1
|
Rarokar N, Yadav S, Saoji S, Bramhe P, Agade R, Gurav S, Khedekar P, Subramaniyan V, Wong LS, Kumarasamy V. Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement. Int J Pharm X 2024; 7:100231. [PMID: 38322276 PMCID: PMC10844979 DOI: 10.1016/j.ijpx.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Over the last two decades, researchers have paid more attention to magnetic nanosystems due to their wide application in diverse fields. The metal nanomaterials' antimicrobial and biocidal properties make them an essential nanosystem for biomedical applications. Moreover, the magnetic nanosystems could have also been used for diagnosis and treatment because of their magnetic, optical, and fluorescence properties. Superparamagnetic iron oxide nanoparticles (SPIONs) and quantum dots (QDs) are the most widely used magnetic nanosystems prepared by a simple process. By surface modification, researchers have recently been working on conjugating metals like silica, copper, and gold with magnetic nanosystems. This hybridization of the nanosystems modifies the structural characteristics of the nanomaterials and helps to improve their efficacy for targeted drug and gene delivery. The hybridization of metals with various nanomaterials like micelles, cubosomes, liposomes, and polymeric nanomaterials is gaining more interest due to their nanometer size range and nontoxic, biocompatible nature. Moreover, they have good injectability and higher targeting ability by accumulation at the target site by application of an external magnetic field. The present article discussed the magnetic nanosystem in more detail regarding their structure, properties, interaction with the biological system, and diagnostic applications.
Collapse
Affiliation(s)
- Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
- G H Raisoni Institute of Life Sciences, Shradha Park, Hingna MIDC, Nagpur 440016, India
| | - Sakshi Yadav
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Suprit Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Pratiksha Bramhe
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Rishabh Agade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa 403 001, India
| | - Pramod Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj University, Nagpur, Maharashtra 440033, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Urciuolo F, Imparato G, Netti PA. In vitro strategies for mimicking dynamic cell-ECM reciprocity in 3D culture models. Front Bioeng Biotechnol 2023; 11:1197075. [PMID: 37434756 PMCID: PMC10330728 DOI: 10.3389/fbioe.2023.1197075] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
The extracellular microenvironment regulates cell decisions through the accurate presentation at the cell surface of a complex array of biochemical and biophysical signals that are mediated by the structure and composition of the extracellular matrix (ECM). On the one hand, the cells actively remodel the ECM, which on the other hand affects cell functions. This cell-ECM dynamic reciprocity is central in regulating and controlling morphogenetic and histogenetic processes. Misregulation within the extracellular space can cause aberrant bidirectional interactions between cells and ECM, resulting in dysfunctional tissues and pathological states. Therefore, tissue engineering approaches, aiming at reproducing organs and tissues in vitro, should realistically recapitulate the native cell-microenvironment crosstalk that is central for the correct functionality of tissue-engineered constructs. In this review, we will describe the most updated bioengineering approaches to recapitulate the native cell microenvironment and reproduce functional tissues and organs in vitro. We have highlighted the limitations of the use of exogenous scaffolds in recapitulating the regulatory/instructive and signal repository role of the native cell microenvironment. By contrast, strategies to reproduce human tissues and organs by inducing cells to synthetize their own ECM acting as a provisional scaffold to control and guide further tissue development and maturation hold the potential to allow the engineering of fully functional histologically competent three-dimensional (3D) tissues.
Collapse
Affiliation(s)
- F. Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - G. Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - P. A. Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
3
|
Afewerki S, Stocco TD, Rosa da Silva AD, Aguiar Furtado AS, Fernandes de Sousa G, Ruiz-Esparza GU, Webster TJ, Marciano FR, Strømme M, Zhang YS, Lobo AO. In vitro high-content tissue models to address precision medicine challenges. Mol Aspects Med 2023; 91:101108. [PMID: 35987701 PMCID: PMC9384546 DOI: 10.1016/j.mam.2022.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023]
Abstract
The field of precision medicine allows for tailor-made treatments specific to a patient and thereby improve the efficiency and accuracy of disease prevention, diagnosis, and treatment and at the same time would reduce the cost, redundant treatment, and side effects of current treatments. Here, the combination of organ-on-a-chip and bioprinting into engineering high-content in vitro tissue models is envisioned to address some precision medicine challenges. This strategy could be employed to tackle the current coronavirus disease 2019 (COVID-19), which has made a significant impact and paradigm shift in our society. Nevertheless, despite that vaccines against COVID-19 have been successfully developed and vaccination programs are already being deployed worldwide, it will likely require some time before it is available to everyone. Furthermore, there are still some uncertainties and lack of a full understanding of the virus as demonstrated in the high number new mutations arising worldwide and reinfections of already vaccinated individuals. To this end, efficient diagnostic tools and treatments are still urgently needed. In this context, the convergence of bioprinting and organ-on-a-chip technologies, either used alone or in combination, could possibly function as a prominent tool in addressing the current pandemic. This could enable facile advances of important tools, diagnostics, and better physiologically representative in vitro models specific to individuals allowing for faster and more accurate screening of therapeutics evaluating their efficacy and toxicity. This review will cover such technological advances and highlight what is needed for the field to mature for tackling the various needs for current and future pandemics as well as their relevancy towards precision medicine.
Collapse
Affiliation(s)
- Samson Afewerki
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Thiago Domingues Stocco
- Bioengineering Program, Technological and Scientific Institute, Brazil University, 08230-030, São Paulo, SP, Brazil; Faculty of Medical Sciences, Unicamp - State University of Campinas, 13083-877, Campinas, SP, Brazil
| | | | - André Sales Aguiar Furtado
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo Fernandes de Sousa
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA
| | - Thomas J Webster
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Hebei University of Technology, Tianjin, China
| | - Fernanda R Marciano
- Department of Physics, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA.
| | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
4
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
5
|
Nieto D, Jiménez G, Moroni L, López-Ruiz E, Gálvez-Martín P, Marchal JA. Biofabrication approaches and regulatory framework of metastatic tumor-on-a-chip models for precision oncology. Med Res Rev 2022; 42:1978-2001. [PMID: 35707911 PMCID: PMC9545141 DOI: 10.1002/med.21914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022]
Abstract
The complexity of the tumor microenvironment (TME) together with the development of the metastatic process are the main reasons for the failure of conventional anticancer treatment. In recent years, there is an increasing need to advance toward advanced in vitro models of cancer mimicking TME and simulating metastasis to understand the associated mechanisms that are still unknown, and to be able to develop personalized therapy. In this review, the commonly used alternatives and latest advances in biofabrication of tumor‐on‐chips, which allow the generation of the most sophisticated and optimized models for recapitulating the tumor process, are presented. In addition, the advances that have allowed these new models in the area of metastasis, cancer stem cells, and angiogenesis are summarized, as well as the recent integration of multiorgan‐on‐a‐chip systems to recapitulate natural metastasis and pharmacological screening against it. We also analyze, for the first time in the literature, the normative and regulatory framework in which these models could potentially be found, as well as the requirements and processes that must be fulfilled to be commercially implemented as in vitro study model. Moreover, we are focused on the possible regulatory pathways for their clinical application in precision medicine and decision making through the generation of personalized models with patient samples. In conclusion, this review highlights the synergistic combination of three‐dimensional bioprinting systems with the novel tumor/metastasis/multiorgan‐on‐a‐chip systems to generate models for both basic research and clinical applications to have devices useful for personalized oncology.
Collapse
Affiliation(s)
- Daniel Nieto
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Universiteitssingel, Maastricht, The Netherlands.,Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
| | - Gema Jiménez
- Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Universiteitssingel, Maastricht, The Netherlands
| | - Elena López-Ruiz
- Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | - Juan Antonio Marchal
- Center for Biomedical Research (CIBM)/Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| |
Collapse
|
6
|
Addressing the gaps in drug-delivery research: from a broader academic perspective to clinical translation. Ther Deliv 2022; 13:205-209. [PMID: 35341330 DOI: 10.4155/tde-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Graphical abstract [Formula: see text].
Collapse
|
7
|
Kabay G, Manz A, Dincer C. Microfluidic Roadmap for Translational Nanotheranostics. SMALL METHODS 2022; 6:e2101217. [PMID: 34957704 DOI: 10.1002/smtd.202101217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Nanotheranostic materials (NTMs) shed light on the mechanisms responsible for complex diseases such as cancer because they enable making a diagnosis, monitoring the disease progression, and applying a targeted therapy simultaneously. However, several issues such as the reproducibility and mass production of NTMs hamper their application for clinical practice. To address these issues and facilitate the clinical application of NTMs, microfluidic systems have been increasingly used. This perspective provides a glimpse into the current state-of-art of NTM research, emphasizing the methods currently employed at each development stage of NTMs and the related open problems. This work reviews microfluidic technologies used to develop NTMs, ranging from the fabrication and testing of a single NTM up to their manufacturing on a large scale. Ultimately, a step-by-step vision on the future development of NTMs for clinical practice enabled by microfluidics techniques is provided.
Collapse
Affiliation(s)
- Gozde Kabay
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| | - Andreas Manz
- Korea Institute of Science and Technology (KIST) in Europe, 66123, Saarbrücken, Germany
| | - Can Dincer
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| |
Collapse
|
8
|
Advancing Tumor Microenvironment Research by Combining Organs-on-Chips and Biosensors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:171-203. [DOI: 10.1007/978-3-031-04039-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Abstract
AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting.
Graphic abstract
Collapse
|
10
|
Moreira Teixeira L, Mezzanotte L. New bioimaging avenues for organs‐on‐chips by integration of bioluminescence. VIEW 2021. [DOI: 10.1002/viw.20200177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Liliana Moreira Teixeira
- Department of Developmental Bioengineering Technical Medical Centre University of Twente Enschede The Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine Erasmus Medical Center Rotterdam The Netherlands
- Department of Molecular Genetics Erasmus Medical Center Rotterdam The Netherlands
| |
Collapse
|
11
|
Lin C, Wang Y, Huang Z, Wu T, Xu W, Wu W, Xu Z. Advances in Filament Structure of 3D Bioprinted Biodegradable Bone Repair Scaffolds. Int J Bioprint 2021; 7:426. [PMID: 34805599 PMCID: PMC8600304 DOI: 10.18063/ijb.v7i4.426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Conventional bone repair scaffolds can no longer meet the high standards and requirements of clinical applications in terms of preparation process and service performance. Studies have shown that the diversity of filament structures of implantable scaffolds is closely related to their overall properties (mechanical properties, degradation properties, and biological properties). To better elucidate the characteristics and advantages of different filament structures, this paper retrieves and summarizes the state of the art in the filament structure of the three-dimensional (3D) bioprinted biodegradable bone repair scaffolds, mainly including single-layer structure, double-layer structure, hollow structure, core-shell structure and bionic structures. The eximious performance of the novel scaffolds was discussed from different aspects (material composition, ink configuration, printing parameters, etc.). Besides, the additional functions of the current bone repair scaffold, such as chondrogenesis, angiogenesis, anti-bacteria, and anti-tumor, were also concluded. Finally, the paper prospects the future material selection, structural design, functional development, and performance optimization of bone repair scaffolds.
Collapse
Affiliation(s)
- Chengxiong Lin
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Yaocheng Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China.,School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| | - Zhengyu Huang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China.,School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Weikang Xu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Wenming Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Products, Guangdong Medical Device Research Institute, Guangzhou 510500, China
| | - Zhibiao Xu
- School of Railway Tracks and Transportation, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
12
|
Design and fabrication of an integrated heart-on-a-chip platform for construction of cardiac tissue from human iPSC-derived cardiomyocytes and in situ evaluation of physiological function. Biosens Bioelectron 2021; 179:113080. [DOI: 10.1016/j.bios.2021.113080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 11/21/2022]
|
13
|
Zubareva EV, Nadezhdin SV, Nadezhdina NA, Belyaeva VS, Burda YE, Avtina TV, Gudyrev OS, Kolesnik IM, Kulikova SY, Mishenin MO. 3D organotypic cell structures for drug development and Microorganism-Host interaction research. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.62118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The article describes a new method of tissue engineering, which is based on the use of three-dimensional multicellular constructs consisting of stem cells that mimic the native tissue in vivo – organoids.
3D cell cultures: The currently existing model systems of three-dimensional cultures are described.
Characteristics of organoids and strategies for their culturing: The main approaches to the fabrication of 3D cell constructs using pluripotent (embryonic and induced) stem cells or adult stem cells are described.
Brain organoids (Cerebral organoids): Organoids of the brain, which are used to study the development of the human brain, are characterized, with the description of biology of generating region-specific cerebral organoids.
Lung organoids: Approaches to the generation of lung organoids are described, by means of pluripotent stem cells and lung tissue cell lines.
Liver organoids: The features of differentiation of stem cells into hepatocyte-like cells and the creation of 3D hepatic organoids are characterized.
Intestinal organoids: The formation of small intestine organoids from stem cells is described.
Osteochondral organoids: Fabrication of osteochondral organoids is characterised.
Use of organoids as test systems for drugs screening: The information on drug screening using organoids is provided.
Using organoids to model infectious diseases and study adaptive responses of microorganisms when interacting with the host: The use of organoids for modeling infectious diseases and studying the adaptive responses of microorganisms when interacting with the host organism is described.
Conclusion: The creation of three-dimensional cell structures that reproduce the structural and functional characteristics of tissue in vivo, makes it possible to study the biology of the body’s development, the features of intercellular interactions, screening drugs and co-cultivating with viruses, bacteria and parasites.
Collapse
|
14
|
Chen X, Zhang YS, Zhang X, Liu C. Organ-on-a-chip platforms for accelerating the evaluation of nanomedicine. Bioact Mater 2020; 6:1012-1027. [PMID: 33102943 PMCID: PMC7566214 DOI: 10.1016/j.bioactmat.2020.09.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Nanomedicine involves the use of engineered nanoscale materials in an extensive range of diagnostic and therapeutic applications and can be applied to the treatment of many diseases. Despite the rapid progress and tremendous potential of nanomedicine in the past decades, the clinical translational process is still quite slow, owing to the difficulty in understanding, evaluating, and predicting nanomaterial behaviors within the complex environment of human beings. Microfluidics-based organ-on-a-chip (Organ Chip) techniques offer a promising way to resolve these challenges. Sophisticatedly designed Organ Chip enable in vitro simulation of the in vivo microenvironments, thus providing robust platforms for evaluating nanomedicine. Herein, we review recent developments and achievements in Organ Chip models for nanomedicine evaluations, categorized into seven broad sections based on the target organ systems: respiratory, digestive, lymphatic, excretory, nervous, and vascular, as well as coverage on applications relating to cancer. We conclude by providing our perspectives on the challenges and potential future directions for applications of Organ Chip in nanomedicine. Microfluidics-based organ-on-a-chip (Organ Chip) techniques offer a promising way to understand, evaluate, and predict nanomedicine behaviors within the complex environment. Organ Chip models for nanomedicine evaluations are categorized into seven broad sections based on the targeted body systems. Limitations, challenges, and perspectives of Organ Chip for accelerating the assessment of nanomedicine are discussed, respectively.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, United States
| | - Xinping Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
15
|
Leung HM, Wang ML, Osman H, Abouei E, MacAulay C, Follen M, Gardecki JA, Tearney GJ. Imaging intracellular motion with dynamic micro-optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:2768-2778. [PMID: 32499959 PMCID: PMC7249806 DOI: 10.1364/boe.390782] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 05/12/2023]
Abstract
This paper describes a new technology that uses 1-µm-resolution optical coherence tomography (µOCT) to obtain cross-sectional images of intracellular dynamics with dramatically enhanced image contrast. This so-called dynamic µOCT (d-µOCT) is accomplished by acquiring a time series of µOCT images and conducting power frequency analysis of the temporal fluctuations that arise from intracellular motion on a pixel-per-pixel basis. Here, we demonstrate d-µOCT imaging of freshly excised human esophageal and cervical biopsy samples. Depth-resolved d-µOCT images of intact tissue show that intracellular dynamics provides a new contrast mechanism for µOCT that highlights subcellular morphology and activity in epithelial surface maturation patterns.
Collapse
Affiliation(s)
- Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Michelle L. Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Hany Osman
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Elham Abouei
- University of British Columbia, Department of Physics and Astronomy, Vancouver, BC V6 T 1Z1, Canada
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, BC V5Z 1L3, Canada
| | - Calum MacAulay
- British Columbia Cancer Research Center, Department of Integrative Oncology, Vancouver, BC V5Z 1L3, Canada
| | - Michele Follen
- NYC Health + Hospitals/Kings County, Cancer Prevention and Cancer Services for Kings County Hospital, 451 Clarkson Avenue, C-Building, Suite 4104, Brooklyn, NY 11203, USA
| | - Joseph A. Gardecki
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
- Harvard-MIT Division of Heath Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
16
|
Sun W, Starly B, Daly AC, Burdick JA, Groll J, Skeldon G, Shu W, Sakai Y, Shinohara M, Nishikawa M, Jang J, Cho DW, Nie M, Takeuchi S, Ostrovidov S, Khademhosseini A, Kamm RD, Mironov V, Moroni L, Ozbolat IT. The bioprinting roadmap. Biofabrication 2020; 12:022002. [DOI: 10.1088/1758-5090/ab5158] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. PROGRESS IN MATERIALS SCIENCE 2019; 106:100589. [PMID: 32189815 PMCID: PMC7079701 DOI: 10.1016/j.pmatsci.2019.100589] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Angela M Wagner
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nicholas A Peppas
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, the University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
18
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Deng B, Wang H, Tan Z, Quan Y. Microfluidic Cell Trapping for Single-Cell Analysis. MICROMACHINES 2019; 10:mi10060409. [PMID: 31248148 PMCID: PMC6632028 DOI: 10.3390/mi10060409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 12/19/2022]
Abstract
The single-cell capture microfluidic chip has many advantages, including low cost, high throughput, easy manufacturing, integration, non-toxicity and good stability. Because of these characteristics, the cell capture microfluidic chip is increasingly becoming an important carrier on the study of life science and pharmaceutical analysis. Important promises of single-cell analysis are the paring, fusion, disruption and analysis of intracellular components for capturing a single cell. The capture, which is based on the fluid dynamics method in the field of micro fluidic chips is an important way to achieve and realize the operations mentioned above. The aim of this study was to compare the ability of three fluid dynamics-based microfluidic chip structures to capture cells. The effects of cell growth and distribution after being captured by different structural chips and the subsequent observation and analysis of single cells on the chip were compared. It can be seen from the experimental results that the microfluidic chip structure most suitable for single-cell capture is a U-shaped structure. It enables single-cell capture as well as long-term continuous culture and the single-cell observation of captured cells. Compared to the U-shaped structure, the cells captured by the microcavity structure easily overlapped during the culture process and affected the subsequent analysis of single cells. The flow shortcut structure can also be used to capture and observe single cells, however, the shearing force of the fluid caused by the chip structure is likely to cause deformation of the cultured cells. By comparing the cell capture efficiency of the three chips, the reagent loss during the culture process and the cell growth state of the captured cells, we are provided with a theoretical support for the design of a single-cell capture microfluidic chip and a reference for the study of single-cell capture in the future.
Collapse
Affiliation(s)
- Bing Deng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000, China.
| | - Heyi Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000, China.
| | - Zhaoyi Tan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000, China.
| | - Yi Quan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000, China.
| |
Collapse
|
20
|
Zhao Y, Kankala RK, Wang SB, Chen AZ. Multi-Organs-on-Chips: Towards Long-Term Biomedical Investigations. Molecules 2019; 24:E675. [PMID: 30769788 PMCID: PMC6412790 DOI: 10.3390/molecules24040675] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
With advantageous features such as minimizing the cost, time, and sample size requirements, organ-on-a-chip (OOC) systems have garnered enormous interest from researchers for their ability for real-time monitoring of physical parameters by mimicking the in vivo microenvironment and the precise responses of xenobiotics, i.e., drug efficacy and toxicity over conventional two-dimensional (2D) and three-dimensional (3D) cell cultures, as well as animal models. Recent advancements of OOC systems have evidenced the fabrication of 'multi-organ-on-chip' (MOC) models, which connect separated organ chambers together to resemble an ideal pharmacokinetic and pharmacodynamic (PK-PD) model for monitoring the complex interactions between multiple organs and the resultant dynamic responses of multiple organs to pharmaceutical compounds. Numerous varieties of MOC systems have been proposed, mainly focusing on the construction of these multi-organ models, while there are only few studies on how to realize continual, automated, and stable testing, which still remains a significant challenge in the development process of MOCs. Herein, this review emphasizes the recent advancements in realizing long-term testing of MOCs to promote their capability for real-time monitoring of multi-organ interactions and chronic cellular reactions more accurately and steadily over the available chip models. Efforts in this field are still ongoing for better performance in the assessment of preclinical attributes for a new chemical entity. Further, we give a brief overview on the various biomedical applications of long-term testing in MOCs, including several proposed applications and their potential utilization in the future. Finally, we summarize with perspectives.
Collapse
Affiliation(s)
- Yi Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
21
|
Kumar V, Varghese S. Ex Vivo Tumor-on-a-Chip Platforms to Study Intercellular Interactions within the Tumor Microenvironment. Adv Healthc Mater 2019; 8:e1801198. [PMID: 30516355 PMCID: PMC6384151 DOI: 10.1002/adhm.201801198] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/25/2018] [Indexed: 01/01/2023]
Abstract
The emergence of immunotherapies and recent FDA approval of several of them makes them a promising therapeutic strategy for cancer. While these advancements underscore the potential of engaging the immune system to target tumors, this approach has so far been efficient only for certain cancers. Extending immunotherapy as a widely acceptable treatment for various cancers requires a deeper understanding of the interactions of tumor cells within the tumor microenvironment (TME). The immune cells are a key component of the TME, which also includes other stromal cells, soluble factors, and extracellular matrix-based cues. While in vivo studies function as a gold standard, tissue-engineered microphysiological tumor models can offer patient-specific insights into cancer-immune interactions. These platforms, which recapitulate cellular and non-cellular components of the TME, enable a systematic understanding of the contribution of each component toward disease progression in isolation and in concert. Microfluidic-based microphysiological platforms recreating these environments, also known as "tumor-on-a-chip," are increasingly being utilized to study the effect of various elements of TME on tumor development. Herein are reviewed advancements in tumor-on-a-chip technology that are developed and used to understand the interaction of tumor cells with other surrounding cells, including immune cells, in the TME.
Collapse
Affiliation(s)
- Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA,
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine Durham, NC 27703, USA
| |
Collapse
|
22
|
He Z, Ranganathan N, Li P. Evaluating nanomedicine with microfluidics. NANOTECHNOLOGY 2018; 29:492001. [PMID: 30215611 DOI: 10.1088/1361-6528/aae18a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomedicines are engineered nanoscale structures that have an extensive range of application in the diagnosis and therapy of many diseases. Despite the rapid progress in and tremendous potential of nanomedicines, their clinical translational process is still slow, owing to the difficulty in understanding, evaluating, and predicting their behavior in complex living organisms. Microfluidic techniques offer a promising way to resolve these challenges. Carefully designed microfluidic chips enable in vivo microenvironment simulation and high-throughput analysis, thus providing robust platforms for nanomedicine evaluation. Here, we summarize the recent developments and achievements in microfluidic methods for nanomedicine evaluation, categorized into four sections based on their target systems: single cell, multicellular system, organ, and organism levels. Finally, we provide our perspectives on the challenges and future directions of microfluidics-based nanomedicine evaluation.
Collapse
Affiliation(s)
- Ziyi He
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| | | | | |
Collapse
|
23
|
Ribas J, Pawlikowska J, Rouwkema J. Microphysiological systems: analysis of the current status, challenges and commercial future. ACTA ACUST UNITED AC 2018; 2. [PMID: 33898981 DOI: 10.21037/mps.2018.10.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The field of microphysiological systems (or organs-on-a-chip) experienced, in the past decade, a surge in publications and efforts towards commercialization. Such systems hold the promise to advance drug discovery, diagnostics, and many other areas. In this review we summarize and analyze the current status of the field, describe the commercial advances and discuss standing challenges and the commercial outlook of the field.
Collapse
Affiliation(s)
- João Ribas
- Doctoral Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | | | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
24
|
Witzigmann D, Hak S, van der Meel R. Translating nanomedicines: Thinking beyond materials? A young investigator's reply to ‘The Novelty Bubble’. J Control Release 2018; 290:138-140. [DOI: 10.1016/j.jconrel.2018.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 01/16/2023]
|
25
|
|
26
|
Yesil-Celiktas O, Hassan S, Miri AK, Maharjan S, Al-kharboosh R, Quiñones-Hinojosa A, Zhang YS. Mimicking Human Pathophysiology in Organ-on-Chip Devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800109] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ozlem Yesil-Celiktas
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Bioengineering; Faculty of Engineering; Ege University; Bornova-Izmir 35100 Turkey
| | - Shabir Hassan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| | - Amir K. Miri
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Mechanical Engineering Rowan University; 401 North Campus Drive Glassboro NJ 08028 USA
| | - Sushila Maharjan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Research Institute for Bioscience and Biotechnology; Nakkhu-4 Lalitpur 44600 Nepal
| | - Rawan Al-kharboosh
- Mayo Clinic College of Medicine; Mayo Clinic Graduate School; Neuroscience, NBD Track Rochester MN 55905 USA
- Department of Neurosurgery, Oncology, Neuroscience; Mayo Clinic; Jacksonville FL 32224 USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| |
Collapse
|
27
|
Naghieh S, Sarker M, Izadifar M, Chen X. Dispensing-based bioprinting of mechanically-functional hybrid scaffolds with vessel-like channels for tissue engineering applications – A brief review. J Mech Behav Biomed Mater 2018; 78:298-314. [DOI: 10.1016/j.jmbbm.2017.11.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
|
28
|
Zhang YS, Oklu R, Dokmeci MR, Khademhosseini A. Three-Dimensional Bioprinting Strategies for Tissue Engineering. Cold Spring Harb Perspect Med 2018; 8:a025718. [PMID: 28289247 PMCID: PMC5793742 DOI: 10.1101/cshperspect.a025718] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decades, many approaches have been developed to fabricate biomimetic extracellular matrices of desired properties for engineering functional tissues. However, the inability of these techniques to precisely control the spatial architecture has posed a significant challenge in producing complex tissues. 3D bioprinting technology has emerged as a potential solution by bringing unprecedented freedom and versatility in depositing biological materials and cells in a well-controlled manner in the 3D volumes, therefore achieving precision engineering of functional tissues. In this article, we review the application of 3D bioprinting to tissue engineering. We first discuss the general strategies for printing functional tissue constructs. We next describe different types of bioprinting with a focus on nozzle-based techniques and their respective advantages. Finally, we summarize the limitations of current technologies and propose challenges for future development of bioprinting.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115
| | - Rahmi Oklu
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
- Division of Vascular & Interventional Radiology, Mayo Clinic, Scottsdale, Arizona 85259
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
29
|
Engineering challenges in microphysiological systems. Future Sci OA 2017; 3:FSO209. [PMID: 28884006 PMCID: PMC5583656 DOI: 10.4155/fsoa-2017-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 01/15/2023] Open
|
30
|
Zhang YS, Zhu C, Xia Y. Inverse Opal Scaffolds and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201701115. [PMID: 28649794 PMCID: PMC5581229 DOI: 10.1002/adma.201701115] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/23/2017] [Indexed: 05/04/2023]
Abstract
Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Chunlei Zhu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
31
|
Zhang YS, Pi Q, van Genderen AM. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids. J Vis Exp 2017:55957. [PMID: 28829418 PMCID: PMC5614273 DOI: 10.3791/55957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Engineering vascularized tissue constructs and organoids has been historically challenging. Here we describe a novel method based on microfluidic bioprinting to generate a scaffold with multilayer interlacing hydrogel microfibers. To achieve smooth bioprinting, a core-sheath microfluidic printhead containing a composite bioink formulation extruded from the core flow and the crosslinking solution carried by the sheath flow, was designed and fitted onto the bioprinter. By blending gelatin methacryloyl (GelMA) with alginate, a polysaccharide that undergoes instantaneous ionic crosslinking in the presence of select divalent ions, followed by a secondary photocrosslinking of the GelMA component to achieve permanent stabilization, a microfibrous scaffold could be obtained using this bioprinting strategy. Importantly, the endothelial cells encapsulated inside the bioprinted microfibers can form the lumen-like structures resembling the vasculature over the course of culture for 16 days. The endothelialized microfibrous scaffold may be further used as a vascular bed to construct a vascularized tissue through subsequent seeding of the secondary cell type into the interstitial space of the microfibers. Microfluidic bioprinting provides a generalized strategy in convenient engineering of vascularized tissues at high fidelity.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School;
| | - Qingmeng Pi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School; Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Anne Metje van Genderen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University
| |
Collapse
|
32
|
Alvarez MM, Aizenberg J, Analoui M, Andrews AM, Bisker G, Boyden ES, Kamm RD, Karp JM, Mooney DJ, Oklu R, Peer D, Stolzoff M, Strano MS, Trujillo-de Santiago G, Webster TJ, Weiss PS, Khademhosseini A. Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS NANO 2017; 11:5195-5214. [PMID: 28524668 DOI: 10.1021/acsnano.7b01493] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We discuss the state of the art and innovative micro- and nanoscale technologies that are finding niches and opening up new opportunities in medicine, particularly in diagnostic and therapeutic applications. We take the design of point-of-care applications and the capture of circulating tumor cells as illustrative examples of the integration of micro- and nanotechnologies into solutions of diagnostic challenges. We describe several novel nanotechnologies that enable imaging cellular structures and molecular events. In therapeutics, we describe the utilization of micro- and nanotechnologies in applications including drug delivery, tissue engineering, and pharmaceutical development/testing. In addition, we discuss relevant challenges that micro- and nanotechnologies face in achieving cost-effective and widespread clinical implementation as well as forecasted applications of micro- and nanotechnologies in medicine.
Collapse
Affiliation(s)
- Mario M Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey , Ave. Eugenio Garza Sada 2501, Col. Tecnológico, CP 64849 Monterrey, Nuevo León, México
| | - Joanna Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
| | - Mostafa Analoui
- UConn Venture Development and Incubation, UConn , Storrs, CT 06269, United States
| | | | | | | | | | | | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
| | - Rahmi Oklu
- Division of Interventional Radiology, Mayo Clinic , Scottsdale, Arizona 85259, United States
| | | | | | | | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey , Ave. Eugenio Garza Sada 2501, Col. Tecnológico, CP 64849 Monterrey, Nuevo León, México
| | - Thomas J Webster
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University , Wenzhou 325000, China
| | | | - Ali Khademhosseini
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University , Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
33
|
Movia D, Di Cristo L, Alnemari R, McCarthy JE, Moustaoui H, Lamy de la Chapelle M, Spadavecchia J, Volkov Y, Prina-Mello A. The curious case of how mimicking physiological complexity in in vitro models of the human respiratory system influences the inflammatory responses. A preliminary study focused on gold nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/jin2.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dania Movia
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| | - Luisana Di Cristo
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| | - Roaa Alnemari
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
| | | | - Hanane Moustaoui
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Marc Lamy de la Chapelle
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| |
Collapse
|
34
|
Shin SR, Kilic T, Zhang YS, Avci H, Hu N, Kim D, Branco C, Aleman J, Massa S, Silvestri A, Kang J, Desalvo A, Hussaini MA, Chae S, Polini A, Bhise N, Hussain MA, Lee H, Dokmeci MR, Khademhosseini A. Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600522. [PMID: 28546915 PMCID: PMC5441508 DOI: 10.1002/advs.201600522] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/15/2017] [Indexed: 05/04/2023]
Abstract
Development of an efficient sensing platform capable of continual monitoring of biomarkers is needed to assess the functionality of the in vitro organoids and to evaluate their biological responses toward pharmaceutical compounds or chemical species over extended periods of time. Here, a novel label-free microfluidic electrochemical (EC) biosensor with a unique built-in on-chip regeneration capability for continual measurement of cell-secreted soluble biomarkers from an organoid culture in a fully automated manner without attenuating the sensor sensitivity is reported. The microfluidic EC biosensors are integrated with a human liver-on-a-chip platform for continual monitoring of the metabolic activity of the organoids by measuring the levels of secreted biomarkers for up to 7 d, where the metabolic activity of the organoids is altered by a systemically applied drug. The variations in the biomarker levels are successfully measured by the microfluidic regenerative EC biosensors and agree well with cellular viability and enzyme-linked immunosorbent assay analyses, validating the accuracy of the unique sensing platform. It is believed that this versatile and robust microfluidic EC biosensor that is capable of automated and continual detection of soluble biomarkers will find widespread use for long-term monitoring of human organoids during drug toxicity studies or efficacy assessments of in vitro platforms.
Collapse
|
35
|
Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y. Bioinspired Helical Microfibers from Microfluidics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28266759 DOI: 10.1002/adma.201605765] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/24/2017] [Indexed: 05/05/2023]
Abstract
Helical objects are among the most important and landmark structures in nature, and represent an emerging group of materials with unique spiral geometry; because of their enriched physical and chemical properties, they can have multiple functionalities. However, the fabrication of such complex helical materials at the micro- or nanoscale level remains a challenge. Here, a coaxial capillary microfluidic system, with the functions of consecutive spinning and spiraling, is presented for scalable generation of helical microfibers. The generation processes can be precisely tuned by adjusting the flow rates, and thus the length, diameter, and pitch of the helical microfibers are highly controllable. Varying the injection capillary design of the microfluidics enables the generation of helical microfibers with structures such as the novel Janus, triplex, core-shell, and even double-helix structures. The potential use of these helical microfibers is also explored for magnetically and thermodynamically triggered microsprings, as well as for a force indicator for contraction of cardiomyocytes. These indicate that such helical microfibers are highly versatile for different applications.
Collapse
Affiliation(s)
- Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
36
|
Zhang YS, Zhang YN, Zhang W. Cancer-on-a-chip systems at the frontier of nanomedicine. Drug Discov Today 2017; 22:1392-1399. [PMID: 28390929 DOI: 10.1016/j.drudis.2017.03.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/23/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023]
Abstract
Nanomedicine provides a unique opportunity for promoting drug efficacy through enhanced delivery mechanisms. However, its translation into the clinics has been relatively slow compared with the large amount of research occurring in laboratory settings. Given the limitations of conventional cell culture models and preclinical animal models, we discuss the potential utility of recently developed cancer-on-a-chip platforms, which maximally replicate the pathophysiology of the human tumor microenvironments, as alternatives for effective evaluation of nanomedicine. We begin with a brief discussion of nanomedicine, then chart the history of organ-on-a-chip platform development and their recent evolution as tools for modeling different cancers for assessing nanomedicine efficacy, concluding with future perspectives for the field.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Yi-Nan Zhang
- Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Weijia Zhang
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
37
|
Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, Massa S, Riahi R, Chae S, Hu N, Avci H, Zhang W, Silvestri A, Sanati Nezhad A, Manbohi A, De Ferrari F, Polini A, Calzone G, Shaikh N, Alerasool P, Budina E, Kang J, Bhise N, Ribas J, Pourmand A, Skardal A, Shupe T, Bishop CE, Dokmeci MR, Atala A, Khademhosseini A. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A 2017; 114:E2293-E2302. [PMID: 28265064 PMCID: PMC5373350 DOI: 10.1073/pnas.1612906114] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139;
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Tugba Kilic
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Duckjin Kim
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Seyed Ali Mousavi Shaegh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Orthopaedic Research Center, Mashhad University of Medical Sciences, Mashhad 9176699199, Iran
| | - Solange Massa
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Graduate School Program in Biomedicine, Universidad de los Andes, Santiago 7620001, Chile
| | - Reza Riahi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Sukyoung Chae
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Ning Hu
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Huseyin Avci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Metallurgical and Materials Engineering Department, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, Eskisehir 26030, Turkey
| | - Weijia Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Antonia Silvestri
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Electronics and Telecommunications, Polytechnic University of Turin, Turin 10129, Italy
| | - Amir Sanati Nezhad
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- BioMEMS and Bioinspired Microfluidics Laboratory, Center for Bioengineering Research and Education, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ahmad Manbohi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Marine Science, Iranian National Institute for Oceanography and Atmospheric Science, Tehran 1411813389, Iran
| | - Fabio De Ferrari
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Electronics and Telecommunications, Polytechnic University of Turin, Turin 10129, Italy
| | - Alessandro Polini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Giovanni Calzone
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Noor Shaikh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada M5S 1A4
| | - Parissa Alerasool
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Erica Budina
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Jian Kang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Nupura Bhise
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - João Ribas
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Doctoral Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Adel Pourmand
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Electrical Engineering, Sahand University of Technology, Tabriz 5331711111, Iran
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139;
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Center for Nanotechnology, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
38
|
Ellis BW, Acun A, Can UI, Zorlutuna P. Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine. BIOMICROFLUIDICS 2017; 11:024105. [PMID: 28396709 PMCID: PMC5367145 DOI: 10.1063/1.4978468] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 05/04/2023]
Abstract
The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner.
Collapse
Affiliation(s)
- Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Aylin Acun
- Bioengineering Graduate Program, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - U Isik Can
- Aerospace and Mechanical Engineering Department, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
39
|
Jang M, Koh I, Lee SJ, Cheong JH, Kim P. Droplet-based microtumor model to assess cell-ECM interactions and drug resistance of gastric cancer cells. Sci Rep 2017; 7:41541. [PMID: 28128310 PMCID: PMC5269667 DOI: 10.1038/srep41541] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/06/2016] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is a common aggressive malignant tumor with high incidence and mortality worldwide. GC is classified into intestinal and diffuse types according to the histo-morphological features. Because of distinctly different clinico-pathological features, new cancer therapy strategies and in vitro preclinical models for the two pathological variants of GC is necessary. Since extracellular matrix (ECM) influence the biological behavior of tumor cells, we hypothesized that GC might be more similarly modeled in 3D with matrix rather than in 2D. Herein, we developed a microfluidic-based a three-dimensional (3D) in vitro gastric cancer model, with subsequent drug resistance assay. AGS (intestinal type) and Hs746T (diffuse type) gastric cancer cell lines were encapsulated in collagen beads with high cellular viability. AGS exhibited an aggregation pattern with expansive growth, whereas Hs746T showed single-cell-level infiltration. Importantly, in microtumor models, epithelial-mesenchymal transition (EMT) and metastatic genes were upregulated, whereas E-cadherin was downregulated. Expression of ß-catenin was decreased in drug-resistant cells, and chemosensitivity toward the anticancer drug (5-FU) was observed in microtumors. These results suggest that in vitro microtumor models may represent a biologically relevant platform for studying gastric cancer cell biology and tumorigenesis, and for accelerating the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Minjeong Jang
- KAIST, Department of Bio and Brain Engineering, Daejeon 34141, Republic of Korea
| | - Ilkyoo Koh
- KAIST, Department of Bio and Brain Engineering, Daejeon 34141, Republic of Korea
| | - Seok Jae Lee
- Department of Nano Bio Research, National NanoFab Center, Daejeon 34141, Republic of Korea
| | - Jae-Ho Cheong
- Yonsei University College of Medicine, Department of Surgery, Seoul 03722, Republic of Korea
| | - Pilnam Kim
- KAIST, Department of Bio and Brain Engineering, Daejeon 34141, Republic of Korea
| |
Collapse
|
40
|
Zhang YS, Yue K, Aleman J, Moghaddam KM, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR, Dokmeci MR, Oklu R, Khademhosseini A. 3D Bioprinting for Tissue and Organ Fabrication. Ann Biomed Eng 2017; 45:148-163. [PMID: 27126775 PMCID: PMC5085899 DOI: 10.1007/s10439-016-1612-8] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/05/2016] [Indexed: 12/15/2022]
Abstract
The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Kan Yue
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kamyar Mollazadeh Moghaddam
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Syeda Mahwish Bakht
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Comsats Institute of Information and Technology, Islamabad 45550, Pakistan
| | - Jingzhou Yang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Mechanical and Chemical Engineering, University of Western Australia, Perth, WA 6009, Australia
| | - Weitao Jia
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Valeria Dell’Erba
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Pribpandao Assawes
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
41
|
Li YC, Zhang YS, Akpek A, Shin SR, Khademhosseini A. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication 2016; 9:012001. [PMID: 27910820 DOI: 10.1088/1758-5090/9/1/012001] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, 4D bioprinting aims to create dynamic 3D patterned biological structures that can transform their shapes or behavior under various stimuli. In this review, we highlight the potential use of various stimuli-responsive materials for 4D printing and their extension into biofabrication. We first discuss the state of the art and limitations associated with current 3D printing modalities and their transition into the inclusion of the additional time dimension. We then suggest the potential use of different stimuli-responsive biomaterials as the bioink that may achieve 4D bioprinting where transformation of fabricated biological constructs can be realized. We finally conclude with future perspectives.
Collapse
Affiliation(s)
- Yi-Chen Li
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
42
|
Zhang YS, Yu C. Towards engineering integrated cardiac organoids: beating recorded. J Thorac Dis 2016; 8:E1683-E1687. [PMID: 28149613 PMCID: PMC5227195 DOI: 10.21037/jtd.2016.12.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Cunjiang Yu
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
- Program of Materials Science and Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
43
|
Bürgel SC, Diener L, Frey O, Kim JY, Hierlemann A. Automated, Multiplexed Electrical Impedance Spectroscopy Platform for Continuous Monitoring of Microtissue Spheroids. Anal Chem 2016; 88:10876-10883. [PMID: 27650426 DOI: 10.1021/acs.analchem.6b01410] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microtissue spheroids in microfluidic devices are increasingly used to establish novel in vitro organ models of the human body. As the spheroids are comparably sizable, it is difficult to monitor larger numbers of them by optical means. Therefore, electrical impedance spectroscopy (EIS) emerges as a viable alternative to probing spheroid properties. Current spheroid EIS systems are, however, not suitable for investigating multiple spheroids in parallel over extended time in an automated fashion. Here we address this issue by presenting an automated, multiplexed EIS (AMEIS) platform for impedance analysis in a microfluidic setting. The system was used to continuously monitor the effect of the anticancer drug fluorouracil (5-FU) on HCT116 cancer spheroids. Simultaneous EIS monitoring of up to 15 spheroids was performed in parallel over 4 days at a temporal resolution of 2 min without any need for pumps. The measurements were continuous in nature, and the setup was kept in a standard incubator under controlled conditions during the measurements. A baseline normalization method to improve robustness and to reduce the influence of slow changes in the medium conductivity on the spheroid EIS readings has been developed and validated by experiments and means of a finite-element model. The same method and platform was then used for online monitoring of cardiac spheroids. The beating frequency of each cardiac spheroid could be read out in a completely automated fashion. The developed system constitutes a promising method for simultaneously evaluating drug impact and/or toxic effects on multiple microtissue spheroids.
Collapse
Affiliation(s)
- Sebastian C Bürgel
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, Basel 4058, Switzerland
| | - Laurin Diener
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, Basel 4058, Switzerland
| | - Olivier Frey
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, Basel 4058, Switzerland
| | - Jin-Young Kim
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, Basel 4058, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich , Mattenstrasse 26, Basel 4058, Switzerland
| |
Collapse
|
44
|
Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell'Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016; 110:45-59. [PMID: 27710832 DOI: 10.1016/j.biomaterials.2016.09.003] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 02/06/2023]
Abstract
Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA.
| | - Andrea Arneri
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Simone Bersini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milan 20161, Italy
| | - Su-Ryon Shin
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Kai Zhu
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zahra Goli-Malekabadi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 64540, Iran
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cristina Colosi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Sapienza Università di Roma, Rome 00185, Italy
| | - Fabio Busignani
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electronics and Telecommunications, Politecnico di Torino, Torino 10129, Italy
| | - Valeria Dell'Erba
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino 10129, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milan 20161, Italy; Swiss Institute for Regnerative Medicine, Lugano 6900, Switzerland; Cardiocentro Ticino, Lugano 6900, Switzerland
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
45
|
A decade of progress in tissue engineering. Nat Protoc 2016; 11:1775-81. [DOI: 10.1038/nprot.2016.123] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
|
46
|
Casale C, Imparato G, Urciuolo F, Netti PA. Endogenous human skin equivalent promotes in vitro morphogenesis of follicle-like structures. Biomaterials 2016; 101:86-95. [DOI: 10.1016/j.biomaterials.2016.05.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
|
47
|
Mousavi Shaegh SA, De Ferrari F, Zhang YS, Nabavinia M, Binth Mohammad N, Ryan J, Pourmand A, Laukaitis E, Banan Sadeghian R, Nadhman A, Shin SR, Nezhad AS, Khademhosseini A, Dokmeci MR. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. BIOMICROFLUIDICS 2016; 10:044111. [PMID: 27648113 PMCID: PMC5001973 DOI: 10.1063/1.4955155] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/17/2016] [Indexed: 05/05/2023]
Abstract
There is a growing interest to develop microfluidic bioreactors and organ-on-chip platforms with integrated sensors to monitor their physicochemical properties and to maintain a well-controlled microenvironment for cultured organoids. Conventional sensing devices cannot be easily integrated with microfluidic organ-on-chip systems with low-volume bioreactors for continual monitoring. This paper reports on the development of a multi-analyte optical sensing module for dynamic measurements of pH and dissolved oxygen levels in the culture medium. The sensing system was constructed using low-cost electro-optics including light-emitting diodes and silicon photodiodes. The sensing module includes an optically transparent window for measuring light intensity, and the module could be connected directly to a perfusion bioreactor without any specific modifications to the microfluidic device design. A compact, user-friendly, and low-cost electronic interface was developed to control the optical transducer and signal acquisition from photodiodes. The platform enabled convenient integration of the optical sensing module with a microfluidic bioreactor. Human dermal fibroblasts were cultivated in the bioreactor, and the values of pH and dissolved oxygen levels in the flowing culture medium were measured continuously for up to 3 days. Our integrated microfluidic system provides a new analytical platform with ease of fabrication and operation, which can be adapted for applications in various microfluidic cell culture and organ-on-chip devices.
Collapse
|
48
|
Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics. Trends Biotechnol 2016; 34:722-732. [PMID: 27296078 DOI: 10.1016/j.tibtech.2016.05.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 02/08/2023]
Abstract
Improving the ability to predict the efficacy and toxicity of drug candidates earlier in the drug discovery process will speed up the introduction of new drugs into clinics. 3D in vitro systems have significantly advanced the drug screening process as 3D tissue models can closely mimic native tissues and, in some cases, the physiological response to drugs. Among various in vitro systems, bioprinting is a highly promising technology possessing several advantages such as tailored microarchitecture, high-throughput capability, coculture ability, and low risk of cross-contamination. In this opinion article, we discuss the currently available tissue models in pharmaceutics along with their limitations and highlight the possibilities of bioprinting physiologically relevant tissue models, which hold great potential in drug testing, high-throughput screening, and disease modeling.
Collapse
Affiliation(s)
- Weijie Peng
- Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA; Department of Pharmacology, Nanchang University, Nanchang, Jiangxi, China
| | - Derya Unutmaz
- The Jackson Laboratory of Genomics Medicine, Farmington, CT 06032, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; Materials Research Institute, The Pennsylvania State University, State College, PA 16802, USA.
| |
Collapse
|
49
|
Jang HL, Zhang YS, Khademhosseini A. Boosting clinical translation of nanomedicine. Nanomedicine (Lond) 2016; 11:1495-7. [PMID: 27176482 DOI: 10.2217/nnm-2016-0133] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Hae Lin Jang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.,Harvard-Massachusetts Institute of Technology Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.,Harvard-Massachusetts Institute of Technology Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.,Harvard-Massachusetts Institute of Technology Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.,Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
50
|
Zhang W, Zhang YS, Bakht SM, Aleman J, Shin SR, Yue K, Sica M, Ribas J, Duchamp M, Ju J, Sadeghian RB, Kim D, Dokmeci MR, Atala A, Khademhosseini A. Elastomeric free-form blood vessels for interconnecting organs on chip systems. LAB ON A CHIP 2016; 16:1579-86. [PMID: 26999423 PMCID: PMC4846563 DOI: 10.1039/c6lc00001k] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Conventional blood vessel-on-a-chip models are typically based on microchannel-like structures enclosed within bulk elastomers such as polydimethylsiloxane (PDMS). However, these bulk vascular models largely function as individual platforms and exhibit limited flexibility particularly when used in conjunction with other organ modules. Oftentimes, lengthy connectors and/or tubes are still needed to interface multiple chips, resulting in a large waste volume counterintuitive to the miniaturized nature of organs-on-chips. In this work, we report the development of a novel form of a vascular module based on PDMS hollow tubes, which closely emulates the morphology and properties of human blood vessels to integrate multiple organs-on-chips. Specifically, we present two templating strategies to fabricate hollow PDMS tubes with adjustable diameters and wall thicknesses, where metal rods or airflow were employed as the inner templates, while plastic tubes were used as the outer template. The PDMS tubes could then be functionalized by human umbilical vein endothelial cells (HUVECs) in their interior surfaces to further construct elastomeric biomimetic blood vessels. The endothelium developed biofunctionality as demonstrated by the expression of an endothelial biomarker (CD31) as well as dose-dependent responses in the secretion of von Willebrand factor and nitric oxide upon treatment with pharmaceutical compounds. We believe that with their clear advantages including high optical transparency, gas permeability, and tunable elasticity matching those of native blood vessels, these free-form PDMS vascular modules can supplement bulk vascular organoids and likely replace inert plastic tubes in integrating multiple organoids into a single microfluidic circuitry.
Collapse
Affiliation(s)
- Weijia Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Shanghai Ocean University, Shanghai, 201306, PR China
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Syeda Mahwish Bakht
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and COMSATS Institute of Information and Technology, Islamabad 45550, Pakistan
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Kan Yue
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marco Sica
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Biomedical Engineering, Politecnico di Torino, Torino 10129, Italy
| | - João Ribas
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal and Biocant-Biotechnology Innovation Center, Cantanhede 3060-197, Portugal
| | - Margaux Duchamp
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Jie Ju
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ramin Banan Sadeghian
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8578, Japan
| | - Duckjin Kim
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA. and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland and Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea and Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|