminescence (e.g., red, blue, multichromatic, and white light) simply through the selection of fluorophores. The fluorescent coatings are stable at pH values from 1 to 8 and in complex biological media owing to the dominant π interactions between the dyes and MPNs. These coatings exhibit negligible cytotoxicity and their strong fluorescence is retained even when internalized into intracellular compartments. This strategy is expected to provide a versatile approach for fluorescence labeling with potential in diverse fields across the physical and life sciences.
Collapse
Affiliation(s)
- Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yijiao Qu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yiyuan Han
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - René P M Lafleur
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jingqu Chen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
22
|
Lin Z, Zhou J, Qu Y, Pan S, Han Y, Lafleur RPM, Chen J, Cortez‐Jugo C, Richardson JJ, Caruso F. Luminescent Metal‐Phenolic Networks for Multicolor Particle Labeling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Yijiao Qu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Yiyuan Han
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - René P. M. Lafleur
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jingqu Chen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
23
|
Rubio-Camacho M, Martínez-Tomé MJ, Mira A, Mallavia R, Mateo CR. Formation of Multicolor Nanogels Based on Cationic Polyfluorenes and Poly(methyl vinyl ether-alt-maleic monoethyl ester): Potential Use as pH-Responsive Fluorescent Drug Carriers. Int J Mol Sci 2021; 22:9607. [PMID: 34502514 PMCID: PMC8431760 DOI: 10.3390/ijms22179607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, we employed the copolymer poly(methyl vinyl ether-alt-maleic monoethyl ester) (PMVEMA-Es) and three fluorene-based cationic conjugated polyelectrolytes to develop fluorescent nanoparticles with emission in the blue, green and red spectral regions. The size, Zeta Potential, polydispersity, morphology, time-stability and fluorescent properties of these nanoparticles were characterized, as well as the nature of the interaction between both PMVEMA-Es and fluorescent polyelectrolytes. Because PMVEMA-Es contains a carboxylic acid group in its structure, the effects of pH and ionic strength on the nanoparticles were also evaluated, finding that the size is responsive to pH and ionic strength, largely swelling at physiological pH and returning to their initial size at acidic pHs. Thus, the developed fluorescent nanoparticles can be categorized as pH-sensitive fluorescent nanogels, since they possess the properties of both pH-responsive hydrogels and nanoparticulate systems. Doxorubicin (DOX) was used as a model drug to show the capacity of the blue-emitting nanogels to hold drugs in acidic media and release them at physiological pH, from changes in the fluorescence properties of both nanoparticles and DOX. In addition, preliminary studies by super-resolution confocal microscopy were performed, regarding their potential use as image probes.
Collapse
Affiliation(s)
| | - María José Martínez-Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (M.R.-C.); (A.M.); (R.M.)
| | | | | | - Carmen Reyes Mateo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain; (M.R.-C.); (A.M.); (R.M.)
| |
Collapse
|
24
|
Fluorescently Labeled PLGA Nanoparticles for Visualization In Vitro and In Vivo: The Importance of Dye Properties. Pharmaceutics 2021; 13:pharmaceutics13081145. [PMID: 34452106 PMCID: PMC8399891 DOI: 10.3390/pharmaceutics13081145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Fluorescently labeled nanoparticles are widely used for evaluating their distribution in the biological environment. However, dye leakage can lead to misinterpretations of the nanoparticles' biodistribution. To better understand the interactions of dyes and nanoparticles and their biological environment, we explored PLGA nanoparticles labeled with four widely used dyes encapsulated (coumarin 6, rhodamine 123, DiI) or bound covalently to the polymer (Cy5.5.). The DiI label was stable in both aqueous and lipophilic environments, whereas the quick release of coumarin 6 was observed in model media containing albumin (42%) or liposomes (62%), which could be explained by the different affinity of these dyes to the polymer and lipophilic structures and which we also confirmed by computational modeling (log PDPPC/PLGA: DiI-2.3, Cou6-0.7). The importance of these factors was demonstrated by in vivo neuroimaging (ICON) of the rat retina using double-labeled Cy5.5/Cou6-nanoparticles: encapsulated Cou6 quickly leaked into the tissue, whereas the stably bound Cy.5.5 label remained associated with the vessels. This observation is a good example of the possible misinterpretation of imaging results because the coumarin 6 distribution creates the impression that nanoparticles effectively crossed the blood-retina barrier, whereas in fact no signal from the core material was found beyond the blood vessels.
Collapse
|
25
|
Platts K, Michel R, Green E, Gillam T, Ghetia M, O'Brien-Simpson N, Li W, Blencowe C, Blencowe A. Pentafulvene-Maleimide Cycloaddition for Bioorthogonal Ligation. Bioconjug Chem 2021; 32:1845-1851. [PMID: 34254789 DOI: 10.1021/acs.bioconjchem.1c00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The applications of bioconjugation chemistry are rapidly expanding, and the addition of new strategies to the bioconjugation and ligation toolbox will further advance progress in this field. Herein, we present a detailed study of the Diels-Alder cycloaddition (DAC) reaction between pentafulvenes and maleimides in aqueous solutions and investigate the reaction as an emerging bioconjugation strategy. The DAC reactions were found to proceed efficiently, quantitatively yielding cycloadducts with reaction rates ranging up to ∼0.7 M-1 s-1 for a series of maleimides, including maleimide-derivatized peptides and proteins. The absence of cross-reactivity of the pentafulvene with a large panel of functional (bio)molecules and biological media further demonstrated the bioorthogonality of this approach. The utility of the DAC reaction for bioorthogonal bioconjugation applications was further demonstrated in the presence of biological media and proteins, as well as through protein derivatization and labeling, which was comparable to the widely employed sulfhydryl-maleimide coupling chemistry.
Collapse
Affiliation(s)
- Kirsten Platts
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Robert Michel
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Elise Green
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Todd Gillam
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.,Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Maulik Ghetia
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Neil O'Brien-Simpson
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Wenyi Li
- Centre for Oral Health Research, The Melbourne Dental School and the Bio21 Institute, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Christopher Blencowe
- Fleet Bioprocessing, Ltd., Pale Lane, Hartley Whitney, Hampshire RG27 8DH, United Kingdom
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
26
|
|
27
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
28
|
Das A, Arunagiri V, Tsai HC, Prasannan A, Lai JY, Da-Hong P, Moirangthem RS. Investigation of dual plasmonic core-shell Ag@CuS nanoparticles for potential surface-enhanced Raman spectroscopy-guided photothermal therapy. Nanomedicine (Lond) 2021; 16:909-923. [PMID: 33928793 DOI: 10.2217/nnm-2020-0385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To prepare efficient metal-semiconductor nanoparticles as noninvasive, real-time imaging probes for photothermal therapy (PTT) applications. Materials & methods: A bottom-up approach was used to fabricate core-shell Ag@CuS nanoparticles (NPs). PTT and Raman mapping were done using HeLa cells. Theoretical simulation of electric field enhancement and heat dissipation density of Ag@CuS NPs was performed. Results: PTT-induced hyperthermia was achieved under 940 nm near-infrared light irradiation. Surface-enhanced Raman spectroscopy (SERS) signals of dye molecules were observed when conjugated with Ag@CuS NPs. Conclusion: Ag@CuS NPs are found to be efficient for SERS imaging and localized heating under laser irradiation, making a promising candidate for SERS-guided PTT.
Collapse
Affiliation(s)
- Anindita Das
- Department of Physics, Nanophotonics Lab, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| | - Vinothini Arunagiri
- Graduate Institute of Applied Science & Technology, National Taiwan University of Science & Technology, Taipei, 106, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science & Technology, National Taiwan University of Science & Technology, Taipei, 106, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science & Technology, Taipei, Taiwan, 106, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Tao-Yuan, 320, Taiwan
| | - Adhimoorthy Prasannan
- Department of Materials Science & Engineering, National Taiwan University of Science & Technology, Taipei, 106, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science & Technology, National Taiwan University of Science & Technology, Taipei, 106, Taiwan.,Advanced Membrane Materials Center, National Taiwan University of Science & Technology, Taipei, Taiwan, 106, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Tao-Yuan, 320, Taiwan
| | - Po Da-Hong
- Department of Materials Science & Engineering, National Taiwan University of Science & Technology, Taipei, 106, Taiwan
| | - Rakesh S Moirangthem
- Department of Physics, Nanophotonics Lab, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
29
|
Cui MR, Gao F, Shu ZY, Ren SK, Zhu D, Chao J. Nucleic Acids-based Functional Nanomaterials for Bioimaging. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00169-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Pratiwi FW, Peng CC, Wu SH, Kuo CW, Mou CY, Tung YC, Chen P. Evaluation of Nanoparticle Penetration in the Tumor Spheroid Using Two-Photon Microscopy. Biomedicines 2020; 9:10. [PMID: 33374319 PMCID: PMC7824314 DOI: 10.3390/biomedicines9010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) have emerged as a prominent nanomedicine platform, especially for tumor-related nanocarrier systems. However, there is increasing concern about the ability of nanoparticles (NPs) to penetrate solid tumors, resulting in compromised antitumor efficacy. Because the physicochemical properties of NPs play a significant role in their penetration and accumulation in solid tumors, it is essential to systematically study their relationship in a model system. Here, we report a multihierarchical assessment of the accumulation and penetration of fluorescence-labeled MSNs with nine different physicochemical properties in tumor spheroids using two-photon microscopy. Our results indicated that individual physicochemical parameters separately could not define the MSNs' ability to accumulate in a deeper tumor region; their features are entangled. We observed that the MSNs' stability determined their success in reaching the hypoxia region. Moreover, the change in the MSNs' penetration behavior postprotein crowning was associated with both the original properties of NPs and proteins on their surfaces.
Collapse
Affiliation(s)
- Feby Wijaya Pratiwi
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan; (F.W.P.); (C.-C.P.); (C.W.K.); (Y.-C.T.)
| | - Chien-Chung Peng
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan; (F.W.P.); (C.-C.P.); (C.W.K.); (Y.-C.T.)
| | - Si-Han Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan; (F.W.P.); (C.-C.P.); (C.W.K.); (Y.-C.T.)
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan;
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan; (F.W.P.); (C.-C.P.); (C.W.K.); (Y.-C.T.)
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan; (F.W.P.); (C.-C.P.); (C.W.K.); (Y.-C.T.)
| |
Collapse
|
31
|
Sharma S, Tiwari M, Tiwari V. Therapeutic strategies against autophagic escape by pathogenic bacteria. Drug Discov Today 2020; 26:704-712. [PMID: 33301978 DOI: 10.1016/j.drudis.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022]
Abstract
Growing multidrug-resistant (MDR) strains of various infectious bacterial species are hindering research aiming to eliminate such infections. During a bacterial infection, the host response eliminates the pathogen via fusion of the endocytic vesicles with lysosomes, called xenophagy. However, MDR bacteria have evolved strategies to escape xenophagy. In this review, we propose novel therapeutics for overcoming such escape, including chimeric antibiotics, nanoformulations for the induction of autophagy in infected cells, and small interfering (si)RNA-mediated silencing of genes to inhibit the host-pathogen interaction. We also discuss the role of combinations of antibiotics showing synergy, the administrative routes of differentially capped nanoparticles (NPs), and the use of different types of nanoformulations for eliminating pathogenic bacteria from the host.
Collapse
Affiliation(s)
- Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
32
|
Yin Y, Mei R, Wang Y, Zhao X, Yu Q, Liu W, Chen L. Silica-Coated, Waxberry-like Surface-Enhanced Raman Resonant Scattering Tag-Pair with Near-Infrared Raman Dye Encoding: Toward In Vivo Duplexing Detection. Anal Chem 2020; 92:14814-14821. [PMID: 33045167 DOI: 10.1021/acs.analchem.0c03674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface-enhanced Raman resonant scattering (SERRS) tags encoded with near-infrared (NIR) Raman reporters showed great potential for in vivo detection owing to their ultrasensitivity. However, in vivo signal stability of such tags is a remaining problem due to the lack of suitable silica coating method because the weakly adsorbed NIR reporters tend to detach from traditional gold nanosubstrates in the ethanol-rich and high pH conditions, which are commonly used for silica coating. Herein, we propose a silica coating method for NIR SERRS tags by using waxberry-like gold nanoparticles (NPs) as substrates. The lipid bilayer of the NPs played a crucial role in the coating, which can encapsulate the NIR Raman reporter via hydrophobic interactions and prevent the interference from a harsh medium. Thus, the silica-coated tags well preserved ultrasensitivity of bare tags and simultaneously gained satisfactory signal stability in vivo. Moreover, the coating method is compatible for the encapsulation of a variety of thiol group-free NIR reporters (as exemplified by DTTC, Cy7, IR792, and DIR), relying on which a tag-pair with distinguishable peaks can be screened (labeling with DTTC and Cy7, respectively). In vivo duplexing detection revealed that the tag-pair-labeled liposome was cleared faster in the liver than polydopamine NPs within one mouse. The developed method paves an easy way for gaining high-quality SERRS tags and will promote their in vivo multiplex analysis and diagnostics applications.
Collapse
Affiliation(s)
- Yingchao Yin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Qian Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Wanhui Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
33
|
Abstract
Biomedical imaging allows in vivo studies of organisms, providing valuable information of biological processes at both cellular and tissue levels. Nanodiamonds have recently emerged as a new type of probe for fluorescence imaging and contrast agent for magnetic resonance and photoacoustic imaging. Composed of sp3-carbon atoms, diamond is chemically inert and inherently biocompatible. Uniquely, its matrix can host a variety of optically and magnetically active defects suited for bioimaging applications. Since the first production of fluorescent nanodiamonds in 2005, a large number of experiments have demonstrated that fluorescent nanodiamonds are useful as photostable markers and nanoscale sensors in living cells and organisms. In this review, we focus our discussion on the recent advancements of nanodiamond-enabled biomedical imaging for preclinical applications.
Collapse
Affiliation(s)
- Yen-Yiu Liu
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Be-Ming Chang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science & Technology, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei, 106, Taiwan
| |
Collapse
|
34
|
Lee S, Lee K. pH-Sensitive Folic Acid Conjugated Alginate Nanoparticle for Induction of Cancer-Specific Fluorescence Imaging. Pharmaceutics 2020; 12:E537. [PMID: 32545164 PMCID: PMC7355973 DOI: 10.3390/pharmaceutics12060537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
In cancer nanomedicine, numerous studies have been conducted on the surface modification and transport capacity of nanoparticles (NPs); however, biological barriers, such as enzymatic degradation or non-specific delivery during circulation, remain to be cleared. Herein, we developed pH-sensitive NPs that degrade in an acidic environment and release 5-aminolevulinic acid (5ALA) to the target site. NPs were prepared by conjugating alginate with folic acid, followed by encapsulation of 5ALA through a water-in-oil (W/O) emulsion method. The alginate-conjugated folic acid nanoparticles (AF NPs) were homogeneous in size, stable for a long time in aqueous suspension without aggregation, and non-toxic. AF NPs were small enough to efficiently infiltrate tumors (<50 nm) and were specifically internalized by cancer cells through receptor-mediated endocytosis. After the intracellular absorption of NPs, alginate was deprotonated in the lysosomes and released 5ALA, which was converted to protoporphyrin IX (PpIX) through mitochondrial heme synthesis. Our study outcomes demonstrated that AF NPs were not degraded by enzymes or other external factors before reaching cancer cells, and fluorescent precursors were specifically and accurately delivered to cancer cells to generate fluorescence.
Collapse
Affiliation(s)
| | - Kangwon Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|
35
|
Theranostic Designed Near-Infrared Fluorescent Poly (Lactic-co-Glycolic Acid) Nanoparticles and Preliminary Studies with Functionalized VEGF-Nanoparticles. J Clin Med 2020; 9:jcm9061750. [PMID: 32516917 PMCID: PMC7355639 DOI: 10.3390/jcm9061750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Poly-lactic-co-glycolic acid nanoparticles (PLGA-NPs) were approved by the Food and Drug Administration (FDA) for drug delivery in cancer. The enhanced permeability and retention (EPR) effect drives their accumulation minimizing the side effects of chemotherapeutics. Our aim was to develop a new theranostic tool for cancer diagnosis and therapy based on PLGA-NPs and to evaluate the added value of vascular endothelial growth factor (VEGF) for enhanced tumor targeting. In vitro and in vivo properties of PLGA-NPs were tested and compared with VEGF-PLGA-NPs. Dynamic light scattering (DLS) was performed to evaluate the particle size, polydispersity index (PDI), and zeta potential of both preparations. Spectroscopy was used to confirm the absorption spectra in the near-infrared (NIR). In vivo, in BALB/c mice bearing a syngeneic tumor in the right thigh, intravenously injected PLGA-NPs showed a high target-to-muscle ratio (4.2 T/M at 24 h post-injection) that increased over time, with a maximum uptake at 72 h and a retention of the NPs up to 240 h. VEGF-PLGA-NPs accumulated in tumors 1.75 times more than PLGA-NPs with a tumor-to-muscle ratio of 7.90 ± 1.61 (versus 4.49 ± 0.54 of PLGA-NPs). Our study highlights the tumor-targeting potential of PLGA-NPs for diagnostic and therapeutic applications. Such NPs can be conjugated with proteins such as VEGF to increase accumulation in tumor lesions.
Collapse
|
36
|
Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, Qari HA, Umar K, Mohamad Ibrahim MN. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front Chem 2020; 8:341. [PMID: 32509720 PMCID: PMC7248377 DOI: 10.3389/fchem.2020.00341] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (nanoparticles) have received much attention in biological application because of their unique physicochemical properties. The metal- and metal oxide-supported nanomaterials have shown significant therapeutic effect in medical science. The mechanisms related to the interaction of nanoparticles with animal and plant cells can be used to establish its significant role and to improve their activity in health and medical applications. Various attempts have been made to discuss the antibiotic resistance and antimicrobial activity of metal-supported nanoparticles. Despite all these developments, there is still a need to investigate their performance to overcome modern challenges. In this regard, the present review examines the role of various types of metal-supported nanomaterials in different areas such as antibacterial, antifungal, anticancer, and so on. Based on the significant ongoing research and applications, it is expected that metal-supported nanomaterials play an outstanding role not only in medical but also in other important areas.
Collapse
Affiliation(s)
- Asim Ali Yaqoob
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Hilal Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Akil Ahmad
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Iqbal M. I. Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda A. Qari
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Umar
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | |
Collapse
|
37
|
Mulvihill JJ, Cunnane EM, Ross AM, Duskey JT, Tosi G, Grabrucker AM. Drug delivery across the blood-brain barrier: recent advances in the use of nanocarriers. Nanomedicine (Lond) 2020; 15:205-214. [PMID: 31916480 DOI: 10.2217/nnm-2019-0367] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The blood-brain barrier (BBB) has a significant contribution to homeostasis and protection of the CNS. However, it also limits the crossing of therapeutics and thereby complicates the treatment of CNS disorders. To overcome this limitation, the use of nanocarriers for drug delivery across the BBB has recently been exploited. Nanocarriers can utilize different physiological mechanisms for drug delivery across the BBB and can be modified to achieve the desired kinetics and efficacy. Consequentially, several nanocarriers have been reported to act as functional nanomedicines in preclinical studies using animal models for human diseases. Given the rapid development of novel nanocarriers, this review provides a comprehensive insight into the most recent advancements made in nanocarrier-based drug delivery to the CNS, such as the development of multifunctional nanomedicines and theranostics.
Collapse
Affiliation(s)
- John Je Mulvihill
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,Health Research Institute (HRI) of University of Limerick, Limerick, V94T9PX, Ireland.,Synthesis & Solid State Pharmaceutical Centre, University of Limerick, Limerick, V94T9PX, Ireland.,School of Engineering, University of Limerick, Limerick, V94T9PX, Ireland
| | - Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aisling M Ross
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,School of Engineering, University of Limerick, Limerick, V94T9PX, Ireland
| | - Jason T Duskey
- Department of Life Sciences, NanoTech Lab, University of Modena & Reggio Emilia, Modena, 41124, Italy
| | - Giovanni Tosi
- Department of Life Sciences, NanoTech Lab, University of Modena & Reggio Emilia, Modena, 41124, Italy
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Ireland.,Health Research Institute (HRI) of University of Limerick, Limerick, V94T9PX, Ireland.,Synthesis & Solid State Pharmaceutical Centre, University of Limerick, Limerick, V94T9PX, Ireland.,Department of Biological Sciences, University of Limerick, Limerick, V94T9PX, Ireland
| |
Collapse
|
38
|
Abstract
This review highlights the pharmacokinetic features and tumor imaging preponderance of renal clearable AuNCs for in vivo tumor imaging.
Collapse
Affiliation(s)
- Huili Li
- Engineering Research Center of Cell and Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiaotong University
- Shanghai 200240
| | - Hongle Li
- Department of Molecular Pathology
- The Affiliated Cancer Hospital
- Zhengzhou University
- Zhengzhou
- China
| | - Ajun Wan
- National Engineering Research Center of Protected Agriculture
- School of Medicine
- Tongji University
- Shanghai 200092
- China
| |
Collapse
|
39
|
Ozcan E, Kazan HH, Çoşut B. Recent chemo-/biosensor and bioimaging studies based on indole-decorated BODIPYs. LUMINESCENCE 2019; 35:168-177. [PMID: 31709693 DOI: 10.1002/bio.3719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/09/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
BODIPY is an important fluorophores due to its enhanced photophysical and chemical properties including outstanding thermal/photochemical stability, intense absorption/emission profiles, high photoluminescence quantum yield, and small Stokes' shifts. In addition to BODIPY, indole and its derivatives have recently gained attention because of their structural properties and particularly biological importance, therefore these molecules have been widely used in sensing and biosensing applications. Here, we focus on recent studies that reported the incorporation of indole-based BODIPY molecules as reporter molecules in sensing systems. We highlight the rationale for developing such systems and evaluate detection limits of the developed sensing platforms. Furthermore, we also review the application of indole-based BODIPY molecules in bioimaging studies. This article includes the evaluation of indole-based BODIPYs from synthesis to characterization and a comparison of the advantages and disadvantages of developed reporter systems, making it instructive for researchers in various disciplines for the design and development of similar systems.
Collapse
Affiliation(s)
- Emrah Ozcan
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| | - Hasan Huseyin Kazan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Bunyemin Çoşut
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|