1
|
Fernandes DA. Multifunctional gold nanoparticles for cancer theranostics. 3 Biotech 2024; 14:267. [PMID: 39416669 PMCID: PMC11473483 DOI: 10.1007/s13205-024-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The diagnosis and treatment of cancer can often be challenging requiring more attractive options. Some types of cancers are more aggressive than others and symptoms for many cancers are subtle, especially in the early stages. Nanotechnology provides high sensitivity, specificity and multimodal capability for cancer detection, treatment and monitoring. In particular, metal nanoparticles (NPs) such as gold nanoparticles (AuNPs) are attractive nanosystems for researchers interested in bioimaging and therapy. The size, shape and surface of AuNPs can be modified for improving targeting and accumulation in cancer cells, for example through introduction of ligands and surface charge. The interactions of AuNPs with electromagnetic radiation (e.g., visible-near-infrared, X-rays) can be used for photothermal therapy and radiation therapy, through heat generated from light absorption and emission of Auger electrons, respectively. The subsequent expansion and high X-ray attenuation from AuNPs can be used for enhancing contrast for tumor detection (e.g., using photoacoustic, computed tomography imaging). Multi-functionality can be further extended through covalent/non-covalent functionalization, for loading additional imaging/therapeutic molecules for combination therapy and multimodal imaging. In order to cover the important aspects for designing and using AuNPs for cancer theranostics, this review focuses on the synthesis, functionalization and characterization methods that are important for AuNPs, and presents their unique properties and different applications in cancer theranostics.
Collapse
|
2
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
3
|
Agwa MM, Marzouk RE, Sabra SA. Advances in active targeting of ligand-directed polymeric nanomicelles via exploiting overexpressed cellular receptors for precise nanomedicine. RSC Adv 2024; 14:23520-23542. [PMID: 39071479 PMCID: PMC11273262 DOI: 10.1039/d4ra04069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Many of the utilized drugs which already exist in the pharmaceutical sector are hydrophobic in nature. These drugs are characterized by being poorly absorbed and difficult to formulate in aqueous environments with low bioavailability, which could result in consuming high and frequent doses in order to fulfil the required therapeutic effect. As a result, there is a decisive demand to find modern alternatives to overcome all these drawbacks. Self-assembling polymeric nanomicelles (PMs) with their unique structure appear to be a fascinating choice as a pharmaceutical carrier system for improving the solubility & bioavailability of many drugs. PMs as drug carriers have many advantages including suitable size, high stability, prolonged circulation time, elevated cargo capacity and controlled therapeutic release. Otherwise, the pathological features of some diseased cells, like cancer, allow PMs with particle size <200 nm to be passively uptaken via enhanced permeability and retention phenomenon (EPR). However, the passive targeting approach was proven to be insufficient in many cases. Consequently, the therapeutic efficiency of these PMs can be further reinforced by enhancing their cellular internalization via incorporating targeting ligands. These targeting ligands can enhance the assemblage of loaded cargos in the intended tissues via receptor-mediated endocytosis through exploiting receptors robustly expressed on the exterior of the intended tissue while minimizing their toxic effects. In this review, the up-to-date approaches of harnessing active targeting ligands to exploit certain overexpressed receptors will be summarized concerning the functionalization of the exterior of PMs for ameliorating their targeting potential in the scope of nanomedicine.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El-Behooth St, Dokki Giza 12622 Egypt +202 33370931 +202 33371635
| | - Rehab Elsayed Marzouk
- Medical Biochemistry Department, Faculty of Medicine, Helwan University Helwan Cairo Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University Alexandria 21526 Egypt
| |
Collapse
|
4
|
Johnson KK, Koshy P, Kopecky C, Devadason M, Biazik J, Zheng X, Jiang Y, Wang X, Liu Y, Holst J, Yang JL, Kilian KA, Sorrell CC. ROS-mediated anticancer effects of EGFR-targeted nanoceria. J Biomed Mater Res A 2024; 112:754-769. [PMID: 38084898 DOI: 10.1002/jbm.a.37656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 03/20/2024]
Abstract
The therapeutic effectiveness of anticancer drugs, including nanomedicines, can be enhanced with active receptor-targeting strategies. Epidermal growth factor receptor (EGFR) is an important cancer biomarker, constitutively expressed in sarcoma patients of different histological types. The present work reports materials and in vitro biomedical analyses of silanized (passive delivery) and/or EGF-functionalized (active delivery) ceria nanorods exhibiting highly defective catalytically active surfaces. The EGFR-targeting efficiency of nanoceria was confirmed by receptor-binding studies. Increased cytotoxicity and reactive oxygen species (ROS) production were observed for EGF-functionalized nanoceria owing to enhanced cellular uptake by HT-1080 fibrosarcoma cells. The uptake was confirmed by TEM and confocal microscopy. Silanized nanoceria demonstrated negligible/minimal cytotoxicity toward healthy MRC-5 cells at 24 and 48 h, whereas this was significant at 72 h owing to a nanoceria accumulation effect. In contrast, considerable cytotoxicity toward the cancer cells was exhibited at all three times points. The ROS generation and associated cytotoxicity were moderated by the equilibrium between catalysis by ceria, generation of cell debris, and blockage of active sites. EGFR-targeting is shown to enhance the uptake levels of nanoceria by cancer cells, subsequently enhancing the overall anticancer activity and therapeutic performance of ceria.
Collapse
Affiliation(s)
- Kochurani K Johnson
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Chantal Kopecky
- Australian Centre for NanoMedicine, School of Chemistry, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle Devadason
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Xiaoran Zheng
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Yue Jiang
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Xiaochun Wang
- Prince of Wales Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Yiling Liu
- Australian Centre for NanoMedicine, School of Chemistry, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jeff Holst
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jia-Lin Yang
- Prince of Wales Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Centre for NanoMedicine, School of Chemistry, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
6
|
Moles E, Chang DW, Mansfeld FM, Duly A, Kimpton K, Logan A, Howard CB, Thurecht KJ, Kavallaris M. EGFR Targeting of Liposomal Doxorubicin Improves Recognition and Suppression of Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:3623-3639. [PMID: 38660023 PMCID: PMC11042481 DOI: 10.2147/ijn.s450534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Despite improvements in chemotherapy and molecularly targeted therapies, the life expectancy of patients with advanced non-small cell lung cancer (NSCLC) remains less than 1 year. There is thus a major global need to advance new treatment strategies that are more effective for NSCLC. Drug delivery using liposomal particles has shown success at improving the biodistribution and bioavailability of chemotherapy. Nevertheless, liposomal drugs lack selectivity for the cancer cells and have a limited ability to penetrate the tumor site, which severely limits their therapeutic potential. Epidermal growth factor receptor (EGFR) is overexpressed in NSCLC tumors in about 80% of patients, thus representing a promising NSCLC-specific target for redirecting liposome-embedded chemotherapy to the tumor site. Methods Herein, we investigated the targeting of PEGylated liposomal doxorubicin (Caelyx), a powerful off-the-shelf antitumoral liposomal drug, to EGFR as a therapeutic strategy to improve the specific delivery and intratumoral accumulation of chemotherapy in NSCLC. EGFR-targeting of Caelyx was enabled through its complexing with a polyethylene glycol (PEG)/EGFR bispecific antibody fragment. Tumor targeting and therapeutic potency of our treatment approach were investigated in vitro using a panel of NSCLC cell lines and 3D tumoroid models, and in vivo in a cell line-derived tumor xenograft model. Results Combining Caelyx with our bispecific antibody generated uniform EGFR-targeted particles with improved binding and cytotoxic efficacy toward NSCLC cells. Effects were exclusive to cancer cells expressing EGFR, and increments in efficacy positively correlated with EGFR density on the cancer cell surface. The approach demonstrated increased penetration within 3D spheroids and was effective at targeting and suppressing the growth of NSCLC tumors in vivo while reducing drug delivery to the heart. Conclusion EGFR targeting represents a successful approach to enhance the selectivity and therapeutic potency of liposomal chemotherapy toward NSCLC.
Collapse
Affiliation(s)
- Ernest Moles
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| | - David W Chang
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
| | - Friederike M Mansfeld
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
| | - Alastair Duly
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Kathleen Kimpton
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
| | - Amy Logan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, 2052, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, Faculty of Science, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Kelly JJ, Ankrom ET, Newkirk SE, Thévenin D, Pires MM. Targeted acidosis mediated delivery of antigenic MHC-binding peptides. Front Immunol 2024; 15:1337973. [PMID: 38665920 PMCID: PMC11043575 DOI: 10.3389/fimmu.2024.1337973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complex offers a promising strategy for immunotherapy due to their specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer using pH(low) insertion peptides (pHLIP). We demonstrated the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and activation of T cells. This work highlights the potential of pHLIP as a vehicle for the targeted delivery of antigenic peptides and its presentation via MHC-bound complexes on cancer cell surface for activation of T cells with implications for enhancing anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Joey J. Kelly
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Emily T. Ankrom
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Sarah E. Newkirk
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
8
|
Bilemjian V, Lin Y, Wan W, Egri G, Huls G, Heinze T, Bremer E, Gericke M, Dähne L. Direct Functionalization of Polysaccharide-Based Xylan Phenyl Carbonate Nanoparticles with Tumor Cell Specific Antibodies. Chembiochem 2024; 25:e202300828. [PMID: 38236789 DOI: 10.1002/cbic.202300828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Indexed: 02/15/2024]
Abstract
An efficient and easy-to-use approach is presented for obtaining biocompatible polysaccharide-based nanoparticles (NP) that can act as tumor-specific drug delivery agents. Two antibodies are directly immobilized onto reactive xylan phenyl carbonate (XPC) NP; namely Cetuximab (CTX) that binds to human epidermal growth factor receptor (EGFR) and Atezolizumab (ATZ) that binds to programmed death-ligand 1 (PD-L1). High coupling efficiency (up to 100 %) are achieved without any pre-activation and no aggregation occurs during antibody immobilization. By quartz crystal microbalance experiments with dissipation monitoring (QCM-D), flow cytometry assays, and confocal laser scanning microscopy imaging it is demonstrated that the functionalized XPC-NP specifically bind to cells carrying the corresponding antigens. Moreover, the NP retain the antibody specific bioactivities (growth inhibition for CTX and induction of T-cell cytotoxicity for ATZ).
Collapse
Affiliation(s)
- Vrouyr Bilemjian
- Surflay Nanotec GmbH, 12489, Berlin, Germany
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Yusheng Lin
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Wei Wan
- Surflay Nanotec GmbH, 12489, Berlin, Germany
| | | | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Thomas Heinze
- Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, 07743, Jena, Germany
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Martin Gericke
- Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, 07743, Jena, Germany
| | - Lars Dähne
- Surflay Nanotec GmbH, 12489, Berlin, Germany
| |
Collapse
|
9
|
Ilhan-Ayisigi E, Saglam-Metiner P, Sanci E, Bakan B, Yildirim Y, Buhur A, Yavasoglu A, Yavasoglu NUK, Yesil-Celiktas O. Receptor mediated targeting of EGF-conjugated alginate-PAMAM nanoparticles to lung adenocarcinoma: 2D/3D in vitro and in vivo evaluation. Int J Biol Macromol 2024; 261:129758. [PMID: 38286366 DOI: 10.1016/j.ijbiomac.2024.129758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/06/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Carboplatin (cis-diamine (1,1-cyclobutandicarboxylaso)‑platinum (II)) is a second-generation antineoplastic drug, which is widely used for chemotherapy of lung, colon, breast, cervix, testicular and digestive system cancers. Although preferred over cisplatin due to the lower incidence of nephrotoxicity and ototoxicity, efficient carboplatin delivery remains as a major challenge. In this study, carboplatin loaded alginate- poly(amidoamine) (PAMAM) hybrid nanoparticles (CAPs) with mean sizes of 192.13 ± 4.15 nm were synthesized using a microfluidic platform, then EGF was conjugated to the surface of CAPs (EGF-CAPs) for the receptor-targeted delivery. Hence, increased FITC+ cell counts were observed in A549 spheroids after EGF-CAP treatment compared to CAP in the 3D cellular uptake study. As such, the cytotoxicity of EGF-CAP was approximately 2-fold higher with an IC50 value of 35.89 ± 10.37 μg/mL compared to the CAPs in A549 spheroids. Based on in vivo experimental animal model, anti-tumor activities of the group treated with CAP decreased by 61 %, whereas the group treated with EGF-CAP completely recovered. Additionally, EGF-CAP application was shown to induce apoptotic cell death. Our study provided a new strategy for designing a hybrid nanoparticle for EGFR targeted carboplatin delivery with improved efficacy both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Esra Ilhan-Ayisigi
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Kirsehir Ahi Evran University, Kirsehir, Turkey; Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
| | - Ebru Sanci
- Center for Drug Research and Pharmacokinetic Applications (ARGEFAR), Ege University, Izmir, Turkey
| | - Buket Bakan
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Yeliz Yildirim
- Department of Chemistry, Faculty of Science, Ege University, Izmir, Turkey
| | - Aylin Buhur
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Altug Yavasoglu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - N Ulku Karabay Yavasoglu
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey; Center for Drug Research and Pharmacokinetic Applications (ARGEFAR), Ege University, Izmir, Turkey; Department of Biology, Faculty of Science, Ege University, Izmir, Turkey.
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey.
| |
Collapse
|
10
|
Aryal S, Park S, Park H, Park C, Kim WC, Thakur D, Won YJ, Key J. Clinical Trials for Oral, Inhaled and Intravenous Drug Delivery System for Lung Cancer and Emerging Nanomedicine-Based Approaches. Int J Nanomedicine 2023; 18:7865-7888. [PMID: 38146467 PMCID: PMC10749572 DOI: 10.2147/ijn.s432839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023] Open
Abstract
Lung cancer is one of the most common malignant tumors worldwide and is characterized by high morbidity and mortality rates and a poor prognosis. It is the leading cause of cancer-related death in the United States and worldwide. Most patients with lung cancer are treated with chemotherapy, radiotherapy, or surgery; however, effective treatment options remain limited. In this review, we aim to provide an overview of clinical trials, ranging from Phase I to III, conducted on drug delivery systems for lung cancer treatment. The trials included oral, inhaled, and intravenous administration of therapeutics. Furthermore, the study also talks about the evolving paradigm of targeted therapy and immunotherapy providing promising directions for personalized treatment. In addition, we summarize the best results and limitations of these drug delivery systems and discuss the potential capacity of nanomedicine.
Collapse
Affiliation(s)
- Susmita Aryal
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Sanghyo Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Hyungkyu Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Chaewon Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Woo Cheol Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Deepika Thakur
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Young-Joo Won
- Division of Health Administration, College of Software Digital Healthcare Convergence, Yonsei University, Wonju, Gangwon State, 26493, Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| |
Collapse
|
11
|
Verimli N, Goralı Sİ, Abisoglu B, Altan CL, Sucu BO, Karatas E, Tulek A, Bayraktaroglu C, Beker MC, Erdem SS. Development of light and pH-dual responsive self-quenching theranostic SPION to make EGFR overexpressing micro tumors glow and destroy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112797. [PMID: 37862898 DOI: 10.1016/j.jphotobiol.2023.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Drug resistant and undetectable tumors easily escape treatment leading metastases and/or recurrence of the lethal disease. Therefore, it is vital to diagnose and destroy micro tumors using simple yet novel approaches. Here, we present fluorescence-based detection and light-based destruction of cancer cells that are known to be resistant to standard therapies. We developed a superparamagnetic iron oxide nanoparticle (SPION)-based theranostic agent that is composed of self-quenching light activated photosensitizer (BPD) and EGFR targeting ligand (Anti-EGFR ScFv or GE11 peptide). Photosensitizer (BPD) was immobilized to PEG-PEI modified SPION with acid-labile linker. Prior to stimulation of the theranostic system by light its accumulation within cancer cells is vital since BPD phototoxicity and fluorescence is activated by lysosomal proteolysis. As BPD is cleaved, the system switches from off to on position which triggers imaging and therapy. Targeting, therapeutic and diagnostic features of the theranostic system were evaluated in high and moderate level EGFR expressing pancreatic cancer cell lines. Our results indicate that the system distinguishes high and moderate EGFR expression levels and yields up to 4.3-fold increase in intracellular fluorescence intensity. Amplification of fluorescence signal was as low as 1.3-fold in the moderate or no EGFR expressing cell lines. Anti-EGFR ScFv targeted SPION caused nearly 2-fold higher cell death via apoptosis in high EGFR expressing Panc-1 cell line. The developed system, possessing advanced targeting, enhanced imaging and effective therapeutic features, is a promising candidate for multi-mode detection and destruction of residual drug-resistant cancer cells.
Collapse
Affiliation(s)
- Nihan Verimli
- Research Institute for Health Science and Technologies (SABITA), 34810 Istanbul, Turkey; International School of Medicine, Medical Biochemistry, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - S İrem Goralı
- Research Institute for Health Science and Technologies (SABITA), 34810 Istanbul, Turkey; International School of Medicine, Medical Biochemistry, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Beyza Abisoglu
- Department of Chemical Engineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Cem Levent Altan
- Department of Chemical Engineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey
| | - Bilgesu Onur Sucu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul Medipol University, Istanbul, Turkey; Center of Drug Discovery and Development, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Ersin Karatas
- Ağrı İbrahim Çeçen University, Patnos Vocational School, Department of Medical Services and Techniques, Ağrı, Turkey
| | - Ahmet Tulek
- Iğdır University, Vocational School of Health Services, Department of Care Services, Iğdır, Turkey
| | - Cigdem Bayraktaroglu
- Research Institute for Health Science and Technologies (SABITA), 34810 Istanbul, Turkey
| | - Mustafa Caglar Beker
- Research Institute for Health Science and Technologies (SABITA), 34810 Istanbul, Turkey
| | - S Sibel Erdem
- Research Institute for Health Science and Technologies (SABITA), 34810 Istanbul, Turkey; International School of Medicine, Medical Biochemistry, Istanbul Medipol University, 34810 Istanbul, Turkey.
| |
Collapse
|
12
|
Kelly JJ, Ankrom E, Thévenin D, Pires MM. Targeted Acidosis Mediated Delivery of Antigenic MHC-Binding Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562409. [PMID: 37904977 PMCID: PMC10614887 DOI: 10.1101/2023.10.18.562409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complexes offers a promising strategy for immunotherapy due to its specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer cells using pH(low) insertion peptides (pHLIP). We demonstrated that the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and subsequent activation of T cells. This work highlights the potential of pHLIP as a vehicle for targeted delivery of antigenic peptides and their presentation via MHC-bound complexes on cancer cell surfaces for activation of T cells with implications for enhancing anti-cancer immunotherapy.
Collapse
|
13
|
Sciscione F, Guillaumé S, Aliev AE, Cook DT, Bronstein H, Hailes HC, Beard PC, Kalber TL, Ogunlade O, Tabor AB. EGFR-targeted semiconducting polymer nanoparticles for photoacoustic imaging. Bioorg Med Chem 2023; 91:117412. [PMID: 37473615 DOI: 10.1016/j.bmc.2023.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Semiconducting polymer nanoparticles (SPN), formulated from organic semiconducting polymers and lipids, show promise as exogenous contrast agents for photoacoustic imaging (PAI). To fully realise the potential of this class of nanoparticles for imaging and therapeutic applications, a broad range of active targeting strategies, where ligands specific to receptors on the target cells are displayed on the SPN surface, are urgently needed. In addition, effective strategies for quantifying the level of surface modification are also needed to support development of ligand-targeted SPN. In this paper, we have developed methods to prepare SPN bearing peptides targeted to Epidermal Growth Factor Receptors (EGFR), which are overexpressed at the surface of a wide variety of cancer cell types. In addition to fully characterising these targeted nanoparticles by standard methods (UV-visible, photoacoustic absorption, dynamic light scattering, zeta potential and SEM), we have developed a powerful new NMR method to determine the degree of conjugation and the number of targeting peptides attached to the SPN. Preliminary in vitro experiments with the colorectal cancer cell line LIM1215 indicated that the EGFR-targeting peptide conjugated SPN were either ineffective in delivering the SPN to the cells, or that the targeting peptide itself destabilised the formulation. This in reinforces the need for effective characterisation techniques to measure the surface accessibility of targeting ligands attached to nanoparticles.
Collapse
Affiliation(s)
- Fabiola Sciscione
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Simon Guillaumé
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Abil E Aliev
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Declan T Cook
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Hugo Bronstein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK
| | - Paul C Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, University College London, Paul O'Gorman Building, London WC1E 6DD, UK
| | - Olumide Ogunlade
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
14
|
Sousa de Almeida M, Roshanfekr A, Balog S, Petri-Fink A, Rothen-Rutishauser B. Cellular Uptake of Silica Particles Influences EGFR Signaling Pathway and is Affected in Response to EGF. Int J Nanomedicine 2023; 18:1047-1061. [PMID: 36874146 PMCID: PMC9975537 DOI: 10.2147/ijn.s388557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Background The human epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is involved in several key cellular processes, such as cell proliferation and differentiation, and it has been linked to the development and progression of various cancers (e.g., breast and lung). Researchers have attempted to improve current cancer-targeted therapies by conjugating molecules on the surface of (nano)particles to efficiently target and inhibit EGFR. However, very few in vitro studies have investigated the effect of particles per se on EGFR signaling and dynamics. Furthermore, the impact of concomitant exposure of particles and EGFR ligands, such as epidermal growth factor (EGF) on cellular uptake efficiency has received little attention. Purpose The purpose of this research was to determine the effects of silica (SiO2) particles on EGFR expression and intracellular signaling pathways in A549 lung epithelial cells, in the presence or absence of epidermal growth factor (EGF). Results We showed that A549 cells are able to internalize SiO2 particles with core diameters of 130 nm and 1 µm without affecting cell proliferation or migration. However, both SiO2 particles interfere with the EGFR signaling pathway by raising the endogenous levels of extracellular signal-regulated kinase (ERK) 1/2. Furthermore, both in the presence and absence of SiO2 particles, the addition of EGF increased cell migration. EGF also stimulated cellular uptake of 130 nm SiO2 particles but not 1 µm particles. The increased uptake is primarily associated with EGF-stimulated macropinocytosis. Conclusion This study shows that SiO2 particle uptake interferes with cellular signaling pathways and can be boosted by concurrent exposure to the bioactive molecule EGF. SiO2 particles, both alone and in combination with the ligand EGF, interfere with EGFR signaling pathway in a size-dependent manner.
Collapse
Affiliation(s)
| | - Arya Roshanfekr
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.,Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
15
|
Soprano E, Polo E, Pelaz B, del Pino P. Biomimetic cell-derived nanocarriers in cancer research. J Nanobiotechnology 2022; 20:538. [PMID: 36544135 PMCID: PMC9771790 DOI: 10.1186/s12951-022-01748-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Nanoparticles have now long demonstrated capabilities that make them attractive to use in biology and medicine. Some of them, such as lipid nanoparticles (SARS-CoV-2 vaccines) or metallic nanoparticles (contrast agents) are already approved for their use in the clinic. However, considering the constantly growing body of different formulations and the huge research around nanomaterials the number of candidates reaching clinical trials or being commercialized is minimal. The reasons behind being related to the "synthetic" and "foreign" character of their surface. Typically, nanomaterials aiming to develop a function or deliver a cargo locally, fail by showing strong off-target accumulation and generation of adverse responses, which is connected to their strong recognition by immune phagocytes primarily. Therefore, rendering in negligible numbers of nanoparticles developing their intended function. While a wide range of coatings has been applied to avoid certain interactions with the surrounding milieu, the issues remained. Taking advantage of the natural cell membranes, in an approach that resembles a cell transfer, the use of cell-derived surfaces has risen as an alternative to artificial coatings or encapsulation methods. Biomimetic technologies are based on the use of isolated natural components to provide autologous properties to the nanoparticle or cargo being encapsulated, thus, improving their therapeutic behavior. The main goal is to replicate the (bio)-physical properties and functionalities of the source cell and tissue, not only providing a stealthy character to the core but also taking advantage of homotypic properties, that could prove relevant for targeted strategies. Such biomimetic formulations have the potential to overcome the main issues of approaches to provide specific features and identities synthetically. In this review, we provide insight into the challenges of nano-biointerfaces for drug delivery; and the main applications of biomimetic materials derived from specific cell types, focusing on the unique strengths of the fabrication of novel nanotherapeutics in cancer therapy.
Collapse
Affiliation(s)
- Enrica Soprano
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ester Polo
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Beatriz Pelaz
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Pablo del Pino
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022; 17:1375-1395. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Hemendra Kumar Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
17
|
Monoclonal Antibody Functionalized, and L-lysine α-Oxidase Loaded PEGylated-Chitosan Nanoparticle for HER2/Neu Targeted Breast Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14050927. [PMID: 35631513 PMCID: PMC9146122 DOI: 10.3390/pharmaceutics14050927] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Breast cancer is one of the dominant cancers that threaten human beings worldwide. Moreover, the treatment of HER2+ breast cancer is challenging due to heterogeneity. The L-lysine α-oxidase (LO) enzyme is a well-known antitumor enzyme, but its clinical utility has been limited due to side effects, decreased stability, and inability to target tumor cells. To overcome the clinical challenges in delivery of LO enzymes and improve HER2+ breast cancer therapeutics, the present study developed the dual stimuli responsive nanocarrier system (CS-LO-PEG-HER NPs) for pH sensitive and HER2/neu targeted breast cancer therapy. Abstract Herein, we designed a nanocarrier to deliver the LO specifically to HER2+ breast cancer (BC) cells, where functionalization of mAb (anti-HER2+) with PEGylated chitosan enabled it to target the HER2+ BC cells. Taking advantage of overexpression of HER2+ in cancer cells, our nanocarrier (CS-LO-PEG-HER NPs) exhibited promising potency and selectivity against HER2+ BC cells (BT474). The CS-LO-PEG-HER NPs demonstrated the cytotoxicity in BT474 cells by promoting reactive oxygen species, mitochondrial membrane potential loss, and nucleus damage. The biocompatibility of CS-LO-PEG-HER NPs was evidenced by the hemolysis assay and H & E staining of major organs. The CS-LO-PEG-HER NPs showed anticancer potency against the BT474-xenograft tumor-bearing mice, as evident by the reduction of tumor size and cell density. These results indicate that CS-LO-PEG-HER NPs are biocompatible with mice while inhibiting tumor growth through alter the oxidative stress. Overall, this work provides a promising approach for the delivery of LO for good therapeutic effect in combination with mAb.
Collapse
|
18
|
Bashant MM, Mitchell SM, Hart LR, Lebedenko CG, Banerjee IA. In silico studies of interactions of peptide-conjugated cholesterol metabolites and betulinic acid with EGFR, LDR, and N-terminal fragment of CCKA receptors. J Mol Model 2021; 28:16. [PMID: 34961887 DOI: 10.1007/s00894-021-05007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
In this work, we designed three new ligands by conjugating cholesterol metabolites 3-hydroxy-5-cholestenoic acid (3-HC) and 3-oxo-4-cholestenoic acid (3-OC) and the natural tri-terpenoid betulinic acid with the tumor-targeting peptide YHWYGYTPQNVI. Molecular interactions with the unconjugated peptide and the conjugates were examined with three receptors that are commonly overexpressed in pancreatic adenocarcinoma cells using ligand docking and molecular dynamics. This study demonstrated the utility of the designed conjugates as a valuable scaffold for potentially targeting EGFR and LDLR receptors. Our results indicate that the conjugates showed strong binding affinities and formation of stable complexes with EGFR, while the unconjugated peptide, BT-peptide conjugate, an 3-HC-peptide conjugate showed the formation of fairly stable complexes with LDLR receptor. For EGFR, two receptor kinase domains were explored. Interactions with the N-terminal domain of CCKA-R were relatively weaker. For LDLR, binding occurred in the beta-propeller region. For the N-terminal fragment of CCKA-R, the conjugates induced significant conformational changes in the receptor. The molecular dynamic simulations for 100 ns demonstrate that BT-peptide conjugates and the unconjugated peptide had the highest binding and formed the most stable complexes with EGFR. RMSD and trajectory analyses indicate that these molecules transit to a dynamically stable configuration in most cases within 60 ns. NMA analysis indicated that amongst the conjugates that showed relatively higher interactions with the respective receptors, the highest potential for deformability was seen for the N-terminal-47 amino acid region of the CCKA-R receptor with and the lowest for the LDLR-receptor. Thus, the newly designed compounds may be evaluated in the future toward developing drug delivery materials for targeting tumor cells overexpressing LDLR or EGFR.
Collapse
Affiliation(s)
- Madeline M Bashant
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Saige M Mitchell
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Lucy R Hart
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Charlotta G Lebedenko
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
19
|
Lu H, Zhang S, Wang J, Chen Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front Nutr 2021; 8:783831. [PMID: 34926557 PMCID: PMC8671830 DOI: 10.3389/fnut.2021.783831] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, owing to well-controlled release, enhanced distribution and increased permeability, nanocarriers used for alternative drug and food-delivery strategies have received increasingly attentions. Nanocarriers have attracted a large amount of interest as potential carriers of various bioactive molecules for multiple applications. Drug and food-based delivery via polymeric-based nanocarriers and lipid-based nanocarriers has been widely investigated. Nanocarriers, especially liposomes, are more and more widely used in the area of novel nano-pharmaceutical or food-based design. Herein, we aimed to discuss the recent advancement of different surface-engineered nanocarriers type, along with cutting-edge applications for food and nanomedicine and highlight the alternative of phytochemical as nanocarrier. Additionally, safety concern of nanocarriers was also highlighted.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Shengliang Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jinling Wang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Nitheesh Y, Pradhan R, Hejmady S, Taliyan R, Singhvi G, Alexander A, Kesharwani P, Dubey SK. Surface engineered nanocarriers for the management of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112441. [PMID: 34702526 DOI: 10.1016/j.msec.2021.112441] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is commonly known life-threatening malignancy in women after lung cancer. The standard of care (SOC) treatment for breast cancer primarily includes surgery, radiotherapy, hormonal therapy, and chemotherapy. However, the effectiveness of conventional chemotherapy is restricted by several limitations such as poor targeting, drug resistance, poor drug delivery, and high toxicity. Nanoparticulate drug delivery systems have gained a lot of interest in the scientific community because of its unique features and promising potential in breast cancer diagnosis and treatment. The unique physicochemical and biological properties of the nanoparticulate drug delivery systems promotes the drug accumulation, Pharmacokinetic profile towards the tumor site and thereby, reduces the cytotoxicity towards healthy cells. In addition, to improve tumor-specific drug delivery, researchers have focused on surface engineered nanocarrier system with targeting molecules/ligands that are specific to overexpressed receptors present on cancer cells. In this review, we have summarized the different biological ligands and surface-engineered nanoparticles, enlightening the physicochemical characteristics, toxic effects, and regulatory considerations of nanoparticles involved in treatment of breast cancer.
Collapse
Affiliation(s)
- Yanamandala Nitheesh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhant Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-G), Ministry of Chemicals & Fertilizers, Govt. of India NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia 700056, Kolkata, India.
| |
Collapse
|
21
|
Sharma S, Masud MK, Kaneti YV, Rewatkar P, Koradia A, Hossain MSA, Yamauchi Y, Popat A, Salomon C. Extracellular Vesicle Nanoarchitectonics for Novel Drug Delivery Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102220. [PMID: 34216426 DOI: 10.1002/smll.202102220] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles (EVs) can transfer intercellular messages in various (patho)physiological processes and transport biomolecules to recipient cells. EVs possess the capacity to evade the immune system and remain stable over long periods, identifying them as natural carriers for drugs and biologics. However, the challenges associated with EVs isolation, heterogeneity, coexistence with homologous biomolecules, and lack of site-specific delivery, have impeded their potential. In recent years, the amalgamation of EVs with rationally engineered nanostructures has been proposed for achieving effective drug loading and site-specific delivery. With the advancement of nanotechnology and nanoarchitectonics, different nanostructures with tunable size, shapes, and surface properties can be integrated with EVs for drug loading, target binding, efficient delivery, and therapeutics. Such integration may enable improved cellular targeting and the protection of encapsulated drugs for enhanced and specific delivery to target cells. This review summarizes the recent development of nanostructure amalgamated EVs for drug delivery, therapeutics, and real-time monitoring of disease progression. With a specific focus on the exosomal cargo, diverse drug delivery system, and biomimetic nanostructures based on EVs for selective drug delivery, this review also chronicles the needs and challenges of EV-based biomimetic nanostructures and provides a future outlook on the strategies posed.
Collapse
Affiliation(s)
- Shayna Sharma
- Exosome Biology Laboratory, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, Brisbane City, QLD, 4029, Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet, 3114, Bangladesh
| | - Yusuf Valentino Kaneti
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Queensland, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Aayushi Koradia
- School of Pharmacy, The University of Queensland, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, Brisbane, QLD, 4102, Australia
- Mater Research Institute-The University of Queensland and Translational Research Institute, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, Brisbane City, QLD, 4029, Australia
- Faculty of Health Sciences, University of Queensland, Building 71/918, Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
22
|
Hashemkhani M, Demirci G, Bayir A, Muti A, Sennaroglu A, Mohammad Hadi L, Yaghini E, Loizidou M, MacRobert AJ, Yagci Acar H. Cetuximab-Ag 2S quantum dots for fluorescence imaging and highly effective combination of ALA-based photodynamic/chemo-therapy of colorectal cancer cells. NANOSCALE 2021; 13:14879-14899. [PMID: 34533177 DOI: 10.1039/d1nr03507j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colorectal cancer (CRC) has a poor prognosis and urgently needs better therapeutic approaches. 5-Aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) based photodynamic therapy (PDT) is already used in the clinic for several cancers but not yet well investigated for CRC. Currently, systemic administration of ALA offers a limited degree of tumour selectivity, except for intracranial tumours, limiting its wider use in the clinic. The combination of effective ALA-PDT and chemotherapy may provide a promising alternative approach for CRC treatment. Herein, theranostic Ag2S quantum dots (AS-2MPA) optically trackable in near-infrared (NIR), conjugated with endothelial growth factor receptor (EGFR) targeting Cetuximab (Cet) and loaded with ALA for PDT monotherapy or ALA/5-fluorouracil (5FU) for the combination therapy are proposed for enhanced treatment of EGFR(+) CRC. AS-2MPA-Cet exhibited excellent targeting of the high EGFR expressing cells and showed a strong intracellular signal for NIR optical detection in a comparative study performed on SW480, HCT116, and HT29 cells, which exhibit high, medium and low EGFR expression, respectively. Targeting provided enhanced uptake of the ALA loaded nanoparticles by strong EGFR expressing cells and formation of higher levels of PpIX. Cells also differ in their efficiency to convert ALA to PpIX, and SW480 was the best, followed by HT29, while HCT116 was determined as unsuitable for ALA-PDT. The therapeutic efficacy was evaluated in 2D cell cultures and 3D spheroids of SW480 and HT29 cells using AS-2MPA with either electrostatically loaded, hydrazone or amide linked ALA to achieve different levels of pH or enzyme sensitive release. Most effective phototoxicity was observed in SW480 cells using AS-2MPA-ALA-electrostatic-Cet due to enhanced uptake of the particles, fast ALA release and effective ALA-to-PpIX conversion. Targeted delivery reduced the effective ALA concentration significantly which was further reduced with codelivery of 5FU. Delivery of ALA via covalent linkages was also effective for PDT, but required a longer incubation time for the release of ALA in therapeutic doses. Phototoxicity was correlated with high levels of reactive oxygen species (ROS) and apoptotic/necrotic cell death. Hence, both AS-2MPA-ALA-Cet based PDT and AS-2MPA-ALA-Cet-5FU based chemo/PDT combination therapy coupled with strong NIR tracking of the nanoparticles demonstrate an exceptional therapeutic effect on CRC cells and excellent potential for synergistic multistage tumour targeting therapy.
Collapse
Affiliation(s)
- Mahshid Hashemkhani
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
| | - Gozde Demirci
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
| | - Ali Bayir
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
| | - Abdullah Muti
- Koc University, Departments of Physics and Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey
| | - Alphan Sennaroglu
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
- Koc University, Departments of Physics and Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey
- Koc University, KUYTAM, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey
| | - Layla Mohammad Hadi
- Division of Surgery and Interventional Science, Centre for Nanomedicine and Surgical Theranostics, University College London, Royal Free Campus, Rowland Hill St, London NW3 2PE, UK.
| | - Elnaz Yaghini
- Division of Surgery and Interventional Science, Centre for Nanomedicine and Surgical Theranostics, University College London, Royal Free Campus, Rowland Hill St, London NW3 2PE, UK.
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, Centre for Nanomedicine and Surgical Theranostics, University College London, Royal Free Campus, Rowland Hill St, London NW3 2PE, UK.
| | - Alexander J MacRobert
- Division of Surgery and Interventional Science, Centre for Nanomedicine and Surgical Theranostics, University College London, Royal Free Campus, Rowland Hill St, London NW3 2PE, UK.
| | - Havva Yagci Acar
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
- Koc University, Department of Chemistry, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey
| |
Collapse
|
23
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
24
|
Nanomedicines functionalized with anti-EGFR ligands for active targeting in cancer therapy: Biological strategy, design and quality control. Int J Pharm 2021; 605:120795. [PMID: 34119579 DOI: 10.1016/j.ijpharm.2021.120795] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Recently, active targeting using nanocarriers with biological ligands has emerged as a novel strategy for improving the delivery of therapeutic and/or imaging agents to tumor cells. The presence of active targeting moieties on the surface of nanomedicines has been shown to play an important role in enhancing their accumulation in tumoral cells and tissues versus healthy ones. This property not only helps to increase the therapeutic index but also to minimize possible side effects of the designed nanocarriers. Since the overexpression of epidermal growth factor receptors (EGFR) is a common occurrence linked to the progression of a broad variety of cancers, the potential application of anti-EGFR immunotherapy and EGFR-targeting ligands in active targeting nanomedicines is getting increasing attention. Henceforth, the EGFR-targeted nanomedicines were extensively studied in vitro and in vivo but exhibited both satisfactory and disappointing results, depending on used protocols. This review is designed to give an overview of a variety of EGFR-targeting ligands available for nanomedicines, how to conjugate them onto the surface of nanoparticles, and the main analytical methods to confirm this successful conjugation.
Collapse
|
25
|
Bhattacharya S. Anti-EGFR-mAb and 5-Fluorouracil Conjugated Polymeric Nanoparticles for Colorectal Cancer. Recent Pat Anticancer Drug Discov 2021; 16:84-100. [PMID: 33349222 DOI: 10.2174/1574892815666201221121859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to the higher intake of junk food and unhealthy lifestyle, the percentage of U.S. adults aged 50 to 75 years who were up-to-date with colorectal cancer screening increased 1.4 percentage points, from 67.4% in 2016 to 68.8% in 2018. This represents an additional 3.5 million adults screened for colorectal cancer. This is a severe concern of this research, and an attempt was made to prepare a target-specific formulation that could circumvent chemotherapy-related compilation and improvise higher cellular uptake. The fundamental agenda of this research was to prepare and develop Anti-EGFR mAb and 5-Fluorouracil (5-FU) fabricated polymeric nanoparticles for colorectal cancer. OBJECTIVE The main objective of this research was to prepare and evaluate more target specific formulation for the treatment of colorectal cancer. PLGA and PEG-based polymeric nanoparticles are capable of preventing opsonization via the reticuloendothelial system. Hence, prepared polymeric nanoparticles are capable of higher cellular uptake. METHODS The Poly(d,1-lactide-co-glycolide) (PLGA) and Polyethylene Glycol (PEG) were combined utilizing the ring-opening polymerization method. The presence of PEG prevents opsonization and distinguished blood concentration along with enhanced targeting. The presence of PLGA benefits in the sustained release of polymeric formulations. The optimized formulation (5-FU-PLGA- PEG-NP) was lyophilized using 4% trehalose (cryoprotectants) and conjugated with Anti- EGFR mAb on its surface to produce Anti-EGFR-5-FU-PLGA-PEG-NP; the final formulation, which increases target specificity and drug delivery system of nanoparticles. RESULTS The spherical shaped optimized formulation, 5-FU-PLGA-PEG-NP-3 was found to have higher percentage drug entrapment efficacy (71.23%), higher percentage drug content (1.98 ± 0.34%) with minimum particles size (252.3nm) and anionic zeta potential (-31.23mV). The IC50 value of Anti-EGFR-5-FU-PLGA-PEG-NP was 1.01μg/mL after 48 hours incubation period in the HCT 116 cell line, indicating higher anticancer effects of the final formulation. CONCLUSION From the outcomes of various experiments, it was concluded that Anti-EGFR-5-FUPLGA- PEG-NP has biphasic drug release kinetics, higher cellular uptake and higher cytotoxicity. Therefore, anti-EGFR-5-FU-PLGA-PEG-NP holds excellent potential for drug delivery to EGFR positive colorectal cancer cells.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, India
| |
Collapse
|
26
|
Geskovski N, Matevska-Geshkovska N, Dimchevska Sazdovska S, Glavas Dodov M, Mladenovska K, Goracinova K. The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:375-401. [PMID: 33981532 PMCID: PMC8093552 DOI: 10.3762/bjnano.12.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 05/21/2023]
Abstract
Nanomedicine has emerged as a novel cancer treatment and diagnostic modality, whose design constantly evolves towards increasing the safety and efficacy of the chemotherapeutic and diagnostic protocols. Molecular diagnostics, which create a great amount of data related to the unique molecular signatures of each tumor subtype, have emerged as an important tool for detailed profiling of tumors. They provide an opportunity to develop targeting agents for early detection and diagnosis, and to select the most effective combinatorial treatment options. Alongside, the design of the nanoscale carriers needs to cope with novel trends of molecular screening. Also, multiple targeting ligands needed for robust and specific interactions with the targeted cell populations have to be introduced, which should result in substantial improvements in safety and efficacy of the cancer treatment. This article will focus on novel design strategies for nanoscale drug delivery systems, based on the unique molecular signatures of myeloid leukemia and EGFR/CD44-positive solid tumors, and the impact of novel discoveries in molecular tumor profiles on future chemotherapeutic protocols.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Nadica Matevska-Geshkovska
- Center for Pharmaceutical Biomolecular Analyses, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
- Department of Nanobiotechnology, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Kristina Mladenovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Katerina Goracinova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
27
|
Development of New Targeted Inulin Complex Nanoaggregates for siRNA Delivery in Antitumor Therapy. Molecules 2021; 26:molecules26061713. [PMID: 33808586 PMCID: PMC8003534 DOI: 10.3390/molecules26061713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Here, a novel strategy of formulating efficient polymeric carriers based on the already described INU-IMI-DETA for gene material whose structural, functional, and biological properties can be modulated and improved was successfully investigated. In particular, two novel derivatives of INU-IMI-DETA graft copolymer were synthesized by chemical functionalisation with epidermal growth factor (EGF) or polyethylenglycol (PEG), named INU-IMI-DETA-EGF and INU-IMI-DETA-PEG, respectively, in order to improve the performance of already described "inulin complex nanoaggregates" (ICONs). The latter were thus prepared by appropriately mixing the two copolymers, by varying each component from 0 to 100 wt% on the total mixture, named EP-ICONs. It was seen that the ability of the INU-IMI-DETA-EGF/INU-IMI-DETA-PEG polymeric mixture to complex siGL3 increases with the increase in the EGF-based component in the EP-ICONs and, for each sample, with the increase in the copolymer:siRNA weight ratio (R). On the other hand, the susceptibility of loaded siRNA towards RNase decreases with the increase in the pegylated component in the polymeric mixture. At all R values, the average size and the zeta potential values are suitable for escaping from the RES system and suitable for prolonged intravenous circulation. By means of biological characterisation, it was shown that MCF-7 cells are able to internalize mainly the siRNA-loaded into EGF-decorated complexes, with a significant difference from ICONs, confirming its targeting function. The targeting effect of EGF on EP-ICONs was further demonstrated by a competitive cell uptake study, i.e., after cell pre-treatment with EGF. Finally, it was shown that the complexes containing both EGF and PEG are capable of promoting the internalisation and therefore the transfection of siSUR, a siRNA acting against surviving mRNA, and to increase the sensitivity to an anticancer agent, such as doxorubicin.
Collapse
|
28
|
Zhang A, Nakanishi J. Improved anti-cancer effect of epidermal growth factor-gold nanoparticle conjugates by protein orientation through site-specific mutagenesis. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:616-626. [PMID: 34512175 PMCID: PMC8425683 DOI: 10.1080/14686996.2021.1944783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Epidermal growth factor (EGF)-nanoparticle conjugates have the potential for cancer therapeutics due to the unique cytotoxic activity in cancer cells with EGF receptor (EGFR) overexpression. To gain its maximum activity, the EGF molecule should be immobilized on the nanoparticle surface in a defined orientation so as the bulky nanoparticle will not interfere EGF-EGFR interaction. Herein, we demonstrate successful enhancement of the anti-cancer activity of EGF-gold nanoparticle conjugates (EGF-GNPs) by controlling the EGF orientation on the surface of the nanoparticle through site-specific mutagenesis. Three lysine-free EGF variants (RR, RS, and SR) were designed, where two endogenous lysine residues were replaced with either arginine (R) or serine (S). The EGF mutants can be conjugated to the GNPs in a controlled orientation through the single amino group at the N-terminus. The ability of the mutants to induce extracellular signal-regulated kinase (ERK) phosphorylation was no different from wild type EGF (WT) in soluble form, rather lowered for one mutant (RR). However, after conjugated to GNPs, the SR mutants exhibited an enhanced biological activity than WT, in terms of ERK phosphorylation and growth inhibition of cancer cells. Further analysis of the binding constant of each mutant indicated the emergent enhanced activity of the GNP conjugates of the SR mutant was not solely contributed to the orientation, but to its higher binding activity to EGFR. These results validate the present genetic recombination strategy to improve the anticancer efficiency of EGF-GNPs.
Collapse
Affiliation(s)
- Aiwen Zhang
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Jun Nakanishi
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- CONTACT Jun Nakanishi Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo169-8555, Japan
| |
Collapse
|
29
|
EGFR-Binding Peptides: From Computational Design towards Tumor-Targeting of Adeno-Associated Virus Capsids. Int J Mol Sci 2020; 21:ijms21249535. [PMID: 33333826 PMCID: PMC7765298 DOI: 10.3390/ijms21249535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/24/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a central role in the progression of many solid tumors. We used this validated target to analyze the de novo design of EGFR-binding peptides and their application for the delivery of complex payloads via rational design of a viral vector. Peptides were computationally designed to interact with the EGFR dimerization interface. Two new peptides and a reference (EDA peptide) were chemically synthesized, and their binding ability characterized. Presentation of these peptides in each of the 60 capsid proteins of recombinant adeno-associated viruses (rAAV) via a genetic based loop insertion enabled targeting of EGFR overexpressing tumor cell lines. Furthermore, tissue distribution and tumor xenograft specificity were analyzed with systemic injection in chicken egg chorioallantoic membrane (CAM) assays. Complex correlations between the targeting of the synthetic peptides and the viral vectors to cells and in ovo were observed. Overall, these data demonstrate the potential of computational design in combination with rational capsid modification for viral vector targeting opening new avenues for viral vector delivery and specifically suicide gene therapy.
Collapse
|
30
|
Kim HY, Um SH, Sung Y, Shim MK, Yang S, Park J, Kim ES, Kim K, Kwon IC, Ryu JH. Epidermal growth factor (EGF)-based activatable probe for predicting therapeutic outcome of an EGF-based doxorubicin prodrug. J Control Release 2020; 328:222-236. [DOI: 10.1016/j.jconrel.2020.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
|
31
|
Paiva I, Mattingly S, Wuest M, Leier S, Vakili MR, Weinfeld M, Lavasanifar A, Wuest F. Synthesis and Analysis of 64Cu-Labeled GE11-Modified Polymeric Micellar Nanoparticles for EGFR-Targeted Molecular Imaging in a Colorectal Cancer Model. Mol Pharm 2020; 17:1470-1481. [DOI: 10.1021/acs.molpharmaceut.9b01043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Igor Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Stephanie Mattingly
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Melinda Wuest
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
| | - Samantha Leier
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Frank Wuest
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
| |
Collapse
|
32
|
Akbarzadeh Khiavi M, Safary A, Barar J, Ajoolabady A, Somi MH, Omidi Y. Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer. Cell Mol Life Sci 2020; 77:997-1019. [PMID: 31563999 PMCID: PMC11104811 DOI: 10.1007/s00018-019-03305-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Systemic administration of chemotherapeutics by nanocarriers (NCs) functionalized with targeting agents provides a localized accumulation of drugs in the target tissues and cells. Advanced nanoscaled medicaments can enter into the tumor microenvironment (TME) and overcome the uniquely dysregulated biological settings of TME, including highly pressurized tumor interstitial fluid in an acidic milieu. Such multimodal nanomedicines seem to be one of the most effective treatment modalities against solid tumors such as colorectal cancer (CRC). To progress and invade, cancer cells overexpress various oncogenes and molecular markers such as epidermal growth factor receptors (EGFRs), which can be exploited for targeted delivery of nanoscaled drug delivery systems (DDSs). In fact, to develop effective personalized multimodal nanomedicines, the type of solid tumor and status of the disease in each patient should be taken into consideration. While the development of such multimodal-targeted nanomedicines is largely dependent on the expression level of oncomarkers, the type of NCs and homing/imaging agents play key roles in terms of their efficient applications. In this review, we provide deep insights into the development of EGFR-targeting nanomedicines and discuss various types of nanoscale DDSs (e.g., organic and inorganic nanoparticles) for targeting of the EGFR-positive solid tumors such as CRC.
Collapse
Affiliation(s)
- Mostafa Akbarzadeh Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Azam Safary
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ajoolabady
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
34
|
Antibody-Targeted Nanoparticles for Cancer Treatment. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
35
|
Grapa CM, Mocan T, Gonciar D, Zdrehus C, Mosteanu O, Pop T, Mocan L. Epidermal Growth Factor Receptor and Its Role in Pancreatic Cancer Treatment Mediated by Nanoparticles. Int J Nanomedicine 2019; 14:9693-9706. [PMID: 31849462 PMCID: PMC6910098 DOI: 10.2147/ijn.s226628] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is a disease with a high incidence and a dreary prognosis. Its lack of symptomatology and late diagnosis contribute to the dearth and inefficiency of therapeutic schemes. Studies show that overexpressed epidermal growth factor receptor (EGFR) is a common occurrence, linking this to the progression of pancreatic cancer, although the association between its expression and the survival rate is rather controversial. EGFR-targeted therapy has not shown the results expected, leaving at hand more questions than answers; clearly, there is a need for a better understanding of the molecular pathways involved. Nanoparticles have been used in trying to improve the efficacy of antitumor treatment; thus, using EGFR's ligand, EGF, for nanoconjugation, showed promising results in increasing the cellular uptake mechanisms and apoptosis of the targeted cells.
Collapse
Affiliation(s)
- Cristiana Maria Grapa
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
| | - Teodora Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
- Physiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gonciar
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Claudiu Zdrehus
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ofelia Mosteanu
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Teodora Pop
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
| | - Lucian Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
36
|
Lee DU, Park JY, Kwon S, Park JY, Kim YH, Khang D, Hong JH. Apoptotic lysosomal proton sponge effect in tumor tissue by cationic gold nanorods. NANOSCALE 2019; 11:19980-19993. [PMID: 31603160 DOI: 10.1039/c9nr04323c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the lysosomal "proton sponge hypothesis" being considered to be an additional factor for stimulating the cellular toxicity of nanoparticle-based drug delivery systems, a clear relationship between the massive influx of calcium ions and the proton sponge effect, both of which are associated with cancer cell apoptosis, has still not been elucidated. Cetrimonium bromide (CTAB: cationic quaternary amino group based) gold nanorods possessed a more effective electric surface charge for inducing the lysosomal proton sponge effect than anionic gold nanoparticles. In this aspect, identifying released cytoplasmic Cl-, arising from the ruptured lysosomal compartment, in the cytoplasm is critical for supporting the "proton sponge hypothesis". This study clarified that the burst release of Cl-, as a result of lysosomal swelling by CTAB gold nanorods, stimulates the transient receptor potential channels melastatin 2 (TRPM2) channels, and subsequently induces a massive Ca2+ influx, which independently increases apoptosis of cancer cells. Although the previous concept of elevated cancer apoptosis acting through the proton sponge effect is unclear, this study supports the evidence that a massive Ca2+ influx mediated in response to a burst release of Cl- significantly influenced cytotoxicity of cancer cells in tumor tissues.
Collapse
Affiliation(s)
- Dong Un Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.
| | - Jun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea. and Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
| | - Song Kwon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.
| | - Jun Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea. and Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
| | - Yong Ho Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea. and Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea and Department of Physiology, Gachon University, Incheon 21999, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea. and Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea and Department of Physiology, Gachon University, Incheon 21999, South Korea
| | - Jeong Hee Hong
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea. and Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea and Department of Physiology, Gachon University, Incheon 21999, South Korea
| |
Collapse
|
37
|
Targeting Cancer Resistance via Multifunctional Gold Nanoparticles. Int J Mol Sci 2019; 20:ijms20215510. [PMID: 31694227 PMCID: PMC6861975 DOI: 10.3390/ijms20215510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/15/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022] Open
Abstract
Resistance to chemotherapy is a major problem facing current cancer therapy, which is continuously aiming at the development of new compounds that are capable of tackling tumors that developed resistance toward common chemotherapeutic agents, such as doxorubicin (DOX). Alongside the development of new generations of compounds, nanotechnology-based delivery strategies can significantly improve the in vivo drug stability and target specificity for overcoming drug resistance. In this study, multifunctional gold nanoparticles (AuNP) have been used as a nanoplatform for the targeted delivery of an original anticancer agent, a Zn(II) coordination compound [Zn(DION)2]Cl2 (ZnD), toward better efficacy against DOX-resistant colorectal carcinoma cells (HCT116 DR). Selective delivery of the ZnD nanosystem to cancer cells was achieved by active targeting via cetuximab, NanoZnD, which significantly inhibited cell proliferation and triggered the death of resistant tumor cells, thus improving efficacy. In vivo studies in a colorectal DOX-resistant model corroborated the capability of NanoZnD for the selective targeting of cancer cells, leading to a reduction of tumor growth without systemic toxicity. This approach highlights the potential of gold nanoformulations for the targeting of drug-resistant cancer cells.
Collapse
|
38
|
Daeg J, Xu X, Zhao L, Boye S, Janke A, Temme A, Zhao J, Lederer A, Voit B, Shi X, Appelhans D. Bivalent Peptide- and Chelator-Containing Bioconjugates as Toolbox Components for Personalized Nanomedicine. Biomacromolecules 2019; 21:199-213. [DOI: 10.1021/acs.biomac.9b01127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jennifer Daeg
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Technische Universität Dresden, Dresden 01062, Germany
| | - Xiaoying Xu
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Technische Universität Dresden, Dresden 01062, Germany
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People’s Republic of China
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, Universitätsklinikum Carl Gustav Carus, Dresden 01307, Germany
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People’s Republic of China
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Technische Universität Dresden, Dresden 01062, Germany
| | - Xiangyang Shi
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People’s Republic of China
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
| |
Collapse
|
39
|
Akl M, Kartal-Hodzic A, Suutari T, Oksanen T, Montagner IM, Rosato A, Ismael HR, Afouna MI, Caliceti P, Yliperttula M, Samy AM, Mastrotto F, Salmaso S, Viitala T. Real-Time Label-Free Targeting Assessment and in Vitro Characterization of Curcumin-Loaded Poly-lactic- co-glycolic Acid Nanoparticles for Oral Colon Targeting. ACS OMEGA 2019; 4:16878-16890. [PMID: 31646234 PMCID: PMC6796886 DOI: 10.1021/acsomega.9b02086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/12/2019] [Indexed: 05/17/2023]
Abstract
The exploitation of curcumin for oral disease treatment is limited by its low solubility, poor bioavailability, and low stability. Surface-functionalized poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) have shown promising results to ameliorate selective delivery of drugs to the gastro-intestinal tract. In this study, curcumin-loaded PLGA NPs (C-PLGA NPs) of about 200 nm were surface-coated with chitosan (CS) for gastro-intestinal mucosa adhesion, wheat germ agglutinin (WGA) for colon targeting or GE11 peptide for tumor colon targeting. Spectrometric and zeta potential analyses confirmed the successful functionalization of the C-PLGA NPs. Real-time label-free assessment of the cell membrane-NP interactions and NP cell uptake were performed by quartz crystal microbalance coupled with supported lipid bilayers and by surface plasmon resonance coupled with living cells. The study showed that CS-coated C-PLGA NPs interact with cells by the electrostatic mechanism, while both WGA- and GE11-coated C-PLGA NPs interact and are taken up by cells by specific active mechanisms. In vitro cell uptake studies corroborated the real-time label-free assessment by yielding a curcumin cell uptake of 7.3 ± 0.3, 13.5 ± 1.0, 27.3 ± 4.9, and 26.0 ± 1.3 μg per 104 HT-29 cells for noncoated, CS-, WGA-, and GE11-coated C-PLGA NPs, respectively. Finally, preliminary in vivo studies showed that the WGA-coated C-PLGA NPs efficiently accumulate in the colon after oral administration to healthy Balb/c mice. In summary, the WGA- and GE11-coated C-PLGA NPs displayed high potential for application as active targeted carriers for anticancer drug delivery to the colon.
Collapse
Affiliation(s)
- Mohamed
A. Akl
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department
of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Alma Kartal-Hodzic
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Teemu Suutari
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Timo Oksanen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | | | - Antonio Rosato
- Veneto
Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroentrology and Department of Pharmaceutical and
Pharmacological Sciences, University of
Padova, 35131 Padova, Italy
| | - Hatem R. Ismael
- Department
of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Mohsen I. Afouna
- Department
of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Paolo Caliceti
- Department of Surgery, Oncology and Gastroentrology and Department of Pharmaceutical and
Pharmacological Sciences, University of
Padova, 35131 Padova, Italy
| | - Marjo Yliperttula
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department of Surgery, Oncology and Gastroentrology and Department of Pharmaceutical and
Pharmacological Sciences, University of
Padova, 35131 Padova, Italy
| | - Ahmed M. Samy
- Department
of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Francesca Mastrotto
- Department of Surgery, Oncology and Gastroentrology and Department of Pharmaceutical and
Pharmacological Sciences, University of
Padova, 35131 Padova, Italy
| | - Stefano Salmaso
- Department of Surgery, Oncology and Gastroentrology and Department of Pharmaceutical and
Pharmacological Sciences, University of
Padova, 35131 Padova, Italy
| | - Tapani Viitala
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- E-mail: . Phone: +358504154529
| |
Collapse
|
40
|
Phuengkham H, Ren L, Shin IW, Lim YT. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803322. [PMID: 30773696 DOI: 10.1002/adma.201803322] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Cancer immunotherapies that harness the body's immune system to combat tumors have received extensive attention and become mainstream strategies for treating cancer. Despite promising results, some problems remain, such as the limited patient response rate and the emergence of severe immune-related adverse effects. For most patients, the therapeutic efficacy of cancer immunotherapy is mainly limited by the immunosuppressive tumor microenvironment (TME). To overcome such obstacles in the TME, the immunomodulation of immunosuppressive factors and therapeutic immune cells (e.g., T cells and antigen-presenting cells) should be carefully designed and evaluated. Nanoengineered synthetic immune niches have emerged as highly customizable platforms with a potent capability for reprogramming the immunosuppressive TME. Here, recent developments in nano-biomaterials that are rationally designed to modulate the immunosuppressive TME in a spatiotemporal manner for enhanced cancer immunotherapy which are rationally designed to modulate the immunosuppressive TME in a spatiotemporal manner for enhanced cancer immunotherapy are highlighted.
Collapse
Affiliation(s)
- Hathaichanok Phuengkham
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Long Ren
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Il Woo Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
41
|
Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:913-931. [DOI: 10.1016/j.msec.2018.12.073] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
42
|
Optimizing Advances in Nanoparticle Delivery for Cancer Immunotherapy. Adv Drug Deliv Rev 2019; 144:3-15. [PMID: 31330165 DOI: 10.1016/j.addr.2019.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
Abstract
Cancer immunotherapy is one of the fastest growing and most promising fields in clinical oncology. T-cell checkpoint inhibitors are revolutionizing the management of advanced cancers including non-small cell lung cancer and melanoma. Unfortunately, many common cancers are not responsive to these drugs and resistance remains problematic. A growing number of novel cancer immunotherapies have been discovered but their clinical translation has been limited by shortcomings of conventional drug delivery. Immune signaling is tightly-regulated and often requires simultaneous or near-simultaneous activation of multiple signals in specific subpopulations of immune cells. Nucleic acid therapies, which require intact intracellular delivery, are among the most promising approaches to modulate the tumor microenvironment to a pro-immunogenic phenotype. Advanced nanomedicines can be precisely engineered to overcome many of these limitations and appear well-poised to enable the clinical translation of promising cancer immunotherapies.
Collapse
|
43
|
Lin C, Hu Z, Yuan G, Su H, Zeng Y, Guo Z, Zhong F, Jiang K, He S. HIF1α-siRNA and gemcitabine combination-based GE-11 peptide antibody-targeted nanomedicine for enhanced therapeutic efficacy in pancreatic cancers. J Drug Target 2019; 27:797-805. [PMID: 30481072 DOI: 10.1080/1061186x.2018.1552276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the deadliest cancers across the world with an average 5-year survival rate of less than <6%. In this study, gemcitabine (GEM) and HIF1α-siRNA loaded GE-11 peptide conjugated liposome was successfully prepared and evaluated for its antitumor efficacy in pancreatic cancer cells. The GE11 increased the targeting specificity of liposome carrier and increased the intracellular concentrations in the cancer cells. Furthermore, synergistic combination of GEM and HIF1a-siRNA exhibited remarkable improvement in the declining of cancer cell proliferations. siRNA could effectively decrease the expression of HIF1a gene in the cancer cells. Importantly, GE-11 peptide-conjugated GEM/siRNA-loaded liposomes (GE-GML/siRNA) increased the total amount of apoptosis cells with higher proportion of cells in late apoptosis phase. GE-GML induced remarkable apoptosis of cancer cells and induced chromatin condensation and nuclear fragmentation which are considered to be typical features of apoptosis and cell death. GE-GML/siRNA showed a significant reduction in the tumour burden suggesting the superior anticancer efficacy of this formulation. GE-GML/siRNA showed four-fold reduction in tumour compared to control and two-fold reduction compared to GE-GML, respectively. Overall, present work lays foundation for the combination of GEM and HIF1a-siRNA loaded in a targeted nanocarrier system as a unique therapeutic option in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Chengjie Lin
- a Department of General Surgery , Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Zhigao Hu
- a Department of General Surgery , Xiangya Hospital of Central South University , Changsha , Hunan , China.,b Department of Hepatobiliary Surgery , The First Affiliated Hospital of Guangxi Medical University , Guangxi , China
| | - Guandou Yuan
- b Department of Hepatobiliary Surgery , The First Affiliated Hospital of Guangxi Medical University , Guangxi , China
| | - Huizhao Su
- b Department of Hepatobiliary Surgery , The First Affiliated Hospital of Guangxi Medical University , Guangxi , China
| | - Yonglian Zeng
- b Department of Hepatobiliary Surgery , The First Affiliated Hospital of Guangxi Medical University , Guangxi , China
| | - Zhenya Guo
- b Department of Hepatobiliary Surgery , The First Affiliated Hospital of Guangxi Medical University , Guangxi , China
| | - Fudi Zhong
- b Department of Hepatobiliary Surgery , The First Affiliated Hospital of Guangxi Medical University , Guangxi , China
| | - Keqing Jiang
- b Department of Hepatobiliary Surgery , The First Affiliated Hospital of Guangxi Medical University , Guangxi , China
| | - Songqing He
- a Department of General Surgery , Xiangya Hospital of Central South University , Changsha , Hunan , China.,b Department of Hepatobiliary Surgery , The First Affiliated Hospital of Guangxi Medical University , Guangxi , China
| |
Collapse
|
44
|
Zhang G, Zhu Y, Wang Y, Wei D, Wu Y, Zheng L, Bai H, Xiao H, Zhang Z. pH/redox sensitive nanoparticles with platinum(iv) prodrugs and doxorubicin enhance chemotherapy in ovarian cancer. RSC Adv 2019; 9:20513-20517. [PMID: 35515556 PMCID: PMC9065746 DOI: 10.1039/c9ra04034j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 11/21/2022] Open
Abstract
pH/redox sensitive, dual drug loaded nanoparticles were prepared from poly(ethylene glycol)-block-poly(l-lysine) (PEG-b-PLL) for improving cancer therapy.
Collapse
Affiliation(s)
- Guyu Zhang
- Beijing Chaoyang Hospital Affiliated to Capital Medical University
- Department of Gynaecological and Obstetric
- Beijing 100000
- P. R. China
| | - Yimin Zhu
- Affiliated Guangdong Medical University
- Department of Oncology
- Zhanjiang 524000
- P. R. China
| | - Yushu Wang
- Key Laboratory of Bio-based Material Science and Technology Ministry of Education
- Northeast Forestry University
- Harbin 150040
- P. R. China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yixin Wu
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Liuchun Zheng
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Huimin Bai
- Beijing Chaoyang Hospital Affiliated to Capital Medical University
- Department of Gynaecological and Obstetric
- Beijing 100000
- P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhenyu Zhang
- Beijing Chaoyang Hospital Affiliated to Capital Medical University
- Department of Gynaecological and Obstetric
- Beijing 100000
- P. R. China
| |
Collapse
|
45
|
Large DE, Soucy JR, Hebert J, Auguste DT. Advances in Receptor-Mediated, Tumor-Targeted Drug Delivery. ADVANCED THERAPEUTICS 2019; 2:1800091. [PMID: 38699509 PMCID: PMC11064891 DOI: 10.1002/adtp.201800091] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Receptor-mediated drug delivery presents an opportunity to enhance therapeutic efficiency by accumulating drug within the tissue of interest and reducing undesired, off-target effects. In cancer, receptor overexpression is a platform for binding and inhibiting pathways that shape biodistribution, toxicity, cell binding and uptake, and therapeutic function. This review will identify tumor-targeted drug delivery vehicles and receptors that show promise for clinical translation based on quantitative in vitro and in vivo data. The authors describe the rationale to engineer a targeted drug delivery vehicle based on the ligand, chemical conjugation method, and type of drug delivery vehicle. Recent advances in multivalent targeting and ligand organization on tumor accumulation are discussed. Revolutionizing receptor-mediated drug delivery may be leveraged in the therapeutic delivery of chemotherapy, gene editing tools, and epigenetic drugs.
Collapse
Affiliation(s)
- Danielle E Large
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Jacob Hebert
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Debra T Auguste
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
46
|
Modulation of Hypoxia-Induced Chemoresistance to Polymeric Micellar Cisplatin: The Effect of Ligand Modification of Micellar Carrier Versus Inhibition of the Mediators of Drug Resistance. Pharmaceutics 2018; 10:pharmaceutics10040196. [PMID: 30347860 PMCID: PMC6320993 DOI: 10.3390/pharmaceutics10040196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023] Open
Abstract
Hypoxia can induce chemoresistance, which is a significant clinical obstacle in cancer therapy. Here, we assessed development of hypoxia-induced chemoresistance (HICR) against free versus polymeric cisplatin micelles in a triple negative breast cancer cell line, MDA-MB-231. We then explored two strategies for the modulation of HICR against cisplatin micelles: a) the development of actively targeted micelles; and b) combination therapy with modulators of HICR in MDA-MB-231 cells. Actively targeted cisplatin micelles were prepared through surface modification of acetal-poly(ethylene oxide)-poly(α-carboxyl-ε-caprolactone) (acetal-PEO-PCCL) micelles with epidermal growth factor receptor (EGFR)-targeting peptide, GE11 (YHWYGYTPQNVI). Our results showed that hypoxia induced resistance against free and cisplatin micelles in MDA-MB-231 cells. A significant increase in micellar cisplatin uptake was observed in MDA-MB-231 cells that overexpress EGFR, following surface modification of micelles with GE11. This did not lead to increased cytotoxicity of micellar cisplatin, however. On the other hand, the addition of pharmacological inhibitors of key molecules involved in HICR in MDA-MB-231 cells, i.e., inhibitors of hypoxia inducing factor-1 (HIF-1) and signal transducer and activator of transcription 3 (STAT3), substantially enhanced the cytotoxicity of free and cisplatin micelles. The results indicated the potential benefit of combination therapy with HIF-1 and STAT3 inhibitors in overcoming HICR to free or micellar cisplatin.
Collapse
|
47
|
Valcourt DM, Harris J, Riley RS, Dang M, Wang J, Day ES. Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. NANO RESEARCH 2018; 11:4999-5016. [PMID: 31772723 PMCID: PMC6879063 DOI: 10.1007/s12274-018-2083-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 05/20/2023]
Abstract
Since the emergence of cancer nanomedicine, researchers have had intense interest in developing nanoparticles (NPs) that can specifically target diseased sites while avoiding healthy tissue to mitigate the off-target effects seen with conventional treatments like chemotherapy. Initial endeavors focused on the bioconjugation of targeting agents to NPs, and more recently, researchers have begun to develop biomimetic NP platforms that can avoid immune recognition to maximally accumulate in tumors. In this review, we describe the advantages and limitations of each of these targeting strategies. First, we review developments in bioconjugation strategies, where NPs are coated with biomolecules such as antibodies, aptamers, peptides, and small molecules to enable cell-specific binding. While bioconjugated NPs offer many exciting features and have improved pharmacokinetics and biodistribution relative to unmodified NPs, they are still recognized by the body as "foreign", resulting in their clearance by the mononuclear phagocytic system (MPS). To overcome this limitation, researchers have recently begun to investigate biomimetic approaches that can hide NPs from immune recognition and reduce clearance by the MPS. These biomimetic NPs fall into two distinct categories: synthetic NPs that present naturally occurring structures, and NPs that are completely disguised by natural structures. Overall, bioconjugated and biomimetic NPs have substantial potential to improve upon conventional treatments by reducing off-target effects through site-specific delivery, and they show great promise for future standards of care. Here, we provide a summary of each strategy, discuss considerations for their design moving forward, and highlight their potential clinical impact on cancer therapy.
Collapse
Affiliation(s)
- Danielle M Valcourt
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jenna Harris
- 201 DuPont Hall, Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
| | - Rachel S Riley
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Megan Dang
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jianxin Wang
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Emily S Day
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- 201 DuPont Hall, Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
- 4701 Ogletown Stanton Road, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA
| |
Collapse
|
48
|
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine 2018; 13:3921-3935. [PMID: 30013345 PMCID: PMC6038858 DOI: 10.2147/ijn.s165210] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients treated with conventional cancer chemotherapy suffer from side effects of the drugs due to non-selective action of chemotherapeutic drugs to normal cells. Active targeting nanoparticles that are conjugated to targeting ligands on the surface of nanoparticles play an important role in improving drug selectivity to the cancer cell. Several chemotherapeutic drugs and traditional/herbal medicines reported for anticancer activities have been investigated for their selective delivery to cancer cells by active targeting nanoparticles. This systematic review summarizes reports on this application. Literature search was conducted through PubMed database search up to March 2017 using the terms nanoparticle, chemotherapy, traditional medicine, herbal medicine, natural medicine, natural compound, cancer treatment, and active targeting. Out of 695 published articles, 61 articles were included in the analysis based on the predefined inclusion and exclusion criteria. The targeting ligands included proteins/peptides, hyaluronic acid, folic acid, antibodies/antibody fragments, aptamer, and carbohydrates/polysaccharides. In vitro and in vivo studies suggest that active targeting nanoparticles increase selectivity in cellular uptake and/or cytotoxicity over the conventional chemotherapeutic drugs and non-targeted nanoparticle platform, particularly enhancement of drug efficacy and safety. However, clinical studies are required to confirm these findings.
Collapse
Affiliation(s)
- Nadda Muhamad
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand,
| | - Tullayakorn Plengsuriyakarn
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand, .,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand,
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand, .,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand,
| |
Collapse
|
49
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
50
|
Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers. Acta Biomater 2018; 74:397-413. [PMID: 29775731 DOI: 10.1016/j.actbio.2018.05.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022]
Abstract
This study demonstrated the targeted delivery and controlled release of cisplatin drug molecules from doubly decorated mesoporous silica nanoparticles (MSNs), which were internally grafted with fluorescent conjugates and externally coated with polydopamine (PDA) and graphene oxide (GO) layers. The brush-like internal conjugates conferred fluorescent functionality and high capacity of cisplatin loading into MSNs, as well as contributing to a sustained release of the cisplatin through a porous channel with the assistance of external PDA layer. A consolidated double-layer formed by electrostatic interactions between the GO nanosheet and the PDA layer induced more controlled release kinetics which was well predicted by Higuchi model. In addition, Our MSNs exhibited stimuli (pH, NIR irradiation)-responsive controlled release as a potential chemo-photothermal agent against cancer cells. In a cell test, multifunctional MSNs showed a low toxicity itself, but gave a high cytotoxicity against human epithelial neuroblastoma cells (SH-SY5Y) after loading cisplatin. Notably, GO-wrapped MSNs exhibited very effective drug delivery because GO wrapping enhanced their dispensability in aqueous solution, photothermal heating effect, and efficient endocytosis into cells. Furthermore, monoclonal antibody (anti-human epidermal growth factor receptor)-conjugated MSNs showed a higher specificity, which resulted in more enhanced anticancer effects in vitro. The current study demonstrated a reliable synthesis of multifunctional MSNs, endowed with fluorescent imaging, stimuli-responsive controlled release, higher specificity, and efficient cytotoxicity toward cancer cells. STATEMENT OF SIGNIFICANCE The current study demonstrated the reliable synthesis of multifunctional mesoporous silica nanoparticles (MSNs) with internal fluorescent conjugates and external polydopamine and graphene oxide (GO) layers. The combination of internal conjugates and external coating layers produced an effective pore closure effect, leading to controlled and sustained release of small drug molecules. Notably, GO wrapping improved the dispensability and cellular uptake of the MSNs, as well as enhanced drug-controlled release. Our multifunctional MSNs revealed very efficient drug delivery effects against human epithelial neuroblastoma cells by demonstrating several strengths: i) fluorescent imaging, ii) sustained and controlled release of small drug molecules, iii) efficient cellular uptake, cytotoxicity and specificity, and v) stimuli (pH, NIR irradiation)-responsive controlled release as a potential chemo-photothermal agent.
Collapse
|