1
|
Obisesan OS, Ajiboye TO, Mhlanga SD, Mufhandu HT. Biomedical applications of biodegradable polycaprolactone-functionalized magnetic iron oxides nanoparticles and their polymer nanocomposites. Colloids Surf B Biointerfaces 2023; 227:113342. [PMID: 37224613 DOI: 10.1016/j.colsurfb.2023.113342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Magnetic nanoparticles (MNPs) have gained significant attention among several nanoscale materials during the last decade due to their unique properties. These properties make them successful nanofillers for drug delivery and a number of new biomedical applications. MNPs are more useful when combined with biodegradable polymers. In this review, we discussed the synthesis of polycaprolactones (PCL) and the various methods of synthesizing magnetic iron oxide nanoparticles. Then, the synthesis of composites that is made of PCL and magnetic materials (with special focus on iron oxide nanoparticles) were highlighted. In addition, we comprehensively reviewed their application in drug delivery, cancer treatment, wound healing, hyperthermia, and bone tissue engineering. Other biomedical applications of the magnetic PCL such as mitochondria targeting are highlighted. Moreover, biomedical applications of magnetic nanoparticles incorporated into other synthetic polymers apart from PCL are also discussed. Thus, great progress and better outcome with functionalized MNPs enhanced with polycaprolactone has been recorded with the biomedical applications of drug delivery and recovery of bone tissues.
Collapse
Affiliation(s)
| | - Timothy O Ajiboye
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, 6031, Gqeberha, South Africa.
| | - Sabelo D Mhlanga
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, 6031, Gqeberha, South Africa
| | - Hazel T Mufhandu
- Department of Microbiology, North-West University, Mafikeng, South Africa.
| |
Collapse
|
2
|
Fei Z, Liu P, Cheng C, Wei R, Xiao P, Zhang Y. Solvent-Responsive Magnetic Beads for Accurate Detection of SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4924-4934. [PMID: 36648175 DOI: 10.1021/acsami.2c18684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although numerous approaches were proposed for the nucleic acid (NA)-based SARS-CoV-2 detection, the nonideal NA desorption efficiency of conventional magnetic beads (MBs) limits their widespread application. In this study, we developed solvent-responsive MBs (called responsive MBs), which, in the presence of buffers, modulated the absorption and desorption capacities of NA by flipping the surface -COO-. Relative to other commercial MBs, responsive MBs exhibited similar absorption profiles and markedly enhanced desorption profiles. When applied for NA detection of complex samples, responsive MBs exhibited better performance of RNA detection than DNA, with obvious advantages in sensitivity. Specifically, the RNA and DNA desorption rates of commercial MBs were ∼85 and 82.5%, while those of responsive MBs were nearly 94 and 93.5%, respectively. Furthermore, responsive MBs exhibited remarkable extraction ability in a wide range of tissues and better performance of RNA extraction than DNA. When applied for SARS-CoV-2 detection, the responsive MBs along with the simulated digital RT-LAMP (a previously established apparatus) further improved detection efficiency, yielding a precise quantitative detection as low as 25 copies and an ultimate sensibility detection of 5 copies/mL. It was also successfully employed in numerous NA-based technologies such as polymerase chain reaction (PCR), sequencing, and so on.
Collapse
Affiliation(s)
- Zhongjie Fei
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, No. 2, Southeast University Road, Nanjing 211189, Jiangsu, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Ping Liu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, No. 2, Southeast University Road, Nanjing 211189, Jiangsu, China
| | - Chu Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Rongbin Wei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, No. 2, Southeast University Road, Nanjing 211189, Jiangsu, China
| |
Collapse
|
3
|
Bhatkalkar SG, Kumar D, Ali A, Sachar S. Influence of surfactants on biomolecular conjugation of magnetic nanoparticles. J Biomol Struct Dyn 2022; 40:12895-12907. [PMID: 34542389 DOI: 10.1080/07391102.2021.1977701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we report the physicochemical interaction among iron oxide nanoparticles (MNPs) and essential biomolecules, namely, serum albumin (BSA, HSA), collagen and deoxyribonucleic acid (DNA) in the presence of various cationic, anionic and non-ionic surfactants. Iron oxide nanoparticles are synthesized by the wet chemical process and are characterized by X-ray powder diffraction analysis (XRD), Fourier transform infrared spectroscopic, UV-Vis spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping studies . The conjugation of MNPs protein was analyzed using UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism technique and gel electrophoresis. The spectroscopic investigation illustrates the surfactant-dependent binding between MNPs and protein. Gel electrophoresis in the absence and presence of MNPs-surfactant systems has been used to study the impact on DNA structure. It was found that Tween 80 imparts better stability as well as biocompatibility to the synthesized MNPs. The findings offer extensive information on the influence of various surfactant coatings on MNP surfaces and their influence on vital biomolecules, making it useful for designing MNPs for biological applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Dinesh Kumar
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Vidyanagari, Mumbai, India
| |
Collapse
|
4
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Magnetoresponsive Functionalized Nanocomposite Aggregation Kinetics and Chain Formation at the Targeted Site during Magnetic Targeting. Pharmaceutics 2022; 14:pharmaceutics14091923. [PMID: 36145671 PMCID: PMC9503060 DOI: 10.3390/pharmaceutics14091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Drug therapy for vascular disease has been promoted to inhibit angiogenesis in atherosclerotic plaques and prevent restenosis following surgical intervention. This paper investigates the arterial depositions and distribution of PEG-functionalized magnetic nanocomposite clusters (PEG_MNCs) following local delivery in a stented artery model in a uniform magnetic field produced by a regionally positioned external permanent magnet; also, the PEG_MNCs aggregation or chain formation in and around the implanted stent. The central concept is to employ one external permanent magnet system, which produces enough magnetic field to magnetize and guide the magnetic nanoclusters in the stented artery region. At room temperature (25 °C), optical microscopy of the suspension model’s aggregation process was carried out in the external magnetic field. According to the optical microscopy pictures, the PEG_MNC particles form long linear aggregates due to dipolar magnetic interactions when there is an external magnetic field. During magnetic particle targeting, 20 mL of the model suspensions are injected (at a constant flow rate of 39.6 mL/min for the period of 30 s) by the syringe pump in the mean flow (flow velocity is Um = 0.25 m/s, corresponding to the Reynolds number of Re = 232) into the stented artery model. The PEG_MNC clusters are attracted by the magnetic forces (generated by the permanent external magnet) and captured around the stent struts and the bottom artery wall before and inside the implanted stent. The colloidal interaction among the MNC clusters was investigated by calculating the electrostatic repulsion, van der Waals and magnetic dipole-dipole energies. The current work offers essential details about PEG_MNCs aggregation and chain structure development in the presence of an external magnetic field and the process underlying this structure formation.
Collapse
|
6
|
Asha S, Bakri M, El Manna C, Sasi Florence S, Sarojini V, Hentry C, Bindhu MR. Enhanced bacterial inhibition and photocatalyzed degradation of industrial contaminants by polyethylene glycol capped PbWO 4 nanoparticles. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- S. Asha
- Department of Physics, St. Jude’s College, Thoothoor, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, India
| | - Marwah Bakri
- Department of Biology, Jazan University, Jizan, Saudi Arabia
| | | | | | - V. Sarojini
- Department of Physics, Lekshmipuram College of Arts and Science, Neyyoor, India
| | - C. Hentry
- Department of Physics, St. Jude’s College, Thoothoor, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, India
| | - M. R. Bindhu
- Department of Physics, Sree Devi Kumari Women’s College, Kuzhithurai, India
| |
Collapse
|
7
|
Dou J, Mi Y, Daneshmand S, Heidari Majd M. The effect of magnetic nanoparticles containing hyaluronic acid and methotrexate on the expression of genes involved in apoptosis and metastasis in A549 lung cancer cell lines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
Iron oxide and iron oxyhydroxide nanoparticles impair SARS-CoV-2 infection of cultured cells. J Nanobiotechnology 2022; 20:352. [PMID: 35907835 PMCID: PMC9338509 DOI: 10.1186/s12951-022-01542-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/02/2022] [Indexed: 12/11/2022] Open
Abstract
Background Coronaviruses usually cause mild respiratory disease in humans but as seen recently, some human coronaviruses can cause more severe diseases, such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the global spread of which has resulted in the ongoing coronavirus pandemic. Results In this study we analyzed the potential of using iron oxide nanoparticles (IONPs) coated with biocompatible molecules like dimercaptosuccinic acid (DMSA), 3-aminopropyl triethoxysilane (APS) or carboxydextran (FeraSpin™ R), as well as iron oxyhydroxide nanoparticles (IOHNPs) coated with sucrose (Venofer®), or iron salts (ferric ammonium citrate -FAC), to treat and/or prevent SARS-CoV-2 infection. At non-cytotoxic doses, IONPs and IOHNPs impaired virus replication and transcription, and the production of infectious viruses in vitro, either when the cells were treated prior to or after infection, although with different efficiencies. Moreover, our data suggest that SARS-CoV-2 infection affects the expression of genes involved in cellular iron metabolism. Furthermore, the treatment of cells with IONPs and IOHNPs affects oxidative stress and iron metabolism to different extents, likely influencing virus replication and production. Interestingly, some of the nanoparticles used in this work have already been approved for their use in humans as anti-anemic treatments, such as the IOHNP Venofer®, and as contrast agents for magnetic resonance imaging in small animals like mice, such as the FeraSpin™ R IONP. Conclusions Therefore, our results suggest that IONPs and IOHNPs may be repurposed to be used as prophylactic or therapeutic treatments in order to combat SARS-CoV-2 infection. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01542-2.
Collapse
|
9
|
Abu-El-Rub E, Khasawneh RR, Almahasneh F. Prodigious therapeutic effects of combining mesenchymal stem cells with magnetic nanoparticles. World J Stem Cells 2022; 14:513-526. [PMID: 36157526 PMCID: PMC9350622 DOI: 10.4252/wjsc.v14.i7.513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have gained wide-ranging reputation in the medical research community due to their promising regenerative abilities. MSCs can be isolated from various resources mostly bone marrow, Adipose tissues and Umbilical cord. Huge advances have been achieved in comprehending the possible mechanisms underlying the therapeutic functions of MSCs. Despite the proven role of MSCs in repairing and healing of many disease modalities, many hurdles hinder the transferring of these cells in the clinical settings. Among the most reported problems encountering MSCs therapy in vivo are loss of tracking signal post-transplantation, insufficient migration, homing and engraftment post-infusion, and undesirable differentiation at the site of injury. Magnetic nano particles (MNPs) have been used widely for various biomedical applications. MNPs have a metallic core stabilized by an outer coating material and their ma gnetic properties can be modulated by an external magnetic field. These magnetic properties of MNPs were found to enhance the quality of diagnostic imaging procedures and can be used to create a carrying system for targeted delivery of therapeutic substances mainly drug, genes and stem cells. Several studies highlighted the advantageous outcomes of combining MSCs with MNPs in potentiating their tracking, monitoring, homing, engraftment and differentiation. In this review, we will discuss the role of MNPs in promoting the therapeutic profile of MSCs which may improve the success rate of MSCs transplantation and solve many challenges that delay their clinical applicability.
Collapse
Affiliation(s)
- Ejlal Abu-El-Rub
- Department of Physiology and Pathophysiology, Yarmouk University, Irbid 21163, Jordan
| | - Ramada R Khasawneh
- Department of Anatomy and Histology, Yarmouk University, Irbid 21163, Jordan.
| | - Fatimah Almahasneh
- Department of Physiology and Pathophysiology, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
10
|
Garg Y, Kapoor DN, Sharma AK, Bhatia A. Drug Delivery Systems and Strategies to Overcome the Barriers of Brain. Curr Pharm Des 2021; 28:619-641. [PMID: 34951356 DOI: 10.2174/1381612828666211222163025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. Reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are currently being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tend to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.
Collapse
Affiliation(s)
- Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| |
Collapse
|
11
|
Zivarpour P, Hallajzadeh J, Asemi Z, Sadoughi F, Sharifi M. Chitosan as possible inhibitory agents and delivery systems in leukemia. Cancer Cell Int 2021; 21:544. [PMID: 34663339 PMCID: PMC8524827 DOI: 10.1186/s12935-021-02243-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
Leukemia is a lethal cancer in which white blood cells undergo proliferation and immature white blood cells are seen in the bloodstream. Without diagnosis and management in early stages, this type of cancer can be fatal. Changes in protooncogenic genes and microRNA genes are the most important factors involved in development of leukemia. At present, leukemia risk factors are not accurately identified, but some studies have pointed out factors that predispose to leukemia. Studies show that in the absence of genetic risk factors, leukemia can be prevented by reducing the exposure to risk factors of leukemia, including smoking, exposure to benzene compounds and high-dose radioactive or ionizing radiation. One of the most important treatments for leukemia is chemotherapy which has devastating side effects. Chemotherapy and medications used during treatment do not have a specific effect and destroy healthy cells besides leukemia cells. Despite the suppressing effect of chemotherapy against leukemia, patients undergoing chemotherapy have poor quality of life. So today, researchers are focusing on finding more safe and effective natural compounds and treatments for cancer, especially leukemia. Chitosan is a valuable natural compound that is biocompatible and non-toxic to healthy cells. Anticancer, antibacterial, antifungal and antioxidant effects are examples of chitosan biopolymer properties. The US Food and Drug Administration has approved the use of this compound in medical treatments and the pharmaceutical industry. In this article, we take a look at the latest advances in the use of chitosan in the treatment and improvement of leukemia.
Collapse
Affiliation(s)
- Parinaz Zivarpour
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Vadivelmurugan A, Anbazhagan R, Lai JY, Tsai HC. Paramagnetic properties of manganese chelated on glutathione-exfoliated MoS2. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Ghasemi Goorbandi R, Mohammadi MR, Malekzadeh K. Synthesizing efficacious genistein in conjugation with superparamagnetic Fe 3O 4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma. Biomater Res 2020; 24:9. [PMID: 32206338 PMCID: PMC7082912 DOI: 10.1186/s40824-020-00187-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/28/2020] [Indexed: 01/11/2023] Open
Abstract
Background Genistein (C15H10O5) is a soy isoflavone with anti-cancer properties such as inhibition of cell growth, proliferation and tumor invasion, but effective dosage against hematopoietic malignant cells was not in non-toxic range. This property cause to impede its usage as chemotherapeutic agent. Therefore, this hypothesis raised that synthesizing biocompatible nanoparticle could assist to prevail this struggle. Methods Genistein covalently attached on Fe3O4 nanoparticles decorated with carboxymethylated chitosan to fabricate Fe3O4-CMC-genistein in alkaline circumstance. This obtained nanoparticles were evaluated by TEM, DLS, FTIR, XRD and VSM and its anti-cancer effect by growth rate and MTT assays as well as flow cytometer on ALL cancer cell lines. Results Different evaluations indicated that the drug delivery vehicle had a mean diameter size around 12ƞm with well bounded components. This system presented high degree of magnetization and superparamagnetic properties as well as good water solubility. In comparison with pure genistein, significant growth inhibition on hematopoietic cancer cells in lower dose of genistein nano-conjugated onto Fe3O4-CMC. It increased long lasting effect of genistein in cancer cells also. Conclusion This delivery system for genistein could be remarkably promised and futuristic as biocompatible chemotherapeutic agent against hematopoietic malignant cells.
Collapse
Affiliation(s)
- Rachel Ghasemi Goorbandi
- 1Sharif University of Technology, Kish International Campus, Kish Island, Iran.,2Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Reza Mohammadi
- 4Department of Medical Genetics; Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kianoosh Malekzadeh
- 2Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,3Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Bhargava A, Mishra DK, Tiwari R, Lohiya NK, Goryacheva IY, Mishra PK. Immune cell engineering: opportunities in lung cancer therapeutics. Drug Deliv Transl Res 2020; 10:1203-1227. [PMID: 32172351 DOI: 10.1007/s13346-020-00719-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineered immune cells offer a prime therapeutic alternate for some aggressive and frequently occurring malignancies like lung cancer. These therapies were reported to result in tumor regression and overall improvement in patient survival. However, studies also suggest that the presence of cancer cell-induced immune-suppressive microenvironment, off-target toxicity, and difficulty in concurrent imaging are some prime impendent in the success of these approaches. The present article reviews the need and significance of the currently available immune cell-based strategies for lung cancer therapeutics. It also showcases the utility of incorporating nanoengineered strategies and details the available formulations of nanocarriers. In last, it briefly discussed the existing methods for nanoparticle fuctionalization and challenges in translating basic research to the clinics. Graphical Abstract.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russian Federation
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
15
|
Oberacker P, Stepper P, Bond D, Hipp K, Hore TA, Jurkowski TP. Simple Synthesis of Functionalized Paramagnetic Beads for Nucleic Acid Purification and Manipulation. Bio Protoc 2019; 9:e3394. [PMID: 33654895 DOI: 10.21769/bioprotoc.3394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/18/2019] [Accepted: 09/10/2019] [Indexed: 11/02/2022] Open
Abstract
The purification of nucleic acids is one of the most common procedures employed in modern molecular biology laboratories. Typically, commercial column-based protocols are utilized to isolate DNA or RNA from various sources. However, these methods not only require specialized equipment, but are also extremely expensive for high-throughput applications. Although an elegant answer to this issue can be provided by paramagnetic beads, bead-based open-source protocols have been limited in the past. Here, we provide an easy to follow step-by-step manual for the synthesis of paramagnetic beads, as well as their functionalization with either a silica- or a carboxyl-surface that can be used to replace the commercial columns with self-made magnetic beads. Together with a variety of detailed protocols for their use in high-throughput nucleic acids extractions, this bead synthesis method forms the recently published open platform Bio-On-Magnetic-Beads (BOMB), which is available on PLOS Biology ( Oberacker et al., 2019 ). Updated protocols can be found on the associated webpage (https://bomb.bio).
Collapse
Affiliation(s)
- Phil Oberacker
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.,School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Peter Stepper
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Donna Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Katharina Hipp
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Tomasz P Jurkowski
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
16
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
17
|
Chiu CY, Chung TW, Chen SY, Ma YH. Effects of PEGylation on capture of dextran-coated magnetic nanoparticles in microcirculation. Int J Nanomedicine 2019; 14:4767-4780. [PMID: 31308657 PMCID: PMC6613455 DOI: 10.2147/ijn.s204844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Magnetic nanoparticles (MNPs) can be localized against hemodynamic forces in blood vessels with the application of an external magnetic field. In addition, PEGylation of nanoparticles may increase the half-life of nanocomposites in circulation. In this work, we examined the effect of PEGylation on the magnetic capture of MNPs in vivo. METHODS Laser speckle contrast imaging and capillaroscopy were used to assess the magnetic capture of dextran-coated MNPs and red blood cell (RBC) flow in cremaster microvessels of anesthetized rats. Magnetic capture of MNPs in serum flow was visualized with an in vitro circulating system. The effect of PEGylation on MNP-endothelial cell interaction was studied in cultured cells using an iron assay. RESULTS In microcirculation through cremaster muscle, magnet-induced retention of 250 nm MNPs was associated with a variable reduction in RBC flow, suggesting a dynamic coupling of hemodynamic and magnetic forces. After magnet removal, faster restoration of flow was observed in PEG(+) than PEG(-) group, which may be attributed to a reduced interaction with vascular endothelium. However, PEGylation appears to be required for magnetic capture of 50 nm MNPs in microvessels, which was associated with increased hydrodynamic diameter to 130±6 nm in serum, but independent of the ς-potential. CONCLUSION These results suggest that PEGylation may enhance magnetic capture of smaller MNPs and dispersion of larger MNPs after magnet removal, which may potentially affect the targeting, pharmacokinetics and therapeutic efficacy.
Collapse
Affiliation(s)
- Chien-Yu Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan City33302, Taiwan, ROC
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan City33302, Taiwan, ROC
| | - Tze-Wen Chung
- Department of Biomedical Engineering, National Yang-Ming University, Beitou, Taipei City11221, Taiwan, ROC
- Center for Advanced Pharmaceutical Research and Drug Delivery, National Yang-Ming University, Beitou, Taipei City11221, Taiwan, ROC
| | - Si-Yi Chen
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan City33302, Taiwan, ROC
| | - Yunn-Hwa Ma
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Guishan, Taoyuan City33302, Taiwan, ROC
- Department of Neurology, Chang Gung Memorial Hospital, Guishan, Taoyuan City33305, Taiwan, ROC
| |
Collapse
|
18
|
|
19
|
Oberacker P, Stepper P, Bond DM, Höhn S, Focken J, Meyer V, Schelle L, Sugrue VJ, Jeunen GJ, Moser T, Hore SR, von Meyenn F, Hipp K, Hore TA, Jurkowski TP. Bio-On-Magnetic-Beads (BOMB): Open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol 2019; 17:e3000107. [PMID: 30629605 PMCID: PMC6343928 DOI: 10.1371/journal.pbio.3000107] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/23/2019] [Indexed: 01/10/2023] Open
Abstract
Current molecular biology laboratories rely heavily on the purification and manipulation of nucleic acids. Yet, commonly used centrifuge- and column-based protocols require specialised equipment, often use toxic reagents, and are not economically scalable or practical to use in a high-throughput manner. Although it has been known for some time that magnetic beads can provide an elegant answer to these issues, the development of open-source protocols based on beads has been limited. In this article, we provide step-by-step instructions for an easy synthesis of functionalised magnetic beads, and detailed protocols for their use in the high-throughput purification of plasmids, genomic DNA, RNA and total nucleic acid (TNA) from a range of bacterial, animal, plant, environmental and synthetic sources. We also provide a bead-based protocol for bisulfite conversion and size selection of DNA and RNA fragments. Comparison to other methods highlights the capability, versatility, and extreme cost-effectiveness of using magnetic beads. These open-source protocols and the associated webpage (https://bomb.bio) can serve as a platform for further protocol customisation and community engagement. This Community Page article presents open-source nucleic acid purification and handling protocols based on functionalised magnetic beads, with the aim of transforming life science research practice and its economics.
Collapse
Affiliation(s)
- Phil Oberacker
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Peter Stepper
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Donna M. Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sven Höhn
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jule Focken
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Vivien Meyer
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Luca Schelle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | | | - Gert-Jan Jeunen
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Tim Moser
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Ferdinand von Meyenn
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom and Department of Medical and Molecular Medicine, Kings College London, Guys Hospital, London, United Kingdom
| | - Katharina Hipp
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- * E-mail: (TPJ); (TAH)
| | - Tomasz P. Jurkowski
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
- * E-mail: (TPJ); (TAH)
| |
Collapse
|
20
|
Wei Y, Quan L, Zhou C, Zhan Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond) 2018; 13:1495-1512. [DOI: 10.2217/nnm-2018-0040] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles have promising biomedical applications for drug delivery, tumor imaging and tumor treatment. Pharmacokinetics are important for the in vivo application of nanoparticles. Biodistribution and clearance are largely defined as the key points of pharmacokinetics to maximize therapeutic efficacy and to minimize side effects. Different engineered nanoparticles have different biodistribution and clearance processes. The interactions of organs with nanoparticles, which are determined by the characteristics of the organs and the biochemical/physical properties of the nanoparticles, are a major factor influencing biodistribution and clearance. In this review, the clearance functions of organs and the properties related to pharmacokinetics, including nanoparticle size, shape, biodegradation and surface modifications are discussed.
Collapse
Affiliation(s)
- Yanchun Wei
- Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu 223001, PR China
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Li Quan
- Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu 223001, PR China
| | - Chao Zhou
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Qiuqiang Zhan
- Centre for Optical & Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials & Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
- Key Laboratory of Optoelectronic Devices & Systems of Ministry of Education & Guangdong Province, Shenzhen University, Shenzhen 518052, PR China
| |
Collapse
|
21
|
Alves MN, Nesterenko PN, Paull B, Haddad PR, Macka M. Separation of superparamagnetic magnetite nanoparticles by capillary zone electrophoresis using non-complexing and complexing electrolyte anions and tetramethylammonium as dispersing additive. Electrophoresis 2018; 39:1429-1436. [DOI: 10.1002/elps.201800095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Monica N. Alves
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Australia
| | - Pavel N. Nesterenko
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Australia
| | - Brett Paull
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Australia
| | - Paul R. Haddad
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Australia
| | - Mirek Macka
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Australia
- Department of Chemistry and Biochemistry; Mendel University; Brno Czech Republic
| |
Collapse
|
22
|
Jindal AB. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm 2017; 532:450-465. [PMID: 28917985 DOI: 10.1016/j.ijpharm.2017.09.028] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 01/04/2023]
Abstract
Encapsulation of therapeutic agents in nanoparticles offers several benefits including improved bioavailability, site specific delivery, reduced toxicity and in vivo stability of proteins and nucleotides over conventional delivery options. These benefits are consequence of distinct in vivo pharmacokinetic and biodistribution profile of nanoparticles, which is dictated by the complex interplay of size, surface charge and surface hydrophobicity. Recently, particle shape has been identified as a new physical parameter which has exerted tremendous impact on cellular uptake and biodistribution, thereby in vivo performance of nanoparticles. Improved therapeutic efficacy of anticancer agents using non-spherical particles is the recent development in the field. Additionally, immunological response of nanoparticles was also altered when antigens were loaded in non-spherical nanovehicles. The apparent impact of particle shape inspired the new research in the field of drug delivery. The present review therefore details the research in this field. The review focuses on methods of fabrication of particles of non-spherical geometries and impact of particle shape on cellular uptake, biodistribution, tumor targeting and production of immunological responses.
Collapse
Affiliation(s)
- Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani,, Pilani Campus,, Rajasthan-333031, India.
| |
Collapse
|
23
|
Williams HM. The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. ACTA ACUST UNITED AC 2017. [DOI: 10.1093/biohorizons/hzx009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Harry M. Williams
- School of Life Sciences, Keele University, Keele, Newcastle ST5 5BG, UK
| |
Collapse
|
24
|
Li J, Zou S, Gao J, Liang J, Zhou H, Liang L, Wu W. Block copolymer conjugated Au-coated Fe 3O 4 nanoparticles as vectors for enhancing colloidal stability and cellular uptake. J Nanobiotechnology 2017; 15:56. [PMID: 28743275 PMCID: PMC5526242 DOI: 10.1186/s12951-017-0290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Polymer surface-modified inorganic nanoparticles (NPs) provide a multifunctional platform for assisting gene delivery. Rational structure design for enhancing colloidal stability and cellular uptake is an important strategy in the development of safe and highly efficient gene vectors. RESULTS Heterogeneous Au-coated Fe3O4 (Fe3O4@Au) NPs capped by polyethylene glycol-b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG-b-PAMPImB-Fe3O4@Au) were prepared for DNA loading and magnetofection assays. The Au outer shell of the NPs is an effective platform for maintaining the superparamagnetism of Fe3O4 and for PEG-b-PAMPImB binding via Au-S covalent bonds. By forming an electrostatic complex with DNA at the inner PAMPImB shell, the magnetic nanoplexes offer steric protection from the outer corona PEG, thereby promoting high colloidal stability. Transfection efficiency assays in human esophageal cancer cells (EC109) show that the nanoplexes have high transfection efficiency at a short incubation time in the presence of an external magnetic field, due to increased cellular internalization via magnetic acceleration. Finally, after transfection with the magnetic nanoplexes EC109 cells acquire magnetic properties, thus allowing for selective separation of transfected cells. CONCLUSION Precisely engineered architectures based on neutral-cationic block copolymer-conjugated heterogeneous NPs provide a valuable strategy for improving the applicability and efficacy of synthesized vectors.
Collapse
Affiliation(s)
- Junbo Li
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Sheng Zou
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Jiayu Gao
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Ju Liang
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Huiyun Zhou
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Lijuan Liang
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Wenlan Wu
- School of Medicine, Henan University of Science & Technology, Luo Yang, 471023 China
| |
Collapse
|
25
|
Synthesis, physico-chemical characterization, and antioxidant effect of PEGylated cerium oxide nanoparticles. Drug Deliv Transl Res 2017; 8:357-367. [DOI: 10.1007/s13346-017-0396-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Lai CW, Low FW, Tai MF, Abdul Hamid SB. Iron oxide nanoparticles decorated oleic acid for high colloidal stability. ADVANCES IN POLYMER TECHNOLOGY 2017. [DOI: 10.1002/adv.21829] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT); Institute of Postgraduate Studies (IPS); University of Malaya; Kuala Lumpur Malaysia
| | - Foo Wah Low
- Nanotechnology & Catalysis Research Centre (NANOCAT); Institute of Postgraduate Studies (IPS); University of Malaya; Kuala Lumpur Malaysia
| | - Mun Foong Tai
- Nanotechnology & Catalysis Research Centre (NANOCAT); Institute of Postgraduate Studies (IPS); University of Malaya; Kuala Lumpur Malaysia
| | - Sharifah Bee Abdul Hamid
- Nanotechnology & Catalysis Research Centre (NANOCAT); Institute of Postgraduate Studies (IPS); University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
27
|
Ma M, Yan F, Yao M, Wei Z, Zhou D, Yao H, Zheng H, Chen H, Shi J. Template-Free Synthesis of Hollow/Porous Organosilica-Fe 3O 4 Hybrid Nanocapsules toward Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29986-29996. [PMID: 27774787 DOI: 10.1021/acsami.6b10370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Entirely differing from the common templating-based multistep strategy for fabricating multifunctional hollow mesoporous silica nanoparticles (HMSN), a facile and template-free synthetic strategy has been established to construct a unique hollow/mesoporous organosilica nanocapsule (OSNC) concurrently encapsulating both isopentyl acetate (PeA) liquid and superparamagnetic iron oxides inside (denoted as PeA@OSNC). This novel material exhibits ultrasmall and uniform particle size (∼82 nm), high surface area (∼534 m2·g-1), and excellent colloidal stability in aqueous solution. The oil-phase PeA with relatively low boiling point (142 °C) and high volatility not only plays a crucial role in formation of a large hollow cavity from the viewpoint of structural design but also enables the PeA@OSNC to act as an efficient enhancement agent in high-intensity focused ultrasound (HIFU) therapy. Moreover, the unique satellite-like distribution of Fe3O4 nanoparticles (NP) on the organosilica shell offered excellent magnetic resonance imaging (MRI) contrast capability of PeA@OSNC in vitro and in vivo. More importantly, such a novel theranostic agent has favorable biosafety, which is very promising for future clinical application in MRI-guided HIFU therapy.
Collapse
Affiliation(s)
- Ming Ma
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences ,1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , 1068 Xueyuan Avenue, Shenzhen 518055, People's Republic of China
| | - Minghua Yao
- Department of Ultrasound in Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine , 301 Yanchangzhong Road, Shanghai 200072, People's Republic of China
| | - Zijun Wei
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , 1068 Xueyuan Avenue, Shenzhen 518055, People's Republic of China
| | - Dongliang Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , 1068 Xueyuan Avenue, Shenzhen 518055, People's Republic of China
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences ,1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , 1068 Xueyuan Avenue, Shenzhen 518055, People's Republic of China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences ,1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences ,1295 Dingxi Road, Shanghai 200050, People's Republic of China
| |
Collapse
|
28
|
Jacob JJ, Suthindhiran K. Magnetotactic bacteria and magnetosomes - Scope and challenges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:919-928. [PMID: 27524094 DOI: 10.1016/j.msec.2016.07.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/24/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
Geomagnetism aided navigation has been demonstrated by certain organisms which allows them to identify a particular location using magnetic field. This attractive technique to recognize the course was earlier exhibited in numerous animals, for example, birds, insects, reptiles, fishes and mammals. Magnetotactic bacteria (MTB) are one of the best examples for magnetoreception among microorganisms as the magnetic mineral functions as an internal magnet and aid the microbe to move towards the water columns in an oxic-anoxic interface (OAI). The ability of MTB to biomineralize the magnetic particles (magnetosomes) into uniform nano-sized, highly crystalline structure with uniform magnetic properties has made the bacteria an important topic of research. The superior properties of magnetosomes over chemically synthesized magnetic nanoparticles made it an attractive candidate for potential applications in microbiology, biophysics, biochemistry, nanotechnology and biomedicine. In this review article, the scope of MTB, magnetosomes and its challenges in research and industrial application have been discussed in brief. This article mainly focuses on the application based on the magnetotactic behaviour of MTB and magnetosomes in different areas of modern science.
Collapse
Affiliation(s)
- Jobin John Jacob
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT University, Vellore 632014, India
| | - K Suthindhiran
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT University, Vellore 632014, India.
| |
Collapse
|
29
|
Vishwasrao HM, Master AM, Seo YG, Liu XM, Pothayee N, Zhou Z, Yuan D, Boska MD, Bronich TK, Davis RM, Riffle JS, Sokolsky-Papkov M, Kabanov AV. Luteinizing Hormone Releasing Hormone-Targeted Cisplatin-Loaded Magnetite Nanoclusters for Simultaneous MR Imaging and Chemotherapy of Ovarian Cancer. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2016; 28:3024-3040. [PMID: 37405207 PMCID: PMC10317193 DOI: 10.1021/acs.chemmater.6b00197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Given the superior soft tissue contrasts obtained by MRI and the long residence times of magnetic nanoparticles (MNPs) in soft tissues, MNP-based theranostic systems are being developed for simultaneous imaging and treatment. However, development of such theranostic nanoformulations presents significant challenges of balancing the therapeutic and diagnostic functionalities in order to achieve optimum effect from both. Here we developed a simple theranostic nanoformulation based on magnetic nanoclusters (MNCs) stabilized by a bisphosphonate-modified poly(glutamic acid)-b-(ethylene glycol) block copolymer and complexed with cisplatin. The MNCs were decorated with luteinizing hormone releasing hormone (LHRH) to target LHRH receptors (LHRHr) overexpressed in ovarian cancer cells. The targeted MNCs significantly improved the uptake of the drug in cancer cells and decreased its IC50 compared to the nontargeted formulations. Also, the enhanced LHRHr-mediated uptake of the targeted MNCs resulted in enhancement in the T2-weighted negative contrast in cellular phantom gels. Taken together, the LHRH-conjugated MNCs show good potential as ovarian cancer theranostics.
Collapse
Affiliation(s)
- Hemant M. Vishwasrao
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Center for Nanotechnology in Drug Delivery, Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alyssa M. Master
- Center for Nanotechnology in Drug Delivery, Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Youn Gee Seo
- Center for Nanotechnology in Drug Delivery, Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xinming M. Liu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Nikorn Pothayee
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhengyuan Zhou
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Dongfen Yuan
- Center for Nanotechnology in Drug Delivery, Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael D. Boska
- Department of Radiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Tatiana K. Bronich
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Richey M. Davis
- Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Judy S. Riffle
- Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery, Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexander V. Kabanov
- Center for Nanotechnology in Drug Delivery, Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Faculty of Chemistry, M.V. Lomonosov, Moscow State University, 119899 Moscow, Russia
| |
Collapse
|
30
|
Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles. Ther Deliv 2015; 6:873-87. [PMID: 26228777 DOI: 10.4155/tde.15.40] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanoparticle-based therapeutics are poised to play a critical role in treating disease. These complex multifunctional drug delivery vehicles provide for the passive and active targeted delivery of numerous small molecule, peptide and protein-derived pharmaceuticals. This article will first discuss some of the current state of the art nanoparticle classes (dendrimers, lipid-based, polymeric and inorganic), highlighting benefits/drawbacks associated with their implementation. We will then discuss an emerging class of nanoparticle therapeutics, bacterial outer membrane vesicles, that can provide many of the nanoparticle benefits while simplifying assembly. Through molecular biology techniques; outer membrane vesicle hijacking potentially allows for stringent control over nanoparticle production allowing for targeted protein packaged nanoparticles to be fully synthesized by bacteria.
Collapse
|
31
|
Super-Paramagnetic Nanoparticles with Spinel Structure: A Review of Synthesis and Biomedical Applications. ACTA ACUST UNITED AC 2015. [DOI: 10.4028/www.scientific.net/ssp.241.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of ceramic materials has attracted the attention of many researchers due to the possibility of their use in nanotechnology. The spinel ferrites form a large group of materials with a broad range of applications. Some examples include electronic devices such as high-frequency transformer cores, antenna rods, induction-tuners, among many others. However, when the ferritic materials display superparamagnetic behavior, their potential for biological applications like drug delivery, hyperthermia, resonance magnetic imaging and magnetic separation, become amazingly high. Therefore, the superparamagnetism is a characteristic strongly desired for spinel ferrites. Since this phenomenon is size-dependent, the methodologies to synthesize these materials has emerged as a crucial step in order to obtain the desired properties. In this regarding, several synthetic processes have been developed. For example, co-precipitation is a fast and cheap method to synthesize superparamagnetic spinel ferrites. However, methodologies involving microwave, ultrasound or polymers frequently result in these kind of materials. Therefore, this review brings a brief historic introduction about spinel ferrites as well as essential concepts to understand their structure and magnetic properties. In addition to this, recent advances in synthesis and applications of the superparamagnetic spinel ferrites are mentioned. Contents of Paper
Collapse
|
32
|
Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig 2015; 5:124-33. [PMID: 26258053 PMCID: PMC4522861 DOI: 10.4103/2230-973x.160844] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to lack of specification and solubility of drug molecules, patients have to take high doses of the drug to achieve the desired therapeutic effects for the treatment of diseases. To solve these problems, there are various drug carriers present in the pharmaceuticals, which can used to deliver therapeutic agents to the target site in the body. Mesoporous silica materials become known as a promising candidate that can overcome above problems and produce effects in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles (MSNs) are widely used as a delivery reagent because silica possesses favorable chemical properties, thermal stability, and biocompatibility. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release of the target site. The properties of mesoporous, including pore size, high drug loading, and porosity as well as the surface properties, can be altered depending on additives used to prepare MSNs. Active surface enables functionalization to changed surface properties and link therapeutic molecules. They are used as widely in the field of diagnosis, target drug delivery, bio-sensing, cellular uptake, etc., in the bio-medical field. This review aims to present the state of knowledge of silica containing mesoporous nanoparticles and specific application in various biomedical fields.
Collapse
Affiliation(s)
- Charu Bharti
- Department of Pharmaceutics, School of Pharmacy, Bharat Institute of Technology, Partapur By Pass Road, Meerut, Uttar Pradesh, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity university, Noida, Uttar Pradesh, India
| | - Ashok Kumar Pal
- Department of Pharmaceutics, School of Pharmacy, Bharat Institute of Technology, Partapur By Pass Road, Meerut, Uttar Pradesh, India
| | - Neha Gulati
- Department of Pharmaceutics, School of Pharmacy, Bharat Institute of Technology, Partapur By Pass Road, Meerut, Uttar Pradesh, India
| |
Collapse
|
33
|
Liu B, Li C, Ma P, Chen Y, Zhang Y, Hou Z, Huang S, Lin J. Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery. NANOSCALE 2015; 7:1839-1848. [PMID: 25521795 DOI: 10.1039/c4nr05342g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic resonance (MR) bio-imaging, but can also achieve an effective magnetically targeted antitumor chemotherapy both in vitro and in vivo. Furthermore, the UCL intensity of UCNPs and the magnetic properties of Fe3O4 in the MFNPs were carefully balanced. Silica coating and further PEG modifying can improve the hydrophilicity and biocompatibility of the as-synthesized MFNPs, which was confirmed by the in vitro/in vivo biocompatibility and in vivo long-time bio-distributions tests. Those results revealed that the UCNPs based magnetically targeted drug carrier system we synthesized has great promise in the future for multimodal bio-imaging and targeted cancer therapy.
Collapse
Affiliation(s)
- Bei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Cortajarena AL, Ortega D, Ocampo SM, Gonzalez-García A, Couleaud P, Miranda R, Belda-Iniesta C, Ayuso-Sacido A. Engineering Iron Oxide Nanoparticles for Clinical Settings. Nanobiomedicine (Rij) 2014; 1:2. [PMID: 30023013 PMCID: PMC6029241 DOI: 10.5772/58841] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/01/2014] [Indexed: 12/15/2022] Open
Abstract
Iron oxide nanoparticles (IONPs) occupy a privileged position among magnetic nanomaterials with potential applications in medicine and biology. They have been widely used in preclinical experiments for imaging contrast enhancement, magnetic resonance, immunoassays, cell tracking, tissue repair, magnetic hyperthermia and drug delivery. Despite these promising results, their successful translation into a clinical setting is strongly dependent upon their physicochemical properties, toxicity and functionalization possibilities. Currently, IONPs-based medical applications are limited to the use of non-functionalized IONPs smaller than 100 nm, with overall narrow particle size distribution, so that the particles have uniform physical and chemical properties. However, the main entry of IONPs into the scene of medical application will surely arise from their functionalization possibilities that will provide them with the capacity to target specific cells within the body, and hence to play a role in the development of specific therapies. In this review, we offer an overview of their basic physicochemical design parameters, giving an account of the progress made in their functionalization and current clinical applications. We place special emphasis on past and present clinical trials.
Collapse
Affiliation(s)
- Aitziber L Cortajarena
- Instituto Madrileño de Estudios Avanzados IMDEA-Nanociencia, Madrid, Spain.,Centro Nacional de Biotecnología (CNB-CSIC) - IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Cantoblanco, Madrid, Spain
| | - Daniel Ortega
- Instituto Madrileño de Estudios Avanzados IMDEA-Nanociencia, Madrid, Spain.,Centro Nacional de Biotecnología (CNB-CSIC) - IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Cantoblanco, Madrid, Spain.,Institute of Biomedical Engineering, University College London, UK
| | - Sandra M Ocampo
- Instituto Madrileño de Estudios Avanzados IMDEA-Nanociencia, Madrid, Spain
| | | | - Pierre Couleaud
- Instituto Madrileño de Estudios Avanzados IMDEA-Nanociencia, Madrid, Spain.,Centro Nacional de Biotecnología (CNB-CSIC) - IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Cantoblanco, Madrid, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados IMDEA-Nanociencia, Madrid, Spain
| | - Cristobal Belda-Iniesta
- Instituto Madrileño de Estudios Avanzados IMDEA-Nanociencia, Madrid, Spain.,Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA). Hospital de Madrid Foundation, Madrid, Spain.,National School of Health, ISCIII, Madrid, Spain
| | - Angel Ayuso-Sacido
- Instituto Madrileño de Estudios Avanzados IMDEA-Nanociencia, Madrid, Spain.,Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA). Hospital de Madrid Foundation, Madrid, Spain
| |
Collapse
|