1
|
Liu Y, Zhang Y, Yao W, Chen P, Cao Y, Shan M, Yu S, Zhang L, Bao B, Cheng FF. Recent Advances in Topical Hemostatic Materials. ACS APPLIED BIO MATERIALS 2024; 7:1362-1380. [PMID: 38373393 DOI: 10.1021/acsabm.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Untimely or improper treatment of traumatic bleeding may cause secondary injuries and even death. The traditional hemostatic modes can no longer meet requirements of coping with complicated bleeding emergencies. With scientific and technological advancements, a variety of topical hemostatic materials have been investigated involving inorganic, biological, polysaccharide, and carbon-based hemostatic materials. These materials have their respective merits and defects. In this work, the application and mechanism of the major hemostatic materials, especially some hemostatic nanomaterials with excellent adhesion, good biocompatibility, low toxicity, and high adsorption capacity, are summarized. In the future, it is the prospect to develop multifunctional hemostatic materials with hemostasis and antibacterial and anti-inflammatory properties for promoting wound healing.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yi Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Li Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Fang-Fang Cheng
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| |
Collapse
|
2
|
Martin-Alonso C, Tabrizi S, Xiong K, Blewett T, Sridhar S, Crnjac A, Patel S, An Z, Bekdemir A, Shea D, Wang ST, Rodriguez-Aponte S, Naranjo CA, Rhoades J, Kirkpatrick JD, Fleming HE, Amini AP, Golub TR, Love JC, Bhatia SN, Adalsteinsson VA. Priming agents transiently reduce the clearance of cell-free DNA to improve liquid biopsies. Science 2024; 383:eadf2341. [PMID: 38236959 PMCID: PMC11529396 DOI: 10.1126/science.adf2341] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
Liquid biopsies enable early detection and monitoring of diseases such as cancer, but their sensitivity remains limited by the scarcity of analytes such as cell-free DNA (cfDNA) in blood. Improvements to sensitivity have primarily relied on enhancing sequencing technology ex vivo. We sought to transiently augment the level of circulating tumor DNA (ctDNA) in a blood draw by attenuating its clearance in vivo. We report two intravenous priming agents given 1 to 2 hours before a blood draw to recover more ctDNA. Our priming agents consist of nanoparticles that act on the cells responsible for cfDNA clearance and DNA-binding antibodies that protect cfDNA. In tumor-bearing mice, they greatly increase the recovery of ctDNA and improve the sensitivity for detecting small tumors.
Collapse
Affiliation(s)
- Carmen Martin-Alonso
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology,
Institute for Medical Engineering and Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
| | - Shervin Tabrizi
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
- Department of Radiation Oncology, Massachusetts General
Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | - Timothy Blewett
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | | | - Andjela Crnjac
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | - Sahil Patel
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
- Division of Pulmonary and Critical Care, Department of
Medicine, Massachusetts General Hospital, Boston, MA 02124, USA
| | - Zhenyi An
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | - Ahmet Bekdemir
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas Shea
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | - Shih-Ting Wang
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergio Rodriguez-Aponte
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A. Naranjo
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin Rhoades
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
| | - Jesse D. Kirkpatrick
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology,
Institute for Medical Engineering and Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
| | - Heather E. Fleming
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Todd R. Golub
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Boston, MA 02115, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
- Department of Chemical Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology,
Institute for Medical Engineering and Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA
- Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medicine, Brigham and Women’s
Hospital, Boston, MA 02115, USA
- Wyss Institute at Harvard University, Boston, MA 02215,
USA
- Howard Hughes Medical Institute, Cambridge, MA 02138,
USA
| | | |
Collapse
|
3
|
Ferdous Z, Elzaki O, Beegam S, Zaaba NE, Tariq S, Adeghate E, Nemmar A. Comparative Evaluation of the Effects of Amorphous Silica Nanoparticles on the Erythrocytes of Wistar Normotensive and Spontaneously Hypertensive Rats. Int J Mol Sci 2023; 24:ijms24043784. [PMID: 36835195 PMCID: PMC9967603 DOI: 10.3390/ijms24043784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Silica nanoparticles (SiNPs) are one of the most widely used nanomaterials. SiNPs can encounter erythrocytes and hypertension is strongly linked to abnormalities in the functional and structural characteristics of erythrocytes. As little is known about the combinatorial effect of SiNP-hypertension interactions on erythrocytes, the aim of this work was to study the effects triggered by hypertension on SiNPs induced hemolysis and the pathophysiological mechanism underlying it. We compared the interaction of amorphous 50 nm SiNPs at various concentrations (0.2, 1, 5 and 25 µg/mL) with erythrocytes of normotensive (NT) and hypertensive (HT) rats in vitro. Following incubation of the erythrocytes, SiNPs induced significant and dose-dependent increase in hemolysis. Transmission electron microscopy revealed erythrocyte deformity in addition to SiNPs taken up by erythrocytes. The erythrocyte susceptibility to lipid peroxidation was significantly increased. The concentration of reduced glutathione, and activities of superoxide dismutase, and catalase were significantly increased. SiNPs significantly increased intracellular Ca2+. Likewise, the concentration of the cellular protein annexin V and calpain activity was enhanced by SiNPs. Concerningly, all the tested parameters were significantly enhanced in erythrocytes from HT rats compared to NT rats. Our results collectively demonstrate that hypertension can potentially exacerbate the in vitro effect induced by SiNPs.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Correspondence: ; Tel.: +971-3-7137533
| |
Collapse
|
4
|
Martin-Alonso C, Tabrizi S, Xiong K, Blewett T, Patel S, An Z, Sridhar S, Bekdemir A, Shea D, Amini AP, Wang ST, Kirkpatrick J, Rhoades J, Golub TR, Love JC, Adalsteinsson VA, Bhatia SN. A nanoparticle priming agent reduces cellular uptake of cell-free DNA and enhances the sensitivity of liquid biopsies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.524003. [PMID: 36711603 PMCID: PMC9882213 DOI: 10.1101/2023.01.13.524003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Liquid biopsies are enabling minimally invasive monitoring and molecular profiling of diseases across medicine, but their sensitivity remains limited by the scarcity of cell-free DNA (cfDNA) in blood. Here, we report an intravenous priming agent that is given prior to a blood draw to increase the abundance of cfDNA in circulation. Our priming agent consists of nanoparticles that act on the cells responsible for cfDNA clearance to slow down cfDNA uptake. In tumor-bearing mice, this agent increases the recovery of circulating tumor DNA (ctDNA) by up to 60-fold and improves the sensitivity of a ctDNA diagnostic assay from 0% to 75% at low tumor burden. We envision that this priming approach will significantly improve the performance of liquid biopsies across a wide range of clinical applications in oncology and beyond.
Collapse
|
5
|
Ablat N, Ablimit M, Abudoukadier A, Kadeer B, Maihemuti A, Bakewaiyi A, Tuerxun A, Aihemaiti A. Liver protection and hemostatic effects of medicinal plant Arnebia euchroma (Royle) I.M.Johnst extract in a rat model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115739. [PMID: 36126784 DOI: 10.1016/j.jep.2022.115739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arnebia euchroma (Royle) I.M.Johnst. (AE) is a Chinese medicinal herb that is traditionally used to treat various circulatory diseases. It exhibits certain effects, such as the promotion of blood circulation and cooling, rash clearance, and detoxification. AIM OF THE STUDY This study was designed to explore the hepatoprotective and hemostatic effects of the ethyl acetate extract of AE in rats with carbon tetrachloride (CCl4)-induced liver injury. MATERIALS AND METHODS Wistar rats were treated via oral gavage with different doses of the ethyl acetate extract of AE (3.5, 7, or 14 g kg-1·day-1) for 14 consecutive days, following which hemostatic and liver function tests were conducted. For the hemostatic tests, the platelet count, blood platelet aggregation, blood platelet adhesion to fibrinogen, platelet factor 4 (PF-4) secretion from blood platelets, prothrombin time (PT), activated partial thromboplastin time (aPTT), thrombin time (TT), and fibrinogen levels were measured at the end of the treatment period. For the liver function tests, 0.25 mL/200 g (1.25 mL kg-1·day-1) of olive oil was injected into the abdominal cavity of the control rats, whereas 15% CCl4 plus olive oil (prescription: 7.5 mL CCl4 + 42.5 olive oil) was injected into that of the treated rats at 1 h after extract administration on day 6, 13, and 20. Additionally, food and water were withheld from all the animals. On the following day, the rats were anesthetized and their albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), gamma-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), reactive oxygen species (ROS), methane dicarboxylic aldehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels were measured. Glutathione S-transferase (GST), glutathione reductase (GR), and glutathione peroxidase (GPx) levels among the groups were determined using a one-way analysis of variance. RESULTS The platelet count and blood platelet aggregation, blood platelet adhesion to fibrinogen and PF-4 secretion levels were significantly increased in the (3.5 g kg-1 day-1) AE group as compared to those in the control group (all p < 0.001; for the 7 and 14 g kg-1 day-1 AE groups, all p > 0.05, respectively). Although the PT and aPTT were not affected by the AE extract (all p > 0.05), the TT was reduced and the FIB levels were significantly increased in all AE groups (p < 0.05). Liver function tests showed that CCl4 caused significant liver damage, thereby decreasing the albumin, SOD, CAT, GSH, GST, GR, and GPx levels, while increasing the AST, ALT, ALP, SGOT, SGPT, GGT, LDH, ROS, and MDA levels (all p < 0.001). By contrast, treatment with the different doses of AE extract reversed the CCl4 effects on all these parameters. Compared with the levels in the CCl4 group, the GSH and GR levels in the three AE groups (3.5, 7, and 14 g kg-1·day-1) were significantly higher (p < 0.05, p < 0.01, and p < 0.001, respectively), whereas the differences in the other parameters for these three groups were all at the significance levels of p < 0.05, p < 0.05, and p < 0.01, respectively. CONCLUSIONS AE extracts administered orally exhibited hepatoprotective activity by affecting platelet production and blood coagulation and ameliorating liver function-damaging modifications. Specifically, a dosage of 3.5 g kg-1·day-1 resulted in the most optimal effects.
Collapse
Affiliation(s)
- Nuramatjan Ablat
- School of Mental Health, Bengbu Medical College, Bengbu, 233030, China.
| | - Mihray Ablimit
- Xinjiang Uygur Autonomous Region Shache County Dunbag Township Health Center, 844700, China.
| | - Abudoureheman Abudoukadier
- Department of Cardiology, Urumqi City Friendship Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830049, China.
| | - Buhaiqiemu Kadeer
- Department of Gynecology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
| | - Abulaitijiang Maihemuti
- Department of Laboratory, Uyghur Medicine Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830000, China.
| | - Alibati Bakewaiyi
- Department of Laboratory, Uyghur Medicine Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830000, China.
| | - Atike Tuerxun
- Department of Pharmacy, Uyghur Medicine Hospital of Hetian Region, Hetian, 848000, China.
| | - Adilijiang Aihemaiti
- Department of Laboratory, Uyghur Medicine Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830000, China.
| |
Collapse
|
6
|
Zadeh Mehrizi T, Shafiee Ardestani M. Application of non-metal nanoparticles, as a novel approach, for improving the stability of blood products: 2011-2021. Prog Biomater 2022; 11:137-161. [PMID: 35536502 PMCID: PMC9085557 DOI: 10.1007/s40204-022-00188-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/23/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the importance of the proper quality of blood products for safe transfusion, conventional methods for preparation and their preservation, they lack significant stability. Non-metal nanoparticles with particular features may overcome these challenges. This review study for the first time provided a comprehensive vision of the interaction of non-metal nanoparticles with each blood product (red blood cells, platelets and plasma proteins). The findings of this review on the most effective nanoparticle for improving the stability of RBCs indicate that graphene quantum dots and nanodiamonds show compatibility with RBCs. For increasing the stability of platelet products, silica nanoparticles exhibited a suppressive impact on platelet aggregation. Pristine graphene also shows compatibility with platelets. For better stability of plasma products, graphene oxide was indicated to preserve free human serum albumin from thermal shocks at low ionic strength. For increased stability of Factor VIII, mesoporous silica nanoparticles with large pores exhibit the superb quality of recovered proteins. Furthermore, 3.2 nm quantum dots exhibited anticoagulant effects. As the best promising nanoparticles for immunoglobulin stability, graphene quantum dots showed compatibility with γ-globulins. Overall, this review recommends further research on the mentioned nanoparticles as the most potential candidates for enhancing the stability and storage of blood components.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Distasio N, Dierick F, Ebrahimian T, Tabrizian M, Lehoux S. Design and development of Branched Poly(ß-aminoester) nanoparticles for Interleukin-10 gene delivery in a mouse model of atherosclerosis. Acta Biomater 2022; 143:356-371. [PMID: 35257950 DOI: 10.1016/j.actbio.2022.02.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/01/2022]
Abstract
Atherosclerosis progression is a result of chronic and non-resolving inflammation, effective treatments for which still remain to be developed. We designed and developed branched poly(ß-amino ester) nanoparticles (NPs) containing plasmid DNA encoding IL-10, a potent anti-inflammatory cytokine to atherosclerosis. The NPs (NP-VHPK) are functionalized with a targeting peptide (VHPK) specific for VCAM-1, which is overexpressed by endothelial cells at sites of atherosclerotic plaque. The anionic coating affords NP-VHPK with significantly lower toxicity than uncoated NPs in both endothelial cells and red blood cells (RBCs). Following injection of NP-VHPK in ApoE-/- mice, Cy5-labelled IL-10 significantly accumulates in both whole aortas and aortic sinus sections containing plaque compared to injection with a non-targeted control. Furthermore, IL-10 gene delivery results in an attenuation of inflammation locally at the plaque site. NP-VHPK may thus have the potential to reduce the inflammatory component of atherosclerosis in a safe and effective manner. STATEMENT OF SIGNIFICANCE: Atherosclerosis is a chronic inflammatory disease that results in the formation of lipid-laden plaques within vascular walls. Although treatments using drugs and antibodies are now beginning to address the inflammation in atherosclerosis, neither is sufficient for long-term therapy. In this paper, we introduce a strategy to deliver genes encoding the anti-inflammatory protein interleukin-10 (IL-10) in vivo. We showed that Branched Poly(ß-aminoester) carrying the IL-10 gene are able to localize specifically at the plaque via surface-functionalized targeting moieties against inflamed VCAM-1 and/or ICAM-1 and to facilitate gene transcription by ECs to increase the local concentration of the IL-10 within the plaque. To date, there is no report involving non-viral nanotechnology to provide gene-based therapies for atherosclerosis.
Collapse
|
8
|
Abdel-Bakky MS, Amin E, Ewees MG, Mahmoud NI, Mohammed HA, Altowayan WM, Abdellatif AAH. Coagulation System Activation for Targeting of COVID-19: Insights into Anticoagulants, Vaccine-Loaded Nanoparticles, and Hypercoagulability in COVID-19 Vaccines. Viruses 2022; 14:228. [PMID: 35215822 PMCID: PMC8876839 DOI: 10.3390/v14020228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, is currently developing into a rapidly disseminating and an overwhelming worldwide pandemic. In severe COVID-19 cases, hypercoagulability and inflammation are two crucial complications responsible for poor prognosis and mortality. In addition, coagulation system activation and inflammation overlap and produce life-threatening complications, including coagulopathy and cytokine storm, which are associated with overproduction of cytokines and activation of the immune system; they might be a lead cause of organ damage. However, patients with severe COVID-19 who received anticoagulant therapy had lower mortality, especially with elevated D-dimer or fibrin degradation products (FDP). In this regard, the discovery of natural products with anticoagulant potential may help mitigate the numerous side effects of the available synthetic drugs. This review sheds light on blood coagulation and its impact on the complication associated with COVID-19. Furthermore, the sources of natural anticoagulants, the role of nanoparticle formulation in this outbreak, and the prevalence of thrombosis with thrombocytopenia syndrome (TTS) after COVID-19 vaccines are also reviewed. These combined data provide many research ideas related to the possibility of using these anticoagulant agents as a treatment to relieve acute symptoms of COVID-19 infection.
Collapse
Affiliation(s)
- Mohamed S. Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 52471, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 52471, Saudi Arabia;
| | - Mohamed G. Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt; (M.G.E.); (N.I.M.)
| | - Nesreen I. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt; (M.G.E.); (N.I.M.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 52471, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Waleed M. Altowayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim 52471, Saudi Arabia;
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qasssim 52471, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
9
|
Mehrizi TZ, Kafiabad SA, Eshghi P. Effects and treatment applications of polymeric nanoparticles on improving platelets' storage time: a review of the literature from 2010 to 2020. Blood Res 2021; 56:215-228. [PMID: 34880140 PMCID: PMC8721452 DOI: 10.5045/br.2021.2021094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/26/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Maintaining the quality of platelet products and increasing their storage time are priorities for treatment applications. The formation of platelet storage lesions that limit the storage period and preservation temperature, which can prepare a decent environment for bacterial growth, are the most important challenges that researchers are dealing with in platelet preservation. Nanotechnology is an emerging field of science that has introduced novel solutions to resolve these problems. Here, we reviewed the reported effects of polymeric nanoparticles-including chitosan, dendrimers, polyethylene glycol (PEG), and liposome-on platelets in articles from 2010 to 2020. As a result, we concluded that the presence of dendrimer nanoparticles with a smaller size, negative charge, low molecular weight, and low concentration along with PEGylation can increase the stability and survival of platelets during storage. In addition, PEGylation of platelets can also be a promising approach to improve the quality of platelet bags during storage.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Sedigheh Amini Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences and Iran Blood Transfusion Organization, Tehran, Iran
| |
Collapse
|
10
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
11
|
Delyanee M, Solouk A, Akbari S, Daliri M. Hemostatic Electrospun Nanocomposite Containing Poly(lactic acid)/Halloysite Nanotube Functionalized by Poly(amidoamine) Dendrimer for Wound Healing Application: In Vitro and In Vivo Assays. Macromol Biosci 2021; 22:e2100313. [PMID: 34644007 DOI: 10.1002/mabi.202100313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Indexed: 11/09/2022]
Abstract
The main challenge in treating injuries is excessive bleeding whereas intervention is required if the body's hemostatic systems fail to control the bleeding. Herein, a novel nanocomposite consisting of poly(lactic acid) (PLA) and poly(amidoamine) (PAMAM) dendrimer functionalized halloysite nanotube (HNT) with a highly porous structure via electrospinning is developed. HNT is functionalized by PAMAM via divergent synthetic routes from zero to third-generation numbers. The effect of different percentages and generation numbers of PAMAM dendrimer (G1, G2, and G3) functionalized HNT on PLA is studied using physicochemical nanocomposite characteristics. These resultant nanocomposites provide a nanofibrous structure with appropriate physicochemical characteristics such as mechanical properties, surface wettability, and water permeability. The hemostatic assays indicate that nanocomposite with PAMAM G3 functionalized HNT have the quickest blood clotting time due to the abundant amino functional group. Furthermore, the nanocomposites with 10 wt% of nanoparticles significantly promote cellular behavior in vitro. The in vivo study demonstrates that PLA/PAMAM G3 functionalized HNT promotes angiogenesis, collagen deposition, and re-epithelialization in the wound sites of the rat model, as well as inhibiting inflammatory response. The findings indicate that nanofibrous structure and the presence of dendrimer functionalized HNT have a synergetic effect on the enhanced nanocomposite wound healing performance.
Collapse
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Morteza Daliri
- Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
12
|
Response of platelets to silver nanoparticles designed with different surface functionalization. J Inorg Biochem 2021; 224:111565. [PMID: 34411938 DOI: 10.1016/j.jinorgbio.2021.111565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
Despite increasing use of silver nanoparticles (AgNPs) in different medicinal products, knowledge about their effects on hemostasis and platelets functionality is still scarce. Published scientific reports provide neither data on oxidative stress response of platelets to AgNPs nor information about the effects of AgNPs physicochemical properties on functionality and activation of platelets. This study aimed to explore the role of AgNPs surface functionalization on cell viability, particle uptake, oxidative stress response, and activation of platelets. Small sized, spherical AgNPs were surface functionalized by negatively charged sodium bis(2-ethylhexyl) sulphosuccinate (AOT), neutral polymer polyvinylpyrrolidone (PVP), positively charged polymer poly-l-lysine (PLL) and bovine serum albumin (BSA). Platelet viability, activation and particle uptake were evaluated by flow cytometry. Oxidative stress response was evaluated by measuring the levels of intracellular glutathione (GSH), peroxy and superoxide radicals using assays based on fluorescence dies. Cytotoxicity and uptake of AgNPs to platelets were found to be dose-dependent in a following order PLL-AgNP >> > BSA-AgNP > AOT-AgNP > PVP-AgNP. Particle internalization was further confirmed by transmission electron microscopy. Treatment of platelets with AgNPs induced superoxide radical formation, depletion of GSH and hyperpolarization of the mitochondrial membrane. Small, but statistically significant increase of P-selectin expression in cells treated with all AgNPs compared to non-treated controls evidenced AgNPs-induced activation of platelets. Increased PAC-1 expression was found only in platelets treated with PLL-AgNPs. Obtained results demonstrate that different surface decoration of AgNPs determines their biological effects on platelets highlighting the importance of careful design of AgNPs-based medicinal products regarding their biocompatibility and functionality.
Collapse
|
13
|
Zadeh Mehrizi T, Amini Kafiabad S. Evaluation of the effects of nanoparticles on the therapeutic function of platelet: a review. J Pharm Pharmacol 2021; 74:179-190. [PMID: 34244798 DOI: 10.1093/jpp/rgab089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Nanotechnology and nanoparticles are used in different applications in disease monitoring and therapy in contact with blood. Nanoparticles showed different effects on blood components and reduced or improved the function of therapeutic platelet during the storage time. This review study was performed to evaluate the impacts of various sizes and charges of nanoparticles on platelet function and storage time. The present review contains the literature between 2010 and 2020. The data have been used from different sites such as PubMed, Wiley, ScienceDirect and online electronic journals. KEY FINDINGS From the literature survey, it has been demonstrated that among various properties, size and charge of nanoparticles were critical on the function of therapeutic platelet during the storage and inhibition of their aggregation. Overall, this study described that nanoparticles with smaller size and negative charge were more effective in increasing the survival time, inhibition of aggregation and improving the function of therapeutic platelet. SUMMARY Based on the current review, it can be confirmed that nanoparticles such as dendrimer, Au, Ag and iron oxide nanoparticles with smaller size and negative charge have significant advantages for improving the efficacy of platelets during the storage chain and inhibition of their aggregation.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Sedigheh Amini Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
14
|
Zadeh Mehrizi T, Eshghi P. Investigation of the effect of nanoparticles on platelet storage duration 2010–2020. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00340-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Karageorgou MA, Stamopoulos D. Immunocompatibility of a new dual modality contrast agent based on radiolabeled iron-oxide nanoparticles. Sci Rep 2021; 11:9753. [PMID: 33963211 PMCID: PMC8105398 DOI: 10.1038/s41598-021-89117-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Radiolabeled magnetic nanoparticles are promising candidates as dual-modality-contrast-agents (DMCA) for diagnostic applications. The immunocompatibility of a new DMCA is a prerequisite for subsequent in vivo applications. Here, a new DMCA, namely Fe3O4 nanoparticles radiolabeled with 68Ga, is subjected to immunocompatibility tests both in vitro and in vivo. The in vitro immunocompatibility of the DMCA relied on incubation with donated human WBCs and PLTs (five healthy individuals). Optical microscopy (OM) and atomic force microscopy (AFM) were employed for the investigation of the morphological characteristics of WBCs and PLTs. A standard hematology analyzer (HA) provided information on complete blood count. The in vivo immunocompatibility of the DMCA was assessed through its biodistribution among the basic organs of the mononuclear phagocyte system in normal and immunodeficient mice (nine in each group). In addition, Magnetic Resonance Imaging (MRI) data were acquired in normal mice (three). The combined OM, AFM and HA in vitro data showed that although the DMCA promoted noticeable activation of WBCs and PLTs, neither degradation nor clustering were observed. The in vivo data showed no difference of the DMCA biodistribution between the normal and immunodeficient mice, while the MRI data prove the efficacy of the particular DMCA when compared to the non-radiolabeled, parent CA. The combined in vitro and in vivo data prove that the particular DMCA is a promising candidate for future in vivo applications.
Collapse
Affiliation(s)
- Maria-Argyro Karageorgou
- Department of Physics, National and Kapodistrian University of Athens, Zografou Panepistimioupolis, 15784, Athens, Greece
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research "Demokritos", Ag. Paraskevi, 15310, Athens, Greece
| | - Dimosthenis Stamopoulos
- Department of Physics, National and Kapodistrian University of Athens, Zografou Panepistimioupolis, 15784, Athens, Greece.
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Ag. Paraskevi, 15310, Athens, Greece.
| |
Collapse
|
16
|
Karwasra R, Singh S, Raza K, Sharma N, Varma S. A brief overview on current status of nanomedicines for treatment of pancytopenia: Focusing on chemotherapeutic regime. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wu H, Su M, Jin H, Li X, Wang P, Chen J, Chen J. Rutin-Loaded Silver Nanoparticles With Antithrombotic Function. Front Bioeng Biotechnol 2020; 8:598977. [PMID: 33324624 PMCID: PMC7723967 DOI: 10.3389/fbioe.2020.598977] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
In this paper, we fabricated rutin-loaded silver nanoparticles (Rutin@AgNPs) as the nano-anticoagulant with antithrombotic function. The serum stability, anticoagulation activity, and bleeding risk of Rutin@AgNPs were evaluated. The results showed Rutin@AgNPs had good serum stability, hemocompatibility, and cytocompatibility. The anticoagulation activity of rutin was maintained, and its stability and aqueous solubility were improved. The Rutin@AgNPs could provide a sustained release to prolong the half-life of rutin. The results of the coagulation parameter assay and thrombus formation test in mice model showed that the activated partial thromboplastin time and prothrombin time were prolonged, and Rutin@AgNPs inhibited the thrombosis in the 48 h period. Moreover, the limited bleeding time indicated that the Rutin@AgNPs significantly minimized the hemorrhage risk of rutin. This Rutin@AgNPs is a potential anticoagulant for antithrombotic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingxiao Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Polymer-coated nanoparticle protein corona formation potentiates phagocytosis of bacteria by innate immune cells and inhibits coagulation in human plasma. Biointerphases 2020; 15:051003. [DOI: 10.1116/6.0000385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Crist RM, Dasa SSK, Liu CH, Clogston JD, Dobrovolskaia MA, Stern ST. Challenges in the development of nanoparticle-based imaging agents: Characterization and biology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1665. [PMID: 32830448 DOI: 10.1002/wnan.1665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Despite imaging agents being some of the earliest nanomedicines in clinical use, the vast majority of current research and translational activities in the nanomedicine field involves therapeutics, while imaging agents are severely underrepresented. The reasons for this lack of representation are several fold, including difficulties in synthesis and scale-up, biocompatibility issues, lack of suitable tissue/disease selective targeting ligands and receptors, and a high bar for regulatory approval. The recent focus on immunotherapies and personalized medicine, and development of nanoparticle constructs with better tissue distribution and selectivity, provide new opportunities for nanomedicine imaging agent development. This manuscript will provide an overview of trends in imaging nanomedicine characterization and biocompatibility, and new horizons for future development. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Rachael M Crist
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Siva Sai Krishna Dasa
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Christina H Liu
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
20
|
Soddu L, Trinh DN, Dunne E, Kenny D, Bernardini G, Kokalari I, Marucco A, Monopoli MP, Fenoglio I. Identification of physicochemical properties that modulate nanoparticle aggregation in blood. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:550-567. [PMID: 32280579 PMCID: PMC7136551 DOI: 10.3762/bjnano.11.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/28/2020] [Indexed: 05/05/2023]
Abstract
Inorganic materials are receiving significant interest in medicine given their usefulness for therapeutic applications such as targeted drug delivery, active pharmaceutical carriers and medical imaging. However, poor knowledge of the side effects related to their use is an obstacle to clinical translation. For the development of molecular drugs, the concept of safe-by-design has become an efficient pharmaceutical strategy with the aim of reducing costs, which can also accelerate the translation into the market. In the case of materials, the application these approaches is hampered by poor knowledge of how the physical and chemical properties of the material trigger the biological response. Hemocompatibility is a crucial aspect to take into consideration for those materials that are intended for medical applications. The formation of nanoparticle agglomerates can cause severe side effects that may induce occlusion of blood vessels and thrombotic events. Additionally, nanoparticles can interfere with the coagulation cascade causing both pro- and anti-coagulant properties. There is contrasting evidence on how the physicochemical properties of the material modulate these effects. In this work, we developed two sets of tailored carbon and silica nanoparticles with three different diameters in the 100-500 nm range with the purpose of investigating the role of surface curvature and chemistry on platelet aggregation, activation and adhesion. Substantial differences were found in the composition of the protein corona depending on the chemical nature of the nanoparticles, while the surface curvature was found to play a minor role. On the other hand, large carbon nanoparticles (but not small carbon nanoparticles or silica nanoparticles) have a clear tendency to form aggregates both in plasma and blood. This effect was observed both in the presence or absence of platelets and was independent of platelet activation. Overall, the results presented herein suggest the existence of independent modes of action that are differently affected by the physicochemical properties of the materials, potentially leading to vessel occlusion and/or formation of thrombi in vivo.
Collapse
Affiliation(s)
- Ludovica Soddu
- Department of Chemistry, University of Torino, 10125 Torino, Italy
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Duong N Trinh
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Eimear Dunne
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Dermot Kenny
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Giorgia Bernardini
- Department of Chemistry, University of Torino, 10125 Torino, Italy
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Ida Kokalari
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| | - Arianna Marucco
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| |
Collapse
|
21
|
Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Adebayo EA, Beukes LS, Gueguim-Kana EB. Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol 2019; 12:857-863. [PMID: 30104463 DOI: 10.1049/iet-nbt.2017.0299] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Green synthesis of nanoparticles has fuelled the use of biomaterials to synthesise a variety of metallic nanoparticles. The current study investigates the use of xylanases of Aspergillus niger L3 (NEA) and Trichoderma longibrachiatum L2 (TEA) to synthesise silver nanoparticles (AgNPs). Characterisation of AgNPs was carried out using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy, while their effectiveness as antimicrobial, antioxidant, catalytic, anticoagulant, and thrombolytic agents were determined. The colloidal AgNPs was brownish with surface plasmon resonance at 402.5 and 410 nm for NEA-AgNPs and TEA-AgNPs, respectively; while FTIR indicated that protein molecules were responsible for the capping and stabilisation of the nanoparticles. The spherical nanoparticles had size of 15.21-77.49 nm. The nanoparticles significantly inhibited the growth of tested bacteria (63.20-88.10%) and fungi (82.20-86.10%), and also scavenged DPPH (37.48-79.42%) and hydrogen peroxide (20.50-96.50%). In addition, the AgNPs degraded malachite green (78.97%) and methylene blue (25.30%). Furthermore, the AgNPs displayed excellent anticoagulant and thrombolytic activities using human blood. This study has demonstrated the potential of xylanases to synthesise AgNPs which is to the best of our knowledge the first record of such. The present study underscores the relevance of xylanases in nanobiotechnology.
Collapse
Affiliation(s)
- Joseph Adetunji Elegbede
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria.
| | - Musibau Adewuyi Azeez
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria
| | - Tesleem Babatunde Asafa
- Department of Mechanical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria
| | - Taofeek Akangbe Yekeen
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria
| | - Iyabo Christianah Oladipo
- Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Elijah Adegoke Adebayo
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria
| | - Lorika Selomi Beukes
- Microscopy and Microanalysis Unit, University of KwaZulu-Natal School of Life Sciences, Pietermaritzburg, South Africa
| | - Evariste Bosco Gueguim-Kana
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg 3209, South Africa
| |
Collapse
|
22
|
Effect of Size and Concentration of PLGA-PEG Nanoparticles on Activation and Aggregation of Washed Human Platelets. Pharmaceutics 2019; 11:pharmaceutics11100514. [PMID: 31590303 PMCID: PMC6835715 DOI: 10.3390/pharmaceutics11100514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Nanotechnology is being increasingly utilised in medicine as diagnostics and for drug delivery and targeting. The small size and high surface area of nanoparticles (NPs), desirable properties that allow them to cross biological barriers, also offer potential for interaction with other cells and blood constituents, presenting possible safety risks. While NPs investigated are predominantly based on the biodegradable, biocompatible, and FDA approved poly-lactide-co-glycolide (PLGA) polymers, pro-aggregatory and antiplatelet effects have been reported for certain NPs. The potential for toxicity of PLGA based NPs remains to be examined. The aims of this study were to determine the impact of size-selected PLGA-PEG (PLGA-polyethylene glycol) NPs on platelet activation and aggregation. PLGA-PEG NPs of three average sizes of 112, 348, and 576 nm were formulated and their effect at concentrations of 0.0-2.2 mg/mL on the activation and aggregation of washed human platelets (WP) was examined. The results of this study show, for the first time, NPs of all sizes associated with the surface of platelets, with >50% binding, leading to possible internalisation. The NP-platelet interaction, however, did not lead to platelet aggregation nor inhibited aggregation of platelets induced by thrombin. The outcome of this study is promising, suggesting that these NPs could be potential carriers for targeted drug delivery to platelets.
Collapse
|
23
|
Hannon G, Lysaght J, Liptrott NJ, Prina‐Mello A. Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900133. [PMID: 31592123 PMCID: PMC6774033 DOI: 10.1002/advs.201900133] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Indexed: 05/12/2023]
Abstract
Although interest and funding in nanotechnology for oncological applications is thriving, translating these novel therapeutics through the earliest stages of preclinical assessment remains challenging. Upon intravenous administration, nanomaterials interact with constituents of the blood inducing a wide range of associated immunotoxic effects. The literature on the immunological interactions of nanomaterials is vast and complicated. A small change in a particular characteristic of a nanomaterial (e.g., size, shape, or charge) can have a significant effect on its immunological profile in vivo, and poor selection of specific assays for establishing these undesirable effects can overlook this issue until the latest stages of preclinical assessment. This work describes the current literature on unintentional immunological effects associated with promising cancer nanomaterials (liposomes, dendrimers, mesoporous silica, iron oxide, gold, and quantum dots) and puts focus on what is missing in current preclinical evaluations. Opportunities for avoiding or limiting immunotoxicity through efficient preclinical assessment are discussed, with an emphasis placed on current regulatory views and requirements. Careful consideration of these issues will ensure a more efficient preclinical assessment of cancer nanomedicines, enabling a smoother clinical translation with less failures in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
| | - Joanne Lysaght
- Department of SurgeryTTMITrinity College DublinDublin 8Ireland
| | - Neill J. Liptrott
- Department of Molecular and Clinical PharmacologyInstitute of Translational MedicineThe University of LiverpoolLiverpoolL69 3GFUK
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM)TTMITrinity College DublinDublin 8Ireland
- Advanced Materials and Bioengineering Research (AMBER) CentreCRANN InstituteTrinity College DublinDublin 2Ireland
| |
Collapse
|
24
|
Naz F, Kumar Dinda A, Kumar A, Koul V. Investigation of ultrafine gold nanoparticles (AuNPs) based nanoformulation as single conjugates target delivery for improved methotrexate chemotherapy in breast cancer. Int J Pharm 2019; 569:118561. [DOI: 10.1016/j.ijpharm.2019.118561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 11/27/2022]
|
25
|
Biosafety of unmodified ultrafine gold particles (AuPs) upon interacting with human blood components before systemic use. Regul Toxicol Pharmacol 2019; 107:104405. [PMID: 31207267 DOI: 10.1016/j.yrtph.2019.104405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 11/20/2022]
Abstract
Ultrafine gold particles (AuPs) can be emerged as a good candidate in the field of drug delivery as well as in imaging applications. However, little attention has been paid to detailed study of nanoparticle's interaction with blood components before systemic use. An investigation into the interaction of ultrafine AuPs with blood components is must for its clinical application. In present study, the interaction of ultrafine sized AuPs (2 ± 0.5 nm, 5 ± 1 nm, and 10 ± 2 nm) with blood components and its immunogenic property (pro-inflammatory reaction) was investigated. All three sized AuPs did not cause any significant hemolysis. Plasma coagulation study showed significant increase in Prothrombin time (PT) with International Normalized Ratio (INR) value raised to 1.53 with 10 nm AuPs. Maximum prolongation of activated partial thromboplastin time (APTT) (3.2 s) was seen with 5 &10 nm sized AuPs. Maximum thrombin time (TT) prolongation was seen with 2 nm (18.3s) with the difference of 1.4 s as compared to control. Platelet aggregation was faster in case of 5 & 10 nm sized AuPs. All three sized AuPs exhibited in-vitro C3 complement activation whereas they did not stimulate significant proliferation of peripheral blood mononuclear cells (PBMC). These findings further validate the utility of ultrafine AuPs for in-vivo applications.
Collapse
|
26
|
Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Hakeem AS, Beukes LS, Gueguim‐Kana EB. Silver‐gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities. Biotechnol Prog 2019; 35:e2829. [DOI: 10.1002/btpr.2829] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Joseph A. Elegbede
- Laboratory of Industrial Microbiology and NanobiotechnologyLadoke Akintola University of Technology Ogbomoso Nigeria
- Department of Pure and Applied BiologyLadoke Akintola University of Technology Ogbomoso Nigeria
| | - Agbaje Lateef
- Laboratory of Industrial Microbiology and NanobiotechnologyLadoke Akintola University of Technology Ogbomoso Nigeria
- Department of Pure and Applied BiologyLadoke Akintola University of Technology Ogbomoso Nigeria
- Nanotechnology Research Group (NANO +)Ladoke Akintola University of Technology Ogbomoso Nigeria
| | - Musibau A. Azeez
- Department of Pure and Applied BiologyLadoke Akintola University of Technology Ogbomoso Nigeria
- Nanotechnology Research Group (NANO +)Ladoke Akintola University of Technology Ogbomoso Nigeria
| | - Tesleem B. Asafa
- Nanotechnology Research Group (NANO +)Ladoke Akintola University of Technology Ogbomoso Nigeria
- Department of Mechanical EngineeringLadoke Akintola University of Technology Ogbomoso Nigeria
| | - Taofeek A. Yekeen
- Department of Pure and Applied BiologyLadoke Akintola University of Technology Ogbomoso Nigeria
- Nanotechnology Research Group (NANO +)Ladoke Akintola University of Technology Ogbomoso Nigeria
| | - Iyabo C. Oladipo
- Nanotechnology Research Group (NANO +)Ladoke Akintola University of Technology Ogbomoso Nigeria
- Department of Science Laboratory TechnologyLadoke Akintola University of Technology Ogbomoso Nigeria
| | - Abbas S. Hakeem
- Center of Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Lorika S. Beukes
- Microscopy and Microanalysis UnitUniversity of KwaZulu‐Natal PieterMaritzburg South Africa
| | - Evariste B. Gueguim‐Kana
- Department of Microbiology, School of Life SciencesUniversity of KwaZulu‐Natal PieterMaritzburg South Africa
| |
Collapse
|
27
|
Urbán P, Liptrott NJ, Bremer S. Overview of the blood compatibility of nanomedicines: A trend analysis of in vitro and in vivo studies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1546. [PMID: 30556649 PMCID: PMC7816241 DOI: 10.1002/wnan.1546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022]
Abstract
As nanomedicines have the potential to address many currently unmet medical needs, the early identification of regulatory requirements that could hamper a smooth translation of nanomedicines from the laboratory environment to clinical applications is of utmost importance. The blood system is especially relevant as many nanomedicinal products that are currently under development are designed for intravenous administration and cells of the blood system will be among the first biological systems exposed to the injected nanomedicine. This review collects and summarizes the current knowledge related to the blood compatibility of nanomedicines and nanomaterials with a potential use in biomedical applications. Different types of nanomedicines were analyzed for their toxicity to the blood system, and the role of their physicochemical properties was further elucidated. Trends were identified related to: (a) the nature of the most frequently occurring blood incompatibilities such as thrombogenicity and complement activation, (b) the contribution of physicochemical properties to these blood incompatibilities, and (c) the similarities between data retrieved from in vivo and in vitro studies. Finally, we provide an overview of available standards that allow evaluating the compatibility of a material with the blood system. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Patricia Urbán
- Consumer Products Safety Unit, Directorate F ‐ Health, Consumers and Reference Materials, European Commission Joint Research Centre (JRC)Ispra (VA)Italy
| | - Neill J. Liptrott
- Department of Molecular and Clinical PharmacologyInstitute of Translational Medicine, University of LiverpoolLiverpoolUK
| | - Susanne Bremer
- Consumer Products Safety Unit, Directorate F ‐ Health, Consumers and Reference Materials, European Commission Joint Research Centre (JRC)Ispra (VA)Italy
| |
Collapse
|
28
|
Del Turco S, Ciofani G, Cappello V, Parlanti P, Gemmi M, Caselli C, Ragusa R, Papa A, Battaglia D, Sabatino L, Basta G, Mattoli V. Effects of cerium oxide nanoparticles on hemostasis: Coagulation, platelets, and vascular endothelial cells. J Biomed Mater Res A 2019; 107:1551-1562. [DOI: 10.1002/jbm.a.36669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Serena Del Turco
- Institute of Clinical PhysiologyCNR San Cataldo Research Area Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Gianni Ciofani
- Smart Bio‐InterfacesFondazione Istituto Italiano di Tecnologia Pontedera (Pisa), Viale Rinaldo Piaggio 34, 56025 Italy
- Department of Mechanical and Aerospace EngineeringPolitecnico di Torino Torino, Corso Duca degli Abruzzi 24, 10129 Italy
| | - Valentina Cappello
- Center for Nanotechnology Innovation@NESTFondazione Istituto Italiano di Tecnologia Pisa, Piazza San Silvestro 12, 56127 Italy
| | - Paola Parlanti
- Center for Nanotechnology Innovation@NESTFondazione Istituto Italiano di Tecnologia Pisa, Piazza San Silvestro 12, 56127 Italy
| | - Mauro Gemmi
- Center for Nanotechnology Innovation@NESTFondazione Istituto Italiano di Tecnologia Pisa, Piazza San Silvestro 12, 56127 Italy
| | - Chiara Caselli
- Institute of Clinical PhysiologyCNR San Cataldo Research Area Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Rosetta Ragusa
- Scuola Superiore Sant'Anna Pisa, Piazza Martiri della Libertà 33, 56127 Italy
| | - Angela Papa
- Department of Laboratory MedicineCNR Fondazione Toscana Gabriele Monasterio Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Debora Battaglia
- Department of Laboratory MedicineCNR Fondazione Toscana Gabriele Monasterio Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Laura Sabatino
- Institute of Clinical PhysiologyCNR San Cataldo Research Area Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Giuseppina Basta
- Institute of Clinical PhysiologyCNR San Cataldo Research Area Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Virgilio Mattoli
- Center of MicroBioRobotics @SSSAFondazione Istituto Italiano di Tecnologia Pontedera (Pisa), Viale Rinaldo Piaggio 34, 56025 Italy
| |
Collapse
|
29
|
Sun H, Lv L, Bai Y, Yang H, Zhou H, Li C, Yang L. Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery. Int J Nanomedicine 2018; 13:8325-8338. [PMID: 30584303 PMCID: PMC6289228 DOI: 10.2147/ijn.s173063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The hemostatic and anti-infection treatments in the field of orthopedics are always the pivotal yet challenging topics. In the first part of this review, synthesized or naturally derived nanoscale agents and materials for hemostatic treatment in orthopedic surgery are introduced. The hemostatic mechanisms and the safety concerns of these nanotechnology-enabled materials are discussed. Beside the materials to meet hemostatic needs in orthopedic surgery, the need for antimicrobial or anti-infection strategy in orthopedic surgery also becomes urgent. Nanosilver and its derivatives have the most consistent anti-infective effect and thus high translational potential for clinical applications. In the second part, the factors affecting the antimicrobial effect of nanosilver and its application status are summarized. Finally, the status and translational potential of various nanotechnology-enabled materials and agents for hemostatic and anti-infective treatments in orthopedic surgery are discussed.
Collapse
Affiliation(s)
- Haolin Sun
- Department of Orthopaedics, Peking University First Hospital, Beijing 100034, China,
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
| | - Lu Lv
- Orthopaedic Institute and Department of Orthopaedics, Soochow University, Suzhou 215006, China,
| | - Yanjie Bai
- School of Public Health, Medical College, Soochow University, Suzhou 215000, China
| | - Huilin Yang
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
- Orthopaedic Institute and Department of Orthopaedics, Soochow University, Suzhou 215006, China,
| | - Huan Zhou
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chunde Li
- Department of Orthopaedics, Peking University First Hospital, Beijing 100034, China,
| | - Lei Yang
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou 215006, China,
- Orthopaedic Institute and Department of Orthopaedics, Soochow University, Suzhou 215006, China,
| |
Collapse
|
30
|
Liao J, Ren X, Yang B, Li H, Zhang Y, Yin Z. Targeted thrombolysis by using c-RGD-modified N,N,N-Trimethyl Chitosan nanoparticles loaded with lumbrokinase. Drug Dev Ind Pharm 2018; 45:88-95. [PMID: 30198790 DOI: 10.1080/03639045.2018.1522324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lumbrokinase (LK) has strong fibrinolytic and thrombolytic activities, but it has a short half-life, can be easily inactivated, and may cause hemorrhage as a side effect. This study develops a potential thrombolytic therapy by fabricating N,N,N-Trimethyl Chitosan (TMC) nanoparticles modified with the cyclic Arg-Gly-Asp-Phe-Lys peptide (c-RGD) and loaded with LK (i.e. c-RGD-LK-NPs). The binding of c-RGD to platelet membrane GPIIb/IIIa receptors is expected to enable targeted delivery of the c-RGD-conjugated TMC to the thrombus. The synthesized c-RGD-LK-NPs had a mean particle size of 232.0 nm, zeta potential of 19.8 mV, entrapment efficiency of 52.7% ± 2.5%, and loading efficiency of 17.4% ± 0.65%. Transmission electron microscopy showed that they were generally spherical. The c-RGD-LK-NPs gave a cumulative in vitro LK release of 80.6% over 8 h, and the activity of LK was close to 80%, indicating that the nanoparticles protected the activity of LK. In vitro blood clot lysis assays were carried out and in vivo thrombolysis effect was tested in Sprague-Dawley rats carotid artery thrombus model. In all cases, the c-RGD-LK-NPs showed superior performance compared with the free LK and the unmodified TMC nanoparticles loaded with LK. The c-RGD-LK-NPs reagent is expected to be potentially useful in treating thromboembolic diseases.
Collapse
Affiliation(s)
- Jie Liao
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , Chengdu , PR China.,b Patent Examination Cooperation Center of the Patent Office , SIPO , Sichuan , PR China
| | - Xiaoting Ren
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , Chengdu , PR China
| | - Bowen Yang
- c West China School of Medicine , Sichuan University , Chengdu , PR China
| | - Hou Li
- d Department of Hematology, West China Hospital , Sichuan University , PR China , Chengdu
| | - Yuexin Zhang
- c West China School of Medicine , Sichuan University , Chengdu , PR China
| | - Zongning Yin
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy , Sichuan University , Chengdu , PR China
| |
Collapse
|
31
|
de Sousa Cunha F, Dos Santos Pereira LN, de Costa E Silva TP, de Sousa Luz RA, Nogueira Mendes A. Development of nanoparticulate systems with action in breast and ovarian cancer: nanotheragnostics. J Drug Target 2018; 27:732-741. [PMID: 30207742 DOI: 10.1080/1061186x.2018.1523418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of nanoparticulate systems with action in breast and ovarian cancer has been highlighted in recent years as an alternative to increasing the therapeutic index of conventional anticancer drugs. Thus, nanoparticles have advantageous characteristics in the treatment of cancer. Several nanocarriers of drugs and nanoparticles are described in the literature. The pharmacokinetics of the drugs can be modified by the use of nanocarriers, which in turn facilitate the specific delivery of the drug to the tumour cell. Therefore, the present work is a review that examines some nanosystems with nanoparticles for action in the treatment of breast cancer and ovarian cancer.
Collapse
Affiliation(s)
- Fabiana de Sousa Cunha
- a Departamento de Química, Campus Poeta Torquato Neto , Universidade Estadual do Piauí , Teresina , Brazil
| | - Laise Nayra Dos Santos Pereira
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Thâmara Pryscilla de Costa E Silva
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Roberto Alves de Sousa Luz
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Anderson Nogueira Mendes
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil.,c Departamento de Biofísica e Fisiologia, Centro de Ciências em Saúde , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| |
Collapse
|
32
|
Chen L, Glass JJ, De Rose R, Sperling C, Kent SJ, Houston ZH, Fletcher NL, Rolfe BE, Thurecht KJ. Influence of Charge on Hemocompatibility and Immunoreactivity of Polymeric Nanoparticles. ACS APPLIED BIO MATERIALS 2018; 1:756-767. [DOI: 10.1021/acsabm.8b00220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Joshua J. Glass
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Robert De Rose
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology, Monash University, Melbourne, Victoria 3800, Australia
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden D-01069, Germany
| | - Stephen J. Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
33
|
Zhao M, Liu M. New Avenues for Nanoparticle-Related Therapies. NANOSCALE RESEARCH LETTERS 2018; 13:136. [PMID: 29740711 PMCID: PMC5940972 DOI: 10.1186/s11671-018-2548-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/19/2018] [Indexed: 05/18/2023]
Abstract
Development of nanoparticle-based drug delivery systems has been attempted for the treatment of cancer over the past decade. The enhanced permeability and retention (EPR) effect is the major mechanism to passively deliver nanodrugs to tumor tissue. However, a recent systematic review demonstrated limited success of these studies, with the clearance of nanoparticles by the mononuclear phagocytic system (MPS) being a major hurdle. Herein, we propose that nanotechnologists should reconsider their research focuses, aiming for therapeutic targets other than cancer. Treatments for diseases that do not (or less) rely on EPR should be considered, such as active targeting or MPS evasion systems. For example, systemic delivery of drugs through intravenous injection can be used to treat sepsis, multi-organ failure, metabolic disorders, blood diseases, immune and autoimmune diseases, etc. Local delivery of nanodrugs to organs such as the lung, rectum, or bladder may enhance the local drug concentration with less clearance via MPS. In transplant settings, ex vivo organ perfusion provides a new route to repair injury of isolated organs in the absence of MPS. Based on a similar concept, chemotherapy with in vivo lung perfusion techniques and other isolated organ perfusion provides opportunities for cancer therapy.
Collapse
Affiliation(s)
- Michael Zhao
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, Room: TMDT2-814, Toronto, Ontario, M5G 1L7, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, Room: TMDT2-814, Toronto, Ontario, M5G 1L7, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Surgery, University of Toronto, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
34
|
Duan J, Liang S, Yu Y, Li Y, Wang L, Wu Z, Chen Y, Miller MR, Sun Z. Inflammation-coagulation response and thrombotic effects induced by silica nanoparticles in zebrafish embryos. Nanotoxicology 2018; 12:470-484. [PMID: 29658397 PMCID: PMC6157531 DOI: 10.1080/17435390.2018.1461267] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nowadays, nanotechnology environmental health and safety (nanoEHS) is gaining attention. We previously found that silica nanoparticles (SiNPs) could induce vascular endothelial damage. However, the subsequent toxicologic response to SiNPs-induced endothelial damage was still largely unknown. In this study, we explored the inflammation–coagulation response and thrombotic effects of SiNPs in endothelial cells and zebrafish embryos. For in vitro study, swollen mitochondria and autophagosome were observed in ultrastructural analysis. The cytoskeleton organization was disrupted by SiNPs in vascular endothelial cells. The release of proinflammatory and procoagulant cytokines including IL-6, IL-8, MCP-1, PECAM-1, TF and vWF, were markedly elevated in a dose-dependent manner. For in vivo study, based on the NOAEL for dosimetry selection, and using two transgenic zebrafish, Tg(mpo:GFP) and Tg(fli-1:EGFP), SiNPs-induced neutrophil-mediated inflammation and impaired vascular endothelial cells. With the dosage higher than NOAEL, SiNPs significantly decreased blood flow and velocity, exhibiting a blood hypercoagulable state in zebrafish embryos. The thrombotic effect was assessed by o-dianisidine staining, showed that an increasing of erythrocyte aggregation occurred in SiNPs-treated zebrafish. Microarray analysis was used to screen the possible genes for inflammation–coagulation response to SiNPs in zebrafish, and the JAK1/TF signaling pathway was further verified by qRT-PCR and Western blot assays. For in-deepth study, il6st was knocked down with specific morpholinos. The whole-mount in situ hybridization and qRT-PCR analysis showed that the expression jak1 and f3b were attenuated in il6st knockdown groups. In summary, our data demonstrated that SiNPs could induce inflammation–coagulation response and thrombotic effects via JAK1/TF signaling pathway.
Collapse
Affiliation(s)
- Junchao Duan
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Shuang Liang
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Yang Yu
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Yang Li
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Lijing Wang
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Zehao Wu
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Yueyue Chen
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Mark R Miller
- c BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh , Edinburgh , UK
| | - Zhiwei Sun
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| |
Collapse
|
35
|
Coty JB, Vauthier C. Characterization of nanomedicines: A reflection on a field under construction needed for clinical translation success. J Control Release 2018; 275:254-268. [DOI: 10.1016/j.jconrel.2018.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/12/2022]
|
36
|
Matus MF, Vilos C, Cisterna BA, Fuentes E, Palomo I. Nanotechnology and primary hemostasis: Differential effects of nanoparticles on platelet responses. Vascul Pharmacol 2018; 101:1-8. [DOI: 10.1016/j.vph.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/12/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
|
37
|
Liu Y, Fu J, Pan W, Xue Q, Liu X, Zhang A. Inhibition of thrombin by functionalized C 60 nanoparticles revealed via in vitro assays and in silico studies. J Environ Sci (China) 2018; 63:285-295. [PMID: 29406112 DOI: 10.1016/j.jes.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The studies on the human toxicity of nanoparticles (NPs) are far behind the rapid development of engineered functionalized NPs. Fullerene has been widely used as drug carrier skeleton due to its reported low risk. However, different from other kinds of NPs, fullerene-based NPs (C60 NPs) have been found to have an anticoagulation effect, although the potential target is still unknown. In the study, both experimental and computational methods were adopted to gain mechanistic insight into the modulation of thrombin activity by nine kinds of C60 NPs with diverse surface chemistry properties. In vitro enzyme activity assays showed that all tested surface-modified C60 NPs exhibited thrombin inhibition ability. Kinetic studies coupled with competitive testing using 3 known inhibitors indicated that six of the C60 NPs, of greater hydrophobicity and hydrogen bond (HB) donor acidity or acceptor basicity, acted as competitive inhibitors of thrombin by directly interacting with the active site of thrombin. A simple quantitative nanostructure-activity relationship model relating the surface substituent properties to the inhibition potential was then established for the six competitive inhibitors. Molecular docking analysis revealed that the intermolecular HB interactions were important for the specific binding of C60 NPs to the active site canyon, while the additional stability provided by the surface groups through van der Waals interaction also play a key role in the thrombin binding affinity of the NPs. Our results suggest that thrombin is a possible target of the surface-functionalized C60 NPs relevant to their anticoagulation effect.
Collapse
Affiliation(s)
- Yanyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
38
|
Lateef A, Ojo SA, Elegbede JA, Akinola PO, Akanni EO. Nanomedical Applications of Nanoparticles for Blood Coagulation Disorders. ENVIRONMENTAL NANOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-76090-2_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Maitz MF, Sperling C, Wongpinyochit T, Herklotz M, Werner C, Seib FP. Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2633-2642. [DOI: 10.1016/j.nano.2017.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/29/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023]
|
40
|
Palomino-Schätzlein M, García H, Gutiérrez-Carcedo P, Pineda-Lucena A, Herance JR. Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling with 1H-NMR spectroscopy, a novel translational approach on a patient-specific basis. PLoS One 2017; 12:e0182985. [PMID: 28793337 PMCID: PMC5549967 DOI: 10.1371/journal.pone.0182985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/27/2017] [Indexed: 01/03/2023] Open
Abstract
Human peripheral blood cells are relevant ex vivo models for characterizing diseases and evaluating the pharmacological effects of therapeutic interventions, as they provide a close reflection of an individual pathophysiological state. In this work, a new approach to evaluate the impact of nanoparticles on the three main fractions of human peripheral blood cells by nuclear magnetic resonance spectroscopy is shown. Thus, a comprehensive protocol has been set-up including the separation of blood cells, their in vitro treatment with nanoparticles and the extraction and characterization of metabolites by nuclear magnetic resonance. This method was applied to assess the effect of gold nanoparticles, either coated with chitosan or supported on ceria, on peripheral blood cells from healthy individuals. A clear antioxidant effect was observed for chitosan-coated gold nanoparticles by a significant increase in reduced glutathione, that was much less pronounced for gold-cerium nanoparticles. In addition, the analysis revealed significant alterations of several other pathways, which were stronger for gold-cerium nanoparticles. These results are in accordance with the toxicological data previously reported for these materials, confirming the value of the current methodology.
Collapse
Affiliation(s)
| | | | - Patricia Gutiérrez-Carcedo
- Grup de Recerca en Imatge Mèdica Molecular, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Pineda-Lucena
- Laboratorio de Bioquímica Estructural, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad de Descubrimiento de Fármacos, Instituto de Investigación Sanitaria La Fe, Hospital Universitario i Politécnico La Fe, Valencia, Spain
| | - José Raul Herance
- Grup de Recerca en Imatge Mèdica Molecular, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Oladipo IC, Lateef A, Elegbede JA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Gueguim-Kana EB, Beukes LS, Oluyide TO, Atanda OR. Enterococcus species for the one-pot biofabrication of gold nanoparticles: Characterization and nanobiotechnological applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:250-257. [PMID: 28601037 DOI: 10.1016/j.jphotobiol.2017.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 11/28/2022]
Abstract
In the current work, cell-free extracts of four strains of non-pathogenic Enterococcus species of food origin, were studied for the green synthesis of gold nanoparticles (AuNPs), and characterized by UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The AuNPs were evaluated for their Anopheles gambiae larvicidal, dye degradation, antioxidant and thrombolytic activities. The blue-black colloidal AuNPs which absorbed maximally at 549-552nm were nearly spherical in shape, and crystalline in nature with size of 8-50nm. The EDX spectra showed formation of AuNPs to the tune of 89-94%. The prominent FTIR peaks obtained at 3251-3410, 2088 and 1641-1643cm-1 alluded to the fact that proteins were involved in the biofabrication and capping of AuNPs. AuNPs degraded methylene blue and malachite green by 24.3-57.6%, and 88.85-97.36% respectively in 24h, whereas at 12h, larvicidal activities with LC50 of 21.28-42.33μg/ml were obtained. DPPH scavenging activities of 33.24-51.47% were obtained for the biosynthesized AuNPs. The AuNPs prevented coagulation of blood and also achieved 9.4-94.6% lysis of blood clot showing potential nanomedical applications. This study has presented an eco-friendly and economical synthesis of AuNPs by non-pathogenic strains of Enterococcus species for various nanobiotechnological applications.
Collapse
Affiliation(s)
- Iyabo Christianah Oladipo
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Laboratory of Industrial Microbiology and Nanobiotechnology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria.
| | - Joseph Adetunji Elegbede
- Laboratory of Industrial Microbiology and Nanobiotechnology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Musibau Adewuyi Azeez
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Tesleem Babatunde Asafa
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Mechanical Engineering, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Taofeek Akangbe Yekeen
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Akeem Akinboro
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Evariste Bosco Gueguim-Kana
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg 3209, South Africa
| | - Lorika Selomi Beukes
- Microscopy and Microanalysis Unit, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg 3209, South Africa
| | - Tolulope Oluyomi Oluyide
- Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Oluwatoyin Rebecca Atanda
- Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| |
Collapse
|
42
|
Cheah HY, Kiew LV, Lee HB, Japundžić-Žigon N, Vicent MJ, Hoe SZ, Chung LY. Preclinical safety assessments of nano-sized constructs on cardiovascular system toxicity: A case for telemetry. J Appl Toxicol 2017; 37:1268-1285. [DOI: 10.1002/jat.3437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hoay Yan Cheah
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine; University of Belgrade; Republic of Serbia
| | - Marίa J. Vicent
- Polymer Therapeutics Lab; Centro de Investigación Príncipe Felipe; Av. Eduardo Primo Yúfera 3 E-46012 Valencia Spain
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
43
|
Abstract
Nanostructures have been widely involved in changes in the drug delivery system. Nanoparticles have unique physicochemical properties, e.g., ultrasmall size, large surface area, and the ability to target specific actions. Various nanomaterials, like Ag, ZnO, Cu/CuO, and Al2O3, have antimicrobial activity. Basically, six mechanisms are involved in the production of antimicrobial activity, i.e., (1) destruction of the peptidoglycan layer, (2) release of toxic metal ions, (3) alteration of cellular pH via proton efflux pumps, (4) generation of reactive oxygen species, (5) damage of nuclear materials, and (6) loss of ATP production. Nanomedicine contributes to various pharmaceutical applications, like diagnosis and treatment of various ailments including microbial diseases. Furthermore, nanostructured antimicrobial agents are also involved in the treatment of the neuroinfections associated with neurodegenerative disorders. This chapter focuses on the nanostructure and nanomedicine of antimicrobial agents and their prospects for the possible management of infections associated with neurodegenerative disorders.
Collapse
|
44
|
Evaluation of Some Biosynthesized Silver Nanoparticles for Biomedical Applications: Hydrogen Peroxide Scavenging, Anticoagulant and Thrombolytic Activities. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1146-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Lateef A, Akande MA, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS. Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. 3 Biotech 2016; 6:140. [PMID: 28330212 PMCID: PMC4917500 DOI: 10.1007/s13205-016-0459-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/10/2016] [Indexed: 01/15/2023] Open
Abstract
Biosynthesis of silver nanoparticles (AgNPs) using nest extract of paper wasp (Polistes sp) was investigated in this work. The AgNPs were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM), and evaluated for antibacterial, antifungal, dye degradation, blood anticoagulation, and blood clot dissolution (thrombolytic) activities. The crystalline polydispersed AgNPs with size range of 12.5–95.55 nm absorbed maximally at 428 nm and showed anisotropic structures of sphere, triangle, hexagon, rod, and rhombus. The FTIR data showed prominent peaks at 3426 and 1641 cm−1, which indicate the involvement of phenolics compounds and proteins in the synthesis of AgNPs. The prominence of Ag in the EDX spectra showed that indeed, AgNPs were formed. The AgNPs showed potent antibacterial activities (12–35 mm) against three multi-drug strains of Pseudomonas aeruginosa and Klebsiella granulomatis. While the growth of Aspergillus flavus and Aspergillus niger was completely suppressed, the AgNPs produced growth inhibition of 75.61 % against Aspergillus fumigatus at 100 µg/ml. Furthermore, the AgNPs degraded malachite green to the tune of 93.1 %. The AgNPs also prevented coagulation of blood, while it completely dissolved preformed blood clots within 5 min showing the potent anticoagulation and thrombolytic activities. This study, which is the first of its kind to use nest extract of paper wasp for the synthesis of nanoparticles, has shown that the biosynthesized AgNPs could be deployed for biomedical and catalytic applications.
Collapse
Affiliation(s)
- Agbaje Lateef
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria.
- Nanotechnology Research Group (NANO+), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria.
| | - Monsurat A Akande
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Sunday A Ojo
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Bolaji I Folarin
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Evariste B Gueguim-Kana
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg, 3209, South Africa
| | - Lorika S Beukes
- Microscopy and Microanalysis Unit, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg, 3209, South Africa
| |
Collapse
|
46
|
Jiang L, Yu Y, Li Y, Yu Y, Duan J, Zou Y, Li Q, Sun Z. Oxidative Damage and Energy Metabolism Disorder Contribute to the Hemolytic Effect of Amorphous Silica Nanoparticles. NANOSCALE RESEARCH LETTERS 2016; 11:57. [PMID: 26831695 PMCID: PMC4735100 DOI: 10.1186/s11671-016-1280-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 01/26/2016] [Indexed: 05/23/2023]
Abstract
Amorphous silica nanoparticles (SiNPs) have been extensively used in biomedical applications due to their particular characteristics. The increased environmental and iatrogenic exposure of SiNPs gained great concerns on the biocompatibility and hematotoxicity of SiNPs. However, the studies on the hemolytic effects of amorphous SiNPs in human erythrocytes are still limited. In this study, amorphous SiNPs with 58 nm were selected and incubated with human erythrocytes for different times (30 min and 2 h) at various concentrations (0, 10, 20, 50, and 100 μg/mL). SiNPs induced a dose-dependent increase in percent hemolysis and significantly increased the malondialdehyde (MDA) content and decreased the superoxide dismutase (SOD) activity, leading to oxidative damage in erythrocytes. Hydroxyl radical (·OH) levels were detected by electron spin resonance (ESR), and the decreased elimination rates of ·OH showed SiNPs induced low antioxidant ability in human erythrocytes. Na(+)-K(+) ATPase activity and Ca(2+)-Mg(2+) ATPase activity were found remarkably inhibited after SiNP treatment, possibly causing energy sufficient in erythrocytes. Percent hemolysis of SiNPs was significantly decreased in the presence of N-acetyl-cysteine (NAC) and adenosine diphosphate (ADP). It was concluded that amorphous SiNPs caused dose-dependent hemolytic effects in human erythrocytes. Oxidative damage and energy metabolism disorder contributed to the hemolytic effects of SiNPs in vitro.
Collapse
Affiliation(s)
- Lizhen Jiang
- School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Yongbo Yu
- School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Yang Li
- School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Yang Yu
- School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Junchao Duan
- School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Yang Zou
- School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Qiuling Li
- School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
47
|
Lateef A, Ojo SA, Oladejo SM. Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Lucky SS, Idris NM, Huang K, Kim J, Li Z, Thong PSP, Xu R, Soo KC, Zhang Y. In vivo Biocompatibility, Biodistribution and Therapeutic Efficiency of Titania Coated Upconversion Nanoparticles for Photodynamic Therapy of Solid Oral Cancers. Theranostics 2016; 6:1844-65. [PMID: 27570555 PMCID: PMC4997241 DOI: 10.7150/thno.15088] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/02/2016] [Indexed: 11/05/2022] Open
Abstract
Despite the advantages of using photodynamic therapy (PDT) for the treatment of head and neck tumors, it can only be used to treat early stage flat lesions due to the limited tissue penetration ability of the visible light. Here, we developed near-infrared (NIR) excitable upconversion nanoparticle (UCN) based PDT agent that can specifically target epithelial growth factor receptor (EGFR) overexpressing oral cancer cells, in a bid to widen the application of PDT against thick and solid advanced or recurrent head and neck cancers. In vivo studies using the synthesized anti-EGFR-PEG-TiO2-UCNs following systemic administration displayed no major sub-acute or long term toxic effects in terms of blood biochemical, hematological or histopathological changes at a concentration of 50 mg/kg. NIR-PDT even in the presence of a 10 mm tissue phantom placed over the xenograft tumor, showed significant delay in tumor growth and improved survival rate compared to conventional chlorin-e6 (Ce6) PDT using 665 nm red light. Our work, one of the longest study till date in terms of safety (120 d), PDT efficacy (35 d) and survival (60 d), demonstrates the usefulness of UCN based PDT technology for targeted treatment of thick and bulky head and neck tumors.
Collapse
Affiliation(s)
- Sasidharan Swarnalatha Lucky
- NUS Graduate School for Integrative Sciences & Engineering (NGS), Singapore 117456
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| | - Niagara Muhammad Idris
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| | - Kai Huang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| | - Jaejung Kim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| | - Zhengquan Li
- Institute of Physical Chemistry, Zhejiang Normal University, P. R. China 321004
| | | | - Rong Xu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Khee Chee Soo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences & Engineering (NGS), Singapore 117456
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| |
Collapse
|
49
|
Kolanut (Cola nitida) Mediated Synthesis of Silver–Gold Alloy Nanoparticles: Antifungal, Catalytic, Larvicidal and Thrombolytic Applications. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1019-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS. Biomedical and Catalytic Applications of Gold and Silver-Gold Alloy Nanoparticles Biosynthesized Using Cell-Free Extract of Bacillus Safensis LAU 13: Antifungal, Dye Degradation, Anti-Coagulant and Thrombolytic Activities. IEEE Trans Nanobioscience 2016; 15:433-442. [PMID: 27164598 DOI: 10.1109/tnb.2016.2559161] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study investigated the green biosynthesis of gold (Au) and silver-gold alloy (Ag-Au) nanoparticles using cell-free extract of Bacillus safensis LAU 13 strain (GenBank accession No: KJ461434). The biosynthesized AuNPs and Ag-AuNPs were characterized using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, and transmission electron microscopy. Evaluation of the antifungal activities, degradation of malachite green, anti-coagulation of blood, and thrombolysis of human blood clot by the biosynthesized nanoparticles were investigated. The AuNPs and Ag-AuNPs had maximum absorbance at 561 and 545 nm, respectively. The FTIR peaks at 3318, 2378, 2114, 1998, 1636, 1287, 446, 421 cm-1 for AuNPs; and 3310, 2345, 2203, 2033, 1636, 1273, 502, 453, 424 cm-1 for Ag-AuNPs indicated that proteins were the capping and stabilization molecules in the biosynthesized nanoparticles. The particles were fairly spherical in shape with size of 10-45 nm for AuNPs and 13-80 nm for Ag-AuNPs. Moreover, energy dispersive X-ray analysis of AuNPs revealed gold as the most prominent metal in the AuNPs solution, while silver and gold were the most prominent in the case of Ag-AuNPs. Selected area electron diffraction showed the biosynthesized nanoparticles as crystal structures with ring shape pattern. AuNPs and Ag-AuNPs displayed growth inhibitions of 66.67-90.78% against strains of Aspergillus fumigatus and A. niger at concentration of 200 μg/ml , and remarkable degradation (> 90%) of malachite green after 48 h. Furthermore, the nanoparticles prevented coagulation of blood, and also completely dissolved blood clots, indicating the biomedical potential of AuNPs and Ag-AuNPs in the management of blood coagulation disorders. This is the first report of the synthesis of AuNPs and Ag-AuNPs using a strain of B. safensis for biomedical and catalytic applications.
Collapse
|