1
|
Reguera J, Zheng F, Shalan AE, Lizundia E. Upcycling discarded cellulosic surgical masks into catalytically active freestanding materials. CELLULOSE (LONDON, ENGLAND) 2022; 29:2223-2240. [PMID: 35125686 PMCID: PMC8805669 DOI: 10.1007/s10570-022-04441-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/14/2022] [Indexed: 05/14/2023]
Abstract
ABSTRACT The COVID-19 pandemic outbreak has resulted in the massive fabrication of disposable surgical masks. As the accumulation of discarded face masks represents a booming threat to the environment, here we propose a solution to reuse and upcycle surgical masks according to one of the cornerstones of the circular economy. Specifically, the non-woven cellulosic layer of the masks is used as an environmentally sustainable and highly porous solid support for the controlled deposition of catalytically active metal-oxide nanoparticles. The native cellulosic fibers from the surgical masks are decorated by titanium dioxide (TiO2), iron oxide (FexOy), and cobalt oxide (CoOx) nanoparticles following a simple and scalable approach. The abundant surface -OH groups of cellulose enable the controlled deposition of metal-oxide nanoparticles that are photocatalytically active or shown enzyme-mimetic activities. Importantly, the hydrophilic highly porous character of the cellulosic non-woven offers higher accessibility of the pollutant to the catalytically active surfaces and high retention in its interior. As a result, good catalytic activities with long-term stability and reusability are achieved. Additionally, developed free-standing hybrids avoid undesired media contamination effects originating from the release of nanoscale particles. The upcycling of discarded cellulosic materials, such as the ones of masks, into high-added-value catalytic materials, results an efficient approach to lessen the waste´s hazards of plastics while enhancing their functionality. Interestingly, this procedure can be extended to the upcycling of other systems (cellulosic or not), opening the path to greener manufacturing approaches of catalytic materials. GRAPHICAL ABSTRACT A novel approach to upcycle discarded cellulosic surgical masks is proposed, providing a solution to reduce the undesired accumulation of discarded face masks originating from the COVID-19 pandemic. The non-woven cellulosic layer formed by fibers is used as solid support for the controlled deposition of catalytically active titanium dioxide (TiO2), iron oxide (FexOy), and cobalt oxide (CoOx) nanoparticles. Cellulosic porous materials are proven useful for the photocatalytic decomposition of organic dyes, while their peroxidase-like activity opens the door to advanced applications such as electrochemical sensors. The upcycling of cellulose nonwoven fabrics into value-added catalytic materials lessens the waste´s hazards of discarded materials while enhancing their functionality. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-022-04441-9.
Collapse
Affiliation(s)
- Javier Reguera
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Fangyuan Zheng
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Ahmed Esmail Shalan
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo, Egypt
| | - Erlantz Lizundia
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
| |
Collapse
|
2
|
Cardoso VMDO, Moreira BJ, Comparetti EJ, Sampaio I, Ferreira LMB, Lins PMP, Zucolotto V. Is Nanotechnology Helping in the Fight Against COVID-19? FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.588915] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
3
|
Adjuvants for swine vaccines: Mechanisms of actions and adjuvant effects. Vaccine 2020; 38:6659-6681. [DOI: 10.1016/j.vaccine.2020.08.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
|
4
|
Dey A, Manna S, Kumar S, Chattopadhyay S, Saha B, Roy S. Immunostimulatory effect of chitosan conjugated green copper oxide nanoparticles in tumor immunotherapy. Cytokine 2020; 127:154958. [DOI: 10.1016/j.cyto.2019.154958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
|
5
|
Dekkers S, Wagner JG, Vandebriel RJ, Eldridge EA, Tang SVY, Miller MR, Römer I, de Jong WH, Harkema JR, Cassee FR. Role of chemical composition and redox modification of poorly soluble nanomaterials on their ability to enhance allergic airway sensitisation in mice. Part Fibre Toxicol 2019; 16:39. [PMID: 31660999 PMCID: PMC6819391 DOI: 10.1186/s12989-019-0320-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Engineered nanoparticles (NPs) have been shown to enhance allergic airways disease in mice. However, the influence of the different physicochemical properties of these particles on their adjuvant properties is largely unknown. Here we investigate the effects of chemical composition and redox activity of poorly soluble NPs on their adjuvant potency in a mouse model of airway hypersensitivity. RESULTS NPs of roughly similar sizes with different chemical composition and redox activity, including CeO2, Zr-doped CeO2, Co3O4, Fe-doped Co3O4(using Fe2O3 or Fe3O4) and TiO2 NPs, all showed adjuvant activity. OVA induced immune responses following intranasal exposure of BALB/c mice to 0.02% OVA in combination with 200 μg NPs during sensitization (on day 1, 3, 6 and 8) and 0.5% OVA only during challenge (day 22, 23 and 24) were more pronounced compared to the same OVA treatment regime without NPs. Changes in OVA-specific IgE and IgG1 plasma levels, differential cell count and cytokines in bronchoalveolar lavage fluid (BALF), and histopathological detection of mucosa cell metaplasia and eosinophil density in the conducting airways were observed. Adjuvant activity of the CeO2 NPs was primarily mediated via the Th2 response, while that of the Co3O4 NPs was characterised by no or less marked increases in IgE plasma levels, BALF IL-4 and IL-5 concentrations and percentages of eosinophils in BALF and more pronounced increases in BALF IL-6 concentrations and percentages of lymphocytes in BALF. Co-exposure to Co3O4 NPs with OVA and subsequent OVA challenge also induced perivascular and peribronchiolar lymphoid cell accumulation and formation of ectopic lymphoid tissue in lungs. Responses to OVA combined with various NPs were not affected by the amount of doping or redox activity of the NPs. CONCLUSIONS The findings indicate that chemical composition of NPs influences both the relative potency of NPs to exacerbate allergic airway sensitization and the type of immune response. However, no relation between the acellular redox activity and the observed adjuvant activity of the different NPs was found. Further research is needed to pinpoint the precise physiological properties of NPs and biological mechanisms determining adjuvant activity in order to facilitate a safe-by-design approach to NP development.
Collapse
Affiliation(s)
- Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA, Bilthoven, The Netherlands.
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Rob J Vandebriel
- National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Elyse A Eldridge
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | | | - Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Isabella Römer
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Wim H de Jong
- National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA, Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
6
|
Abo‐zeid Y, Williams GR. The potential anti‐infective applications of metal oxide nanoparticles: A systematic review. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1592. [DOI: 10.1002/wnan.1592] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yasmin Abo‐zeid
- School of Pharmacy Helwan University Cairo Egypt
- UCL School of Pharmacy University College London London UK
| | | |
Collapse
|
7
|
Sokolova V, Loza K, Knuschke T, Heinen-Weiler J, Jastrow H, Hasenberg M, Buer J, Westendorf A, Gunzer M, Epple M. A systematic electron microscopic study on the uptake of barium sulphate nano-, submicro-, microparticles by bone marrow-derived phagocytosing cells. Acta Biomater 2018; 80:352-363. [PMID: 30240952 DOI: 10.1016/j.actbio.2018.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
Nanoparticles can act as transporters for synthetic molecules and biomolecules into cells, also in immunology. Antigen-presenting cells like dendritic cells are important targets for immunotherapy in nanomedicine. Therefore, we have used primary murine bone marrow-derived phagocytosing cells (bmPCs), i.e. dendritic cells and macrophages, to study their interaction with spherical barium sulphate particles of different size (40 nm, 420 nm, and 1 µm) and to follow their uptake pathway. Barium sulphate is chemically and biologically inert (no dissolution, no catalytic effects), i.e. we can separate the particle uptake effect from potential biological reactions. The colloidal stabilization of the nanoparticles was achieved by a layer of carboxymethylcellulose (CMC) which is biologically inert and gives the particles a negative zeta potential (i.e. charge). The particles were made fluorescent by conjugating 6-aminofluoresceine to CMC. Their uptake was visualized by flow cytometry, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and correlative light and electron microscopy (CLEM). Barium sulphate particles of all sizes were readily taken up by dendritic cells and even more by macrophages, with the uptake increasing with time and particle concentration. They were mainly localized inside phagosomes, heterophagosomes, and in the case of nanoparticles also in the nearby cytosol. No particles were found in the nucleus. In nanomedicine, inorganic nanoparticles from the nanometer to the micrometer size are therefore well suited as transporters of biomolecules, including antigens, into dendritic cells and macrophages. The presented model system may also serve to describe the aseptic loosening of endoprostheses caused by abrasive wear of inert particles and the subsequent cell reaction, a question which relates to the field of nanotoxicology. STATEMENT OF SIGNIFICANCE: The interaction of particles and cells is at the heart of nanomedicine and nanotoxicology, including abrasive wear from endoprostheses. It also comprises the immunological reaction to different kinds of nanomaterials, triggered by an immune response, e.g. by antigen-presenting cells. However, it is often difficult to separate the particle effect from a chemical or biochemical reaction to particles or their cargo. We show how chemically inert barium sulphate particles with three different sizes (nano, sub-micro, and micro) interact with relevant immune cells (primary dendritic cells and macrophages). Particles of all three sizes are readily taken up into both cell types by phagocytosis, but the uptake by macrophages is significantly more prominent than that by dendritic cells. The cells take up particles until they are virtually stuffed, but without direct adverse effect. The uptake increases with time and particle concentration. Thus, we have an ideal model system to follow particles into and inside cells without the side effect of a chemical particle effect, e.g. by degradation or ion release.
Collapse
|
8
|
Li X, Wang X, Ito A. Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem Soc Rev 2018; 47:4954-4980. [PMID: 29911725 DOI: 10.1039/c8cs00028j] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccines, one of the most effective and powerful public health measures, have saved countless lives over the past century and still have a tremendous global impact. As an indispensable component of modern vaccines, adjuvants play a critical role in strengthening and/or shaping a specific immune response against infectious diseases as well as malignancies. The application of nanotechnology provides the possibility of precisely tailoring the building blocks of nanoadjuvants towards modern vaccines with the desired immune response. The last decade has witnessed great academic progress in inorganic nanomaterials for vaccine adjuvants in terms of nanometer-scale synthesis, structure control, and functionalization design. Inorganic adjuvants generally facilitate the delivery of antigens, allowing them to be released in a sustained manner, enhance immunogenicity, deliver antigens efficiently to specific targets, and induce a specific immune response. In particular, the recent discovery of the intrinsic immunomodulatory function of inorganic nanomaterials further allows us to shape the immune response towards the desired type and increase the efficacy of vaccines. In this article, we comprehensively review state-of-the-art research on the use of inorganic nanomaterials as vaccine adjuvants. Attention is focused on the physicochemical properties of versatile inorganic nanoadjuvants, such as composition, size, morphology, shape, hydrophobicity, and surface charge, to effectively stimulate cellular immunity, considering that the clinically used alum adjuvants can only induce strong humoral immunity. In addition, the efforts made to date to expand the application of inorganic nanoadjuvants in cancer vaccines are summarized. Finally, we discuss the future prospects and our outlook on tailoring inorganic nanoadjuvants towards next-generation vaccines.
Collapse
Affiliation(s)
- Xia Li
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
9
|
Abudayyak M, Gurkaynak TA, Özhan G. In vitro evaluation of cobalt oxide nanoparticle-induced toxicity. Toxicol Ind Health 2017; 33:646-654. [PMID: 28595480 DOI: 10.1177/0748233717706633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cobalt oxide (Co3O4) nanoparticles have applications in nanomedicine and nanotechnology; therefore, any possible adverse effects require thorough investigation. The present study investigated the effects of Co3O4 nanoparticles on four different cell lines: liver, HepG2 hepatocellular carcinoma cells; lung, A549 lung carcinoma cells; gastrointestinal, Caco-2 colorectal adenocarcinoma cells; and nervous system, SH-SY5Y neuroblastoma cells. A difference was observed in cell sensitivity toward Co3O4 nanoparticles. Co3O4 nanoparticles were taken up by all the cell types. However, no cell death was observed in HepG2, Caco-2, or SH-SY5Y cells; only A549 cells showed cytotoxicity at relatively high exposure concentrations. Co3O4 nanoparticles did not induce DNA damage or apoptosis in the cell lines tested except in A549. Interestingly, Co3O4 nanoparticles induced cellular oxidative damage in all cell types except Caco-2, resulting in increased malondialdehyde and 8-hydroxydeoxyguanosine levels and decreased glutathione levels. According to our results, it could be indicated that high concentrations of Co3O4 nanoparticles affected the pulmonary system but were unlikely to affect the liver, nervous system, or gastrointestinal system. Co3O4 nanoparticles might be safely used for industrial, commercial, and nanomedical applications if dose rates are adjusted depending on the route of exposure. However, further in vivo and in vitro studies are required to confirm the safety of Co3O4 nanoparticles.
Collapse
Affiliation(s)
- Mahmoud Abudayyak
- 1 Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul, Turkey
| | - Tuba Altincekic Gurkaynak
- 2 Department of Chemical Engineering, Faculty of Engineering, Istanbul University, Avcilar, Istanbul, Turkey
| | - Gül Özhan
- 1 Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul, Turkey
| |
Collapse
|
10
|
Vasconcelos DM, Santos SG, Lamghari M, Barbosa MA. The two faces of metal ions: From implants rejection to tissue repair/regeneration. Biomaterials 2016; 84:262-275. [DOI: 10.1016/j.biomaterials.2016.01.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
|
11
|
Chattopadhyay S, Dash SK, Mandal D, Das B, Tripathy S, Dey A, Pramanik P, Roy S. Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine. Vaccine 2016; 34:957-67. [PMID: 26772632 DOI: 10.1016/j.vaccine.2015.12.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/11/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023]
Abstract
In the present study, we would like to evaluate the efficacy of modified metal oxide nanoparticles (NPs) as cancer antigen delivery vehicles for macrophage (MФs) based antitumor vaccine. The cobalt oxide nanoparticles (CoO NPs) were promising tools for delivery of antigens to antigen presenting cells and have induced an antitumor immune response. Synthesized CoO NPs were modified by N-phosphonomethyliminodiacetic acid (PMIDA), facilitated the conjugation of lysate antigen, i.e. cancer antigen derived from lysis of cancer cells. The cancer cell lysate antigen conjugated PMIDA-CoO NPs (Ag-PMIDA-CoO NPs) successfully activated macrophage (MФ) evident by the increasing the serum IFN-γ and TNF-α level. Immunization of mice with the Ag-PMIDA-CoO NPs constructed an efficient immunological adjuvant induced anticancer IgG responses, and increased the antibody dependent cellular cytotoxicity (ADCC) response than only lysate antigen treated group to combat the cancer cell. The nanocomplexes enhanced the anticancer CD4(+)T cell response in mice. The result showed that Ag-PMIDA-CoO NPs can stimulate the immune responses over only lysate antigens, which are the most important findings in this study. These NP-mediated Ag deliveries may significantly improve the anticancer immune response by activating MФs and may act as adjuvant and will balance the pro-inflammatory and anti-inflammatory immunoresponse. The crosstalk between the activated MФ with other immune competent cells will be monitored by measuring the cytokines which illustrate the total immunological network setups.
Collapse
Affiliation(s)
- Sourav Chattopadhyay
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sandeep Kumar Dash
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Debasis Mandal
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Balaram Das
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Satyajit Tripathy
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Aditi Dey
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Panchanan Pramanik
- Nano Materials Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Somenath Roy
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore, West Bengal 721102, India.
| |
Collapse
|
12
|
Dash SK, Chattopadhyay S, Tripathy S, Dash SS, Das B, Mandal D, Mahapatra SK, Bag BG, Roy S. Self-assembled betulinic acid augments immunomodulatory activity associates with IgG response. Biomed Pharmacother 2015; 75:205-17. [PMID: 26256937 DOI: 10.1016/j.biopha.2015.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 07/26/2015] [Indexed: 11/26/2022] Open
Abstract
Studies relating to the adjuvanic role of self assembly, nanosized betulinic acid (SA-BA) are relatively limited. The concept of immunostimulatory activity of SA-BA is based on the activation of immune system against cancer antigen. This study showed that SA-BA, a pentacyclic triterpene isolated from the bark of the Ziziphus jujube tree, elevated the immunological functions of cancer antigen in anticancer immunotherapy. We found that, SA-BA pulsed human macrophages secreted elevated level of pro-inflammatory cytokines with an increased CD4(+) cell population. Pulse macrophages were also significantly arrested the KG-1A and K562 cell growth in vitro setup at 1:10 ratio for 48h. The use of TNF-α inhibitors confirmed the association between SA-BA with TNF-α function. SA-BA pulsed macrophages displayed substantial T cell allostimulatory capacity and promoted the generation of cytotoxic T lymphocytes (CTLs). The adjuvanticity of SA-BA was proved by the generation of in vivo IgG response. Collectively, these findings will enrich the biomedical applications of SA-BA as a potent immune stimulating agent. Moreover, the macrophage stimulating efficacy of SA-BA might be an effective way in the cancer immunotherapy.
Collapse
Affiliation(s)
- Sandeep Kumar Dash
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102, West Bengal, India
| | - Sourav Chattopadhyay
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102, West Bengal, India
| | - Satyajit Tripathy
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102, West Bengal, India
| | - Shib Shankar Dash
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore-721 102, West Bengal, India
| | - Balaram Das
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102, West Bengal, India
| | - Debasis Mandal
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102, West Bengal, India
| | - Santanu Kar Mahapatra
- Medicinal Chemistry and Immunology Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613401, Tamil Nadu, India
| | - Braja Gopal Bag
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore-721 102, West Bengal, India
| | - Somenath Roy
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102, West Bengal, India.
| |
Collapse
|
13
|
Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8263-80. [PMID: 26193294 PMCID: PMC4515721 DOI: 10.3390/ijerph120708263] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 02/07/2023]
Abstract
Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2) and those with intact skin (1.08 ± 0.20 ng·cm−2). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure.
Collapse
|
14
|
|
15
|
Maughan CN, Preston SG, Williams GR. Particulate inorganic adjuvants: recent developments and future outlook. J Pharm Pharmacol 2014; 67:426-49. [DOI: 10.1111/jphp.12352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/12/2014] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
To review the state of the art and assess future potential in the use of inorganic particulates as vaccine adjuvants.
Key findings
An adjuvant is an entity added to a vaccine formulation to ensure that robust immunity to the antigen is inculcated. The inclusion of an adjuvant is typically vital for the efficacy of vaccines using inactivated organisms, subunit and DNA antigens. With increasing research efforts being focused on subunit and DNA antigens because of their improved safety profiles, the development of appropriate adjuvants is becoming ever more crucial. Despite this, very few adjuvants are licensed for use in humans (four by the FDA, five by the European Medicines Agency). The most widely used adjuvant, alum, has been used for nearly 90 years, yet its mechanism of action remains poorly understood. In addition, while alum produces a powerful antibody Th2 response, it does not provoke the cellular immune response required for the elimination of intracellular infections or cancers. New adjuvants are therefore needed, and inorganic systems have attracted much attention in this regard.
Summary
In this review, the inorganic adjuvants currently in use are considered, and the efforts made to date to understand their mechanisms of action are summarised. We then move on to survey the literature on inorganic particulate adjuvants, focusing on the most interesting recent developments in this area and their future potential.
Collapse
|
16
|
Anticancer and immunostimulatory role of encapsulated tumor antigen containing cobalt oxide nanoparticles. J Biol Inorg Chem 2013; 18:957-73. [DOI: 10.1007/s00775-013-1044-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/30/2013] [Indexed: 01/22/2023]
|
17
|
Zaman M, Good MF, Toth I. Nanovaccines and their mode of action. Methods 2013; 60:226-31. [DOI: 10.1016/j.ymeth.2013.04.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/21/2022] Open
|