1
|
Ning L, Zanella S, Tomov ML, Amoli MS, Jin L, Hwang B, Saadeh M, Chen H, Neelakantan S, Dasi LP, Avazmohammadi R, Mahmoudi M, Bauser‐Heaton HD, Serpooshan V. Targeted Rapamycin Delivery via Magnetic Nanoparticles to Address Stenosis in a 3D Bioprinted in Vitro Model of Pulmonary Veins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400476. [PMID: 38696618 PMCID: PMC11234432 DOI: 10.1002/advs.202400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Indexed: 05/04/2024]
Abstract
Vascular cell overgrowth and lumen size reduction in pulmonary vein stenosis (PVS) can result in elevated PV pressure, pulmonary hypertension, cardiac failure, and death. Administration of chemotherapies such as rapamycin have shown promise by inhibiting the vascular cell proliferation; yet clinical success is limited due to complications such as restenosis and off-target effects. The lack of in vitro models to recapitulate the complex pathophysiology of PVS has hindered the identification of disease mechanisms and therapies. This study integrated 3D bioprinting, functional nanoparticles, and perfusion bioreactors to develop a novel in vitro model of PVS. Bioprinted bifurcated PV constructs are seeded with endothelial cells (ECs) and perfused, demonstrating the formation of a uniform and viable endothelium. Computational modeling identified the bifurcation point at high risk of EC overgrowth. Application of an external magnetic field enabled targeting of the rapamycin-loaded superparamagnetic iron oxide nanoparticles at the bifurcation site, leading to a significant reduction in EC proliferation with no adverse side effects. These results establish a 3D bioprinted in vitro model to study PV homeostasis and diseases, offering the potential for increased throughput, tunability, and patient specificity, to test new or more effective therapies for PVS and other vascular diseases.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of Mechanical EngineeringCleveland State UniversityClevelandOH44115USA
| | - Stefano Zanella
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Mehdi Salar Amoli
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Maher Saadeh
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Huang Chen
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Sunder Neelakantan
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Lakshmi Prasad Dasi
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Reza Avazmohammadi
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- J. Mike Walker ’66 Department of Mechanical EngineeringTexas A&M UniversityCollege StationTX77840USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LandingMI48824USA
| | - Holly D. Bauser‐Heaton
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
- Sibley Heart Center at Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| |
Collapse
|
2
|
Sabra R, Billa N, Roberts CJ. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int J Pharm 2019; 572:118775. [PMID: 31678385 DOI: 10.1016/j.ijpharm.2019.118775] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/22/2019] [Accepted: 10/07/2019] [Indexed: 01/04/2023]
Abstract
In the present study, we successfully developed a cetuximab-conjugated modified citrus pectin-chitosan nanoparticles for targeted delivery of curcumin (Cet-MCPCNPs) for the treatment of colorectal cancer. In vitro analyses revealed that nanoparticles were spherical with size of 249.33 ± 5.15 nm, a decent encapsulation efficiency (68.43 ± 2.4%) and a 'smart' drug release profile. 61.37 ± 0.70% of cetuximab was adsorbed to the surface of the nanoparticles. Cellular uptake studies displayed enhanced internalization of Cet-MCPCNPs in Caco-2 (EGFR +ve) cells, which ultimately resulted in a significant reduction in cancer cell propagation. The cell cycle analysis indicated that Cet- MCPCNPs induced cell death in enhanced percentage of Caco-2 cells by undergoing cell cycle arrest in the G2/M phase. These data suggest that Cet-MCPCNPs represent a new and promising targeting approach for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Rayan Sabra
- The School of Pharmacy, University of Nottingham, Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Nashiru Billa
- The School of Pharmacy, University of Nottingham, Malaysia Campus, Semenyih, Selangor, Malaysia; College of Pharmacy, Qatar University, Doha, Qatar.
| | - Clive J Roberts
- The School of Pharmacy, University of Nottingham, Park Campus, Nottingham, United Kingdom
| |
Collapse
|
3
|
Nagórniewicz B, Mardhian DF, Booijink R, Storm G, Prakash J, Bansal R. Engineered Relaxin as theranostic nanomedicine to diagnose and ameliorate liver cirrhosis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:106-118. [DOI: 10.1016/j.nano.2018.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 01/17/2023]
|
4
|
Yang R, An J, Zhu H, Yan X, Gao H. Multipronged design of theranostic nanovehicles with endogenous and exogenous stimuli-responsiveness for precise cancer therapy. J Mater Chem B 2019; 7:1160-1166. [PMID: 32254784 DOI: 10.1039/c8tb02570c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Near-infrared (NIR) light-induced photothermal agent-based stimuli-responsive materials have attracted great interest from researchers. However, the highly smart release with precise control by NIR light is not yet well established because of the lack or inadequacy of intelligent release systems, such as premature release of drug and/or photothermal agent. Herein, we put forward a novel and convenient strategy to synthesize cyanine dye-functionalized polymeric materials, where cyanine dye was schemed to attach to polymeric materials by copolymerization, endowing the polymeric materials with NIR light-responsive photothermal property and fluorescent nature for real-time imaging of endocytosis and intracellular trafficking of nanovehicles. Meanwhile, the chemotherapy drug DOX was introduced into the cyanine-containing polymeric materials via formation of dynamic covalent hydrazone bond to circumvent the blood circulation barrier. The nanovehicles displayed fine pH/NIR light-controlled drug release and excellent tumor intracellular drug transposition, which were ulteriorly combined with photo-triggered hyperthermia for enhanced antitumor effect. Therefore, this multipronged design of theranostic nanovehicles with endogenous and exogenous stimuli-responsiveness provides a novel strategy to attain highly smart drug delivery for precise cancer therapy.
Collapse
Affiliation(s)
- Rui Yang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | | | | | | | | |
Collapse
|
5
|
Li X, Kono K. Functional dendrimer-gold nanoparticle hybrids for biomedical applications. POLYM INT 2018. [DOI: 10.1002/pi.5583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education; School of Chemical and Material Engineering, Jiangnan University; Wuxi China
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering; Osaka Prefecture University; Osaka Japan
| |
Collapse
|
6
|
Li J, Liu K, Chen H, Li R, Drechsler M, Bai F, Huang J, Tang BZ, Yan Y. Functional Built-In Template Directed Siliceous Fluorescent Supramolecular Vesicles as Diagnostics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21706-21714. [PMID: 28616960 DOI: 10.1021/acsami.7b06306] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Functional template directed synthesis of hybrid siliceous fluorescent vesicle (HSFV) is fabricated by using fluorescent vesicle as a built-in template. The template vesicle is the ionic self-assembly of an aggregation-induced emission (AIE) fluorogen. Upon depositing folic acid modified silica shell on its surface, the obtained HSFVs display low cytotoxicity, significant fluorescence, and targeted drug delivery toward cancer cells. Furthermore, the wall-thickness of the HSFVs can be controlled via altered concentration of silica source. This is the first report of HSFV employing the template vesicle as a built-in fluorescent agent, which represents a good example of rational design for an effective diagnostics, and may open up a new avenue for precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ben Zhong Tang
- Department of Chemistry, Division of Biomedical Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, the Hong Kong University of Science & Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | | |
Collapse
|
7
|
Feng T, Ai X, An G, Yang P, Zhao Y. Charge-Convertible Carbon Dots for Imaging-Guided Drug Delivery with Enhanced in Vivo Cancer Therapeutic Efficiency. ACS NANO 2016; 10:4410-20. [PMID: 26997431 DOI: 10.1021/acsnano.6b00043] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbon dots (CDs) are remarkable nanocarriers due to their promising optical and biocompatible capabilities. However, their practical applicability in cancer therapeutics is limited by their insensitive surface properties to complicated tumor microenvironment in vivo. Herein, a tumor extracellular microenvironment-responsive drug nanocarrier based on cisplatin(IV) prodrug-loaded charge-convertible CDs (CDs-Pt(IV)@PEG-(PAH/DMMA)) was developed for imaging-guided drug delivery. An anionic polymer with dimethylmaleic acid (PEG-(PAH/DMMA)) on the fabricated CDs-Pt(IV)@PEG-(PAH/DMMA) could undergo intriguing charge conversion to a cationic polymer in mildly acidic tumor extracellular microenvironment (pH ∼ 6.8), leading to strong electrostatic repulsion and release of positive CDs-Pt(IV). Importantly, positively charged nanocarrier displays high affinity to negatively charged cancer cell membrane, which results in enhanced internalization and effective activation of cisplatin(IV) prodrug in the reductive cytosol. The in vitro experimental results confirmed that this promising charge-convertible nanocarrier possesses better therapeutic efficiency under tumor extracellular microenvironment than normal physiological condition and noncharge-convertible nanocarrier. The in vivo experiments further demonstrated high tumor-inhibition efficacy and low side effects of the charge-convertible CDs, proving its capability as a smart drug nanocarrier with enhanced therapeutic effects. The present work provides a strategy to promote potential clinical application of CDs in the cancer treatment.
Collapse
Affiliation(s)
- Tao Feng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
| | - Guanghui An
- School of Chemistry and Materials Science, Heilongjiang University , Harbin, Heilongjiang 150080, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin, Heilongjiang 150001, China
| | - Piaoping Yang
- College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin, Heilongjiang 150001, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
8
|
Giardiello M, Hatton FL, Slater RA, Chambon P, North J, Peacock AK, He T, McDonald TO, Owen A, Rannard SP. Stable, polymer-directed and SPION-nucleated magnetic amphiphilic block copolymer nanoprecipitates with readily reversible assembly in magnetic fields. NANOSCALE 2016; 8:7224-7231. [PMID: 26973155 DOI: 10.1039/c6nr00788k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The formation of inorganic-organic magnetic nanocomposites using reactive chemistry often leads to a loss of super-paramagnetisim when conducted in the presence of iron oxide nanoparticles. We present here a low energy and chemically-mild process of co-nanoprecipitation using SPIONs and homopolymers or amphiphilic block copolymers, of varying architecture and hydrophilic/hydrophobic balance, which efficiently generates near monodisperse SPION-containing polymer nanoparticles with complete retention of magnetism, and highly reversible aggregation and redispersion behaviour. When linear and branched block copolymers with inherent water-solubility are used, a SPION-directed nanoprecipitation mechanism appears to dominate the nanoparticle formation presenting new opportunities for tailoring and scaling highly functional systems for a range of applications.
Collapse
Affiliation(s)
- Marco Giardiello
- Department of Chemistry, University of Liverpool, Crown Street, L697ZD, UK.
| | - Fiona L Hatton
- Department of Chemistry, University of Liverpool, Crown Street, L697ZD, UK.
| | - Rebecca A Slater
- Department of Chemistry, University of Liverpool, Crown Street, L697ZD, UK.
| | - Pierre Chambon
- Department of Chemistry, University of Liverpool, Crown Street, L697ZD, UK.
| | - Jocelyn North
- Department of Chemistry, University of Liverpool, Crown Street, L697ZD, UK.
| | - Anita K Peacock
- Department of Chemistry, University of Liverpool, Crown Street, L697ZD, UK.
| | - Tao He
- Institute of Chemical and Engineering Sciences Agency for Science, Technology and Research (A*STAR), 1, Pesek Road, Jurong Island, 627833, Singapore
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool, Crown Street, L697ZD, UK.
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool L69 3GF, UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool, Crown Street, L697ZD, UK.
| |
Collapse
|
9
|
Kanwar JR, Kamalapuram SK, Krishnakumar S, Kanwar RK. Multimodal iron oxide (Fe3O4)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER-/PR-/HER2-). Nanomedicine (Lond) 2016; 11:249-68. [DOI: 10.2217/nnm.15.199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To unravel the multimodal nanotheranostic ability of Fe3O4-saturated bovine lactoferrin nanocapsules (FebLf NCs) in claudin-low, triple-negative breast cancer model. Materials & methods: Xenograft study was performed to examine biocompatibility, antitumor efficacy and multimodal nanotheranostic action in combination with near-infrared live mice imaging. Results: FebLf NCs exhibited a size range of 80 nm ± 5 nm with observed superparamagnetism. FebLf NCs successfully internalized into breast cancer cells through receptor-mediated endocytosis and induced apoptosis through the downregulation of inhibitor of apoptosis survivin and livin proteins. Investigations revealed a remarkable biocompatibility, anticancer efficacy of the FebLf NCs. Near-infrared imaging observations confirmed selective localization of multimodal FebLf NCs at the tumor site and lead to time-dependent reduction of tumor growth. Conclusion: FebLf NCs can be safe, biocompatible nanotheranostic approach for real-time imaging and monitoring the effect of drugs in real time and have potentials in future clinical trials.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Sishir K Kamalapuram
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Subramanian Krishnakumar
- L&T Ophthalmic Pathology Department, In charge Stem Cell Laboratory & Nano-biotechnology Laboratory Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
10
|
Zhang C, Yan Y, Zou Q, Chen J, Li C. Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies. Asia Pac J Clin Oncol 2015; 12:13-21. [PMID: 26663873 DOI: 10.1111/ajco.12437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
| | - Yuzhong Yan
- Clinical Laboratory, Shanghai Pudong Hospital; Fudan University Pudong Medical Center; Pudong, Shanghai China
- Department of Transfusion Medicine, Huashan Hospital; Fudan University; Shanghai China
| | - Qi Zou
- Departments of Hepatobiliary Surgery and
| | - Jie Chen
- Departments of Hepatobiliary Surgery and
| | | |
Collapse
|
11
|
Staedler D, Passemard S, Magouroux T, Rogov A, Maguire CM, Mohamed BM, Schwung S, Rytz D, Jüstel T, Hwu S, Mugnier Y, Le Dantec R, Volkov Y, Gerber-Lemaire S, Prina-Mello A, Bonacina L, Wolf JP. Cellular uptake and biocompatibility of bismuth ferrite harmonic advanced nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:815-24. [PMID: 25652898 DOI: 10.1016/j.nano.2014.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 11/25/2022]
Abstract
UNLABELLED Bismuth Ferrite (BFO) nanoparticles (BFO-NP) display interesting optical (nonlinear response) and magnetic properties which make them amenable for bio-oriented diagnostic applications as intra- and extra membrane contrast agents. Due to the relatively recent availability of this material in well dispersed nanometric form, its biocompatibility was not known to date. In this study, we present a thorough assessment of the effects of in vitro exposure of human adenocarcinoma (A549), lung squamous carcinoma (NCI-H520), and acute monocytic leukemia (THP-1) cell lines to uncoated and poly(ethylene glycol)-coated BFO-NP in the form of cytotoxicity, haemolytic response and biocompatibility. Our results support the attractiveness of the functional-BFO towards biomedical applications focused on advanced diagnostic imaging. FROM THE CLINICAL EDITOR Bismuth Ferrite nanoparticles (BFO-NP) have been recently successfully introduced as photodynamic tools and imaging probes. However, how these nanoparticles interact with various cells at the cellular level remains poorly understood. In this study, the authors performed in vitro experiments to assess the effects of uncoated and PEG-coated BFO-NP in the form of cytotoxicity, haemolytic response and biocompatibility.
Collapse
Affiliation(s)
- Davide Staedler
- Institute of Chemical Sciences and Engineering, EPFL, Batochime, 1015, Lausanne, Switzerland
| | - Solène Passemard
- Institute of Chemical Sciences and Engineering, EPFL, Batochime, 1015, Lausanne, Switzerland
| | - Thibaud Magouroux
- GAP-Biophotonics, Université de Genève, 22 Chemin de Pinchat, 1211 Genève 4, Switzerland
| | - Andrii Rogov
- GAP-Biophotonics, Université de Genève, 22 Chemin de Pinchat, 1211 Genève 4, Switzerland
| | - Ciaran Manus Maguire
- Nanomedicine Laboratory and Molecular Imaging Group, School of Medicine, Trinity Centre for Health Sciences, Trinity College, D8, Dublin, Ireland
| | - Bashir M Mohamed
- Nanomedicine Laboratory and Molecular Imaging Group, School of Medicine, Trinity Centre for Health Sciences, Trinity College, D8, Dublin, Ireland
| | | | - Daniel Rytz
- FEE Gmbh, Struthstrasse 2, 55743 Idar-Oberstein, Germany
| | - Thomas Jüstel
- Fachbereich Chemieingenieurwesen, Fachhochschule Münster, Stegerwaldstrasse 39, 48565 Steinfurt, Germany
| | - Stéphanie Hwu
- GAP-Biophotonics, Université de Genève, 22 Chemin de Pinchat, 1211 Genève 4, Switzerland
| | | | | | - Yuri Volkov
- Nanomedicine Laboratory and Molecular Imaging Group, School of Medicine, Trinity Centre for Health Sciences, Trinity College, D8, Dublin, Ireland; AMBER Centre and CRANN Institute, Trinity College, D2, Dublin, Ireland
| | - Sandrine Gerber-Lemaire
- Institute of Chemical Sciences and Engineering, EPFL, Batochime, 1015, Lausanne, Switzerland
| | - Adriele Prina-Mello
- Nanomedicine Laboratory and Molecular Imaging Group, School of Medicine, Trinity Centre for Health Sciences, Trinity College, D8, Dublin, Ireland; AMBER Centre and CRANN Institute, Trinity College, D2, Dublin, Ireland
| | - Luigi Bonacina
- GAP-Biophotonics, Université de Genève, 22 Chemin de Pinchat, 1211 Genève 4, Switzerland.
| | - Jean-Pierre Wolf
- GAP-Biophotonics, Université de Genève, 22 Chemin de Pinchat, 1211 Genève 4, Switzerland
| |
Collapse
|
12
|
Weichert JP, Clark PA, Kandela IK, Vaccaro AM, Clarke W, Longino MA, Pinchuk AN, Farhoud M, Swanson KI, Floberg JM, Grudzinski J, Titz B, Traynor AM, Chen HE, Hall LT, Pazoles CJ, Pickhardt PJ, Kuo JS. Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy. Sci Transl Med 2015; 6:240ra75. [PMID: 24920661 DOI: 10.1126/scitranslmed.3007646] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many solid tumors contain an overabundance of phospholipid ethers relative to normal cells. Capitalizing on this difference, we created cancer-targeted alkylphosphocholine (APC) analogs through structure-activity analyses. Depending on the iodine isotope used, radioiodinated APC analog CLR1404 was used as either a positron emission tomography (PET) imaging ((124)I) or molecular radiotherapeutic ((131)I) agent. CLR1404 analogs displayed prolonged tumor-selective retention in 55 in vivo rodent and human cancer and cancer stem cell models. (131)I-CLR1404 also displayed efficacy (tumor growth suppression and survival extension) in a wide range of human tumor xenograft models. Human PET/CT (computed tomography) and SPECT (single-photon emission computed tomography)/CT imaging in advanced-cancer patients with (124)I-CLR1404 or (131)I-CLR1404, respectively, demonstrated selective uptake and prolonged retention in both primary and metastatic malignant tumors. Combined application of these chemically identical APC-based radioisosteres will enable personalized dual modality cancer therapy of using molecular (124)I-CLR1404 tumor imaging for planning (131)I-CLR1404 therapy.
Collapse
Affiliation(s)
- Jamey P Weichert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA. Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA. Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA. Cellectar Biosciences Inc., 3301 Agriculture Drive, Madison, WI 53716, USA.
| | - Paul A Clark
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Irawati K Kandela
- Cellectar Biosciences Inc., 3301 Agriculture Drive, Madison, WI 53716, USA
| | - Abram M Vaccaro
- Cellectar Biosciences Inc., 3301 Agriculture Drive, Madison, WI 53716, USA
| | - William Clarke
- Cellectar Biosciences Inc., 3301 Agriculture Drive, Madison, WI 53716, USA
| | - Marc A Longino
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA. Cellectar Biosciences Inc., 3301 Agriculture Drive, Madison, WI 53716, USA
| | - Anatoly N Pinchuk
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA. Cellectar Biosciences Inc., 3301 Agriculture Drive, Madison, WI 53716, USA
| | - Mohammed Farhoud
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Kyle I Swanson
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - John M Floberg
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Joseph Grudzinski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA. Cellectar Biosciences Inc., 3301 Agriculture Drive, Madison, WI 53716, USA
| | - Benjamin Titz
- Cellectar Biosciences Inc., 3301 Agriculture Drive, Madison, WI 53716, USA
| | - Anne M Traynor
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Hong-En Chen
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Lance T Hall
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | | | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - John S Kuo
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA. Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
13
|
Akrami M, Khoobi M, Khalilvand-Sedagheh M, Haririan I, Bahador A, Faramarzi MA, Rezaei S, Javar HA, Salehi F, Ardestani SK, Shafiee A. Evaluation of multilayer coated magnetic nanoparticles as biocompatible curcumin delivery platforms for breast cancer treatment. RSC Adv 2015. [DOI: 10.1039/c5ra13838h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel biocompatible multi-layer iron oxide magnetic nanoparticles with sustained sensitive release profile, and improved cellular uptake.
Collapse
|
14
|
Agostinelli E, Vianello F, Magliulo G, Thomas T, Thomas TJ. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review). Int J Oncol 2015; 46:5-16. [PMID: 25333509 DOI: 10.3892/ijo.2014.2706] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/01/2014] [Indexed: 11/06/2022] Open
Abstract
Nanotechnology for cancer gene therapy is an emerging field. Nucleic acids, polyamine analogues and cytotoxic products of polyamine oxidation, generated in situ by an enzyme-catalyzed reaction, can be developed for nanotechnology-based cancer therapeutics with reduced systemic toxicity and improved therapeutic efficacy. Nucleic acid-based gene therapy approaches depend on the compaction of DNA/RNA to nanoparticles and polyamine analogues are excellent agents for the condensation of nucleic acids to nanoparticles. Polyamines and amine oxidases are found in higher levels in tumours compared to that of normal tissues. Therefore, the metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, can be targets for antineoplastic therapy since these naturally occurring alkylamines are essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. In particular, polyamine catabolism involves copper-containing amine oxidases. Several studies showed an important role of these enzymes in developmental and disease-related processes in animals through the control of polyamine homeostasis in response to normal cellular signals, drug treatment, and environmental and/or cellular stress. The production of toxic aldehydes and reactive oxygen species (ROS), H2O2 in particular, by these oxidases suggests a mechanism by which amine oxidases can be exploited as antineoplastic drug targets. The combination of bovine serum amine oxidase (BSAO) and polyamines prevents tumour growth, particularly well if the enzyme has been conjugated with a biocompatible hydrogel polymer. The findings described herein suggest that enzymatically formed cytotoxic agents activate stress signal transduction pathways, leading to apoptotic cell death. Consequently, superparamagnetic nanoparticles or other advanced nanosystem based on directed nucleic acid assemblies, polyamine-induced DNA condensation, and bovine serum amine oxidase may be proposed for futuristic anticancer therapy utilizing nucleic acids, polyamines and BSAO. BSAO based nanoparticles can be employed for the generation of cytotoxic polyamine metabolites.
Collapse
Affiliation(s)
- Enzo Agostinelli
- Istituto Pasteur-Fondazione Cenci Bolognetti Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome and CNR, Institute of Biology and Molecular Pathology, 00185 Rome, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy and Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Olomouc 77146, Czech Republic
| | - Giuseppe Magliulo
- Department Organi di Senso, Sapienza University of Rome, 00185 Rome, Italy
| | - Thresia Thomas
- Formerly Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
Tharkar P, Madani AU, Lasham A, Shelling AN, Al-Kassas R. Nanoparticulate carriers: an emerging tool for breast cancer therapy. J Drug Target 2014; 23:97-108. [DOI: 10.3109/1061186x.2014.958844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Kwon S, Singh RK, Kim TH, Patel KD, Kim JJ, Chrzanowski W, Kim HW. Luminescent mesoporous nanoreservoirs for the effective loading and intracellular delivery of therapeutic drugs. Acta Biomater 2014; 10:1431-42. [PMID: 24239681 DOI: 10.1016/j.actbio.2013.10.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/29/2013] [Accepted: 10/24/2013] [Indexed: 01/15/2023]
Abstract
Development of biocompatible and multifunctional nanocarriers is important for the therapeutic efficacy of drug molecules in the treatment of disease and tissue repair. A novel nanocarrier of luminescent hollowed mesoporous silica (L-hMS) was explored for the loading and controlled delivery of drugs. For the synthesis of L-hMS, self-activated luminescence hydroxyapatite (LHA) was used as a template. Different thicknesses (∼ 7-62 nm) of mesoporous silica shell were obtained by varying the volume of silica precursor and the subsequent removal of the LHA core, which resulted in hollow-cored (size of ∼ 40 nm × 10 nm) mesoporous silica nanoreservoirs, L-hMS. While the silica shell provided a highly mesoporous structure, enabling an effective loading of drug molecules, the luminescent property of LHA was also well preserved in both the silica-shelled and the hollow-cored nanocarriers. Doxorubicin (DOX), used as a model drug, was shown to be effectively loaded onto the mesopore structure and within the hollow space of the nanoreservoir. The DOX release was fairly pH-dependent, occurring more rapidly at pH 5.3 than at pH 7.4, and a long-term sustainable delivery over the test period of 2weeks was observed. The nanoreservoir exhibited favorable cell compatibility with low cytotoxicity and excellent cell uptake efficiency (over 90%). Treatment of HeLa cells with DOX-loaded L-hMS elicited a sufficient degree of biological efficacy of DOX, as confirmed in the DOX-induced apoptotic behaviors, including stimulation in caspase-3 expression, and was even more effective than the direct DOX treatment. Overall, the newly developed L-hMS nanoreservoirs may be potentially useful as a multifunctional (luminescent, mesoporous and biocompatible) carrier system to effectively load and sustainably deliver small molecules, including anticancer drugs.
Collapse
Affiliation(s)
- Sooyeon Kwon
- The Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; Biomaterials and Tissue Engineering Laboratory, Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, South Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; Biomaterials and Tissue Engineering Laboratory, Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, South Korea
| | - Kapil D Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; Biomaterials and Tissue Engineering Laboratory, Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, South Korea
| | - Jung-Ju Kim
- The Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; Biomaterials and Tissue Engineering Laboratory, Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, South Korea
| | | | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; Biomaterials and Tissue Engineering Laboratory, Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, South Korea.
| |
Collapse
|
17
|
Sun L, Zhang X, An J, Su C, Guo Q, Li C. Boronate ester bond-based core–shell nanocarriers with pH response for anticancer drug delivery. RSC Adv 2014. [DOI: 10.1039/c4ra01812e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, the major challenge for cancer treatment is to develop simple and smart nanocarriers that can efficiently retain the encapsulated drug during blood circulation, recognize tumor cells and quickly release the drug under stimulation.
Collapse
Affiliation(s)
- Lei Sun
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Jinxia An
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Cui Su
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Qianqain Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| |
Collapse
|
18
|
Lee CM, Cheong SJ, Kim EM, Lim ST, Jeong YY, Sohn MH, Jeong HJ. Nonpolymeric surface-coated iron oxide nanoparticles for in vivo molecular imaging: biodegradation, biocompatibility, and multiplatform. J Nucl Med 2013; 54:1974-80. [PMID: 24050935 DOI: 10.2967/jnumed.113.122267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED A new approach to the surface engineering of superparamagnetic iron oxide nanoparticles (SPIONs) may encourage their development for clinical use. In this study, we demonstrated that nonpolymeric surface modification of SPIONs has the potential to be an advanced biocompatible contrast agent for biomedical applications, including diagnostic imaging in vivo. METHODS Adenosine triphosphate (ATP), which is an innate biomaterial derived from the body, was coated onto the surface of SPIONs. An in vivo degradation study of ATP-coated SPIONs (ATP@SPIONs) was performed for 28 d. To diminish phagocytosis, ATP@SPIONs were surface-modified with gluconic acid. We next studied the ability of the SPIONs to serve as a specific targeted contrast agent after conjugation of cMet-binding peptide. The SPIONs were conjugated with Cy5.5 and labeled with (125)I for multimodality imaging. In vivo and in vitro tumor-targeted binding studies were performed on U87MG cells or a U87MG tumor model using animal SPECT/CT, an optical imaging system, and a 1.5-T clinical MR scanner. RESULTS ATP@SPIONs showed rapid degradation in vivo and in vitro, compared with ferumoxides. ATP@SPIONs modified with gluconic acid reduced phagocytic uptake, showed improved biodistribution, and provided good targetability in vivo. The gluconic acid-conjugated ATP@SPIONs, when conjugated with cMet-binding peptide, were successfully visualized on the U87MG tumors implanted in mice via multimodality imaging. CONCLUSION We suggest that ATP@SPIONs can be used as a multiplatform to target a region of interest in molecular imaging. When we consider the biocompatibility of contrast agents in vivo, ATP@SPIONs are superior to polymeric surface-modified SPIONs.
Collapse
Affiliation(s)
- Chang-Moon Lee
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhang Z, Wang J, Chen C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3869-80. [PMID: 24048973 DOI: 10.1002/adma.201301890] [Citation(s) in RCA: 450] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Indexed: 05/18/2023]
Abstract
While thermo-chemotherapy has proved to be effective in optimizing the efficacies of cancer treatments, traditional chemotherapy is subject to adverse side effects and heat delivery is often challenging in operation. Some photothermal inorganic nanoparticles responsive to near infrared light provide new opportunities for simultaneous and targeted delivery of heat and chemotherapeutics to the tumor sites in pursuit of synergistic effects for efficacy enhancement. The state of the art of nanoparticle-induced thermo-chemotherapy is summarized and the advantages and challenges of the major nanoplatforms based on gold nanoparticles, carbon nanomaterials, palladium nanosheets, and copper-based nanocrystals are highlighted. In addition, the optical-imaging potentials of the nanoplatforms that may endow them with imaging-guided therapy and therapeutic-result-monitoring capabilities are also briefly discussed.
Collapse
Affiliation(s)
- Zhenjiang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11, 1st North Street, Zhongguancun, Beijing 100190, China
| | | | | |
Collapse
|
20
|
Zhang L, Wang T, Yang L, Liu C, Wang C, Liu H, Wang YA, Su Z. General Route to Multifunctional Uniform Yolk/Mesoporous Silica Shell Nanocapsules: A Platform for Simultaneous Cancer-Targeted Imaging and Magnetically Guided Drug Delivery. Chemistry 2012; 18:12512-21. [DOI: 10.1002/chem.201200030] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/06/2012] [Indexed: 12/17/2022]
|
21
|
Yang F, Jin C, Subedi S, Lee CL, Wang Q, Jiang Y, Li J, Di Y, Fu D. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat Rev 2012; 38:566-79. [PMID: 22655679 DOI: 10.1016/j.ctrv.2012.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/30/2012] [Accepted: 02/02/2012] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is a devastating disease with incidence increasing at an alarming rate and survival not improved substantially during the past three decades. Although enormous efforts have been made in early detection and comprehensive treatment for this disease, little or no survival improvement was obtained, which necessitates the development of novel strategies. Emerging inorganic nanomaterials, such as carbon nanotubes, quantum dots, mesoporous silica/gold/supermagnetic nanoparticles, have been widely used in biomedical research with great optimism for cancer diagnosis and therapy. Such nanoparticles possess unique optical, electrical, magnetic and/or electrochemical properties. With such properties along with their impressive nano-size, these particles can be targeted to cancer cells, tissues, and ligands efficiently and monitored with extreme precision in real-time. In additional to liposome, dendrimer, and polymeric nanoparticles, they are considered the most promising nanomaterials with the capability of both cancer detection and multimodality treatment. Emerging approaches to harness nanotechnology to optimize the existing diagnostic and therapeutic tools for pancreatic cancer have been extensively explored during the recent years. Future options for early detection, individual therapy and monitoring responses of pancreatic cancer are focused on multifunctional nanomedicine. In this review, we present the recent development of clinically applicable inorganic nanoparticles, with focus on the diagnosis and treatment of pancreatic cancer. Furthermore, their advantages in theranostic nanomedicine, and challenges of translation to clinical practice, are discussed.
Collapse
Affiliation(s)
- Feng Yang
- Pancreatic Disease Institute, Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Giardiello M, McDonald TO, Martin P, Owen A, Rannard SP. Facile synthesis of complex multi-component organic and organic–magnetic inorganic nanocomposite particles. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34974d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur J Cancer 2011; 47:1873-82. [DOI: 10.1016/j.ejca.2011.03.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 01/17/2023]
|
24
|
Wang T, Zhang L, Su Z, Wang C, Liao Y, Fu Q. Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy. ACS APPLIED MATERIALS & INTERFACES 2011; 3:2479-2486. [PMID: 21604817 DOI: 10.1021/am200364e] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Highly uniform and multifunctional hollow mesoporous silica nanocages that combined excellent properties (good biocompatibility, fluorescence imaging, drug delivery, and dual-mode cancer therapy) in one single system were synthesized. Dye molecules labeled in the nanocages could be used as traceable detectors in fluorescence imaging. A chemotherapeutic drug, doxorubicin (DOX), has been loaded into the nanocages with a high storage capacity due to the large cubic cavities and could be released through the penetrating mesoporous channels in a sustained fashion. Hematoporphyrin molecules were also covalently doped in the nanocages and allowed for photodynamic therapy. More importantly, a cooperative, synergistic therapy combining chemotherapy and photodynamic therapy exhibited high therapeutic efficacy for cancer therapy in vitro.
Collapse
Affiliation(s)
- Tingting Wang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | | | | | | | | | | |
Collapse
|
25
|
Bogdanov A, Mazzanti ML. Molecular magnetic resonance contrast agents for the detection of cancer: past and present. Semin Oncol 2011; 38:42-54. [PMID: 21362515 DOI: 10.1053/j.seminoncol.2010.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful diagnostic tool with unsurpassed spatial resolution that is capable of providing detailed information about the structure and composition of tumors. The use of exogenously administered contrast agents allows compartment-specific enhancement of tumors, enabling imaging of functional blood and interstitial volumes. Current efforts are directed at enhancing the capabilities of MRI in oncology by adding contrast agents with molecular specificities to the growing armamentarium of diagnostic probes that produce signal by changing local proton relaxation times as a consequence of specific contrast agent binding to cell surface receptors or extracellular matrix components. We review herein the most notable examples, illustrating major trends in the development of specific probes for high-resolution imaging in molecular oncology.
Collapse
Affiliation(s)
- Alexei Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
26
|
Liu F, Laurent S, Fattahi H, Elst LV, Muller RN. Superparamagnetic nanosystems based on iron oxide nanoparticles for biomedical imaging. Nanomedicine (Lond) 2011; 6:519-28. [DOI: 10.2217/nnm.11.16] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Magnetic iron oxide nanoparticles and their dispersion in various mediums are of wide interest for their biomedical applications and physicochemical properties. MFe2O4 or MOFe2O3 (where M = Co, Li, Ni or Mn, for example) can be molecularly engineered to provide a wide range of magnetic properties. In this article, we survey the literature, integrating the results of our work to give a rational view on the synthesis, physicochemical properties and applications of MFe2O4, especially for MRI. However, retrieving detailed biological information on a subcellular level is difficult, owing to the limited resolution and low sensitivity of the MRI technique. Thus, this article also concentrates on the development of a magnetic iron oxide nanoparticles/quantum dot hybrids, as a dual-mode magnetic-fluorescent probe. The synthesis and physicochemical properties of the magnetic iron oxide nanoparticles/quantum dot hybrids and, especially, its application as an MRI-fluorescent probe, will also be described.
Collapse
Affiliation(s)
- Fujun Liu
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium
| | - Hassan Fattahi
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium
| | - Luce Vander Elst
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium
| | | |
Collapse
|
27
|
Yang HM, Lee HJ, Park CW, Yoon SR, Lim S, Jung BH, Kim JD. Endosome-escapable magnetic poly(amino acid) nanoparticles for cancer diagnosis and therapy. Chem Commun (Camb) 2011; 47:5322-4. [PMID: 21451847 DOI: 10.1039/c1cc10371g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endosome-escapable poly(amino acid) nanoparticles composed of iron oxide nanocrystals and anticancer drugs were prepared and demonstrated high T(2) relaxivity coefficients and higher efficacy attributed to the endosomolytic ability of the conjugated histidine moiety.
Collapse
Affiliation(s)
- Hee-Man Yang
- Department of Chemical and Biomolecular Engineering (BK21 Graduate Program), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Cengelli F, Voinesco F, Juillerat-Jeanneret L. Interaction of cationic ultrasmall superparamagnetic iron oxide nanoparticles with human melanoma cells. Nanomedicine (Lond) 2011; 5:1075-87. [PMID: 20874022 DOI: 10.2217/nnm.10.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) are currently under development for the intracellular delivery of therapeutics. However, the mechanisms of cellular uptake and the cellular reaction to this uptake, independent of therapeutics, are not well defined. The interactions of biocompatible cationic aminoUSPIONs with human cells was studied in 2D and 3D cultures using biochemical and electron microscopy techniques. AminoUSPIONs were internalized by human melanoma cells in 2D and 3D cultures. Uptake was clathrin mediated and the particles localized in lysosomes, inducing activation of the lysosomal cathepsin D and decreasing the expression of the transferrin receptor in human melanoma cells and/or skin fibroblasts. AminoUSPIONs deeply invaded 3D spheroids of human melanoma cells. Thus, aminoUSPIONs can invade tumors and their uptake by human cells induces cell reaction.
Collapse
Affiliation(s)
- Feride Cengelli
- Centre Hospitalier Universitaire Vaudois & University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
29
|
Soler MAG, Lima ECD, Nunes ES, Silva FLR, Oliveira AC, Azevedo RB, Morais PC. Spectroscopic study of maghemite nanoparticles surface-grafted with DMSA. J Phys Chem A 2011; 115:1003-8. [PMID: 21261312 DOI: 10.1021/jp1109916] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanosized maghemite (below 10 nm average diameter), surface-functionalized with meso-2,3-dimercaptosuccinic acid (DMSA), was investigated with respect to the content of DMSA molecules attached onto its surface and the onset of S-S bridges due to oxidation of neighboring S-H groups. To support our investigation, we introduced the use of photoacoustic spectroscopy to monitor thiol groups (S-H) conjugated with Raman spectroscopy to monitor the disulfide bridges (S-S). The normalized intensity (N(R)) of the Raman feature peaking at 500 cm(-1) was used to probe the S-S bridge whereas the normalized intensity (N(P)) of the photoacoustic band-S (0.42-0.65 μm) was used to probe the S-H moiety. The perfect linearity observed in the N(R) versus (1 - N(P)) plot strongly supports the oxidation process involving neighboring S-H groups as the DMSA surface grafting coefficient increases whereas the approach used in this report allows the evaluation of the [S-H]/[S-S] ratio. The observation of the reduction of the hydrodynamic diameter as the nominal DMSA-grafting increases supports the proposed model picture, in which the intraparticle (interparticle) S-S bridging takes place at higher (lower) DMSA-grafting values.
Collapse
Affiliation(s)
- Maria A G Soler
- Instituto de Física, Universidade de Brasília, Brasília DF, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Soenen SJH, De Cuyper M. Assessing iron oxide nanoparticle toxicity in vitro: current status and future prospects. Nanomedicine (Lond) 2010; 5:1261-75. [DOI: 10.2217/nnm.10.106] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The in vitro labeling of stem or therapeutic cells with engineered nanoparticles with the aim of transplanting these cells into live animals and, for example, noninvasively monitoring their migration, is a hot topic in nanomedicine research. It is of crucial importance that cell–nanoparticle interactions are studied in depth in order to exclude any negative effects of the cell labeling procedure. To date, many disparate results can be found in the literature regarding nanoparticle toxicity due to the great versatility of different parameters investigated. In the present work, an overview is presented of different types of nanomaterials, focusing mostly on iron oxide nanoparticles, developed for biomedical research. The difficulties in assessing nanoparticle-mediated toxicity are discussed, an overview of some of the problems encountered using commercial (dextran-coated) iron oxide nanoparticles is presented, several key parameters are highlighted and novel methods suggested – emphasizing the importance of intracellular nanoparticle degradation and linking toxicity data to functional (i.e., cell-associated) nanoparticle levels, which could help to advance any progress in this highly important research topic.
Collapse
Affiliation(s)
- Stefaan JH Soenen
- Interdisciplinary Research Centre, Laboratory of BioNanoColloids, K.U. Leuven – Campus Kortrijk, E. Sabbelaan 53, B-8500 Kortrijk, Belgium
- Faculty of Pharmaceutical Sciences, Laboratory of General Biochemistry & Physical Pharmacy, University of Gent, Harelbekestraat 72, B-9000 Gent, Belgium
| | | |
Collapse
|
31
|
Meng Lin M, Kim HH, Kim H, Muhammed M, Kyung Kim D. Iron oxide-based nanomagnets in nanomedicine: fabrication and applications. NANO REVIEWS 2010; 1:NANO-1-4883. [PMID: 22110854 PMCID: PMC3215210 DOI: 10.3402/nano.v1i0.4883] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/07/2010] [Accepted: 01/14/2010] [Indexed: 11/21/2022]
Abstract
Iron oxide-based nanomagnets have attracted a great deal of attention in nanomedicine over the past decade. Down to the nanoscale, superparamagnetic iron oxide nanoparticles can only be magnetized in the presence of an external magnetic field, which makes them capable of forming stable colloids in a physio-biological medium. Their superparamagnetic property, together with other intrinsic properties, such as low cytotoxicity, colloidal stability, and bioactive molecule conjugation capability, makes such nanomagnets ideal in both in-vitro and in-vivo biomedical applications. In this review, a chemical, physical, and biological synthetic approach to prepare iron oxide-based nanomagnets with different physicochemical properties was illustrated and compared. The growing interest in iron oxide-based nanomagnets with multifunctionalities was explored in cancer diagnostics and treatment, focusing on their combined roles in a magnetic resonance contrast agent, hyperthermia, and magnetic force assisted drug delivery. Iron oxides as magnetic carriers in gene therapy were reviewed with a focus on the sophisticated design and construction of magnetic vectors. Finally, the iron oxide-based nanomagnet also represents a very promising tool in particle/cell interfacing in controlling cellular functionalities, such as adhesion, proliferation, differentiation, and cell patterning, in stem cell therapy and tissue engineering applications.
Collapse
Affiliation(s)
- Meng Meng Lin
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
| | - Hyung-Hwan Kim
- Vascular Medicine Research Unit, Harvard Medical School, Brigham & Women's Hospital, Cambridge, MA, USA
- International Research Center of Bioscience and Biotechnology, Jungwon University, Goesan-gun Chungcheongbuk-do, Korea
| | - Hyuck Kim
- International Research Center of Bioscience and Biotechnology, Jungwon University, Goesan-gun Chungcheongbuk-do, Korea
- Faculty of Herb Industry, Jungwon University, Goesan-gun Chungcheongbuk-do, Korea
| | - Mamoun Muhammed
- Functional Materials Division, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Do Kyung Kim
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
- International Research Center of Bioscience and Biotechnology, Jungwon University, Goesan-gun Chungcheongbuk-do, Korea
- Functional Materials Division, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|