1
|
Kumari P, Kumar S, Raman RP, Brahmchari RK. Nanotechnology: An avenue for combating fish parasites in aquaculture system. Vet Parasitol 2024; 332:110334. [PMID: 39514929 DOI: 10.1016/j.vetpar.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
The intensification of aquaculture in recent years has led to the rise of infectious fish diseases caused by bacteria, viruses, and parasites. Parasitic diseases, in particular, are widespread and have significant economic impacts globally. Protozoan parasites like Ichthyophthirius multifiliis and Trichodina sp., myxozoans (cnidarians), monogeneans like Dactylogyrus sp. and Gyrodactylus sp., and crustacean parasites like Argulus sp. and Lernaea cyprinacea primarily cause these diseases. Despite advancements and new technologies aimed at understanding and treating these diseases, parasites remain a major health challenge in aquaculture. Traditional antiparasitic agents face limitations, including drug resistance and negative effects on non-target organisms. Recently, nanotechnology has emerged as a novel approach in aquaculture medicine, enabling the development of effective nanoparticles against pathogenic microbes. Silver nanoparticles (AgNPs) are particularly notable for their strong antimicrobial and antiparasitic properties due to their broad mechanisms of action. Although Argulus is a highly destructive crustacean parasite that financially burdens fish farmers, applying nanoparticles to manage this infection in aquaculture is still underexplored. Therefore, this review explores recent efforts to combat parasitic diseases with AgNPs and investigates their potential parasiticidal mechanisms of action, proposing them as a novel tool that could improve the management and control of argulosis diseases. The article underscores the benefits and challenges of this technology, emphasizing its significance in fostering improved health management for sustainable aquaculture.
Collapse
Affiliation(s)
- Pushpa Kumari
- Department of Aquatic Animal Health Management, College of Fisheries, Kishanganj, Bihar, India.
| | - Saurav Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ram P Raman
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Rajive K Brahmchari
- Department of Fisheries Resource Management, College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Dholi, Muzaffarpur, Bihar, India
| |
Collapse
|
2
|
Yu H. Improving pressure ulcer care in intensive care units: Evaluating the impact of bundled care and silver nanoparticle dressings. World J Clin Cases 2024; 12:3873-3881. [PMID: 38994315 PMCID: PMC11235428 DOI: 10.12998/wjcc.v12.i19.3873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Pressure ulcer (PU) are prevalent among critically ill trauma patients, posing substantial risks. Bundled care strategies and silver nanoparticle dressings offer potential solutions, yet their combined effectiveness and impact on patient satisfaction remain insufficiently investigated. AIM To assess the impact of bundled care along with silver nanoparticle dressing on PUs management and family satisfaction in critically ill trauma patients. METHODS A total of 98 critically ill trauma patients with PUs in intensive care unit (ICU) were included in this study. Patients were randomly assigned to either the control group (conventional care with silver nanoparticle dressing, n = 49) or the intervention group (bundled care with silver nanoparticle dressing, n = 49). The PU Scale for Healing (PUSH) tool was used to monitor changes in status of pressure injuries over time. Assessments were conducted at various time points: Baseline (day 0) and subsequent assessments on day 3, day 6, day 9, and day 12. Family satisfaction was assessed using the Family Satisfaction ICU 24 questionnaire. RESULTS No significant differences in baseline characteristics were observed between the two groups. In the intervention group, there were significant reductions in total PUSH scores over the assessment period. Specifically, surface area, exudate, and tissue type parameters all showed significant improvements compared to the control group. Family satisfaction with care and decision-making was notably higher in the intervention group. Overall family satisfaction was significantly better in the intervention group. CONCLUSION Bundled care in combination with silver nanoparticle dressings effectively alleviated PUs and enhances family satisfaction in critically ill trauma patients. This approach holds promise for improving PUs management in the ICU, benefiting both patients and their families.
Collapse
Affiliation(s)
- Hong Yu
- Department of Intensive Care Unit, The First People's Hospital of Ziyang, Ziyang 641300, Sichuan Province, China
| |
Collapse
|
3
|
Younis MA. Clinical translation of silver nanoparticles into the market. SILVER NANOPARTICLES FOR DRUG DELIVERY 2024:395-432. [DOI: 10.1016/b978-0-443-15343-3.00007-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Aldakheel FM, Mohsen D, El Sayed MM, Fagir MH, El Dein DK. Green Synthesized Silver Nanoparticles Loaded in Polysaccharide Hydrogel Applied to Chronic Wound Healing in Mice Models. Gels 2023; 9:646. [PMID: 37623101 PMCID: PMC10454137 DOI: 10.3390/gels9080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
The prevalence of chronic wounds is increasing owing to the expanding population and the growing number of individuals suffering from diabetes. Such a chronic wound continues to be a significant healthcare burden for diabetic patients because it frequently carries a high chance of limb loss due to amputation and reduces survival as a result. Development of innovative wound dressing materials with the potential to stop bacterial infections and accelerate the process of tissue regeneration is needed to increase the effectiveness of diabetic wound healing. In the current study, a co-polymerization process based on a free radical reaction was used to create a hydrogel of polysaccharides blend graft acrylamide (PsB-g-Am). Starch, chitosan, and alginate make up the polysaccharides blend (PsB). The produced hydrogel's structure was characterized using FTIR spectroscopy. The antibacterial activities of silver nanoparticles synthesized through the green method using garlic bulb (Allium sativum) is reported. The silver nanoparticles' physical characteristics were examined using scanning electron microscopy, transmission electron microscopy analysis, and UV-visible spectroscopy and they were found to range in size from 50 to 100 nm. The agar well diffusion technique is used to investigate the antibacterial characteristics. Inclusion of silver nanoparticles in the hydrogels demonstrated concentration-dependent antibacterial behavior against Gram-negative Klebsiella pneumoniae and Gram-positive Staphylococcus aureus during antimicrobial testing of the hydrogels. When hydrogels were applied to diabetic mice, the system was examined for its healing abilities, and positive therapeutic results were obtained in as little as 14 days. Thus, it can be inferred that graft copolymer of chitosan-AgNPs hydrogels can promote healing in chronic wounds over time and can be utilized as an alternative to conventional therapies for chronic wounds (such as those brought on by diabetes) in mouse models.
Collapse
Affiliation(s)
- Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Dalia Mohsen
- Clinical Laboratory Sciences Program, Inaya Medical College, Riyadh 12211, Saudi Arabia; (M.H.F.); (D.K.E.D.)
- Microbiology Department, National Research Centre, Giza 12622, Egypt
| | - Marwa M. El Sayed
- Chemical Engineering and Pilot Plant Department, National Research Centre, Giza 12622, Egypt;
| | - Mohammed H. Fagir
- Clinical Laboratory Sciences Program, Inaya Medical College, Riyadh 12211, Saudi Arabia; (M.H.F.); (D.K.E.D.)
| | - Dalia K. El Dein
- Clinical Laboratory Sciences Program, Inaya Medical College, Riyadh 12211, Saudi Arabia; (M.H.F.); (D.K.E.D.)
| |
Collapse
|
5
|
Gerber LS, Heusinkveld HJ, Langendoen C, Stahlmecke B, Schins RPF, Westerink RHS. Acute, sub-chronic and chronic exposures to TiO2 and Ag nanoparticles differentially affects neuronal function in vitro. Neurotoxicology 2022; 93:311-323. [DOI: 10.1016/j.neuro.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
6
|
Arnold AM, Bradley AM, Taylor KL, Kennedy ZC, Omberg KM. The Promise of Emergent Nanobiotechnologies for In Vivo Applications and Implications for Safety and Security. Health Secur 2022; 20:408-423. [PMID: 36286588 PMCID: PMC9595614 DOI: 10.1089/hs.2022.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
Abstract
Nanotechnology, the multidisciplinary field based on the exploitation of the unique physicochemical properties of nanoparticles (NPs) and nanoscale materials, has opened a new realm of possibilities for biological research and biomedical applications. The development and deployment of mRNA-NP vaccines for COVID-19, for example, may revolutionize vaccines and therapeutics. However, regulatory and ethical frameworks that protect the health and safety of the global community and environment are lagging, particularly for nanotechnology geared toward biological applications (ie, bionanotechnology). In this article, while not comprehensive, we attempt to illustrate the breadth and promise of bionanotechnology developments, and how they may present future safety and security challenges. Specifically, we address current advancements to streamline the development of engineered NPs for in vivo applications and provide discussion on nano-bio interactions, NP in vivo delivery, nanoenhancement of human performance, nanomedicine, and the impacts of NPs on human health and the environment.
Collapse
Affiliation(s)
- Anne M. Arnold
- Anne M. Arnold, PhD, is a Materials Scientist, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| | - Ashley M. Bradley
- Ashley M. Bradley is a Biomedical Scientist, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| | - Karen L. Taylor
- Karen L. Taylor, MPH, is a Senior Technical Advisor, National Security Directorate, Pacific Northwest National Laboratory, Seattle, WA
| | - Zachary C. Kennedy
- Zachary C. Kennedy, PhD, is a Materials Scientist, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| | - Kristin M. Omberg
- Kristin M. Omberg, PhD, is Group Leader, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA
| |
Collapse
|
7
|
Hou K, Meng C, Huang Y, Zhang Z, Wang Z, Lü X. A Research on the Role and Mechanism of N-Methyl-D-Aspartate Receptors in the Effects of Silver Nanoparticles on the Electrical Excitability of Hippocampal Neuronal Networks. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this paper is to explore the role and mechanism of N-Methyl-D-Aspartate (NMDA) receptors in the effects of silver nanoparticles (SNPs) on the electrical excitability of hippocampal neuronal networks. First, the cytotoxicity of different concentrations of SNPs was evaluated
and screened by MTT experiment, then the Voltage Threshold Measurement Method (VTMM) was employed to study the effects of SNPs on the electrical excitability of hippocampal neuronal networks under non-cytotoxic (5 μM) and cytotoxic (100 μM) concentrations after different
action times. The role of NMDA receptors in the effects of SNPs on the electrical excitability of hippocampal neuronal networks was investigated through the NMDA receptor antagonist MK-801. Then, the effects of SNPs on the number of NMDA receptors and the Ca2+ content in hippocampal
neurons were further investigated, and the relationship between these changes and neuronal networks electrical excitability was discussed. The results of voltage threshold (VTh) test showed that non-cytotoxic 5 μM SNPs has an excitatory effect on hippocampal neuronal
networks, while the effect of cytotoxic 100 μM SNPs gradually changed from excitatory to inhibitory with the extension of action time. It was found that SNPs could increase the electrical excitability of neuronal networks by activating NMDA receptors through the experiments with
MK-801 antagonists. Moreover, the fluorescent staining experiments showed that the activation of NMDA receptors by SNPs can lead to an increase in the intracellular Ca2+ content, and then trigger a negative feedback regulation mechanism of neurons between the number of NMDA receptors
and intracellular Ca2+ content. The high Ca2+ content in neurons can also decrease neurons’ cell viability, which in turn leads to changes in the electrical excitability of the neuronal networks.
Collapse
Affiliation(s)
- Kun Hou
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, PR China
| | - Chen Meng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, PR China
| | - Yan Huang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, PR China
| | - Zequn Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, PR China
| | - Zhigong Wang
- Institute of RF- & OE-ICs, Southeast University, Nanjing, 210096, PR China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
8
|
Ghosh U, Sayef Ahammed K, Mishra S, Bhaumik A. The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens. Chem Asian J 2022; 17:e202101149. [PMID: 35020270 PMCID: PMC9011828 DOI: 10.1002/asia.202101149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Indexed: 11/26/2022]
Abstract
Along the line of recent vaccine advancements, new antiviral therapeutics are compelling to combat viral infection-related public health crises. Several properties of silver nanoparticles (AgNPs) such as low level of cytotoxicity, ease of tunability of the AgNPs in the ultra-small nanoscale size and shape through different convenient bottom-up chemistry approaches, high penetration of the composite with drug formulations into host cells has made AgNPs, a promising candidate for developing antivirals. In this review, we have highlighted the recent advancements in the AgNPs based nano-formulations to target cellular mechanisms of viral propagation, immune modulation of the host, and the ability to synergistically enhance the activity of existing antiviral drugs. On the other hand, we have discussed the recent advancements on AgNPs based detection of viral pathogens from clinical samples using inherent physicochemical properties. This article will provide an overview of our current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.
Collapse
Affiliation(s)
- Ujjyani Ghosh
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of UtahSalt Lake CityUT84112USA
| | - Khondakar Sayef Ahammed
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - Snehasis Mishra
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
| | - Asim Bhaumik
- School of Materials SciencesIndian Association for the Cultivation of ScienceJadavpur, Kolkata700 032India
| |
Collapse
|
9
|
Pandey PN, Saini N, Sapre N, Kulkarni DA, Tiwari DAK. Prioritising breast cancer theranostics: A current medical longing in oncology. Cancer Treat Res Commun 2021; 29:100465. [PMID: 34598060 DOI: 10.1016/j.ctarc.2021.100465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023]
Abstract
The Theranostics approach has full potential to completely transform the contemporary medicine system to a patient-centric approach, as it is emerging in quite efficient manner, over the past few years. The primary impetus of this review is to analyse the patent growth in the domain of breast cancer theranostics. This wholesome analysis provides an insight into the current technological and R & D advancement over the years, in breast cancer theranostics. Thus, guide the end-users in getting the conclusion for policymaking and other public recommendations. This patent assessment also foretells about the future trends to carry out further achievements. Due to their easy availability, information richness, & versatility, patent's role in R&D policy has been emphasized by stake holders of innovation including scientists time to time. Graphical Abstract: The figure illustrates the applied technologies used for breast cancer theranostics by top three forward cited patents (A) The oligonucleotides with specific sequences (comprised of at least one of DNA, RNA, PNA. LNA, UNA or combination)1 are capable of binding a targeted tumor protein (PARP1, HISTIHIB, HISTIHID, NCL, FBL, SFPQ, RPL12, ACTB, HIST1H4A, SSBP1, NONO, H2AFJ, and DDX21, forming a tumor protein complex or subunit or their fragments and might block the tumoral activity. These are also capable of binding to Ramos cells (Derived from Human Burkitt's lymphoma that is negative for Epstein Barr virus). These can also bind cell surface nucleolin and may inhibit cell proliferation. These molecules with detection agent detect the presence or level of disease specific protein. (B) These aptamers with chemical functionalization can be conjugated to an amine linker or high molecular weight non-immunogenic compound or a drug or cytotoxic moiety or labelled with fluorescent agent. These chemically modified aptamers can also bind disease - specific biomarkers e.g., circulating biomarkers, micro- vesicle surface antigens or their functional fragments and can be subsequently used for early diagnosis, prognosis or therapeutic purposes. 1PNA: Peptide Nucleic Acid. LNA: Locked Nucleic Acid. UNA: Unlocked Nucleic Acid.
Collapse
Affiliation(s)
- Prem N Pandey
- Symbiosis Centre for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University), Pune 412115, India
| | - Neha Saini
- Symbiosis Centre for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University), Pune 412115, India
| | - Nidhi Sapre
- Symbiosis Centre for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University), Pune 412115, India
| | - Dr Atul Kulkarni
- Symbiosis Centre for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University), Pune 412115, India.
| | - Dr Amit Kumar Tiwari
- Symbiosis Centre for Research and Innovation (SCRI), Symbiosis International (Deemed University), Pune 412115, India.
| |
Collapse
|
10
|
Synthesis and Antibacterial Activity of Metal-Containing Ultraviolet-Cured Wood Floor Coatings. Polymers (Basel) 2021; 13:polym13183022. [PMID: 34577922 PMCID: PMC8469301 DOI: 10.3390/polym13183022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/05/2022] Open
Abstract
In our previous report, the antibacterial agents with different metals, mono(hydroxyethoxyethyl)phthalate [M(HEEP)2, M = Zn, Mn, and Ca], were synthesized. For increasing their yields, modified synthesis and purified processes were further investigated. The result of energy-dispersive X-ray spectroscopy showed the M(HEEP)2 could be stable and successfully synthesized, and their yields were raised to 73–85% from our previous report of 43–55%. For ultraviolet-cured wood floor coating application, the Zn(HEEP)2 was selected as an antibacterial agent and mixed with commercial UV wood floor coating. The effects on the antibacterial activity of UV films with different Zn(HEEP)2 additions of 0, 4, 8, and 12 phr as well as the commercial nano-Ag of 12 phr against Escherichia coli were evaluated. In the static antibacterial test, the UV films with Zn(HEEP)2 additions had similar antibacterial activity of 57–59%. In another dynamic shaking antibacterial test, the film containing 12 phr Zn(HEEP)2 had the best antibacterial activity among all the UV films. On the film properties, the Zn(HEEP)2-containing UV films had lower gloss and abrasion resistance, and slightly increased the hardness than those of UV film without Zn(HEEP)2 addition. However, there were no noticeable differences in mass retention, lightfastness, and thermal stability between UV films with and without the Zn(HEEP)2 addition. In this study, the 12 phr Zn(HEEP)2-containing UV film provided the best antibacterial activity against E. coli and had the balanced film properties for application on the UV wood floor coating.
Collapse
|
11
|
Li Y, Cummins E. A semi-quantitative risk ranking of potential human exposure to engineered nanoparticles (ENPs) in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146232. [PMID: 33714827 DOI: 10.1016/j.scitotenv.2021.146232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Large quantities of engineered nanoparticles (ENPs) have emerged on the European market with the rapid development of nanotechnology, however knowledge of potential health risks to humans remains in its infancy. The ENP safety issue is of pressing concern as their novel physicochemical characteristics have been illustrated compared to other bulk-form counterparts. Therefore, it is critical to carry out a comprehensive risk assessment for ENPs to guide risk management in industrial sectors. Based on current data availability, a risk ranking model is developed in accordance with the European Chemicals Agency (ECHA) advice for ENP risk assessment. In this study a Quantity, Exposure, Hazard (QEH) risk scoring model was adopted for characterizing both quantitative and qualitative data, including potential exposure pathways and hazard information. Scores were assigned to quantities of ENPs used in consumer products, intake likelihoods (oral, inhalation, and dermal intake), and hazard potential. Exposure through environmental routes and through consumer products are regarded as significant potential exposure routes. This model prioritized ENPs used in Europe according to human health risk potential. Nano-titanium dioxide (TiO2) ranked the highest, resulting from exposure through consumer products. Silver nanoparticles (AgNP), as the second most critical ENP, is of most concern in terms of the risk from environmental sinks. Regarding the compartmentalization of total ENP risks to humans, the consumption of consumer products with nano-ingredients, especially nano-TiO2, nano-silicon dioxide (SiO2), and AgNP, constitutes the majority of the QEH risk index. The inadequacy of ENP risk management procedures is highlighted, not only during manufacturing, but also during nanomaterial waste disposal processes from marketplace through to the environment. Current risk assessments are based upon recent knowledge of the ENP class as novel pollutants, highlighting the need for further quantification of underlying risks as data emerges.
Collapse
Affiliation(s)
- Yingzhu Li
- School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Kuerban D, Maimaiti M, Chen Z. Effects and Safety of Different Silver Preparation in Burns Treatment: A Bayesian Network Meta-analysis. INT J LOW EXTR WOUND 2021; 22:298-306. [PMID: 33909511 DOI: 10.1177/15347346211004032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Silver formulation has been used for external use of burn wounds for several decades, mainly including silver sulfadiazine (SSD), nanosilver dressing (NSD), and silver ion dressing (SID). At present, there is no simultaneous comparison of the effects of silver formulation on burn wounds. The databases were retrieved in an orderly manner from the dates of their establishment to May 2020, including PubMed, the Cochrane Library, Web of Science, and Clinical Trials. Then a network meta-analysis was conducted using R and RevMan 5.1 software. A total of 13 randomized controlled trials (RCTs) involving 945 patients with burns were included. A pairwise meta-analysis of the results was presented: the wound healing time in the SID or NSD treatment group was less than that in the SSD group; and in relieving the pain there was a statistical difference between the SSD, SID, or NSD groups. Network meta-analysis of the results was presented: the wound healing time and relieving the pain in the SID or NSD treatment group were less than that in the SSD group, but there was no statistical difference between the SID and NSD groups. The possibility of NSD in the wound healing time being the best treatment was 75.2%, followed by SID (36.6%), and finally SSD (1.1%); and the possibility of NSD being the best relieving the pain was 83.5%; followed by SID (60.0%), and finally SSD (16.3%). According to the evidence, treatment for burns with NSD can improve the wound healing time and relieve the pain of wounds.
Collapse
Affiliation(s)
- Dilixiati Kuerban
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, P.R. China
| | - Maisiwuti Maimaiti
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, P.R. China
| | - Zhao Chen
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, P.R. China
| |
Collapse
|
13
|
Cox HJ, Li J, Saini P, Paterson JR, Sharples GJ, Badyal JPS. Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces. J Mater Chem B 2021; 9:2918-2930. [PMID: 33885647 DOI: 10.1039/d0tb02379e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antimicrobial essential oils are incorporated into mussel-inspired and natural plant polyphenol coatings as part of a single-step fabrication process. Polydopamine-cinnamaldehyde, polyethyleneimine-cinnamaldehyde, and tannic acid-cinnamaldehyde coatings exhibit strong antibacterial activities against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus (with the polydopamine- and tannic acid-based systems displaying log10 Reduction = 8). Cinnamaldehyde impregnation into porous non-woven polypropylene cloth, polytetrafluoroethylene membrane, and knitted cotton cloth also gives rise to high levels of antibacterial activity (log10 Reduction = 8). No loss in antibacterial efficacy is observed for non-woven polypropylene cloth impregnated with cinnamaldehyde over 17 recycle tests.
Collapse
Affiliation(s)
- Harrison J Cox
- Department of Chemistry, Durham University, Durham DH1 3LE, England, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Islam MA, Jacob MV, Antunes E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111918. [PMID: 33433370 DOI: 10.1016/j.jenvman.2020.111918] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles are one of the most beneficial forms of heavy metals in nanotechnology applications. Due to its exceptional antimicrobial properties, low electrical and thermal resistance, and surface plasmon resonance, silver nanoparticles are used in a wide variety of products, including consumer goods, healthcare, catalysts, electronics, and analytical equipment. As the production and applications of silver nanoparticles containing products increase daily, the environmental pollution due to silver nanoparticles release is increasing and affecting especially the aqueous ecosystem. Silver nanoparticles can kill useful bacteria in soil and water, and bioaccumulate in living organisms even at low concentrations from 10-2 to 10 μg/mL silver can show antibacterial effect. On the other hand, the maximum silver discharge limit into freshwater is 0.1 μg/L and 3.2 μg/L for Australia and the USA, respectively. To reduce its toxic consequences and meet the regulatory guidelines, it is crucial to remove silver nanoparticles from wastewater before it is discharged into other water streams. Several technologies are available to remove silver nanoparticles, but the adsorption process using low-cost adsorbents is a promising alternative to mitigate silver nanoparticle pollution in the bulk stage. As one of the low-cost adsorbents, biochar produced from the biomass waste could be a suitable adsorbent. This review focuses on collating the latest evidence on silver nanoparticle production, applications, environmental consequences, and cost-effective technological approaches for silver removal from wastewater.
Collapse
Affiliation(s)
- Md Anwarul Islam
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohan V Jacob
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
15
|
Vigneswari S, Amelia TSM, Hazwan MH, Mouriya GK, Bhubalan K, Amirul AAA, Ramakrishna S. Transformation of Biowaste for Medical Applications: Incorporation of Biologically Derived Silver Nanoparticles as Antimicrobial Coating. Antibiotics (Basel) 2021; 10:229. [PMID: 33668352 PMCID: PMC7996339 DOI: 10.3390/antibiotics10030229] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Nanobiotechnology has undoubtedly influenced major breakthroughs in medical sciences. Application of nanosized materials has made it possible for researchers to investigate a broad spectrum of treatments for diseases with minimally invasive procedures. Silver nanoparticles (AgNPs) have been a subject of investigation for numerous applications in agriculture, water treatment, biosensors, textiles, and the food industry as well as in the medical field, mainly due to their antimicrobial properties and nanoparticle nature. In general, AgNPs are known for their superior physical, chemical, and biological properties. The properties of AgNPs differ based on their methods of synthesis and to date, the biological method has been preferred because it is rapid, nontoxic, and can produce well-defined size and morphology under optimized conditions. Nevertheless, the common issue concerning biological or biobased production is its sustainability. Researchers have employed various strategies in addressing this shortcoming, such as recently testing agricultural biowastes such as fruit peels for the synthesis of AgNPs. The use of biowastes is definitely cost-effective and eco-friendly; moreover, it has been reported that the reduction process is simple and rapid with reasonably high yield. This review aims to address the developments in using fruit- and vegetable-based biowastes for biologically producing AgNPs to be applied as antimicrobial coatings in biomedical applications.
Collapse
Affiliation(s)
- Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Tan Suet May Amelia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Mohamad Hazari Hazwan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Govindan Kothandaraman Mouriya
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Penang 11700, Malaysia
| | - Al-Ashraf Abdullah Amirul
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Penang 11700, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang 11900, Malaysia
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| |
Collapse
|
16
|
Pandey VK, Upadhyay SN, Mishra PK. Light-induced synthesis of silver nanoparticles using Ocimum tenuiflorum extract: Characterisation and application. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820936511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stable silver nanoparticles of various sizes are synthesised using the aqueous extract of Tulsi ( Ocimum tenuiflorum) as the reducing agent as well as a stabilising agent under the influence of light of wavelength ranging from 200 to 900 nm. The formation of silver nanoparticles is monitored using a UV-Visible spectrophotometer and the particle shape, size and stability are analysed using scanning electron microscopy, dynamic light scattering and zeta potential measurement techniques. It is observed that the size of the silver nanoparticles decreases on increasing the wavelength of irradiating light. The silver nanoparticles show antimicrobial activity against gram-positive ( Bacillus subtilis), as well as gram-negative ( Escherichia coli) bacteria. The antimicrobial activity shows an inverse relationship with the size of the silver nanoparticles. The bio-synthesised silver nanoparticles are successfully embedded in a polymeric film to act as an active antimicrobial film that can potentially release the active constituents.
Collapse
Affiliation(s)
- Vivek Kumar Pandey
- Department of Chemical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Siddh Nath Upadhyay
- Department of Chemical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
17
|
Gunawan C, Faiz MB, Mann R, Ting SRS, Sotiriou GA, Marquis CP, Amal R. Nanosilver Targets the Bacterial Cell Envelope: The Link with Generation of Reactive Oxygen Radicals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5557-5568. [PMID: 31927911 DOI: 10.1021/acsami.9b20193] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The work describes the interactions of nanosilver (NAg) with bacterial cell envelope components at a molecular level and how this associates with the reactive oxygen species (ROS)-mediated toxicity of the nanoparticle. Major structural changes were detected in cell envelope biomolecules as a result of damages in functional moieties, such as the saccharides, amides, and phosphodiesters. NAg exposure disintegrates the glycan backbone in the major cell wall component peptidoglycan, causes complete breakdown of lipoteichoic acid, and disrupts the phosphate-amine and fatty acid groups in phosphatidylethanolamine, a membrane phospholipid. Consistent with the oxidative attacks, we propose that the observed cell envelope damages are inflicted, at least in part, by the reactive oxygen radicals being generated by the nanoparticle during its leaching process, abiotically, without cells. The cell envelope targeting, especially those on the inner membrane phospholipid, is likely to then trigger the rapid generation of lethal levels of cellular superoxide (O2•-) and hydroxyl (OH•) radicals herein seen with a model bacterium. The present study provides a better understanding of the antibacterial mechanisms of NAg, whereby ROS generation could be both the cause and consequence of the toxicity, associated with the initial cell envelope targeting by the nanoparticle.
Collapse
Affiliation(s)
- Cindy Gunawan
- ithree institute , University of Technology Sydney , Sydney , NSW 2007 , Australia
- School of Chemical Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Merisa B Faiz
- School of Chemical Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Riti Mann
- ithree institute , University of Technology Sydney , Sydney , NSW 2007 , Australia
| | - Simon R S Ting
- Centre for Health Technologies , University of Technology Sydney , Sydney NSW 2007 , Australia
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Solna, Stockholm 171 77 , Sweden
| | - Christopher P Marquis
- School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Rose Amal
- School of Chemical Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
18
|
Wasef LG, Shaheen HM, El-Sayed YS, Shalaby TIA, Samak DH, Abd El-Hack ME, Al-Owaimer A, Saadeldin IM, El-Mleeh A, Ba-Awadh H, Swelum AA. Effects of Silver Nanoparticles on Burn Wound Healing in a Mouse Model. Biol Trace Elem Res 2020; 193:456-465. [PMID: 31111309 DOI: 10.1007/s12011-019-01729-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/10/2019] [Indexed: 10/26/2022]
Abstract
Healing of injuries caused by exposure to heat has been discussed in many studies, although a few drugs have been shown to produce satisfactory results. In this study, 100 healthy mice randomly allocated into four categories (each = 25 mice) were analyzed. A deep second-degree burn on the back of each mouse was created. The burns were dressed daily with either AgNPs or silver sulfadiazine over 28 days of treatment. Safety evaluation of the AgNP treatment was performed by measuring the deposition rate of silver in the liver, brain, and kidney of treated mice. In the murine burn model, the speed of wound healing and the antibacterial effect of AgNPs were better than those in the silver sulfadiazine group. Burn wounds treated with SSD appeared to display a greater degree of inflammation as notable by the three clinical signs of the inflammatory process such as redness and swelling which appeared to be less after wounds treated with AgNPs. Also, AgNP treatment modified leukocytic infiltration and reduced collagen degeneration in treated mice and enhanced healing processes that were confirmed by morphological and histological investigations. Beside the potential significant effects of AgNPs on reduction of some microorganism counts that routinely isolated from burn wounds included aerobic organisms as Staphylococcus aureus and Escherichia coli when compared to both SSD and control groups. The deposition kinetics of AgNPs revealed lower distribution in the liver, brain, and kidney than that in silver sulfadiazine-treated mice with respect to both SSD and control groups.
Collapse
Affiliation(s)
- Lamiaa G Wasef
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Hazem M Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Thanaa I A Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdullah Al-Owaimer
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Menoufia, Egypt
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
19
|
Shape-Depended Biological Properties of Ag 3PO 4 Microparticles: Evaluation of Antimicrobial Properties and Cytotoxicity in In Vitro Model-Safety Assessment of Potential Clinical Usage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6740325. [PMID: 31827692 PMCID: PMC6886340 DOI: 10.1155/2019/6740325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/27/2019] [Indexed: 01/05/2023]
Abstract
Implant-related infections are an emerging clinical and economic problem. Therefore, we decided to assess potential clinical usefulness and safety of silver orthophosphate microparticles (SOMPs) regarding their shape. We synthesized and then assessed antimicrobial properties and potential cytotoxicity of six shapes of SOMPs (tetrapod, cubes, spheres, tetrahedrons, branched, and rhombic dodecahedron). We found that SOMPs had a high antimicrobial effect; they were more efficient against fungi than bacteria. SOMPs exerted an antimicrobial effect in concentrations not toxic to mammalian cells: human fetal osteoblast (hFOB1.19), osteosarcoma (Saos-2), mouse preosteoblasts (MC3T3-E1), skin fibroblast (HDF), and mouse myoblast (C2C12). At higher concentration SOMPs, induced shape- and concentration-dependent cytotoxicity (according to MTT and BrdU assays). Tetrapod SOMPs had the smallest effect, whereas cubical SOMPs, the highest on cell viability. hFOB1.19 were the most resistant cells and C2C12, the most susceptible ones. We have proven that the induction of oxidative stress and inflammation is involved in the cytotoxic mechanism of SOMPs. After treatment with microparticles, we observed changes in levels of reactive oxygen species, first-line defense antioxidants-superoxide dismutase (SOD1, SOD3), and glutathione peroxidase (GPX4), metalloproteinase (MMP1, MMP3), and NF-κB protein. Neither cell cycle distribution nor ultrastructure was altered as determined by flow cytometry and transmission electron microscopy, respectively. In conclusion, silver orthophosphate may be a safe and effective antimicrobial agent on the implant surface. Spherical-shaped SOMPs are the most promising for biomedical application.
Collapse
|
20
|
Chen L, Meng X, Gu J, Fan W, Abdlli N, Peprah FA, Wang N, Zhu F, Lü P, Ma S, Chen K. Silver nanoparticle toxicity in silkworms: Omics technologies for a mechanistic understanding. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:388-395. [PMID: 30731270 DOI: 10.1016/j.ecoenv.2019.01.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) has raised public concern due to their potential toxic effects on humans and the environment. Although some studies have evaluated the toxicity of nanomaterials in vertebrates, studies on their hazardous effects on insects are limited. Here we focused on different concentrations of AgNPs to silkworms, a promising model organism, to evaluate their toxic effects by omics analysis. After the silkworms were fed with 100 mg L-1 AgNPs, transcriptomics analysis showed differential expression of 43 genes: 39 upregulated and 4 downregulated. These differentially expressed genes (DEGs) were involved in the digestion process, various metabolic pathways, transmembrane transport and energy synthesis. Proteomic results for silkworms fed with 400 mg L-1 AgNPs revealed 14 significantly differentially expressed proteins: 11 downregulated and 3 upregulated. Reverse transcription-polymerase chain reaction (RT-PCR) results showed that the expression levels of eight proteins were similar to the transcription levels of their corresponding genes. As the AgNPs concentration was increased, the expression of digestive enzymes was downregulated, which damaged the silkworm tissue and suppressed the activity of the enzyme superoxide dismutase and the protein HSP 1, causing oxidative stress and the production of reactive oxygen species, which had toxic effects on the silkworm digestive system. Histopathological results showed that treatment with 400 mg L-1 AgNPs destroyed the basal lamina and the columnar cells, caused adverse effects on tissues and had the potential to induce harmful effects on the digestive system. The data presented herein provide valuable information on the hazards and risks of nanoparticle contamination. Main finding: AgNPs would downregulate some digestive enzymes, damage the tissue of midgut in silkworm, meantime induce the accumulation of reactive oxygen species which may cause oxidative stress.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Xu Meng
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China.
| | - Nouara Abdlli
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Frank Addai Peprah
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Niannian Wang
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| |
Collapse
|
21
|
Zeng J, Xu P, Chen G, Zeng G, Chen A, Hu L, Huang Z, He K, Guo Z, Liu W, Wu J, Shi J. Effects of silver nanoparticles with different dosing regimens and exposure media on artificial ecosystem. J Environ Sci (China) 2019; 75:181-192. [PMID: 30473283 DOI: 10.1016/j.jes.2018.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 06/09/2023]
Abstract
Due to the wide use of silver nanoparticles (AgNPs) in various fields, it is crucial to explore the potential negative impacts on the aquatic environment of AgNPs entering into the environment in different ways. In this study, comparative experiments were conducted to investigate the toxicological impacts of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) with two kinds of dosing regimens, continuous and one-time pulsed dosing, in different exposure media (deionized water and XiangJiang River water). There were a number of quite different experimental results (including 100% mortality of zebrafish, decline in the activity of enzymes, and lowest number and length of adventitious roots) in the one-time pulsed dosing regimen at high PVP-AgNP concentration exposure (HOE) compared to the three other treatments. Meanwhile, we determined that the concentration of leached silver ions from PVP-AgNPs was too low to play a role in zebrafish death. Those results showed that HOE led to a range of dramatic ecosystem impacts which were more destructive than those of other treatments. Moreover, compared with the continuous dosing regimen, despite the fact that higher toxicity was observed for HOE, there was little difference in the removal of total silver from the aquatic environment for the different dosing regimens. No obvious differences in ecological impacts were observed between different water columns under low concentration exposure. Overall, this work highlighted the fact that the toxicity of AgNPs was impacted by different dosing regimens in different exposure media, which may be helpful for assessments of ecological impacts on aquatic environments.
Collapse
Affiliation(s)
- Jingwen Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Piao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Guiqiu Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China.
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Liang Hu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Kai He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhi Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Weiwei Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Jing Wu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Jiangbo Shi
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
22
|
Wang K, He J. One-Pot Fabrication of Antireflective/Antibacterial Dual-Function Ag NP-Containing Mesoporous Silica Thin Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11189-11196. [PMID: 29578679 DOI: 10.1021/acsami.8b00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thin films that integrate antireflective and antibacterial dual functions are not only scientifically interesting but also highly desired in many practical applications. Unfortunately, very few studies have been devoted to the preparation of thin films with both antireflective and antibacterial properties. In this study, mesoporous silica (MSiO2) thin films with uniformly dispersed Ag nanoparticles (Ag NPs) were prepared through a one-pot process, which simultaneously shows high transmittance, excellent antibacterial activity, and mechanical robustness. The optimal thin-film-coated glass substrate demonstrates a maximum transmittance of 98.8% and an average transmittance of 97.1%, respectively, in the spectral range of 400-800 nm. The growth and multiplication of typical bacteria, Escherichia coli ( E. coli), were effectively inhibited on the coated glass. Pencil hardness test, tape adhesion test, and sponge washing test showed favorable mechanical robustness with 5H pencil hardness, 5A grade adhesion, and functional durability of the coating, which promises great potential for applications in various touch screens, windows for hygiene environments, and optical apparatuses for medical uses such as endoscope, and so on.
Collapse
Affiliation(s)
- Kaikai Wang
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Zhongguancundonglu 29 , Haidianqu, Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Zhongguancundonglu 29 , Haidianqu, Beijing 100190 , China
| |
Collapse
|
23
|
Abstract
The concept of hormesis, as an adaptive response of biological systems to moderate environmental challenges, has raised considerable nano-toxicological interests in view of the rapid pace of production and application of even more innovative nanomaterials and the expected increasing likelihood of environmental and human exposure to low-dose concentrations. Therefore, the aim of this review is to provide an update of the current knowledge concerning the biphasic dose-responses induced by nanoparticle exposure. The evidence presented confirmed and extended our previous findings, showing that hormesis is a generalized adaptive response which may be further generalized to nanoscale xenobiotic challenges. Nanoparticle physico-chemical properties emerged as possible features affecting biphasic relationships, although the molecular mechanisms underlining such influences remain to be fully understood, especially in experimental settings resembling long-term and low-dose realistic environmental exposure scenarios. Further investigation is necessary to achieve helpful information for a suitable assessment of nanomaterial risks at the low-dose range for both the ecosystem function and the human health.
Collapse
|
24
|
Faiz MB, Amal R, Marquis CP, Harry EJ, Sotiriou GA, Rice SA, Gunawan C. Nanosilver and the microbiological activity of the particulate solids versus the leached soluble silver. Nanotoxicology 2018; 12:263-273. [DOI: 10.1080/17435390.2018.1434910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Merisa B. Faiz
- School of Chemical Engineering, UNSW Australia, Sydney, Australia
| | - Rose Amal
- School of Chemical Engineering, UNSW Australia, Sydney, Australia
| | | | | | - Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences Engineering and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Cindy Gunawan
- School of Chemical Engineering, UNSW Australia, Sydney, Australia
- ithree Institute, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
25
|
Nouara A, Lü P, Chen L, Pan Y, Yang Y, Chen K. Silver effects on silkworm, Bombyx mori. J Toxicol Sci 2018; 43:697-709. [DOI: 10.2131/jts.43.697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Abdelli Nouara
- School of Food and Biological Engineering, Jiangsu University, China
- Institute of Life Sciences, Jiangsu University, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, China
| | - Yan Pan
- Institute of Life Sciences, Jiangsu University, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, China
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, China
- Institute of Life Sciences, Jiangsu University, China
| |
Collapse
|
26
|
Cambier S, Røgeberg M, Georgantzopoulou A, Serchi T, Karlsson C, Verhaegen S, Iversen TG, Guignard C, Kruszewski M, Hoffmann L, Audinot JN, Ropstad E, Gutleb AC. Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:972-982. [PMID: 28838034 DOI: 10.1016/j.scitotenv.2017.08.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
The use of silver nanomaterials in everyday products, such as cosmetics, textiles, certain types of packaging, etc. is increasing, leading to their release into the environment, including aquatic ecosystems. This last point initiated this investigation on the toxicological effects of Ag nanoparticles (Ag NPs) in the aquatic model organism Danio rerio. For this purpose, zebrafish larvae were exposed to 20nm bare Ag NPs at different concentrations and AgNO3, used as a positive control for Ag+ ions toxicity, at the beginning of their foraging behaviour to determine adverse effects on fitness parameters. We used secondary ion mass spectrometry (SIMS) to determine the localization of Ag and transcriptomics (microarray) to determine the toxicity at the level of gene expression in fish larvae. Exposure to Ag NPs did not result in adverse effects on survival and growth of the fish. However, SIMS analysis showed that Ag NPs mainly concentrate around liver blood vessels and in the interstitial tissue between the intestine and the liver. Gene expression profiles revealed that AgNO3 and Ag NPs impacted common pathways, suggesting similar targets, such as the phototransduction system. However, the Ag NPs showed a broader set of genes impacted following the exposure, including the circadian clock regulation and the photoreception, suggesting specific particle-related effects in addition to those induced by ions.
Collapse
Affiliation(s)
- Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | | | - Anastasia Georgantzopoulou
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg; Norwegian Institute for Water Research, Gaustadalléen 21, 0349 Oslo, Norway
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | | | | | - Tore-Geir Iversen
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo
| | - Cédric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland
| | - Lucien Hoffmann
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Jean-Nicolas Audinot
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Erik Ropstad
- Norwegian School of Veterinary Science, N-0033 Oslo, Norway.
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
27
|
Genotoxicity and Molecular Response of Biotechnological Agent Trichoderma harzianum as a Result of Silver Nanoparticles Application. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Comparison of Plant Growth Promoting Rhizobacteria (PGPR) Diversity and Dynamics During Growth of Cilembu Sweet Potato (Ipomoea batatas L var. Rancing) in Cilembu and Jatinangor Site, Indonesia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Khan FU, Chen Y, Khan NU, Ahmad A, Tahir K, Khan ZU, Khan AU, Khan SU, Raza M, Wan P. Visible light inactivation of E. coli , Cytotoxicity and ROS determination of biochemically capped gold nanoparticles. Microb Pathog 2017; 107:419-424. [DOI: 10.1016/j.micpath.2017.04.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022]
|
30
|
Gunawan C, Marquis CP, Amal R, Sotiriou GA, Rice SA, Harry EJ. Widespread and Indiscriminate Nanosilver Use: Genuine Potential for Microbial Resistance. ACS NANO 2017; 11:3438-3445. [PMID: 28339182 DOI: 10.1021/acsnano.7b01166] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this era of increasing antibiotic resistance, the use of alternative antimicrobials such as silver has become more widespread. Superior antimicrobial activity has been provided through fabrication of silver nanoparticles or nanosilver (NAg), which imparts cytotoxic actions distinct from those of bulk silver. In the wake of the recent discoveries of bacterial resistance to NAg and its rising incorporation in medical and consumer goods such as wound dressings and dietary supplements, we argue that there is an urgent need to monitor the prevalence and spread of NAg microbial resistance. In this Perspective, we describe how the use of NAg in commercially available products facilitates prolonged microorganism exposure to bioavailable silver, which underpins the development of resistance. Furthermore, we advocate for a judicial approach toward NAg use in order to preserve its efficacy and to avoid environmental disruption.
Collapse
Affiliation(s)
- Cindy Gunawan
- The iThree Institute, University of Technology Sydney , Sydney, NSW 2007, Australia
| | | | | | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , 17177 Stockholm, Sweden
| | | | - Elizabeth J Harry
- The iThree Institute, University of Technology Sydney , Sydney, NSW 2007, Australia
| |
Collapse
|
31
|
Proactive Approach for Safe Use of Antimicrobial Coatings in Healthcare Settings: Opinion of the COST Action Network AMiCI. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040366. [PMID: 28362344 PMCID: PMC5409567 DOI: 10.3390/ijerph14040366] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Infections and infectious diseases are considered a major challenge to human health in healthcare units worldwide. This opinion paper was initiated by EU COST Action network AMiCI (AntiMicrobial Coating Innovations) and focuses on scientific information essential for weighing the risks and benefits of antimicrobial surfaces in healthcare settings. Particular attention is drawn on nanomaterial-based antimicrobial surfaces in frequently-touched areas in healthcare settings and the potential of these nano-enabled coatings to induce (eco)toxicological hazard and antimicrobial resistance. Possibilities to minimize those risks e.g., at the level of safe-by-design are demonstrated.
Collapse
|
32
|
Liu S, Gunawan C, Barraud N, Rice SA, Harry EJ, Amal R. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8954-8976. [PMID: 27479445 DOI: 10.1021/acs.est.6b00835] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now feasible with fluorescence microscopy (epifluorescence and CLSM imaging with DNA, RNA, EPS, and protein and lipid stains) and electron microscopy imaging (ESEM). Importantly, thorough identification of microbial fingerprints in drinking water biofilms is achievable with DNA sequencing techniques (the 16S rRNA gene-based identification), which have revealed a prevalence of previously undetected bacterial members. Technologies are now moving toward in situ monitoring of biomass growth in distribution networks, including the development of optical fibers capable of differentiating biomass from chemical deposits. Taken together, management of biofilm growth in water distribution systems requires an integrated approach, starting from the treatment of water prior to entering the networks to the potential implementation of "biofilm-limiting" operational conditions and, finally, ending with the careful selection of available technologies for biofilm monitoring and control. For the latter, conventional practices, including chlorine-chloramine disinfection, flushing of DWDS, nutrient removal, and emerging technologies are discussed with their associated challenges.
Collapse
Affiliation(s)
| | - Cindy Gunawan
- ithree institute, University of Technology Sydney , Sydney, NSW 2007, Australia
| | - Nicolas Barraud
- Department of Microbiology, Genetics of Biofilms Unit, Institut Pasteur , Paris 75015, France
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering and School of Biological Sciences, Nanyang Technological University , 639798, Singapore
| | - Elizabeth J Harry
- ithree institute, University of Technology Sydney , Sydney, NSW 2007, Australia
| | | |
Collapse
|
33
|
Strickland JD, LeFew WR, Crooks J, Hall D, Ortenzio JN, Dreher K, Shafer TJ. In vitro screening of silver nanoparticles and ionic silver using neural networks yields differential effects on spontaneous activity and pharmacological responses. Toxicology 2016; 355-356:1-8. [DOI: 10.1016/j.tox.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/26/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
|
34
|
Moore JD, Stegemeier JP, Bibby K, Marinakos SM, Lowry GV, Gregory KB. Impacts of Pristine and Transformed Ag and Cu Engineered Nanomaterials on Surficial Sediment Microbial Communities Appear Short-Lived. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2641-51. [PMID: 26841726 DOI: 10.1021/acs.est.5b05054] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Laboratory-based studies have shown that many soluble metal and metal oxide engineered nanomaterials (ENM) exert strong toxic effects on microorganisms. However, laboratory-based studies lack the complexity of natural systems and often use "as manufactured" ENMs rather than more environmentally relevant transformed ENMs, leaving open the question of whether natural ligands and seasonal variation will mitigate ENM impacts. Because ENMs will accumulate in subaquatic sediments, we examined the effects of pristine and transformed Ag and Cu ENMs on surficial sediment microbial communities in simulated freshwater wetlands. Five identical mesocosms were dosed through the water column with either Ag(0), Ag2S, CuO or CuS ENMs (nominal sizes of 4.67 ± 1.4, 18.1 ± 3.2, 31.1 ± 12, and 12.4 ± 4.1, respectively) or Cu(2+). Microbial communities were examined at 0, 7, 30, 90, 180, and 300 d using qPCR and high-throughput 16S rRNA gene sequencing. Results suggest differential short-term impacts of Ag(0) and Ag2S, similarities between CuO and CuS, and differences between Cu ENMs and Cu(2+). PICRUSt-predicted metagenomes displayed differential effects of Ag treatments on photosynthesis and of Cu treatments on methane metabolism. By 300 d, all metrics pointed to reconvergence of ENM-dosed mesocosm microbial community structure and composition, suggesting that the long-term microbial community impacts from a pulse of Ag or Cu ENMs are limited.
Collapse
Affiliation(s)
- Joe D Moore
- Civil and Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
- Center for the Environmental Implications of NanoTechnology (CEINT) , Durham, North Carolina 27708, United States
| | - John P Stegemeier
- Civil and Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
- Center for the Environmental Implications of NanoTechnology (CEINT) , Durham, North Carolina 27708, United States
| | - Kyle Bibby
- Civil and Environmental Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
- Computational and Systems Biology, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Stella M Marinakos
- Center for the Environmental Implications of NanoTechnology (CEINT) , Durham, North Carolina 27708, United States
| | - Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
- Center for the Environmental Implications of NanoTechnology (CEINT) , Durham, North Carolina 27708, United States
| | - Kelvin B Gregory
- Civil and Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
- Center for the Environmental Implications of NanoTechnology (CEINT) , Durham, North Carolina 27708, United States
| |
Collapse
|
35
|
Ramalingam B, Parandhaman T, Das SK. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4963-4976. [PMID: 26829373 DOI: 10.1021/acsami.6b00161] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Understanding the interactions of silver nanoparticles (AgNPs) with the cell surface is crucial for the evaluation of bactericidal activity and for advanced biomedical and environmental applications. Biosynthesis of AgNPs was carried out through in situ reduction of silver nitrate (AgNO3) by cell free protein of Rhizopus oryzae and the synthesized AgNPs was characterized by UV-vis spectroscopy, high resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), ζ-potential analysis, and FTIR spectroscopy. The HRTEM measurement confirmed the formation of 7.1 ± 1.2 nm AgNPs, whereas DLS study demonstrated average hydrodynamic size of AgNPs as 9.1 ± 1.6 nm. The antibacterial activity of the biosynthesized AgNPs (ζ = -17.1 ± 1.2 mV) was evaluated against Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa. The results showed that AgNPs exhibited concentration dependent antibacterial activity and 100% killing of E. coli and P. aeruginosa achieved when the cells were treated with 4.5 and 2.7 μg/mL AgNPs, respectively for 4 h. Furthermore, the intracellular reactive oxygen species (ROS) production suppressed the antioxidant defense and exerted mechanical damage to the membrane. AgNPs also induced surface charge neutralization and altered of the cell membrane permeability causing nonviability of the cells. Atomic force microscopy (AFM) studies depicted alteration of ultrastructural and nanomechanical properties of the cell surface following interaction with AgNPs, whereas FTIR spectroscopic analysis demonstrated that cell membrane of the treated cells underwent an order-to-disorder transition during the killing process and chemical composition of the cell membrane including fatty acids, proteins, and carbohydrates was decomposed following interaction with AgNPs.
Collapse
Affiliation(s)
- Baskaran Ramalingam
- Bioproducts Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI) , Chennai 600020, India
| | - Thanusu Parandhaman
- Bioproducts Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI) , Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001, India
| | - Sujoy K Das
- Bioproducts Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI) , Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001, India
| |
Collapse
|
36
|
Abstract
BACKGROUND Antimicrobial coatings have a great potential in the treatment and prevention of periprosthetic joint infection. OBJECTIVE To present established and novel concepts of antimicrobial coatings. METHODS A literature review and discussion of published concepts in basic research, pre-clinical animal studies, and clinical practice were carried out. RESULTS To date there has been a wide range of technical solutions (anti-adhesive surfaces, bioactive surfaces with antimicrobial effects, surfaces releasing antimicrobial substances, nanostructures, bioactive surfaces affecting biofilm development) demonstrating a high potential in pre-clinical studies. Only a few with the bactericidal activity of silver ions have been prepared for the market. Conclusive results with regard to biocompatibility and toxicity are lacking. DISCUSSION Despite the great potential of antimicrobial coatings, no conclusive decisions can be made because of the limited data and the lack of evidence of their clinical efficacy on the basis of prospective controlled clinical studies. In addition to their unlimited biocompatibility, innovative concepts have to be feasible in everyday clinical routine.
Collapse
Affiliation(s)
- S Gravius
- Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Deutschland.
| | - D C Wirtz
- Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Deutschland
| |
Collapse
|
37
|
|
38
|
Manshian BB, Pfeiffer C, Pelaz B, Heimerl T, Gallego M, Möller M, del Pino P, Himmelreich U, Parak WJ, Soenen SJ. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles. ACS NANO 2015; 9:10431-44. [PMID: 26327399 DOI: 10.1021/acsnano.5b04661] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The toxic effects of Ag nanoparticles (NPs) remain an issue of debate, where the respective contribution of the NPs themselves and of free Ag(+) ions present in the NP stock suspensions and after intracellular NP corrosion are not fully understood. Here, we employ a recently set up methodology based on high-content (HC) imaging combined with high-content gene expression studies to examine the interaction of three types of Ag NPs with identical core sizes, but coated with either mercaptoundecanoic acid (MUA), dodecylamine-modified poly(isobutylene-alt-maleic anhydride) (PMA), or poly(ethylene glycol) (PEG)-conjugated PMA with two types of cultured cells (primary human umbilical vein endothelial cells (HUVEC) and murine C17.2 neural progenitor cells). As a control, cells were also exposed to free Ag(+) ions at the same concentration as present in the respective Ag NP stock suspensions. The data reveal clear effects of the NP surface properties on cellular interactions. PEGylation of the NPs significantly reduces their cellular uptake efficiency, whereas MUA-NPs are more prone to agglomeration in complex tissue culture media. PEG-NPs display the lowest levels of toxicity, which is in line with their reduced cell uptake. MUA-NPs display the highest levels of toxicity, caused by autophagy, cell membrane damage, mitochondrial damage, and cytoskeletal deformations. At similar intracellular NP levels, PEG-NPs induce the highest levels of reactive oxygen species (ROS), but do not affect the cell cytoskeleton, in contrast to MUA- and PMA-NPs. Gene expression studies support the findings above, defining autophagy and cell membrane damage-related necrosis as main toxicity pathways. Additionally, immunotoxicity, DNA damage responses, and hypoxia-like toxicity were observed for PMA- and especially MUA-NPs. Together, these data reveal that Ag(+) ions do contribute to Ag NP-associated toxicity, particularly upon intracellular degradation. The different surface properties of the NPs however result in distinct toxicity profiles for the three NPs, indicating clear NP-associated effects.
Collapse
Affiliation(s)
- Bella B Manshian
- MoSAIC/Biomedical MRI Unit, Department of Medicine, Catholic University of Leuven , Herestraat 49, B3000 Leuven, Belgium
| | - Christian Pfeiffer
- Physics and Biology Department, Philipps University of Marburg , Renthof 7, D35032 Marburg, Germany
| | - Beatriz Pelaz
- Physics and Biology Department, Philipps University of Marburg , Renthof 7, D35032 Marburg, Germany
| | - Thomas Heimerl
- Physics and Biology Department, Philipps University of Marburg , Renthof 7, D35032 Marburg, Germany
| | | | | | | | - Uwe Himmelreich
- MoSAIC/Biomedical MRI Unit, Department of Medicine, Catholic University of Leuven , Herestraat 49, B3000 Leuven, Belgium
| | - Wolfgang J Parak
- Physics and Biology Department, Philipps University of Marburg , Renthof 7, D35032 Marburg, Germany
- CIC biomaGUNE , San Sebastian 20009, Spain
| | - Stefaan J Soenen
- MoSAIC/Biomedical MRI Unit, Department of Medicine, Catholic University of Leuven , Herestraat 49, B3000 Leuven, Belgium
- Biophotonics Group, Faculty of Pharmaceutical Sciences, Ghent University , B9000 Ghent, Belgium
| |
Collapse
|
39
|
Vasileiadis S, Puglisi E, Trevisan M, Scheckel KG, Langdon KA, McLaughlin MJ, Lombi E, Donner E. Changes in soil bacterial communities and diversity in response to long-term silver exposure. FEMS Microbiol Ecol 2015; 91:fiv114. [PMID: 26391377 DOI: 10.1093/femsec/fiv114] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 11/13/2022] Open
Abstract
Silver-induced selective pressure is becoming increasingly important due to the growing use of silver (Ag) as an antimicrobial agent in biomedical and commercial products. With demonstrated links between environmental resistomes and clinical pathogens, it is important to identify microbial profiles related to silver tolerance/resistance. We investigated the effects of ionic Ag stress on soil bacterial communities and identified resistant/persistent bacterial populations. Silver treatments of 50-400 mg Ag kg(-1) soil were established in five soils. Chemical lability measurements using diffusive gradients in thin-film devices confirmed that significant (albeit decreasing) labile Ag concentrations were present throughout the 9-month incubation period. Synchrotron X-ray absorption near edge structure spectroscopy demonstrated that this decreasing lability was due to changes in the Ag speciation to less soluble forms such as Ag(0) and Ag2S. Real-time PCR and Illumina MiSeq screening of 16S rRNA bacterial genes showed β-diversity changes, increasing α-diversity in response to Ag pressure, and immediate and significant reductions in 16S rRNA gene counts with varying degrees of recovery. These effects were more strongly influenced by exposure time than by Ag dose at these rates. Ag-selected dominant OTUs principally resided in known persister taxa (mainly Gram positive), including metal-tolerant bacteria and slow-growing Mycobacteria.
Collapse
Affiliation(s)
- Sotirios Vasileiadis
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia Istituto di Chimica Agraria e Ambientale, Universitá Cattolica del Sacro Cuore, 29122 Piacenza, Italia
| | - Edoardo Puglisi
- Istituto di Microbiologia, Universitá Cattolica del Sacro Cuore, 29122 Piacenza, Italia
| | - Marco Trevisan
- Istituto di Chimica Agraria e Ambientale, Universitá Cattolica del Sacro Cuore, 29122 Piacenza, Italia
| | - Kirk G Scheckel
- National Risk Management Research Laboratory, US EPA, Cincinnati, OH 45224, USA
| | - Kate A Langdon
- CSIRO Minerals Down Under Flagship, Glen Osmond, SA 5064, Australia
| | | | - Enzo Lombi
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Erica Donner
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
40
|
Xue Y, Zhang T, Zhang B, Gong F, Huang Y, Tang M. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media. J Appl Toxicol 2015. [PMID: 26198703 DOI: 10.1002/jat.3199] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Silver nanoparticles (Ag NPs) have been widely used in medical and healthcare products owing to their unique antibacterial activities. However, their safety for humans and the environment has not yet been established. This study evaluated the cellular proliferation and apoptosis of Ag NPs suspended in different solvents using human liver HepG2 cells. The ionization of Ag NPs in different dispersion media [deionized water, phosphate-buffered saline (PBS), saline and cell culture] was measured using an Ag ion selective electrode. The MTT assay was used to examine the cell proliferation activities. The effects of Ag NPs on cell cycle, induction of apoptosis, production of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed using flow cytometry. The degree of Ag NPs ionization differed with dispersion media, with the concentrations of silver ions in deionized water being the highest in all suspensions. Ag NPs could inhibit the viability of HepG2 cells in a time- and concentration-dependent manner. Ag NPs (40, 80 and 160 µg ml(-1)) exposure could cause cell-cycle arrest in the G2/M phase, significantly increasing the apoptosis rate and ROS generation, and decreasing the MMP in HepG2 cells more sensitive to deionized water than in cell culture. These results suggested that the cellular toxicological mechanism of Ag NPs might be related to the oxidative stress of cells by the generation of ROS, leading to mitochondria injury and induction of apoptosis. It also implies that it is important to assess the physicochemical properties of NPs in the media where the biological toxicity tests are performed.
Collapse
Affiliation(s)
- Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| | - Bangyong Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| | - Fan Gong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| | - Yanmei Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Jiangsu Key Laboratory for Biomaterials and Devices, School of Public Health, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, China
| |
Collapse
|
41
|
Wang Z, Xia T, Liu S. Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. NANOSCALE 2015; 7:7470-81. [PMID: 25865054 PMCID: PMC4418973 DOI: 10.1039/c5nr01133g] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Due to its unique physicochemical properties and remarkable antimicrobial activity, nanosilver (nAg) is increasingly being used in a wide array of fields, including medicine and personal care products. Despite substantial progress being made towards the understanding of the acute toxicity of nAg, large knowledge gaps still exist on the assessment of its chronic toxicity to humans. Chronic effects of nAg, typically at low doses (i.e. sublethal doses) should be different from the acute toxicity at high doses (i.e., lethal doses), which is analogous to other environmental pollutants. Although a few review papers have elaborated the findings on nAg-mediated toxicity, most of them only discussed overt toxicity of nAg at high-level exposure and failed to evaluate the chronic and cumulative effects of nAg at sublethal doses. Therefore, it is necessary to more stringently scrutinize the sublethal toxicity of nAg under environmentally relevant conditions. Herein, we recapitulated recent findings on the sublethal effects of nAg toxicity performed by our groups and others. We then discussed the molecular mechanisms by which nAg exerts its toxicity under low concentrations and compared that with nAg-induced cell death.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
42
|
Kuorwel KK, Cran MJ, Orbell JD, Buddhadasa S, Bigger SW. Review of Mechanical Properties, Migration, and Potential Applications in Active Food Packaging Systems Containing Nanoclays and Nanosilver. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12139] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kuorwel K. Kuorwel
- National Measurement Institute; Dept. of Industry, Australia Government; Port Melbourne Victoria 3207 Australia
| | - Marlene J. Cran
- Institute for Sustainability and Innovation, College of Engineering and Science; Victoria Univ; PO Box 14428 Melbourne Victoria 8001 Australia
| | - John D. Orbell
- Institute for Sustainability and Innovation, College of Engineering and Science; Victoria Univ; PO Box 14428 Melbourne Victoria 8001 Australia
| | - Saman Buddhadasa
- National Measurement Institute; Dept. of Industry, Australia Government; Port Melbourne Victoria 3207 Australia
| | - Stephen W. Bigger
- Institute for Sustainability and Innovation, College of Engineering and Science; Victoria Univ; PO Box 14428 Melbourne Victoria 8001 Australia
| |
Collapse
|
43
|
|
44
|
Chorley B, Ward W, Simmons SO, Vallanat B, Veronesi B. The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver. Neurotoxicology 2014; 45:12-21. [PMID: 25194297 DOI: 10.1016/j.neuro.2014.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 01/27/2023]
Abstract
This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5 ppm) to a set of nanoAg of different sizes (10nm, 75 nm) and coatings (PVP, citrate) and their physicochemical, cellular and genomic response measured. Both coatings retained their manufactured sizes in culture media, however, the zeta potentials of both sizes of PVP-coated nanoAg were significantly less electronegative than those of their citrate-coated counterparts. Markers of oxidative stress, measured at 0.5-5 ppm exposure concentrations, indicated that caspase 3/7 activity and glutathione levels were significantly increased by both sizes of PVP-coated nanoAg and by the 75 nm citrate-coated nanoAg. Both sizes of PVP-coated nanoAg also increased intra-neuronal nitrite levels and activated ARE/NRF2, a reporter gene for the oxidative stress-protection pathway. Global gene expression on N27 neurons, exposed to 0.5 ppm for 8h, indicated a dominant effect by PVP-coated nanoAg over citrate. The 75 nm PVP-coated material altered 196 genes that were loosely associated with mitochondrial dysfunction. In contrast, the 10nm PVP-coated nanoAg altered 82 genes that were strongly associated with NRF2 oxidative stress pathways. Less that 20% of the affected genes were shared by both sizes of PVP-coated nanoAg. These cellular and genomic findings suggest that PVP-coated nanoAg is more bioactive than citrate-coated nanoAg. Although both sizes of PVP-coated nanoAg altered the genomic expression of N27 neurons along oxidative stress pathways, exposure to the 75 nm nanoAg favored pathways associated with mitochondrial dysfunction, whereas the 10nm PVP-coated nanoAg affected NRF2 neuronal protective pathways.
Collapse
Affiliation(s)
- Brian Chorley
- National Health and Environmental Effects Research Laboratory (Integrated Systems Toxicology Division), United States
| | - William Ward
- Research Genomics Core, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Steven O Simmons
- National Health and Environmental Effects Research Laboratory (Integrated Systems Toxicology Division), United States
| | - Beena Vallanat
- Research Genomics Core, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Bellina Veronesi
- National Health and Environmental Effects Research Laboratory (Integrated Systems Toxicology Division), United States.
| |
Collapse
|
45
|
Pallavicini P, Dacarro G, Diaz-Fernandez YA, Taglietti A. Coordination chemistry of surface-grafted ligands for antibacterial materials. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Sahu SC, Roy S, Zheng J, Yourick JJ, Sprando RL. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by fluorescent microscopy of cytochalasin B-blocked micronucleus formation. J Appl Toxicol 2014; 34:1200-8. [PMID: 24909674 DOI: 10.1002/jat.3028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 02/05/2023]
Abstract
As a consequence of the increased use of silver nanoparticles in food, food contact materials, dietary supplements and cosmetics to prevent fungal and bacterial growth, there is a need for validated rapid screening methods to assess the safety of nanoparticle exposure. This study evaluated two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, as tools for assessing the potential genotoxicity of 20-nm nanosilver. The average silver nanoparticle size as determined by transmission electron microscopy (TEM) was 20.4 nm. Dynamic light scattering (DLS) analysis showed no large agglomeration of the silver nanoparticles. The silver concentration in a 20-nm nanosilver solution determined by the inductively coupled plasma-mass spectrometry (ICP-MS) analysis was 0.962 mg ml(-1) . Analysis by ICP-MS and TEM demonstrated the uptake of 20-nm silver by both HepG2 and Caco2 cells. Genotoxicity was determined by the cytochalasin B-blocked micronucleus assay with acridine orange staining and fluorescence microscopy. Concentration- and time-dependent increases in the frequency of binucleated cells with micronuclei induced by the nanosilver was observed in the concentration range of 0.5 to 15 µg ml(-1) in both HepG2 and Caco2 cells compared with the control. Our results indicated that HepG2 cells were more sensitive than Caco2 cells in terms of micronuclei formation induced by nanosilver exposure. In summary, the results of this study indicate that the widely used in vitro models, HepG2 and Caco2 cells in culture, represent potential screening models for prediction of genotoxicity of silver nanoparticles by in vitro micronucleus assay.
Collapse
Affiliation(s)
- Saura C Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, 20708, USA
| | | | | | | | | |
Collapse
|
47
|
Xia ZK, Ma QH, Li SY, Zhang DQ, Cong L, Tian YL, Yang RY. The antifungal effect of silver nanoparticles on Trichosporon asahii. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:182-8. [PMID: 24877597 DOI: 10.1016/j.jmii.2014.04.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND/PURPOSE Silver nanoparticles are receiving increasing attention in biomedical applications. This study aims at evaluating the antifungal properties of silver nanoparticles against the pathogenic fungus Trichosporon asahii. METHODS The growth of T. asahii on potato dextrose agar medium containing different concentrations of silver nanoparticles was examined and the antifungal effect was evaluated using minimum inhibitory concentration. Scanning and transmission electron microscopy were also used to investigate the antifungal effect of silver nanoparticles on T. asahii. RESULTS Silver nanoparticles had a significant inhibitory effect on the growth of T. asahii. The minimum inhibitory concentration of silver nanoparticles against T. asahii was 0.5 μg/mL, which was lower than amphotericin B, 5-flucytosine, caspofungin, terbinafine, fluconazole, and itraconazole and higher than voriconazole. Silver nanoparticles obviously damaged the cell wall, cell membrane, mitochondria, chromatin, and ribosome. CONCLUSION Our results demonstrate that silver nanoparticles have good antifungal activity against T. asahii. Based on our electron microscopy observations, silver nanoparticles may inhibit the growth of T. asahii by permeating the fungal cell and damaging the cell wall and cellular components.
Collapse
Affiliation(s)
- Zhi-Kuan Xia
- Department of Dermatology, General Hospital of Beijing Military Command of PLA, Nanmencang, Dongcheng District, Beijing, PR China; Third Military Medical University, Gaotanyanzhengjie, Shapingba District, Chongqing, PR China
| | - Qiu-Hua Ma
- Department of Dermatology, General Hospital of Beijing Military Command of PLA, Nanmencang, Dongcheng District, Beijing, PR China
| | - Shu-Yi Li
- Department of Dermatology, General Hospital of Beijing Military Command of PLA, Nanmencang, Dongcheng District, Beijing, PR China
| | - De-Quan Zhang
- Department of Dermatology, General Hospital of Beijing Military Command of PLA, Nanmencang, Dongcheng District, Beijing, PR China
| | - Lin Cong
- Department of Dermatology, General Hospital of Beijing Military Command of PLA, Nanmencang, Dongcheng District, Beijing, PR China
| | - Yan-Li Tian
- Department of Dermatology, General Hospital of Beijing Military Command of PLA, Nanmencang, Dongcheng District, Beijing, PR China
| | - Rong-Ya Yang
- Department of Dermatology, General Hospital of Beijing Military Command of PLA, Nanmencang, Dongcheng District, Beijing, PR China.
| |
Collapse
|
48
|
Boguń M, Szparaga G, Król P, Mikołajczyk T, Rabiej S. Calcium alginate fibers containing metallic nanoadditives. J Appl Polym Sci 2014. [DOI: 10.1002/app.40223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maciej Boguń
- Departament of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; 90-924 Lodz Poland
| | - Grzegorz Szparaga
- Departament of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; 90-924 Lodz Poland
| | - Paulina Król
- Departament of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; 90-924 Lodz Poland
| | - Teresa Mikołajczyk
- Departament of Material and Commodity Sciences and Textile Metrology; Lodz University of Technology; 90-924 Lodz Poland
| | - Stanisław Rabiej
- Department of Physics and Structural Research; University of Bielsko-Biala; 43-309 Bielsko-Biała Poland
| |
Collapse
|
49
|
Lin CD, Kou YY, Liao CY, Li CH, Huang SP, Cheng YW, Liao WC, Chen HX, Wu PL, Kang JJ, Lee CC, Lai CH. Zinc oxide nanoparticles impair bacterial clearance by macrophages. Nanomedicine (Lond) 2014; 9:1327-39. [PMID: 24628689 DOI: 10.2217/nnm.14.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM The extensive development of nanoparticles (NPs) and their widespread employment in daily life have led to an increase in environmental concentrations of substances that may pose a biohazard to humans. The aim of this work was to examine the effects of zinc oxide nanoparticles (ZnO-NPs) on the host's pulmonary immune system response to nontypeable Haemophilus influenzae (NTHi) infection. MATERIALS & METHODS A murine infection model was employed to assess pulmonary inflammation and bacterial clearance in response to exposure to ZnO-NPs. The molecular mechanisms underlying ZnO-NP-impaired macrophage activation were investigated. RESULTS Treatment with ZnO-NPs impaired macrophage activation, leading to a delay in NTHi clearance in the bronchial alveolar lavage fluids and lungs. Exposure to ZnO-NPs followed by NTHi challenge decreased levels of nitric oxide compared with NTHi infection alone. The effects of ZnO-NPs involved downregulation of NTHi-activated expression of inducible nitric oxide synthase and the translocation of active NF-kB into the nucleus. CONCLUSION These results demonstrate that exposure to ZnO-NPs can impair innate immune responses and attenuate macrophage responses to bacterial infection.
Collapse
Affiliation(s)
- Chia-Der Lin
- Department of Otolaryngology-Head & Neck Surgery, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The effect of nanoparticle degradation on amphiphilic polymer-coated quantum dot toxicity: the importance of particle functionality assessment in toxicology [corrected]. Acta Biomater 2014; 10:732-41. [PMID: 24121195 DOI: 10.1016/j.actbio.2013.09.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/24/2013] [Accepted: 09/30/2013] [Indexed: 02/08/2023]
Abstract
Colloidal semiconductor nanoparticles (quantum dots) have attracted a lot of interest in technological and biomedical research, given their potent fluorescent properties. However, the use of heavy-metal-containing nanoparticles remains an issue of debate. The possible toxic effects of quantum dots remain a hot research topic and several questions such as possible intracellular degradation of quantum dots and the effect thereof on both cell viability and particle functionality remain unresolved. In the present work, amphiphilic polymer [corrected] coated CdSe/ZnS quantum dots were synthesized and characterized, after which their effects on cultured cells were evaluated using a multiparametric setup. The data reveal that the quantum dots are taken up through endocytosis and when exposed to the low pH of the endosomal structures, they partially degrade and release cadmium ions, which lowers their fluorescence intensity and augments particle toxicity. Using the multiparametric method, the quantum dots were evaluated at non-toxic doses in terms of their ability to visualize labeled cells for longer time periods. The data revealed that comparing different particles in terms of their applied dose is challenging, likely due to difficulties in obtaining accurate nanoparticle concentrations, but evaluating particle toxicity in terms of their biological functionality enables an easy and straightforward comparison.
Collapse
|