1
|
Mohseni-Dargah M, Falahati Z, Pastras C, Khajeh K, Mukherjee P, Razmjou A, Stefani S, Asadnia M. Meniere's disease: Pathogenesis, treatments, and emerging approaches for an idiopathic bioenvironmental disorder. ENVIRONMENTAL RESEARCH 2023; 238:116972. [PMID: 37648189 DOI: 10.1016/j.envres.2023.116972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Meniere's disease (MD) is a severe inner ear condition known by debilitating symptoms, including spontaneous vertigo, fluctuating and progressive hearing loss, tinnitus, and aural fullness or pressure within the affected ear. Prosper Meniere first described the origins of MD in the 1860s, but its underlying mechanisms remain largely elusive today. Nevertheless, researchers have identified a key histopathological feature called Endolymphatic Hydrops (ELH), which refers to the excessive buildup of endolymph fluid in the membranous labyrinth of the inner ear. The exact root of ELH is not fully understood. Still, it is believed to involve several biological and bioenvironmental etiological factors such as genetics, autoimmunity, infection, trauma, allergy, and new theories, such as saccular otoconia blocking the endolymphatic duct and sac. Regarding treatment, there are no reliable and definitive cures for MD. Most therapies focus on managing symptoms and improving the overall quality of patients' life. To make significant advancements in addressing MD, it is crucial to gain a fundamental understanding of the disease process, laying the groundwork for more effective therapeutic approaches. This paper provides a comprehensive review of the pathophysiology of MD with a focus on old and recent theories. Current treatment strategies and future translational approaches (with low-level evidence but promising results) related to MD are also discussed, including patents, drug delivery, and nanotechnology, that may provide future benefits to patients suffering from MD.
Collapse
Affiliation(s)
- Masoud Mohseni-Dargah
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Falahati
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Christopher Pastras
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; The Meniere's Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Payal Mukherjee
- RPA Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Amir Razmjou
- Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales 2007, Australia
| | - Sebastian Stefani
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Mohsen Asadnia
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
2
|
An X, Wang R, Chen E, Yang Y, Fan B, Li Y, Han B, Li Q, Liu Z, Han Y, Chen J, Zha D. A forskolin-loaded nanodelivery system prevents noise-induced hearing loss. J Control Release 2022; 348:148-157. [PMID: 35659555 DOI: 10.1016/j.jconrel.2022.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Hearing loss is the most common sensory disorder worldwide and may result from age, drugs, or exposure to excessive noise. Crossing the blood-labyrinth barrier to achieve targeted drug delivery to the inner ear is key to the treatment of hearing loss. We designed a nanoparticle (NP)-based system for targeted drug delivery of forskolin (FSK) to the inner ear, driven by the prestin-targeting peptide LS19 ("ligand-receptor type interaction"). In vivo experiments in developing zebrafish embryos (4-96 h past fertilization) and mice confirmed that LS19-FSK specifically targeted and accumulated in zebrafish lateral line neuromasts and mouse outer hair cells (OHCs). LS19 peptide modification enabled LS19-FSK-NPs to rapidly target OHCs with high specificity. Furthermore, the multifunctional LS19-FSK-NPs were successfully delivered to the OHCs via the round window membrane route and exhibited slow-release properties. The sustained release and intracellular accumulation of FSK inhibited apoptosis of OHCs. Compared with LS19-NPs and FSK-NPs, LS19-FSK-NPs provided significantly stronger protection against noise-induced hearing damage, based on auditory brainstem responses at 4, 8, 16, and 32 kHz. Thus, our specially designed targeted nano-delivery system may serve as a basis for future clinical applications and treatment platforms and has the potential to significantly improve the treatment results of many inner ear diseases.
Collapse
Affiliation(s)
- Xiaogang An
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Renfeng Wang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Erfang Chen
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yang Yang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Bei Fan
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yao Li
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Bang Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Qiong Li
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zhenzhen Liu
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jun Chen
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
| | - Dingjun Zha
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
| |
Collapse
|
3
|
Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022; 12:e822. [PMID: 35593206 PMCID: PMC9121317 DOI: 10.1002/ctm2.822] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.
Collapse
Affiliation(s)
- Meiling Zhou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xi Zou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Kexin Cheng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bin Yan
- Department of Pathology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
4
|
Lin Q, Guo Q, Zhu M, Zhang J, Chen B, Wu T, Jiang W, Tang W. Application of Nanomedicine in Inner Ear Diseases. Front Bioeng Biotechnol 2022; 9:809443. [PMID: 35223817 PMCID: PMC8873591 DOI: 10.3389/fbioe.2021.809443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The treatment of inner ear disorders always remains a challenge for researchers. The presence of various physiological barriers, primarily the blood–labyrinth barrier (BLB), limits the accessibility of the inner ear and hinders the efficacy of various drug therapies. Yet despite recent advances in the cochlea for repair and regeneration, there are currently no pharmacological or biological interventions for hearing loss. Current research focuses on the localized drug-, gene-, and cell-based therapies. Drug delivery based on nanotechnology represents an innovative strategy to improve inner ear treatments. Materials with specific nanostructures not only exhibit a unique ability to encapsulate and transport therapeutics to the inner ear but also endow specific targeting properties to auditory hair cells as well as the stabilization and sustained drug release. Along with this, some alternative routes, like intratympanic drug delivery, can also offer a better means to access the inner ear without exposure to the BLB. This review discusses a variety of nano-based drug delivery systems to the ear for treating inner ear diseases. The main factors affecting the curative efficacy of nanomaterials are also discussed. With a deeper understanding of the link between these crucial factors and the clinical effect of nanomaterials, it paves the way for the optimization of the therapeutic activity of nanocarriers.
Collapse
Affiliation(s)
- Qianyu Lin
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiong Guo
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingchao Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Juanli Zhang
- Henan Institute of Medical Device Inspection, Zhengzhou, China
| | - Bei Chen
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Wu
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wei Jiang, ; Wenxue Tang,
| | - Wenxue Tang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wei Jiang, ; Wenxue Tang,
| |
Collapse
|
5
|
A Review on Recent Advancement on Age-Related Hearing Loss: The Applications of Nanotechnology, Drug Pharmacology, and Biotechnology. Pharmaceutics 2021; 13:pharmaceutics13071041. [PMID: 34371732 PMCID: PMC8309044 DOI: 10.3390/pharmaceutics13071041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
Aging is considered a contributing factor to many diseases such as cardiovascular disease, Alzheimer’s disease, and hearing loss. Age-related hearing loss, also termed presbycusis, is one of the most common sensory impairments worldwide, affecting one in five people over 50 years of age, and this prevalence is growing annually. Associations have emerged between presbycusis and detrimental health outcomes, including social isolation and mental health. It remains largely untreatable apart from hearing aids, and with no globally established prevention strategies in the clinical setting. Hence, this review aims to explore the pathophysiology of presbycusis and potential therapies, based on a recent advancement in bile acid-based bio-nanotechnologies. A comprehensive online search was carried out using the following keywords: presbycusis, drugs, hearing loss, bile acids, nanotechnology, and more than 150 publications were considered directly relevant. Evidence of the multifaceted oxidative stress and chronic inflammation involvement in cellular damage and apoptosis that is associated with a loss of hair cells, damaged and inflamed stria vascularis, and neuronal signalling loss and apoptosis continues to emerge. New robust and effective therapies require drug delivery deeper into the various layers of the cochlea. Bile acid-based nanotechnology has gained wide interest in its permeation-enhancing ability and potential for numerous applications in treating presbycusis.
Collapse
|
6
|
|
7
|
Javan Nikkhah S, Thompson D. Molecular Modelling Guided Modulation of Molecular Shape and Charge for Design of Smart Self-Assembled Polymeric Drug Transporters. Pharmaceutics 2021; 13:141. [PMID: 33499130 PMCID: PMC7912381 DOI: 10.3390/pharmaceutics13020141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomedicine employs molecular materials for prevention and treatment of disease. Recently, smart nanoparticle (NP)-based drug delivery systems were developed for the advanced transport of drug molecules. Rationally engineered organic and inorganic NP platforms hold the promise of improving drug targeting, solubility, prolonged circulation, and tissue penetration. However, despite great progress in the synthesis of NP building blocks, more interdisciplinary research is needed to understand their self-assembly and optimize their performance as smart nanocarriers. Multi-scale modeling and simulations provide a valuable ally to experiment by mapping the potential energy landscape of self-assembly, translocation, and delivery of smart drug-loaded NPs. Here, we highlight key recent advances to illustrate the concepts, methods, and applications of smart polymer-based NP drug delivery. We summarize the key design principles emerging for advanced multifunctional polymer topologies, illustrating how the unusual architecture and chemistry of dendritic polymers, self-assembling polyelectrolytes and cyclic polymers can provide exceptional drug delivery platforms. We provide a roadmap outlining the opportunities and challenges for the effective use of predictive multiscale molecular modeling techniques to accelerate the development of smart polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| | | |
Collapse
|
8
|
Nanocarriers for drug delivery to the inner ear: Physicochemical key parameters, biodistribution, safety and efficacy. Int J Pharm 2020; 592:120038. [PMID: 33159985 DOI: 10.1016/j.ijpharm.2020.120038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Despite the high incidence of inner ear disorders, there are still no dedicated medications on the market. Drugs are currently administered by the intratympanic route, the safest way to maximize drug concentration in the inner ear. Nevertheless, therapeutic doses are ensured for only a few minutes/hours using drug solutions or suspensions. The passage through the middle ear barrier strongly depends on drug physicochemical characteristics. For the past 15 years, drug encapsulation into nanocarriers has been developed to overcome this drawback. Nanocarriers are well known to sustain drug release and protect it from degradation. In this review, in vivo studies are detailed concerning nanocarrier biodistribution, their pathway mechanisms in the inner ear and the resulting drug pharmacokinetics. Key parameters influencing nanocarrier biodistribution are identified and discussed: nanocarrier size, concentration, surface composition and shape. Recent advanced strategies that combine nanocarriers with hydrogels, specific tissue targeting or modification of the round window permeability (cell-penetrating peptide, magnetic delivery) are explored. Most of the nanocarriers appear to be safe for the inner ear and provide a significant efficacy over classic formulations in animal models. However, many challenges remain to be overcome for future clinical applications.
Collapse
|
9
|
Synthesis of conjugates of closo-dodecaborate dianion with cholesterol using a “click” reaction. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2870-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Silk-coated dexamethasone non-spherical microcrystals for local drug delivery to inner ear. Eur J Pharm Sci 2020; 150:105336. [DOI: 10.1016/j.ejps.2020.105336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
|
11
|
An X, Zha D. Development of nanoparticle drug-delivery systems for the inner ear. Nanomedicine (Lond) 2020; 15:1981-1993. [PMID: 32605499 DOI: 10.2217/nnm-2020-0198] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hearing loss has become the most common sensory nerve disorder worldwide, with no effective treatment strategy. Low-permeability and limited blood supply to the blood-labyrinth barrier limit the effective delivery and efficacy of therapeutic drugs in the inner ear. Nanoparticle (NP)-based drugs have shown benefits of stable controlled release and functional surface modification, and NP-based delivery systems have become a research hotspot. In this review, we discuss the development of new targeted drug-delivery systems based on the biocompatibility and safety of different NPs in the cochlea, as well as the advantages and disadvantages of their prescription methods and approaches. We believe that targeted NP-based drug-delivery systems will be effective treatments for hearing loss.
Collapse
Affiliation(s)
- Xiaogang An
- Department of Otolaryngology - Head & Neck Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Dingjun Zha
- Department of Otolaryngology - Head & Neck Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| |
Collapse
|
12
|
Liang Z, Yu H, Lai J, Wen L, Chen G. An easy-to-prepare microshotgun for efficient transmembrane delivery by powering nanoparticles. J Control Release 2020; 321:119-131. [DOI: 10.1016/j.jconrel.2020.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
|
13
|
Stayner C, Brooke DG, Bates M, Eccles MR. Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease. Curr Med Chem 2019; 26:3081-3102. [PMID: 29737248 DOI: 10.2174/0929867325666180508095654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening genetic disease in humans, affecting approximately 1 in 500 people. ADPKD is characterized by cyst growth in the kidney leading to progressive parenchymal damage and is the underlying pathology in approximately 10% of patients requiring hemodialysis or transplantation for end-stage kidney disease. The two proteins that are mutated in ADPKD, polycystin-1 and polycystin-2, form a complex located on the primary cilium and the plasma membrane to facilitate calcium ion release in the cell. There is currently no Food and Drug Administration (FDA)-approved therapy to cure or slow the progression of the disease. Rodent ADPKD models do not completely mimic the human disease, and therefore preclinical results have not always successfully translated to the clinic. Moreover, the toxicity of many of these potential therapies has led to patient withdrawals from clinical trials. RESULTS Here, we review compounds in clinical trial for treating ADPKD, and we examine the feasibility of using a kidney-targeted approach, with potential for broadening the therapeutic window, decreasing treatment-associated toxicity and increasing the efficacy of agents that have demonstrated activity in animal models. We make recommendations for integrating kidney- targeted therapies with current treatment regimes, to achieve a combined approach to treating ADPKD. CONCLUSION Many compounds are currently in clinical trial for ADPKD yet, to date, none are FDA-approved for treating this disease. Patients could benefit from efficacious pharmacotherapy, especially if it can be kidney-targeted, and intensive efforts continue to be focused on this goal.
Collapse
Affiliation(s)
- Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Darby G Brooke
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Bates
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
| |
Collapse
|
14
|
Leso V, Fontana L, Ercolano ML, Romano R, Iavicoli I. Opportunities and challenging issues of nanomaterials in otological fields: an occupational health perspective. Nanomedicine (Lond) 2019; 14:2613-2629. [PMID: 31609676 DOI: 10.2217/nnm-2019-0114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nanotechnology may offer innovative solutions to overcome the physiological and anatomical barriers that make the diagnosis and treatment of ear diseases an extremely challenging issue. However, despite the solutions provided by nano-applications, the still little-known toxicological behavior of nanomaterials raised scientific concerns regarding their biosafety for treated patients and exposed workers. Therefore, this review provides an overview on recent developments and upcoming opportunities in nanoscale otological applications, and critically assesses possible adverse effects of nanosized compounds on ear structures and hearing functionality. Although such preliminary data do not allow to draw definite strategies for the evaluation of nanomaterial ototoxicity, they can still be useful to improve scientific community and workforce awareness regarding possible nanomaterial adverse effects on ear.
Collapse
Affiliation(s)
- Veruscka Leso
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luca Fontana
- Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Italian Workers' Compensation Authority (INAIL), Via di Fontana Candida 1, 00040 Monte Porzio Catone, Rome, Italy
| | - Maria Luigia Ercolano
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Rosaria Romano
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
15
|
Fasolato C, Giantulli S, Capocefalo A, Toumia Y, Notariello D, Mazzarda F, Silvestri I, Postorino P, Domenici F. Antifolate SERS-active nanovectors: quantitative drug nanostructuring and selective cell targeting for effective theranostics. NANOSCALE 2019; 11:15224-15233. [PMID: 31385577 DOI: 10.1039/c9nr01075k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the frontiers of nanomedicine is the rational design of theranostic nanovectors. These are nanosized materials combining diagnostic and therapeutic capabilities, i.e. capable of tracking cancer cells and tissues in complex environments, and of selectively acting against them. We herein report on the preparation and application of antifolate plasmonic nanovectors, made of functionalized gold nanoparticles conjugated with the folic acid competitors aminopterin and methotrexate. Due to the overexpression of folate binding proteins on many types of cancer cells, these nanosystems can be exploited for selective cancer cell targeting. The strong surface enhanced Raman scattering (SERS) signature of these nanovectors acts as a diagnostic tool, not only for tracing their presence in biological samples, but also, through a careful spectral analysis, to precisely quantify the amount of drug loaded on a single nanoparticle, and therefore delivered to the cells. Meanwhile, the therapeutic action is implemented based on the strong toxicity of antifolate drugs. Remarkably, supplying the drug in the nanostructured form, rather than as a free molecule, enhances its specific toxicity. The selectivity of the antifolate nanovectors can be optimized by the design of a hybrid folate/antifolate coloaded nanovector for the specific targeting of folate receptor α, which is overexpressed on numerous cancer cell types.
Collapse
Affiliation(s)
- Claudia Fasolato
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Patel J, Szczupak M, Rajguru S, Balaban C, Hoffer ME. Inner Ear Therapeutics: An Overview of Middle Ear Delivery. Front Cell Neurosci 2019; 13:261. [PMID: 31244616 PMCID: PMC6580187 DOI: 10.3389/fncel.2019.00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
There are a variety of methods to access the inner ear and many of these methods depend on utilizing the middle ear as a portal. In this approach the middle ear can be used as a passive receptacle, as part of an active drug delivery system, or simply as the most convenient way to access the inner ear directly in human subjects. The purpose of this volume is to examine some of the more cutting-edge approaches to treating the middle ear. Before considering these therapies, this manuscript provides an overview of some therapies that have been delivered through the middle ear both in the past and at the current time. This manuscript also serves as a review of many of the methods for accessing the inner ear that directly utilize or pass though the middle ear. This manuscript provides the reader a basis for understanding middle ear delivery, the basis of delivery of medicines via cochlear implants, and examines the novel approach of using hypothermia as a method of altering the responses of the inner ear to damage.
Collapse
Affiliation(s)
- Jaimin Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mikhaylo Szczupak
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Suhrud Rajguru
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Carey Balaban
- Department of Otolaryngology and Biomedical Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael E. Hoffer
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
17
|
Shi X, Tian F. Multiscale Modeling and Simulation of Nano‐Carriers Delivery through Biological Barriers—A Review. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800105] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinghua Shi
- CAS Key Laboratory for Nanosystem and Hierarchy FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyChinese Academy of Sciences Beijing 100190 China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of Sciences NO.19A Yuquan Road Beijing 100049 China
| | - Falin Tian
- CAS Key Laboratory for Nanosystem and Hierarchy FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyChinese Academy of Sciences Beijing 100190 China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of Sciences NO.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
18
|
Frisina RD, Budzevich M, Zhu X, Martinez GV, Walton JP, Borkholder DA. Animal model studies yield translational solutions for cochlear drug delivery. Hear Res 2018; 368:67-74. [PMID: 29793764 PMCID: PMC6165691 DOI: 10.1016/j.heares.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 11/18/2022]
Abstract
The field of hearing and deafness research is about to enter an era where new cochlear drug delivery methodologies will become more innovative and plentiful. The present report provides a representative review of previous studies where efficacious results have been obtained with animal models, primarily rodents, for protection against acute hearing loss such as acoustic trauma due to noise overexposure, antibiotic use and cancer chemotherapies. These approaches were initiated using systemic injections or oral administrations of otoprotectants. Now, exciting new options for local drug delivery, which opens up the possibilities for utilization of novel otoprotective drugs or compounds that might not be suitable for systemic use, or might interfere with the efficacious actions of chemotherapeutic agents or antibiotics, are being developed. These include interesting use of nanoparticles (with or without magnetic field supplementation), hydrogels, cochlear micropumps, and new transtympanic injectable compounds, sometimes in combination with cochlear implants.
Collapse
Affiliation(s)
- R D Frisina
- Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.
| | - M Budzevich
- Small Animal Imaging Lab, Moffitt Cancer Center, Tampa, FL, USA
| | - X Zhu
- Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - G V Martinez
- Small Animal Imaging Lab, Moffitt Cancer Center, Tampa, FL, USA
| | - J P Walton
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - D A Borkholder
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
19
|
Glueckert R, Johnson Chacko L, Rask-Andersen H, Liu W, Handschuh S, Schrott-Fischer A. Anatomical basis of drug delivery to the inner ear. Hear Res 2018; 368:10-27. [PMID: 30442227 DOI: 10.1016/j.heares.2018.06.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
The isolated anatomical position and blood-labyrinth barrier hampers systemic drug delivery to the mammalian inner ear. Intratympanic placement of drugs and permeation via the round- and oval window are established methods for local pharmaceutical treatment. Mechanisms of drug uptake and pathways for distribution within the inner ear are hard to predict. The complex microanatomy with fluid-filled spaces separated by tight- and leaky barriers compose various compartments that connect via active and passive transport mechanisms. Here we provide a review on the inner ear architecture at light- and electron microscopy level, relevant for drug delivery. Focus is laid on the human inner ear architecture. Some new data add information on the human inner ear fluid spaces generated with high resolution microcomputed tomography at 15 μm resolution. Perilymphatic spaces are connected with the central modiolus by active transport mechanisms of mesothelial cells that provide access to spiral ganglion neurons. Reports on leaky barriers between scala tympani and the so-called cortilymph compartment likely open the best path for hair cell targeting. The complex barrier system of tight junction proteins such as occludins, claudins and tricellulin isolates the endolymphatic space for most drugs. Comparison of relevant differences of barriers, target cells and cell types involved in drug spread between main animal models and humans shall provide some translational aspects for inner ear drug applications.
Collapse
Affiliation(s)
- R Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria; University Clinics Innsbruck, Tirol Kliniken, University Clinic for Ear, Nose and Throat Medicine Innsbruck, Austria.
| | - L Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - H Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - W Liu
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - S Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - A Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Liu X, Li M, Smyth H, Zhang F. Otic drug delivery systems: formulation principles and recent developments. Drug Dev Ind Pharm 2018; 44:1395-1408. [PMID: 29659300 DOI: 10.1080/03639045.2018.1464022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.
Collapse
Affiliation(s)
- Xu Liu
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| | - Mingshuang Li
- b Department of Communication Sciences and Disorders , The University of Texas at Austin , Austin , TX , USA
| | - Hugh Smyth
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| | - Feng Zhang
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
21
|
Mäder K, Lehner E, Liebau A, Plontke SK. Controlled drug release to the inner ear: Concepts, materials, mechanisms, and performance. Hear Res 2018; 368:49-66. [PMID: 29576310 DOI: 10.1016/j.heares.2018.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/01/2022]
Abstract
Progress in drug delivery to the ear has been achieved over the last few years. This review illustrates the main mechanisms of controlled drug release and the resulting geometry- and size-dependent release kinetics. The potency, physicochemical properties, and stability of the drug molecules are key parameters for designing the most suitable drug delivery system. The most important drug delivery systems for the inner ear include solid foams, hydrogels, and different nanoscale drug delivery systems (e.g., nanoparticles, liposomes, lipid nanocapsules, polymersomes). Their main characteristics (i.e., general structure and materials) are discussed, with special attention given to underlining the link between the physicochemical properties (e.g., surface areas, glass transition temperature, microviscosity, size, and shape) and release kinetics. An appropriate characterization of the drug, the excipients used, and the formulated drug delivery systems is necessary to achieve a deeper understanding of the release process and decrease variability originating from the drug delivery system. This task cannot be solved by otologists alone. The interdisciplinary cooperation between otology/neurotology, pharmaceutics, physics, and other disciplines will result in improved drug delivery systems for the inner ear.
Collapse
Affiliation(s)
- Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany.
| | - Eric Lehner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Arne Liebau
- Department of Otorhinolaryngology, Head & Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Stefan K Plontke
- Department of Otorhinolaryngology, Head & Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
22
|
Jang MH, Kim CH, Yoon HY, Sung SW, Goh MS, Lee ES, Shin DJ, Choi YW. Steric stabilization of RIPL peptide-conjugated liposomes and in vitro assessment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0392-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Ding S, Xie S, Chen W, Wen L, Wang J, Yang F, Chen G. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear? Eur J Pharm Sci 2018; 126:11-22. [PMID: 29499347 DOI: 10.1016/j.ejps.2018.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/07/2018] [Accepted: 02/26/2018] [Indexed: 11/18/2022]
Abstract
Drug delivery to the inner ear by nanomedicine strategies has emerged as an effective therapeutic approach for the management of inner ear diseases including hearing and balance disorders. It is well accepted that substance enters the perilymph from the middle ear through the round window membrane (RWM), but the passage through the oval window (OW) has long been neglected. Up to now, researchers still know little about the pathway via which nanoparticles (NPs) enter the inner ear or how they reach the inner ear following local applications. Herein, we engineered fluorescence traceable chitosan (CS) NPs, investigated the NP distribution within cochlear and vestibular organs, and assessed the availability of RWM and OW pathways to NP transport. Intriguingly, there were high levels of CS NPs in vestibular hair cells, dark cells and supporting cells, but negligible ones in cochlear hair cells and epithelial cells after intratympanic administration. However, the NPs were visualized in two cell models, L929 and HEI-OC1 cell lines, and in the hair cells of cochlear explants after co-incubation in vitro. These combined studies implied that CS NPs might enter the vestibule directly through the OW and then preferentially accumulated in the cells of vestibular organs. Thus, in vivo studies were carried out and clearly revealed that CS NPs entered the inner ear through both the RWM and OW, but the latter played a governing role in delivering NPs to the vestibule with vivid fluorescence signals in the thin bone of the stapes footplate. Overall, these findings firstly suggested that the OW, as a royal gate, afforded a convenient access to facilitate CS NPs transport into inner ear, casting a new light on future clinical applications of NPs in the effective treatment of vestibular disorders by minimizing the risk of hearing loss associated with cochlear hair cell pathology.
Collapse
Affiliation(s)
- Shan Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shibao Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiquan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fan Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
24
|
Panevin AA, Zhuravskii SG. Potentiation of Otoprotective Effect of Hydrocortisone Immobilized on Povidone Nanoparticles under Conditions of Intravenous Injection. Bull Exp Biol Med 2018; 164:362-365. [PMID: 29308561 DOI: 10.1007/s10517-018-3990-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 01/26/2023]
Abstract
The otoprotective effect of immobilized hydrocortisone was studied on the model of acute acoustic injury to the auditory analyzer in male Wistar rats. The effects of true solution and suspension where polyvinylpyrrolidone particles (100-500 nm) served as dispersed phase (hydrocortisone concentration 5 mg/kg). The agents were administered immediately after continuous acoustic stimulation: 5 kHz tone, 110 dB for 2 h. The hearing status was evaluated by the amplitude of otoacoustic emission at the distortion product frequency (4-6.4 kHz) 1 and 24 h and 7 days after acoustic stimulation. Single injection of hydrocortisone suspension caused a more pronounced therapeutic effect within 1 day after acoustic stimulation.
Collapse
Affiliation(s)
- A A Panevin
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia. .,I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
| | - S G Zhuravskii
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia.,I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| |
Collapse
|
25
|
Martín-Saldaña S, Palao-Suay R, Aguilar MR, García-Fernández L, Arévalo H, Trinidad A, Ramírez-Camacho R, San Román J. pH-sensitive polymeric nanoparticles with antioxidant and anti-inflammatory properties against cisplatin-induced hearing loss. J Control Release 2017; 270:53-64. [PMID: 29197586 DOI: 10.1016/j.jconrel.2017.11.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/28/2022]
Abstract
Polymeric nanoparticles (NPs) based on smart synthetic amphiphilic copolymers are used to transport and controlled release dexamethasone in the inner ear to protect against the ototoxic effect of cisplatin. The NPs were based on a mixture of two pseudo-block polymer drugs obtained by free radical polymerization: poly(VI-co-HEI) and poly(VP-co-MVE) or poly(VP-co-MTOS), being VI 1-vinylimidazole, VP N-vinylpyrrolidone, and HEI, MVE and MTOS the methacrylic derivatives of ibuprofen, α-tocopherol and α-tocopheryl succinate, respectively. The NPs were obtained by nanoprecipitation with appropriate hydrodynamic properties, and isoelectric points that matched the pH of inflamed tissue. The NPs were tested both in vitro (using HEI-OC1 cells) and in vivo (using a murine model) with good results. Although the concentration of dexamethasone administered in the NPs is around two orders of magnitude lower that the conventional treatment for intratympanic administration, the NPs protected from the cytotoxic effect of cisplatin when the combination of the appropriate properties in terms of size, zeta potential, encapsulation efficiency and isoelectric point were achieved. To the best of our knowledge this is the first time that pH sensitive NPs are used to protect from cisplatin-induced hearing loss by intratympanic administration.
Collapse
Affiliation(s)
- Sergio Martín-Saldaña
- Grupo de Biomateriales, Departamento de Nanomateriales Poliméricos y Biomateriales, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain; Ear Research Group, Hospital UniversitarioPuerta de Hierro Majadahonda, Health Research Institute Puerta de Hierro, Madrid, Spain
| | - Raquel Palao-Suay
- Grupo de Biomateriales, Departamento de Nanomateriales Poliméricos y Biomateriales, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - María Rosa Aguilar
- Grupo de Biomateriales, Departamento de Nanomateriales Poliméricos y Biomateriales, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain.
| | - Luis García-Fernández
- Grupo de Biomateriales, Departamento de Nanomateriales Poliméricos y Biomateriales, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - Humberto Arévalo
- Grupo de Biomateriales, Departamento de Nanomateriales Poliméricos y Biomateriales, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Almudena Trinidad
- Ear Research Group, Hospital UniversitarioPuerta de Hierro Majadahonda, Health Research Institute Puerta de Hierro, Madrid, Spain
| | - Rafael Ramírez-Camacho
- Ear Research Group, Hospital UniversitarioPuerta de Hierro Majadahonda, Health Research Institute Puerta de Hierro, Madrid, Spain
| | - Julio San Román
- Grupo de Biomateriales, Departamento de Nanomateriales Poliméricos y Biomateriales, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| |
Collapse
|
26
|
Dai J, Long W, Liang Z, Wen L, Yang F, Chen G. A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles. Drug Dev Ind Pharm 2017; 44:89-98. [PMID: 28851247 DOI: 10.1080/03639045.2017.1373803] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Delivery of biomacromolecular drugs into the inner ear is challenging, mainly because of their inherent instability as well as physiological and anatomical barriers. Therefore, protein-friendly, hydrogel-based delivery systems following local administration are being developed for inner ear therapy. Herein, biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing interferon α-2 b (IFN α-2 b) were loaded in chitosan/glycerophosphate (CS/GP)-based thermosensitive hydrogel for IFN delivery by intratympanic injection. The injectable hydrogel possessed a physiological pH and formed semi-solid gel at 37 °C, with good swelling and deswelling properties. The CS/GP hydrogel could slowly degrade as visualized by scanning electron microscopy (SEM). The presence of NPs in CS/GP gel largely influenced in vitro drug release. In the guinea pig cochlea, a 1.5- to 3-fold increase in the drug exposure time of NPs-CS/GP was found than those of the solution, NPs and IFN-loaded hydrogel. Most importantly, a prolonged residence time was attained without obvious histological changes in the inner ear. This biodegradable, injectable, and thermosensitive NPs-CS/GP system may allow longer delivery of protein drugs to the inner ear, thus may be a potential novel vehicle for inner ear therapy.
Collapse
Affiliation(s)
- Juan Dai
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Wei Long
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Zhongping Liang
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Lu Wen
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China
| | - Fan Yang
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| | - Gang Chen
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Advanced Drug Delivery , Guangdong Pharmaceutical University , Guangzhou , China
| |
Collapse
|
27
|
Cai H, Liang Z, Huang W, Wen L, Chen G. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Int J Pharm 2017; 532:55-65. [PMID: 28870763 DOI: 10.1016/j.ijpharm.2017.08.084] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/15/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
The properties of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and penetration enhancers play a deciding role in the inner ear drug delivery of NPs across the round window membrane (RWM). Thus, PLGA nano-based systems with a variety of particle sizes and surface chemistries and those combined with cell-penetrating peptides (CPPs) as penetration enhancers were devised to explore their impact on the cochlear drug delivery in vivo. First, we demonstrated that the properties of NPs dictated the extent of NP cochlear entry by near-infrared fluorescence imaging. NPs with the sizes of 150 and 300nm had faster entry than that of 80nm NPs. At 0.5h, among the NPs unmodified and modified with chitosan (CS), poloxamer 407 (P407) and methoxy polyethylene glycol, CS-PLGA-NPs (positive surface charge) carried payload to the cochlea fastest, whereas P407-PLGA-NPs (surface hydrophilicity) showed the greatest distribution in the cochlea at 24h. Compared to other CPPs (TAT, penetratin and poly(arginine)8), low molecular weight protamine (LMWP) performed an outstanding enhanced NP cellular uptake in HEI-OC1 cells and cochlear entry. More importantly, NPs with optimized properties and CPPs may be combined to improve RWM penetration. For the first time, we confirmed that the combination of P407-PLGA-NPs (mean diameter: 100-200nm) and LMWP provided a synergistic enhancement in NP entry to the organ of Corti and stria vascularis without inducing pathological alteration of cochlear tissues and RWM. Taken together, we propose an effective PLGA nano-based strategy for enhanced drug delivery to the inner ear tissues that combines hydrophilic molecule-modified NPs and CPPs, ultimately opening an avenue for superior inner ear therapy.
Collapse
Affiliation(s)
- Hui Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhongping Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenli Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Valente F, Astolfi L, Simoni E, Danti S, Franceschini V, Chicca M, Martini A. Nanoparticle drug delivery systems for inner ear therapy: An overview. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0329-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
|
31
|
Li L, Chao T, Brant J, O'Malley B, Tsourkas A, Li D. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv Drug Deliv Rev 2017; 108:2-12. [PMID: 26796230 DOI: 10.1016/j.addr.2016.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/31/2023]
Abstract
Sensorineural hearing loss (SNHL) is one of the most common diseases, accounting for about 90% of all hearing loss. Leading causes of SNHL include advanced age, ototoxic medications, noise exposure, inherited and autoimmune disorders. Most of SNHL is irreversible and managed with hearing aids or cochlear implants. Although there is increased understanding of the molecular pathophysiology of SNHL, biologic treatment options are limited due to lack of noninvasive targeted delivery systems. Obstacles of targeted inner ear delivery include anatomic inaccessibility, biotherapeutic instability, and nonspecific delivery. Advances in nanotechnology may provide a solution to these barriers. Nanoparticles can stabilize and carry biomaterials across the round window membrane into the inner ear, and ligand bioconjugation onto nanoparticle surfaces allows for specific targeting. A newer technology, nanohydrogel, may offer noninvasive and sustained biotherapeutic delivery into specific inner ear cells. Nanohydrogel may be used for inner ear dialysis, a potential treatment for ototoxicity-induced SNHL.
Collapse
Affiliation(s)
- Lilun Li
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; New York University School of Medicine, New York, NY 10016, USA
| | - Tiffany Chao
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jason Brant
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Bert O'Malley
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Fasolato C, Giantulli S, Silvestri I, Mazzarda F, Toumia Y, Ripanti F, Mura F, Luongo F, Costantini F, Bordi F, Postorino P, Domenici F. Folate-based single cell screening using surface enhanced Raman microimaging. NANOSCALE 2016; 8:17304-17313. [PMID: 27714135 DOI: 10.1039/c6nr05057c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent progress in nanotechnology and its application to biomedical settings have generated great advantages in dealing with early cancer diagnosis. The identification of the specific properties of cancer cells, such as the expression of particular plasma membrane molecular receptors, has become crucial in revealing the presence and in assessing the stage of development of the disease. Here we report a single cell screening approach based on Surface Enhanced Raman Scattering (SERS) microimaging. We fabricated a SERS-labelled nanovector based on the biofunctionalization of gold nanoparticles with folic acid. After treating the cells with the nanovector, we were able to distinguish three different cell populations from different cell lines (cancer HeLa and PC-3, and normal HaCaT lines), suitably chosen for their different expressions of folate binding proteins. The nanovector, indeed, binds much more efficiently on cancer cell lines than on normal ones, resulting in a higher SERS signal measured on cancer cells. These results pave the way for applications in single cell diagnostics and, potentially, in theranostics.
Collapse
Affiliation(s)
- C Fasolato
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy. and Center for Life Nanoscience, Istituto Italiano di Tecnologia, V.le Regina Elena 291, Rome, Italy
| | - S Giantulli
- Dipartimento di Medicina Molecolare, Università Sapienza, P.le Aldo Moro 5, Rome, Italy
| | - I Silvestri
- Dipartimento di Medicina Molecolare, Università Sapienza, P.le Aldo Moro 5, Rome, Italy
| | - F Mazzarda
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy.
| | - Y Toumia
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | - F Ripanti
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy.
| | - F Mura
- Dipartimento di Chimica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy
| | - F Luongo
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy.
| | - F Costantini
- Dipartimento di Chimica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy
| | - F Bordi
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy. and CNR-ISC UOS Roma, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - P Postorino
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy.
| | - F Domenici
- Dipartimento di Fisica, Università Sapienza, P.le Aldo Moro 5, Rome, Italy. and Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| |
Collapse
|
33
|
Hyaluronic acid liposomal gel sustains delivery of a corticoid to the inner ear. J Control Release 2016; 226:248-57. [DOI: 10.1016/j.jconrel.2016.02.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/15/2022]
|
34
|
Otoprotective properties of 6α-methylprednisolone-loaded nanoparticles against cisplatin: In vitro and in vivo correlation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:965-976. [PMID: 26733264 DOI: 10.1016/j.nano.2015.12.367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED 6α-Methylprednisolone-loaded surfactant-free nanoparticles have been developed to palliate cisplatin ototoxicity. Nanoparticles were based on two different amphiphilic pseudo-block copolymers obtained by free radical polymerization and based on N-vinyl pyrrolidone and a methacrylic derivative of α-tocopheryl succinate or α-tocopherol. Copolymers formed spherical nanoparticles by nanoprecipitation in aqueous media that were able to encapsulate 6α-methylprednisolone in their inner core. The obtained nanovehicles were tested in vitro using HEI-OC1 cells and in vivo in a murine model. Unloaded nanoparticles were not able to significantly reduce the cisplatin ototoxicity. Loaded nanoparticles reduced cisplatin-ototoxicity in vitro being more active those based on the methacrylic derivative of vitamin E, due to their higher encapsulation efficiency. This formulation was able to protect hair cells in the base of the cochlea, having a positive effect in the highest frequencies tested in a murine model. A good correlation between the in vitro and the in vivo experiments was found. FROM THE CLINICAL EDITOR Cisplatin is a commonly used chemotherapeutic agent against many cancers clinically. However, one of the significant side-effects remains ototoxicity. Here, the authors presented their data on using 6α-methylprednisolone-loaded nanoparticles in the reduction of ototoxicity in in-vitro and in-vivo experiments. Early promising results should enable further refinement of adopting this new approach in future experiments.
Collapse
|
35
|
Zevon M, Ganapathy V, Kantamneni H, Mingozzi M, Kim P, Adler D, Sheng Y, Tan MC, Pierce M, Riman RE, Roth CM, Moghe PV. CXCR-4 Targeted, Short Wave Infrared (SWIR) Emitting Nanoprobes for Enhanced Deep Tissue Imaging and Micrometastatic Cancer Lesion Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6347-57. [PMID: 26514367 PMCID: PMC4763715 DOI: 10.1002/smll.201502202] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/24/2015] [Indexed: 05/18/2023]
Abstract
Realizing the promise of precision medicine in cancer therapy depends on identifying and tracking cancerous growths to maximize treatment options and improve patient outcomes. This goal of early detection remains unfulfilled by current clinical imaging techniques that fail to detect lesions due to their small size and suborgan localization. With proper probes, optical imaging techniques can overcome this by identifying the molecular phenotype of tumors at both macroscopic and microscopic scales. In this study, the first use of nanophotonic short wave infrared technology is proposed to molecularly phenotype small lesions for more sensitive detection. Here, human serum albumin encapsulated rare-earth nanoparticles (ReANCs) with ligands for targeted lesion imaging are designed. AMD3100, an antagonist to CXCR4 (a classic marker of cancer metastasis) is adsorbed onto ReANCs to form functionalized ReANCs (fReANCs). fReANCs are able to preferentially accumulate in receptor positive lesions when injected intraperitoneally in a subcutaneous tumor model. fReANCs can also target subtissue microlesions at a maximum depth of 10.5 mm in a lung metastatic model of breast cancer. Internal lesions identified with fReANCs are 2.25 times smaller than those detected with ReANCs. Thus, an integrated nanoprobe detection platform is presented, which allows target-specific identification of subtissue cancerous lesions.
Collapse
Affiliation(s)
- Margot Zevon
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Harini Kantamneni
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Marco Mingozzi
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Paul Kim
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08855
| | - Derek Adler
- Molecular Imaging Center, 41 Gordon Road (Suite D), Piscataway NJ 08854
| | - Yang Sheng
- Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, 138682, Singapore
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, 138682, Singapore
| | - Mark Pierce
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Richard E. Riman
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08855
| | - Charles M. Roth
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
36
|
Recent advances in local drug delivery to the inner ear. Int J Pharm 2015; 494:83-101. [PMID: 26260230 DOI: 10.1016/j.ijpharm.2015.08.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
Inner ear diseases are not adequately treated by systemic drug administration mainly because of the blood-perilymph barrier that reduces exchanges between plasma and inner ear fluids. Local drug delivery methods including intratympanic and intracochlear administrations are currently developed to treat inner ear disorders more efficiently. Intratympanic administration is minimally invasive but relies on diffusion through middle ear barriers for drug entry into the cochlea, whereas intracochlear administration offers direct access to the colchlea but is rather invasive. A wide range of drug delivery systems or devices were evaluated in research and clinic over the last decade for inner ear applications. In this review, different strategies including medical devices, hydrogels and nanoparticulate systems for intratympanic administration, and cochlear implant coating or advanced medical devices for intracoclear administration were explored with special attention to in vivo studies. This review highlights the promising systems for future clinical applications as well as the current hurdles that remain to be overcome for efficient inner ear therapy.
Collapse
|
37
|
Glueckert R, Pritz CO, Roy S, Dudas J, Schrott-Fischer A. Nanoparticle mediated drug delivery of rolipram to tyrosine kinase B positive cells in the inner ear with targeting peptides and agonistic antibodies. Front Aging Neurosci 2015; 7:71. [PMID: 26042029 PMCID: PMC4436893 DOI: 10.3389/fnagi.2015.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
Aim: Systemic pharmacotherapies have limitation due to blood-labyrinth barrier, so local delivery via the round window membrane opens a path for effective treatment. Multifunctional nanoparticle (NP)-mediated cell specific drug delivery may enhance efficacy and reduce side effects. Different NPs with ligands to target TrkB receptor were tested. Distribution, uptake mechanisms, trafficking, and bioefficacy of drug release of rolipram loaded NPs were evaluated. Methods: We tested lipid based nanocapsules (LNCs), Quantum Dot, silica NPs with surface modification by peptides mimicking TrkB or TrkB activating antibodies. Bioefficacy of drug release was tested with rolipram loaded LNCs to prevent cisplatin-induced apoptosis. We established different cell culture models with SH-SY-5Y and inner ear derived cell lines and used neonatal and adult mouse explants. Uptake and trafficking was evaluated with FACS and confocal as well as transmission electron microscopy. Results: Plain NPs show some selectivity in uptake related to the in vitro system properties, carrier material, and NP size. Some peptide ligands provide enhanced targeted uptake to neuronal cells but failed to show this in cell cultures. Agonistic antibodies linked to silica NPs showed TrkB activation and enhanced binding to inner ear derived cells. Rolipram loaded LNCs proved as effective carriers to prevent cisplatin-induced apoptosis. Discussion: Most NPs with targeting ligands showed limited effects to enhance uptake. NP aggregation and unspecific binding may change uptake mechanisms and impair endocytosis by an overload of NPs. This may affect survival signaling. NPs with antibodies activate survival signaling and show effective binding to TrkB positive cells but needs further optimization for specific internalization. Bioefficiacy of rolipram release confirms LNCs as encouraging vectors for drug delivery of lipophilic agents to the inner ear with ideal release characteristics independent of endocytosis.
Collapse
Affiliation(s)
- Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck Innsbruck, Austria ; University Clinics of Innsbruck, Tiroler Landeskrankenanstalten GmbH-TILAK Innsbruck, Austria
| | - Christian O Pritz
- Department of Otolaryngology, Medical University of Innsbruck Innsbruck, Austria ; Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem Jerusalem, Israel
| | - Soumen Roy
- Department of Otolaryngology, Medical University of Innsbruck Innsbruck, Austria
| | - Jozsef Dudas
- Department of Otolaryngology, Medical University of Innsbruck Innsbruck, Austria
| | | |
Collapse
|
38
|
ZHOU HAN, MA XIAOFENG, LIU YONGZE, DONG LEI, LUO YI, ZHU GUANGJIE, QIAN XIAOYUN, CHEN JIE, LU LIN, WANG JUNGUO, GAO XIA. Linear polyethylenimine-plasmid DNA nanoparticles are ototoxic to the cultured sensory epithelium of neonatal mice. Mol Med Rep 2015; 11:4381-8. [DOI: 10.3892/mmr.2015.3306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 01/15/2015] [Indexed: 11/06/2022] Open
|
39
|
Mundra V, Mahato RI. Design of nanocarriers for efficient cellular uptake and endosomal release of small molecule and nucleic acid drugs: learning from virus. Front Chem Sci Eng 2014. [DOI: 10.1007/s11705-014-1457-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Cai H, Wen X, Wen L, Tirelli N, Zhang X, Zhang Y, Su H, Yang F, Chen G. Enhanced local bioavailability of single or compound drugs delivery to the inner ear through application of PLGA nanoparticles via round window administration. Int J Nanomedicine 2014; 9:5591-601. [PMID: 25489245 PMCID: PMC4257110 DOI: 10.2147/ijn.s72555] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this paper, the potential of poly(D,L-lactide-co-glycolide acid) (PLGA) nanoparticles (NPs) for carrying single or compound drugs traversing the round window membrane (RWM) was examined after the round window (RW) administration of different NPs to guinea pigs. First, coumarin-6 was incorporated into PLGA NPs as a fluorescent probe to investigate its ability to cross the RWM. Then, PLGA NPs with salvianolic acid B (Sal B), tanshinone IIA (TS IIA), and total panax notoginsenoside (PNS) including notoginsenoside R1 (R1), ginsenoside Rg1 (Rg1), and ginsenoside Rb1 (Rb1) were developed to evaluate whether NPs loaded with compound drugs would pass through the RWM and improve the local bioavailability of these agents. PLGA NPs loaded with single or compound drugs were prepared by the emulsification solvent evaporation method, and their particle size distribution, particle morphology, and encapsulation efficiency were characterized. In vitro release study showed sustained-release profiles of Sal B, TS IIA, and PNS from the NPs. The pharmacokinetic results showed that NPs applied to the RWM significantly improved drug distribution within the inner ear. The AUC0-t of coumarin-6 in the perilymph (PL) following RW administration of NPs was 4.7-fold higher than that of coumarin-6 solution, and the Cmax was 10.9-fold higher. Furthermore, the AUC(0-t) of R1, Rg1, and Rb1 were 4.0-, 3.1-, and 7.1-fold greater, respectively, after the application of NPs compared to the compound solution, and the Cmax were, respectively, 14.4-, 10.0-, and 16.7-fold higher. These findings suggest that PLGA NPs with unique properties at the nanoscale dimensions have a powerful ability to transport single or compound drugs into the PL through the RWM and remarkably enhance the local bioavailability of the encapsulated drugs in the inner ear. The use of PLGA NPs as nanoscale delivery vehicles to carry drugs across the RWM may be a promising strategy for the treatment of inner ear diseases.
Collapse
Affiliation(s)
- Hui Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xingxing Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Nicola Tirelli
- School of Materials, University of Manchester, Manchester, United Kingdom ; School of Biomedicine, University of Manchester, Manchester, United Kingdom
| | - Xiao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yue Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Huanpeng Su
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Fan Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China ; Department of Clinical pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| |
Collapse
|
41
|
Wang Y, Wise AK, Tan J, Maina JW, Shepherd RK, Caruso F. Mesoporous silica supraparticles for sustained inner-ear drug delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4244-4248. [PMID: 25099026 DOI: 10.1002/smll.201401767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 06/03/2023]
Abstract
Mesoporous silica supraparticles (MS-SPs) are prepared via self-assembly of mesoporous silica nanoparticles under capillary force action in confined droplets. The MS-SPs are effective carriers for sustained drug delivery. Animal studies show that these particles are suitable for chronic intracochlear implantation, and neurotrophins released from the MS-SPs can efficiently rescue primary auditory neurons in an in vivo sensorineural hearing loss model.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | | | | | | | | | | |
Collapse
|
42
|
Yong J, Needham K, Brown WGA, Nayagam BA, McArthur SL, Yu A, Stoddart PR. Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons. Adv Healthc Mater 2014; 3:1862-8. [PMID: 24799427 DOI: 10.1002/adhm.201400027] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/21/2014] [Indexed: 12/21/2022]
Abstract
Infrared stimulation offers an alternative to electrical stimulation of neuronal tissue, with potential for direct, non-contact activation at high spatial resolution. Conventional methods of infrared neural stimulation (INS) rely on transient heating due to the absorption of relatively intense laser beams by water in the tissue. However, the water absorption also limits the depth of penetration of light in tissue. Therefore, the use of a near-infrared laser at 780 nm to stimulate cultured rat primary auditory neurons that are incubated with silica-coated gold nanorods (Au NRs) as an extrinsic absorber is investigated. The laser-induced electrical behavior of the neurons is observed using whole-cell patch clamp electrophysiology. The nanorod-treated auditory neurons (NR-ANs) show a significant increase in electrical activity compared with neurons that are incubated with non-absorbing silica-coated gold nanospheres and control neurons with no gold nanoparticles. The laser-induced heating by the nanorods is confirmed by measuring the transient temperature increase near the surface of the NR-ANs with an open pipette electrode. These findings demonstrate the potential to improve the efficiency and increase the penetration depth of INS by labeling nerves with Au NRs and then exposing them to infrared wavelengths in the water window of tissue.
Collapse
Affiliation(s)
- Jiawey Yong
- Faculty of Science, Engineering and Technology; Swinburne University of Technology; P. O. Box 218 Hawthorn Victoria 3122 Australia
| | - Karina Needham
- Department of Otolaryngology; University of Melbourne; East Melbourne Victoria 3002 Australia
| | - William G. A. Brown
- Faculty of Science, Engineering and Technology; Swinburne University of Technology; P. O. Box 218 Hawthorn Victoria 3122 Australia
| | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology; University of Melbourne; Carlton Victoria 3010 Australia
| | - Sally L. McArthur
- Faculty of Science, Engineering and Technology; Swinburne University of Technology; P. O. Box 218 Hawthorn Victoria 3122 Australia
| | - Aimin Yu
- Faculty of Science, Engineering and Technology; Swinburne University of Technology; P. O. Box 218 Hawthorn Victoria 3122 Australia
| | - Paul R. Stoddart
- Faculty of Science, Engineering and Technology; Swinburne University of Technology; P. O. Box 218 Hawthorn Victoria 3122 Australia
| |
Collapse
|
43
|
Ayoob AM, Borenstein JT. The role of intracochlear drug delivery devices in the management of inner ear disease. Expert Opin Drug Deliv 2014; 12:465-79. [PMID: 25347140 DOI: 10.1517/17425247.2015.974548] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Diseases of the inner ear include those of the auditory and vestibular systems, and frequently result in disabling hearing loss or vertigo. Despite a rapidly expanding pipeline of potential cochlear therapeutics, the inner ear remains a challenging organ for targeted drug delivery, and new technologies are required to deliver these therapies in a safe and efficacious manner. In addition to traditional approaches for direct inner ear drug delivery, novel microfluidics-based systems are under development, promising improved control over pharmacokinetics over longer periods of delivery, ultimately with application towards hair cell regeneration in humans. AREAS COVERED Advances in the development of intracochlear drug delivery systems are reviewed, including passive systems, active microfluidic technologies and cochlear prosthesis-mediated delivery. This article provides a description of novel delivery systems and their potential future clinical applications in treating inner ear disease. EXPERT OPINION Recent progresses in microfluidics and miniaturization technologies are enabling the development of wearable and ultimately implantable drug delivery microsystems. Progress in this field is being spurred by the convergence of advances in molecular biology, microfluidic flow control systems and models for drug transport in the inner ear. These advances will herald a new generation of devices, with near-term applications in preclinical models, and ultimately with human clinical use for a range of diseases of the inner ear.
Collapse
|
44
|
Baker TG, Roy S, Brandon CS, Kramarenko IK, Francis SP, Taleb M, Marshall KM, Schwendener R, Lee FS, Cunningham LL. Heat shock protein-mediated protection against Cisplatin-induced hair cell death. J Assoc Res Otolaryngol 2014; 16:67-80. [PMID: 25261194 DOI: 10.1007/s10162-014-0491-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/16/2014] [Indexed: 12/20/2022] Open
Abstract
Cisplatin is a highly successful and widely used chemotherapy for the treatment of various solid malignancies in both adult and pediatric patients. Side effects of cisplatin treatment include nephrotoxicity and ototoxicity. Cisplatin ototoxicity results from damage to and death of cells in the inner ear, including sensory hair cells. We showed previously that heat shock inhibits cisplatin-induced hair cell death in whole-organ cultures of utricles from adult mice. Since heat shock protein 70 (HSP70) is the most upregulated HSP in response to heat shock, we investigated the role of HSP70 as a potential protectant against cisplatin-induced hair cell death. Our data using utricles from HSP70 (-/-) mice indicate that HSP70 is necessary for the protective effect of heat shock against cisplatin-induced hair cell death. In addition, constitutive expression of inducible HSP70 offered modest protection against cisplatin-induced hair cell death. We also examined a second heat-inducible protein, heme oxygenase-1 (HO-1, also called HSP32). HO-1 is an enzyme responsible for the catabolism of free heme. We previously showed that induction of HO-1 using cobalt protoporphyrin IX (CoPPIX) inhibits aminoglycoside-induced hair cell death. Here, we show that HO-1 also offers significant protection against cisplatin-induced hair cell death. HO-1 induction occurred primarily in resident macrophages, with no detectable expression in hair cells or supporting cells. Depletion of macrophages from utricles abolished the protective effect of HO-1 induction. Together, our data indicate that HSP induction protects against cisplatin-induced hair cell death, and they suggest that resident macrophages mediate the protective effect of HO-1 induction.
Collapse
Affiliation(s)
- Tiffany G Baker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC, 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nakagawa T. Strategies for developing novel therapeutics for sensorineural hearing loss. Front Pharmacol 2014; 5:206. [PMID: 25278894 PMCID: PMC4165348 DOI: 10.3389/fphar.2014.00206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/20/2014] [Indexed: 01/01/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is a common disability in the world; however, at present, options for the pharmacological treatment of SNHL are very limited. Previous studies involving human temporal bone analyses have revealed that the degeneration of the cochlea is a common mechanism of SNHL. A major problem for the development of novel pharmacotherapy for SNHL has been the limited regeneration capacity in mammalian cochlear cells. However, recent progress in basic studies has led to several effective strategies for the induction of regeneration in the mammalian cochlea, in accordance with the stage of degeneration. In addition, recent advances in the identification of human deafness genes and their characterization in mouse models have elucidated cellular and/or molecular mechanisms of SNHL, which will contribute to clarify molecular targets of pharmacotherapy for treatment of SNHL.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University Kyoto, Japan
| |
Collapse
|
46
|
Hillyar CRT, Cornelissen B, Vallis KA. Uptake, internalization and nuclear translocation of radioimmunotherapeutic agents. Ther Deliv 2014; 5:319-35. [PMID: 24592956 DOI: 10.4155/tde.14.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
Radioimmunotherapy (RIT) agents that incorporate short-range particle-emitting radionuclides exploit the high linear energy transfer of α-particles and Auger electrons. Both are densely ionizing, generate complex DNA double-strand breaks and so are profoundly cytotoxic. Internalizing RIT agents enter tumor cells through receptor-mediated endocytosis and by incorporation of cell-penetrating peptides. Once internalized, some RIT agents mediate escape from endosomes and/or translocate to the nucleus. In the classical nuclear import pathway, α/β-importins recognize nuclear localization sequences in RIT agents. Translocation through nuclear pores enables RIT agents to bind to nuclear targets induced by, for example, cellular stress, growth factors or anticancer therapy, such as γH2AX or p27(KIP-1). This review discusses RIT agents designed to exploit the mechanisms underlying these complex processes and compares them with noninternalizing RIT agents.
Collapse
Affiliation(s)
- Christopher R T Hillyar
- Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, OX3 7DQ, UK
| | | | | |
Collapse
|