1
|
Jing J, Fang S, Li Y, Liu W, Wang C, Lan Y, Wang Y, Yang C. An enhanced cardio-protective effect of nanoparticles loaded with active components from Polygonum orientale L. against isoproterenol-induced myocardial ischemia in rats. Int J Pharm 2024; 655:124047. [PMID: 38531434 DOI: 10.1016/j.ijpharm.2024.124047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
In this study, nanoparticles loaded with active components from Polygonum orientale L. (PO), a traditional Chinese herb known for its anti-myocardial ischemic properties, were investigated for cardio-protective properties. Specifically, OVQ-Nanoparticles (OVQ-NPs) with Orientin (Ori), Vitexin (Vit), and Quercetin (Que) was obtained by double emulsion-solvent evaporation method. The OVQ-NPs exhibited a spherical shape, with a uniform size distribution of 136.77 ± 3.88 nm and a stable ζ-potential of -13.40 ± 2.24 mV. Notably, these nanoparticles exhibited a favorable sustained-release characteristic, resulting in an extended circulation time within the living organism. Consequently, the administration of these nanoparticles resulted in significant improvements in electrocardiograms and heart mass index of myocardial ischemic rats induced by isoproterenol, as well as decreased serum levels of CK, LDH, and AST. Furthermore, the results of histopathological examination, such as H&E staining and TUNEL staining, confirmed a reduced level of cardiac tissue pathology and apoptosis. Moreover, the quantification of biochemical indicators (SOD, MDA, GSH, NO, TNF-α, and IL-6) demonstrated that OVQ-NPs effectively mitigated myocardial ischemia by regulating oxidative stress and inflammatory pathways. In conclusion, OVQ-NPs demonstrate promising therapeutic potential as an intervention for myocardial ischemia, providing a new perspective on traditional Chinese medicine treatment in this area.
Collapse
Affiliation(s)
- Jincheng Jing
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shumei Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Cong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yanyu Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
2
|
Hool LC. Elucidating the role of the L-type calcium channel in excitability and energetics in the heart: The ISHR 2020 Research Achievement Award Lecture. J Mol Cell Cardiol 2022; 172:100-108. [PMID: 36041287 DOI: 10.1016/j.yjmcc.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease continues to be the leading health burden worldwide and with the rising rates in obesity and type II diabetes and ongoing effects of long COVID, it is anticipated that the burden of cardiovascular morbidity and mortality will increase. Calcium is essential to cardiac excitation and contraction. The main route for Ca2+ influx is the L-type Ca2+ channel (Cav1.2) and embryos that are homozygous null for the Cav1.2 gene are lethal at day 14 postcoitum. Acute changes in Ca2+ influx through the channel contribute to arrhythmia and sudden death, and chronic increases in intracellular Ca2+ contribute to pathological hypertrophy and heart failure. We use a multidisciplinary approach to study the regulation of the channel from the molecular level through to in vivo CRISPR mutant animal models. Here we describe some examples of our work from over 2 decades studying the role of the channel under physiological and pathological conditions. Our single channel analysis of purified human Cav1.2 protein in proteoliposomes has contributed to understanding direct molecular regulation of the channel including identifying the critical serine involved in the "fight or flight" response. Using the same approach we identified the cysteine responsible for altered function during oxidative stress. Chronic activation of the L-type Ca2+ channel during oxidative stress occurs as a result of persistent glutathionylation of the channel that contributes to the development of hypertrophy. We describe for the first time that activation of the channel alters mitochondrial function (and energetics) on a beat-to-beat basis via movement of cytoskeletal proteins. In translational studies we have used this response to "report" mitochondrial function in models of cardiomyopathy and to test efficacy of novel therapies to prevent cardiomyopathy.
Collapse
Affiliation(s)
- Livia C Hool
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Quarta E, Esposti LD, Bettini R, Sonvico F, Catalucci D, Iafisco M, De Luca C, Trevisi G, Colombo P, Rossi A, Buttini F, Colombo G. Dry powder inhalation technology for heart targeting applied to calcium phosphate nanoparticles loaded with active substances. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Müller WEG, Schröder HC, Neufurth M, Wang X. An unexpected biomaterial against SARS-CoV-2: Bio-polyphosphate blocks binding of the viral spike to the cell receptor. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 51:504-524. [PMID: 34366696 PMCID: PMC8326012 DOI: 10.1016/j.mattod.2021.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 05/15/2023]
Abstract
No other virus after the outbreak of the influenza pandemic of 1918 affected the world's population as hard as the coronavirus SARS-CoV-2. The identification of effective agents/materials to prevent or treat COVID-19 caused by SARS-CoV-2 is an urgent global need. This review aims to survey novel strategies based on inorganic polyphosphate (polyP), a biologically formed but also synthetically available polyanionic polymeric material, which has the potential of being a potent inhibitor of the SARS-CoV-2 virus-cell-docking machinery. This virus attaches to the host cell surface receptor ACE2 with its receptor binding domain (RBD), which is present at the tips of the viral envelope spike proteins. On the surface of the RBD an unusually conserved cationic groove is exposed, which is composed of basic amino acids (Arg, Lys, and His). This pattern of cationic amino acids, the cationic groove, matches spatially with the anionic polymeric material, with polyP, allowing an electrostatic interaction. In consequence, the interaction between the RBD and ACE2 is potently blocked. PolyP is a physiological inorganic polymer, synthesized by cells and especially enriched in the blood platelets, which releases metabolically useful energy through enzymatic degradation and coupled ADP/ATP formation. In addition, this material upregulates the steady-state-expression of the mucin genes in the epithelial cells. We propose that polyP, with its two antiviral properties (blocking the binding of the virus to the cells and reinforcing the defense barrier against infiltration of the virus) has the potential to be a novel protective/therapeutic anti-COVID-19 agent.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
5
|
Zhao T, Wu W, Sui L, Huang Q, Nan Y, Liu J, Ai K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 2021; 7:47-72. [PMID: 34466716 PMCID: PMC8377441 DOI: 10.1016/j.bioactmat.2021.06.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Interventional coronary reperfusion strategies are widely adopted to treat acute myocardial infarction, but morbidity and mortality of acute myocardial infarction are still high. Reperfusion injuries are inevitable due to the generation of reactive oxygen species (ROS) and apoptosis of cardiac muscle cells. However, many antioxidant and anti-inflammatory drugs are largely limited by pharmacokinetics and route of administration, such as short half-life, low stability, low bioavailability, and side effects for treatment myocardial ischemia reperfusion injury. Therefore, it is necessary to develop effective drugs and technologies to address this issue. Fortunately, nanotherapies have demonstrated great opportunities for treating myocardial ischemia reperfusion injury. Compared with traditional drugs, nanodrugs can effectively increase the therapeutic effect and reduces side effects by improving pharmacokinetic and pharmacodynamic properties due to nanodrugs’ size, shape, and material characteristics. In this review, the biology of ROS and molecular mechanisms of myocardial ischemia reperfusion injury are discussed. Furthermore, we summarized the applications of ROS-based nanoparticles, highlighting the latest achievements of nanotechnology researches for the treatment of myocardial ischemia reperfusion injury. Cardiovascular diseases are the leading cause of death worldwide. Researches of the myocardial infarction pathology and development of new treatments have very important scientific significance in the biomedical field. Many nanomaterials have shown amazing therapeutic effects to reduce myocardial damage by eliminating ROS. Nanomaterials effectively reduced myocardial damage through eliminating ROS from NOXs, M-ETC, M-Ca2+, M-mPTP, and RIRR.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, 750003, China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
6
|
Guan Y, Yao W, Yi K, Zheng C, Lv S, Tao Y, Hei Z, Li M. Nanotheranostics for the Management of Hepatic Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007727. [PMID: 33852769 DOI: 10.1002/smll.202007727] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Hepatic ischemia-reperfusion injury (IRI), in which an insufficient oxygen supply followed by reperfusion leads to an inflammatory network and oxidative stress in disease tissue to cause cell death, always occurs after liver transplantations and sections. Although pharmacological treatments favorably prevent or protect the liver against experimental IRI, there have been few successes in clinical applications for patient benefits because of the incomprehension of complicated IRI-induced signaling events as well as short blood circulation time, poor solubility, and severe side reactions of most antioxidants and anti-inflammatory drugs. Nanomaterials can achieve targeted delivery and controllable release of contrast agents and therapeutic drugs in desired hepatic IRI regions for enhanced imaging sensitivity and improved therapeutic effects, emerging as novel alternative approaches for hepatic IRI diagnosis and therapy. In this review, the application of nanotechnology is summarized in the management of hepatic IRI, including nanomaterial-assisted hepatic IRI diagnosis, nanoparticulate systems-mediated remission of reactive oxygen species-induced tissue injury, and nanoparticle-based targeted drug delivery systems for the alleviation of IRI-related inflammation. The current challenges and future perspectives of these nanoenabled strategies for hepatic IRI treatment are also discussed.
Collapse
Affiliation(s)
- Yu Guan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Weifeng Yao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ziqing Hei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
7
|
Penna C, Femminò S, Caldera F, Rubin Pedrazzo A, Cecone C, Alfì E, Comità S, Higashiyama T, Trotta F, Pagliaro P, Cavalli R. Cyclic Nigerosyl-Nigerose as Oxygen Nanocarrier to Protect Cellular Models from Hypoxia/Reoxygenation Injury: Implications from an In Vitro Model. Int J Mol Sci 2021; 22:ijms22084208. [PMID: 33921614 PMCID: PMC8073687 DOI: 10.3390/ijms22084208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 01/30/2023] Open
Abstract
Heart failure (HF) prevalence is increasing among the aging population, and the mortality rate remains unacceptably high despite improvements in therapy. Myocardial ischemia (MI) and, consequently, ischemia/reperfusion injury (IRI), are frequently the basis of HF development. Therefore, cardioprotective strategies to limit IRI are mandatory. Nanocarriers have been proposed as alternative therapy for cardiovascular disease. Controlled reoxygenation may be a promising strategy. Novel nanocarriers, such as cyclic nigerosyl-nigerose (CNN), can be innovative tools for oxygen delivery in a controlled manner. In this study we analyzed new CNN-based formulations as oxygen nanocarriers (O2-CNN), and compared them with nitrogen CNN (N2-CNN). These different CNN-based formulations were tested using two cellular models, namely, cardiomyoblasts (H9c2), and endothelial (HMEC) cell lines, at different concentrations. The effects on the growth curve during normoxia (21% O2, 5% CO2 and 74% N2) and their protective effects during hypoxia (1% O2, 5% CO2 and 94% N2) and reoxygenation (21% O2, 5% CO2 and 74% N2) were studied. Neither O2-CNN nor N2-CNN has any effect on the growth curve during normoxia. However, O2-CNN applied before hypoxia induces a 15–30% reduction in cell mortality after hypoxia/re-oxygenation when compared to N2-CNN. O2-CNN showed a marked efficacy in controlled oxygenation, which suggests an interesting potential for the future medical application of soluble nanocarrier systems for MI treatment.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Fabrizio Caldera
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
| | - Alberto Rubin Pedrazzo
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
| | - Claudio Cecone
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
| | - Edoardo Alfì
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
| | - Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
| | - Takanobu Higashiyama
- Hayashibara CO., LTD./Nagase Group 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan;
| | - Francesco Trotta
- Department of Chemistry, University of Turin, 10125 Turin, Italy; (F.C.); (A.R.P.); (C.C.)
- Correspondence: (F.T.); (P.P.); (R.C.)
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.P.); (S.F.); (E.A.); (S.C.)
- Correspondence: (F.T.); (P.P.); (R.C.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
- Correspondence: (F.T.); (P.P.); (R.C.)
| |
Collapse
|
8
|
Dou Y, Li C, Li L, Guo J, Zhang J. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J Control Release 2020; 327:641-666. [PMID: 32911014 PMCID: PMC7476894 DOI: 10.1016/j.jconrel.2020.09.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is intimately related to the pathogenesis of numerous acute and chronic diseases like cardiovascular disease, inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases. Therefore anti-inflammatory therapy is a very promising strategy for the prevention and treatment of these inflammatory diseases. To overcome the shortcomings of existing anti-inflammatory agents and their traditional formulations, such as nonspecific tissue distribution and uncontrolled drug release, bioresponsive drug delivery systems have received much attention in recent years. In this review, we first provide a brief introduction of the pathogenesis of inflammation, with an emphasis on representative inflammatory cells and mediators in inflammatory microenvironments that serve as pathological fundamentals for rational design of bioresponsive carriers. Then we discuss different materials and delivery systems responsive to inflammation-associated biochemical signals, such as pH, reactive oxygen species, and specific enzymes. Also, applications of various bioresponsive drug delivery systems in the treatment of typical acute and chronic inflammatory diseases are described. Finally, crucial challenges in the future development and clinical translation of bioresponsive anti-inflammatory drug delivery systems are highlighted.
Collapse
Affiliation(s)
- Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiawei Guo
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
9
|
Emerging nanotherapeutics for antithrombotic treatment. Biomaterials 2020; 255:120200. [PMID: 32563945 DOI: 10.1016/j.biomaterials.2020.120200] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Thrombus causes insufficient blood flow and ischemia damages to brain and heart, leading to life-threatening cardio-cerebrovascular diseases. Development of efficient antithrombotic strategies has long been a high priority, owing to the high morbidity and mortality of thrombotic diseases. With the rapid development of biomedical nanotechnology in diagnosis and treatment of thrombotic disorder, remarkable progresses have been made in antithrombotic nanomedicines in recent years. Herein, we outline the recent advances in this field at the intersection of thrombus theranostics and biomedical nanotechnology. First, thrombus diagnosis techniques based on biomedical nanotechnology are presented. Then, emerging antithrombotic nanotherapeutics are overviewed, including thrombus-targeting strategies, thrombus stimuli-responsive nanosystems and phase transition-driven nanotherapeutics. Furthermore, multifunctional nanosystems for combination theranostics of thrombotic diseases are discussed. Finally, the design considerations, advantages and challenges of these biomedical nanotechnology-driven therapeutics in clinical translation are highlighted.
Collapse
|
10
|
Sayed N, Tambe P, Kumar P, Jadhav S, Paknikar KM, Gajbhiye V. miRNA transfection via poly(amidoamine)-based delivery vector prevents hypoxia/reperfusion-induced cardiomyocyte apoptosis. Nanomedicine (Lond) 2019; 15:163-181. [PMID: 31799897 DOI: 10.2217/nnm-2019-0363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Myocardial infarction is a tissue injury that leads to apoptosis of cardiomyocytes. This can be prevented by using miRNAs, but its delivery to cardiomyocytes is a major hurdle. We aimed to deliver miRNAs using poly(amidoamine)-histidine (PAMAM-His) nanocarriers to prevent apoptosis. Materials & methods: The PAMAM-His nanoparticles were synthesized and assessed for their transfection efficiency of miRNAs to prevent apoptosis in hypoxia/reperfusion-induced H9c2 as well as primary cultured cardiomyocytes. Results & conclusion: miRNAs-nanoparticle complexes exerted a significant antiapoptotic effect on the H9c2 and primary rat ventricular cardiomyocytes. Enhanced expression of antiapoptotic genes and decreased expression of proapoptotic genes were observed. PAMAM-His nanoparticles effectively delivered miRNAs to the cardiomyocytes and prevented the hypoxia/reperfusion-induced apoptosis critical in myocardial infarctions.
Collapse
Affiliation(s)
- Nida Sayed
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Prajakta Tambe
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Pramod Kumar
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Sachin Jadhav
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Kishore M Paknikar
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India.,Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.,Materials Research Centre, Malaviya National Institute of Technology, Jaipur, 302017, India
| | | |
Collapse
|
11
|
Miragoli M, Ceriotti P, Iafisco M, Vacchiano M, Salvarani N, Alogna A, Carullo P, Ramirez-Rodríguez GB, Patrício T, Esposti LD, Rossi F, Ravanetti F, Pinelli S, Alinovi R, Erreni M, Rossi S, Condorelli G, Post H, Tampieri A, Catalucci D. Inhalation of peptide-loaded nanoparticles improves heart failure. Sci Transl Med 2019; 10:10/424/eaan6205. [PMID: 29343624 DOI: 10.1126/scitranslmed.aan6205] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/17/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
Peptides are highly selective and efficacious for the treatment of cardiovascular and other diseases. However, it is currently not possible to administer peptides for cardiac-targeting therapy via a noninvasive procedure, thus representing scientific and technological challenges. We demonstrate that inhalation of small (<50 nm in diameter) biocompatible and biodegradable calcium phosphate nanoparticles (CaPs) allows for rapid translocation of CaPs from the pulmonary tree to the bloodstream and to the myocardium, where their cargo is quickly released. Treatment of a rodent model of diabetic cardiomyopathy by inhalation of CaPs loaded with a therapeutic mimetic peptide that we previously demonstrated to improve myocardial contraction resulted in restoration of cardiac function. Translation to a porcine large animal model provides evidence that inhalation of a peptide-loaded CaP formulation is an effective method of targeted administration to the heart. Together, these results demonstrate that inhalation of biocompatible tailored peptide nanocarriers represents a pioneering approach for the pharmacological treatment of heart failure.
Collapse
Affiliation(s)
- Michele Miragoli
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy. .,Department of Medicine and Surgery, University of Parma, Parma 43126, Italy.,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy
| | - Paola Ceriotti
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy.,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna 48018, Italy
| | - Marco Vacchiano
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Nicolò Salvarani
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy.,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy
| | - Alessio Alogna
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité University Medicine Berlin, Berlin 13353, Germany.,Berlin Institute of Health, Berlin 10117, Germany
| | - Pierluigi Carullo
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy.,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy
| | | | - Tatiana Patrício
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna 48018, Italy
| | - Lorenzo Degli Esposti
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna 48018, Italy
| | - Francesca Rossi
- Institute of Materials for Electronics and Magnetism, National Research Council, Parma 43126, Italy
| | | | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Marco Erreni
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy.,Humanitas University, Rozzano, Milan 20089, Italy
| | - Stefano Rossi
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
| | - Gianluigi Condorelli
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy.,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy.,Humanitas University, Rozzano, Milan 20089, Italy
| | - Heiner Post
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité University Medicine Berlin, Berlin 13353, Germany.,Department of Cardiology, Contilia Heart and Vessel Centre, St. Marien-Hospital Mülheim, Mülheim 45468, Germany
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Ravenna 48018, Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy. .,Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan 20138, Italy
| |
Collapse
|
12
|
Kim KS, Song CG, Kang PM. Targeting Oxidative Stress Using Nanoparticles as a Theranostic Strategy for Cardiovascular Diseases. Antioxid Redox Signal 2019; 30:733-746. [PMID: 29228781 PMCID: PMC6350062 DOI: 10.1089/ars.2017.7428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Nanomedicine is an application of nanotechnology that provides solutions to unmet medical challenges. The unique features of nanoparticles, such as their small size, modifiable components, and diverse functionality, make them attractive and suitable materials for novel diagnostic, therapeutic, or theranostic applications. Cardiovascular diseases (CVDs) are the major cause of noncommunicable illness in both developing and developed countries. Nanomedicine offers novel theranostic options for the treatment of CVDs. Recent Advances: Many innovative nanoparticles to target reactive oxygen species (ROS) have been developed. In this article, we review the characteristics of nanoparticles that are responsive to ROS, their limitations, and their potential clinical uses. Significant advances made in diagnosis of atherosclerosis and treatment of acute coronary syndrome using nanoparticles are discussed. CRITICAL ISSUES Although there is a tremendous potential for the nanoparticle applications in medicine, their safety should be considered while using in humans. We discuss the challenges that may be encountered with some of the innovative nanoparticles used in CVDs. FUTURE DIRECTIONS The unique properties of nanoparticles offer novel diagnostic tool and potential therapeutic strategies. However, nanomedicine is still in its infancy, and further in-depth studies are needed before wide clinical application is achieved.
Collapse
Affiliation(s)
- Kye S Kim
- 1 Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Harvard Medical School, Boston, Massachusetts
| | - Chul Gyu Song
- 3 Department of Electronic Engineering, Chonbuk National University, Jeonju, South Korea
| | - Peter M Kang
- 1 Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Femminò S, Penna C, Bessone F, Caldera F, Dhakar N, Cau D, Pagliaro P, Cavalli R, Trotta F. α-Cyclodextrin and α-Cyclodextrin Polymers as Oxygen Nanocarriers to Limit Hypoxia/Reoxygenation Injury: Implications from an In Vitro Model. Polymers (Basel) 2018; 10:polym10020211. [PMID: 30966247 PMCID: PMC6414891 DOI: 10.3390/polym10020211] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023] Open
Abstract
The incidence of heart failure (HF) is increasing worldwide and myocardial infarction (MI), which follows ischemia and reperfusion (I/R), is often at the basis of HF development. Nanocarriers are interesting particles for their potential application in cardiovascular disease. Impaired drug delivery in ischemic disease is challenging. Cyclodextrin nanosponges (NS) can be considered innovative tools for improving oxygen delivery in a controlled manner. This study has developed new α-cyclodextrin-based formulations as oxygen nanocarriers such as native α-cyclodextrin (α-CD), branched α-cyclodextrin polymer (α-CD POLY), and α-cyclodextrin nanosponges (α-CD NS). The three different α-CD-based formulations were tested at 0.2, 2, and 20 µg/mL to ascertain their capability to reduce cell mortality during hypoxia and reoxygenation (H/R) in vitro protocols. H9c2, a cardiomyoblast cell line, was exposed to normoxia (20% oxygen) or hypoxia (5% CO2 and 95% N2). The different formulations, applied before hypoxia, induced a significant reduction in cell mortality (in a range of 15% to 30%) when compared to samples devoid of oxygen. Moreover, their application at the beginning of reoxygenation induced a considerable reduction in cell death (12% to 20%). α-CD NS showed a marked efficacy in controlled oxygenation, which suggests an interesting potential for future medical application of polymer systems for MI treatment.
Collapse
Affiliation(s)
- Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Federica Bessone
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Fabrizio Caldera
- Department of Chemistry, University of Turin, 10125 Turin, Italy.
| | - Nilesh Dhakar
- Department of Chemistry, University of Turin, 10125 Turin, Italy.
| | - Daniele Cau
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Francesco Trotta
- Department of Chemistry, University of Turin, 10125 Turin, Italy.
| |
Collapse
|
14
|
Amani H, Habibey R, Hajmiresmail SJ, Latifi S, Pazoki-Toroudi H, Akhavan O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B 2017; 5:9452-9476. [PMID: 32264560 DOI: 10.1039/c7tb01689a] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organ ischemia with inadequate oxygen supply followed by reperfusion (which initiates a complex of inflammatory responses and oxidative stress) occurs in different clinical conditions and surgical procedures including stroke, myocardial infarction, limb ischemia, renal failure, organ transplantation, free-tissue-transfer, cardiopulmonary bypass, and vascular surgery. Even though pharmacological treatments protect against experimental ischemia reperfusion (I/R) injury, there has not been enough success in their application for patient benefits. The main hurdles in the treatment of I/R injury are the lack of diagnosis tools for understanding the complicated chains of I/R-induced signaling events, especially in the acute phase after ischemia, determining the affected regions of the tissue over time, and then, targeting and safe delivery of antioxidants, drugs, peptides, genes and cells to the areas requiring treatment. Besides the innate antioxidant and free radical scavenging properties, some nanoparticles also show higher flexibility in drug delivery and imaging. This review highlights three main approaches in nanoparticle-mediated targeting of I/R injury: nanoparticles (1) as antioxidants for reducing tissue oxidative stress, (2) for targeted delivery of therapeutic agents to the ischemic regions or cells, and (3) for imaging I/R injury at the molecular, cellular or tissue level and monitoring its evolution using contrasts induced by nanoparticles. These approaches can also be combined to realize so called theranostics for providing simultaneous diagnosis of ischemic regions and treatments by targeted delivery.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
15
|
Mahmoudi M, Yu M, Serpooshan V, Wu JC, Langer R, Lee RT, Karp JM, Farokhzad OC. Multiscale technologies for treatment of ischemic cardiomyopathy. NATURE NANOTECHNOLOGY 2017; 12:845-855. [PMID: 28875984 PMCID: PMC5717755 DOI: 10.1038/nnano.2017.167] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/13/2017] [Indexed: 05/02/2023]
Abstract
The adult mammalian heart possesses only limited capacity for innate regeneration and the response to severe injury is dominated by the formation of scar tissue. Current therapy to replace damaged cardiac tissue is limited to cardiac transplantation and thus many patients suffer progressive decay in the heart's pumping capacity to the point of heart failure. Nanostructured systems have the potential to revolutionize both preventive and therapeutic approaches for treating cardiovascular disease. Here, we outline recent advancements in nanotechnology that could be exploited to overcome the major obstacles in the prevention of and therapy for heart disease. We also discuss emerging trends in nanotechnology affecting the cardiovascular field that may offer new hope for patients suffering massive heart attacks.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Mikyung Yu
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Vahid Serpooshan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Department of Medicine, Division of Cardiology, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts 02138, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Omid C. Farokhzad
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| |
Collapse
|
16
|
Alvarez MM, Aizenberg J, Analoui M, Andrews AM, Bisker G, Boyden ES, Kamm RD, Karp JM, Mooney DJ, Oklu R, Peer D, Stolzoff M, Strano MS, Trujillo-de Santiago G, Webster TJ, Weiss PS, Khademhosseini A. Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS NANO 2017; 11:5195-5214. [PMID: 28524668 DOI: 10.1021/acsnano.7b01493] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We discuss the state of the art and innovative micro- and nanoscale technologies that are finding niches and opening up new opportunities in medicine, particularly in diagnostic and therapeutic applications. We take the design of point-of-care applications and the capture of circulating tumor cells as illustrative examples of the integration of micro- and nanotechnologies into solutions of diagnostic challenges. We describe several novel nanotechnologies that enable imaging cellular structures and molecular events. In therapeutics, we describe the utilization of micro- and nanotechnologies in applications including drug delivery, tissue engineering, and pharmaceutical development/testing. In addition, we discuss relevant challenges that micro- and nanotechnologies face in achieving cost-effective and widespread clinical implementation as well as forecasted applications of micro- and nanotechnologies in medicine.
Collapse
Affiliation(s)
- Mario M Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey , Ave. Eugenio Garza Sada 2501, Col. Tecnológico, CP 64849 Monterrey, Nuevo León, México
| | - Joanna Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
| | - Mostafa Analoui
- UConn Venture Development and Incubation, UConn , Storrs, CT 06269, United States
| | | | | | | | | | | | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
| | - Rahmi Oklu
- Division of Interventional Radiology, Mayo Clinic , Scottsdale, Arizona 85259, United States
| | | | | | | | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey , Ave. Eugenio Garza Sada 2501, Col. Tecnológico, CP 64849 Monterrey, Nuevo León, México
| | - Thomas J Webster
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University , Wenzhou 325000, China
| | | | - Ali Khademhosseini
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University , Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
17
|
Circulating Exosomes in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:255-269. [PMID: 28936745 DOI: 10.1007/978-981-10-4397-0_17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Circulating exosomes could arrive in distant tissues via blood circulation, thus directly communicating with target cells and rapidly regulating intracellular signalings. Circulating exosomes and exosomal cargos are critically involved in cardiovascular pathophysiology, such as cardiomyocyte hypertrophy, apoptosis, and angiogenesis. Circulating exosomes enriched with various types of biological molecules can be changed not only in the number but also in the composite cargos upon cardiac injury, such as myocardial infarction, myocardial ischemia reperfusion injury, atherosclerosis, hypertension, and sepsis cardiomyopathy, which may further influence cardiomyocyte function and contribute to the pathogenesis of cardiovascular diseases. Thus, exosome-based therapeutic strategy may be used to attenuate myocardial injury and promote cardiac regeneration and repair. Also, more preclinical and clinical studies would be needed to investigate the potential of circulating exosomes as biomarkers for the diagnosis, risk stratification, and prognosis of cardiovascular diseases.
Collapse
|