1
|
Agergaard K, Thiesson HC, Carstens J, Staatz CE, Järvinen E, Nielsen F, Christensen HD, Juhl-Sandberg R, Brøsen K, Stage TB, Andersen DT, Kjellsson MC, Bergmann TK. Population pharmacokinetics of tacrolimus whole blood and peripheral blood mononuclear cell concentrations in stable kidney-transplanted patients. Br J Clin Pharmacol 2024. [PMID: 39390741 DOI: 10.1111/bcp.16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
AIM Therapeutic drug monitoring of tacrolimus based on whole blood drug concentrations is routinely performed. The concentration of tacrolimus in peripheral blood mononuclear cells (PMBCs) is likely to better reflect drug exposure at the treatment target site. We aimed to describe the relationship between tacrolimus whole blood and PBMC concentrations, and the influence of patient characteristics on this relationship by developing a population pharmacokinetic model. METHODS We prospectively enrolled 63 stable adult kidney-transplanted patients and collected dense (12-h, n = 18) or sparse (4-h, n = 45) pharmacokinetic profiles of tacrolimus. PBMCs were isolated from whole blood (Ficoll density gradient centrifugation), and drug concentrations in whole blood and PBMCs were analysed using liquid chromatography-mass spectrometry. Patient genotype (CYP3A4/5, ABCB1, NR1I2) was assessed with PCR. Population pharmacokinetic modelling and statistical evaluation was performed using NONMEM. RESULTS Tacrolimus whole blood concentrations were well described using a two-compartment pharmacokinetic model with a lag-time and first-order absorption and elimination. Tacrolimus PBMC concentrations were best estimated from whole blood concentrations with the use of a scaling factor, the ratio of whole blood to PBMC concentrations (RC:PBMC), which was the extent of tacrolimus distribution into PBMC. CYP3A5*1 non-expressors and NR1I2-25 385T allele expressors demonstrated higher RC:PBMC ratios of 42.4% and 60.7%, respectively. CONCLUSION Tacrolimus PBMC concentration could not be accurately predicted from whole blood concentrations and covariates because of significant residual unexplained variability in the distribution of tacrolimus into PBMCs and may need to be measured directly if required for future studies.
Collapse
Affiliation(s)
- Katrine Agergaard
- Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Helle C Thiesson
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Jan Carstens
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | | | - Erkka Järvinen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Flemming Nielsen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | | | | | - Kim Brøsen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Tore Bjerregaard Stage
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Dorte Terp Andersen
- Department of Clinical Molecular Biology, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Maria C Kjellsson
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Troels K Bergmann
- Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
- Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
Udomkarnjananun S, Schagen MR, Volarević H, van de Velde D, Dieterich M, Matic M, Baan CC, Reinders MEJ, de Winter BCM, Hesselink DA. Prediction of the Intra-T Lymphocyte Tacrolimus Concentration after Kidney Transplantation with Population Pharmacokinetic Modeling. Clin Pharmacol Ther 2024. [PMID: 39139076 DOI: 10.1002/cpt.3419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
The intracellular tacrolimus concentration in CD3+ T lymphocytes is proposed to be a better representative of the active component of tacrolimus than the whole blood concentration. However, intracellular measurements are complicated. Therefore, the aim of this study was to describe the relationship between intracellular and whole blood tacrolimus concentrations in a population pharmacokinetic model. Twenty-eight de novo kidney transplant recipients, treated with a once-daily oral extended-release tacrolimus formulation, were followed during the first-month post-transplantation. Additional whole blood and intracellular tacrolimus concentrations were measured at day 6 ± 1 (pre-dose, 4 and 8 hours post-dose) and day 14 ± 3 (pre-dose) post-transplantation. Pharmacokinetic analysis was performed using nonlinear mixed effects modeling software (NONMEM). The ratio between intracellular (n = 109) and whole blood (n = 248) concentrations was best described by a two-compartment whole blood model with an additional intracellular compartment without mass transfer from the central compartment. The ratio remained stable over time. Prednisolone dose influenced the absorption rate of tacrolimus, while hemoglobin, CYP3A4*22 allele carrier, and CYP3A5 expresser status were associated with the oral clearance of tacrolimus (P-value < 0.001). Furthermore, the intracellular tacrolimus concentrations were correlated with the intracellular production of interleukin-2 (P-value 0.015). The intracellular tacrolimus concentration can be predicted from a measured whole blood concentration using this model, without the need for repeated intracellular measurements. This knowledge is particularly important when the intracellular concentration is ready to be implemented into clinical practice, to overcome the complexities of cell isolation and analytical methods.
Collapse
Affiliation(s)
- Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Thai Red Cross Society, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Maaike R Schagen
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, The Netherlands
| | - Helena Volarević
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Daan van de Velde
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Mohammed Ali Z, Meertens M, Fernández B, Fontova P, Vidal-Alabró A, Rigo-Bonnin R, Melilli E, Cruzado JM, Grinyó JM, Colom H, Lloberas N. CYP3A5*3 and CYP3A4*22 Cluster Polymorphism Effects on LCP-Tac Tacrolimus Exposure: Population Pharmacokinetic Approach. Pharmaceutics 2023; 15:2699. [PMID: 38140040 PMCID: PMC10747255 DOI: 10.3390/pharmaceutics15122699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of the study is to develop a population pharmacokinetic (PopPK) model and to investigate the influence of CYP3A5/CYP3A4 and ABCB1 single nucleotide polymorphisms (SNPs) on the Tacrolimus PK parameters after LCP-Tac formulation in stable adult renal transplant patients. The model was developed, using NONMEM v7.5, from full PK profiles from a clinical study (n = 30) and trough concentrations (C0) from patient follow-up (n = 68). The PK profile of the LCP-Tac formulation was best described by a two-compartment model with linear elimination, parameterized in elimination (CL/F) and distributional (CLD/F) clearances and central compartment (Vc/F) and peripheral compartment (Vp/F) distribution volumes. A time-lagged first-order absorption process was characterized using transit compartment models. According to the structural part of the base model, the LCP-Tac showed an absorption profile characterized by two transit compartments and a mean transit time of 3.02 h. Inter-individual variability was associated with CL/F, Vc/F, and Vp/F. Adding inter-occasion variability (IOV) on CL/F caused a statistically significant reduction in the model minimum objective function MOFV (p < 0.001). Genetic polymorphism of CYP3A5 and a cluster of CYP3A4/A5 SNPs statistically significantly influenced Tac CL/F. In conclusion, a PopPK model was successfully developed for LCP-Tac formulation in stable renal transplant patients. CYP3A4/A5 SNPs as a combined cluster including three different phenotypes (high, intermediate, and poor metabolizers) was the most powerful covariate to describe part of the inter-individual variability associated with apparent elimination clearance. Considering this covariate in the initial dose estimation and during the therapeutic drug monitoring (TDM) would probably optimize Tac exposure attainments.
Collapse
Affiliation(s)
- Zeyar Mohammed Ali
- Nephrology Department, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain; (Z.M.A.); (M.M.); (B.F.); (P.F.); (A.V.-A.); (E.M.); (J.M.C.)
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy, University of Barcelona, 08007 Barcelona, Spain
| | - Marinda Meertens
- Nephrology Department, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain; (Z.M.A.); (M.M.); (B.F.); (P.F.); (A.V.-A.); (E.M.); (J.M.C.)
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy, University of Barcelona, 08007 Barcelona, Spain
| | - Beatriz Fernández
- Nephrology Department, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain; (Z.M.A.); (M.M.); (B.F.); (P.F.); (A.V.-A.); (E.M.); (J.M.C.)
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy, University of Barcelona, 08007 Barcelona, Spain
| | - Pere Fontova
- Nephrology Department, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain; (Z.M.A.); (M.M.); (B.F.); (P.F.); (A.V.-A.); (E.M.); (J.M.C.)
| | - Anna Vidal-Alabró
- Nephrology Department, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain; (Z.M.A.); (M.M.); (B.F.); (P.F.); (A.V.-A.); (E.M.); (J.M.C.)
| | - Raul Rigo-Bonnin
- Biochemistry Department, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain;
| | - Edoardo Melilli
- Nephrology Department, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain; (Z.M.A.); (M.M.); (B.F.); (P.F.); (A.V.-A.); (E.M.); (J.M.C.)
| | - Josep M. Cruzado
- Nephrology Department, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain; (Z.M.A.); (M.M.); (B.F.); (P.F.); (A.V.-A.); (E.M.); (J.M.C.)
| | - Josep M. Grinyó
- Department of Clinical Sciences, Medicine Unit, University of Barcelona, 08007 Barcelona, Spain;
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy, University of Barcelona, 08007 Barcelona, Spain
| | - Nuria Lloberas
- Nephrology Department, Hospital Universitari de Bellvitge-IDIBELL, 08908 Barcelona, Spain; (Z.M.A.); (M.M.); (B.F.); (P.F.); (A.V.-A.); (E.M.); (J.M.C.)
| |
Collapse
|
4
|
Xu H, Liu Y, Zhang Y, Dai X, Wang X, Chen H, Yan L, Gong X, Yue J, Wan Z, Fan J, Bai Y, Luo Y, Li Y. Dynamic Monitoring of Intracellular Tacrolimus and Mycophenolic Acid Therapy in Renal Transplant Recipients Using Magnetic Bead Extraction Combined with LC-MS/MS. Pharmaceutics 2023; 15:2318. [PMID: 37765287 PMCID: PMC10534614 DOI: 10.3390/pharmaceutics15092318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Tacrolimus (TAC) and mycophenolic acid (MPA) are commonly used immunosuppressive therapies after renal transplant. Our objective was to quantify TAC and MPA concentrations in peripheral blood mononuclear cells (PBMCs) using liquid chromatography tandem mass spectrometry (LC-MS/MS) and to evaluate and validate the performance of the methodology. A prospective follow-up cohort study was conducted to determine whether intracellular concentrations were associated with adverse outcomes in renal transplants. METHODS PBMCs were prepared using the Ficoll separation technique and purified with erythrocyte lysis. The cells were counted using Sysmex XN-3100 and then packaged and frozen according to a 50 µL volume containing 1.0 × 106 cells. TAC and MPA were extracted using MagnaBeads and quantified using an LC-MS/MS platform. The chromatography was run on a reversed-phase Waters Acquity UPLC BEH C18 column (1.7 µm, 50 mm × 2.1 mm) for gradient elution separation with a total run time of 4.5 min and a flow rate of 0.3 mL/min. Mobile phases A and B were water and methanol, respectively, each containing 2 mM ammonium acetate and 0.1% formic acid. Renal transplant recipients receiving TAC and MPA in combination were selected for clinical validation and divided into two groups: a stable group and an adverse outcome group. The concentrations were dynamically monitored at 5, 7, 14, and 21 days (D5, D7, D14, and D21) and 1, 2, 3, and 6 months (M1, M2, M3, and M6) after operation. RESULTS Method performance validation was performed according to Food and Drug Administration guidelines, showing high specificity and sensitivity. The TAC and MPA calibration curves were linear (r2 = 0.9988 and r2 = 0.9990, respectively). Both intra-day and inter-day imprecision and inaccuracy were less than 15%. Matrix effects and recoveries were satisfactory. The TAC and MPA concentrations in 304 "real" PBMC samples from 47 renal transplant recipients were within the calibration curve range (0.12 to 16.40 ng/mL and 0.20 to 4.72 ng/mL, respectively). There was a weak correlation between PBMC-C0TAC and WB-C0TAC (p < 0.05), but no correlation was found for MPA. The level of immunosuppressive intra-patient variation (IPV) was higher in PBMC at 77.47% (55.06, 97.76%) than in WB at 34.61% (21.90, 49.85%). During the dynamic change in C0TAC, PBMC-C0TAC was in a fluctuating state, and no stable period was found. PBMC-C0TAC did not show a significant difference between the stable and adverse outcome group, but the level of the adverse outcome group was generally higher than that of the stable group. CONCLUSIONS Compared with conventional therapeutic drug monitoring, the proposed rapid and sensitive method can provide more clinically reliable information on drug concentration at an active site, which has the potential to be applied to the clinical monitoring of intracellular immunosuppressive concentration in organ transplantation. However, the application of PBMC-C0TAC in adverse outcomes of renal transplant should be studied further.
Collapse
Affiliation(s)
- Huan Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (X.D.); (X.W.); (L.Y.); (X.G.); (J.Y.); (Z.W.); (J.F.); (Y.B.)
| | - Yingying Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (X.D.); (X.W.); (L.Y.); (X.G.); (J.Y.); (Z.W.); (J.F.); (Y.B.)
| | - Xueqiao Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (X.D.); (X.W.); (L.Y.); (X.G.); (J.Y.); (Z.W.); (J.F.); (Y.B.)
| | - Haojun Chen
- Department of Laboratory Medicine, West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (X.D.); (X.W.); (L.Y.); (X.G.); (J.Y.); (Z.W.); (J.F.); (Y.B.)
| | - Xingxin Gong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (X.D.); (X.W.); (L.Y.); (X.G.); (J.Y.); (Z.W.); (J.F.); (Y.B.)
| | - Jiaxi Yue
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (X.D.); (X.W.); (L.Y.); (X.G.); (J.Y.); (Z.W.); (J.F.); (Y.B.)
| | - Zhengli Wan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (X.D.); (X.W.); (L.Y.); (X.G.); (J.Y.); (Z.W.); (J.F.); (Y.B.)
| | - Jiwen Fan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (X.D.); (X.W.); (L.Y.); (X.G.); (J.Y.); (Z.W.); (J.F.); (Y.B.)
| | - Yangjuan Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (X.D.); (X.W.); (L.Y.); (X.G.); (J.Y.); (Z.W.); (J.F.); (Y.B.)
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (X.D.); (X.W.); (L.Y.); (X.G.); (J.Y.); (Z.W.); (J.F.); (Y.B.)
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (X.D.); (X.W.); (L.Y.); (X.G.); (J.Y.); (Z.W.); (J.F.); (Y.B.)
| |
Collapse
|
5
|
Concha J, Sangüesa E, Saez-Benito AM, Aznar I, Berenguer N, Saez-Benito L, Ribate MP, García CB. Importance of Pharmacogenetics and Drug-Drug Interactions in a Kidney Transplanted Patient. Life (Basel) 2023; 13:1627. [PMID: 37629484 PMCID: PMC10455535 DOI: 10.3390/life13081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Tacrolimus (TAC) is a narrow-therapeutic-range immunosuppressant drug used after organ transplantation. A therapeutic failure is possible if drug levels are not within the therapeutic range after the first year of treatment. Pharmacogenetic variants and drug-drug interactions (DDIs) are involved. We describe a patient case of a young man (16 years old) with a renal transplant receiving therapy including TAC, mycophenolic acid (MFA), prednisone and omeprazole for prophylaxis of gastric and duodenal ulceration. The patient showed great fluctuation in TAC blood concentration/oral dose ratio, as well as pharmacotherapy adverse effects (AEs) and frequent diarrhea episodes. Additionally, decreased kidney function was found. A pharmacotherapeutic follow-up, including pharmacogenetic analysis, was carried out. The selection of the genes studied was based on the previous literature (CYP3A5, CYP3A4, POR, ABCB1, PXR and CYP2C19). A drug interaction with omeprazole was reported and the nephrologist switched to rabeprazole. A lower TAC concentration/dose ratio was achieved, and the patient's condition improved. In addition, the TTT haplotype of ATP Binding Cassette Subfamily B member 1 (ABCB1) and Pregnane X Receptor (PXR) gene variants seemed to affect TAC pharmacotherapy in the studied patient and could explain the occurrence of long-term adverse effects post-transplantation. These findings suggest that polymorphic variants and co-treatments must be considered in order to achieve the effectiveness of the immunosuppressive therapy with TAC, especially when polymedicated patients are involved. Moreover, pharmacogenetics could influence the drug concentration at the cellular level, both in lymphocyte and in renal tissue, and should be explored in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. Pilar Ribate
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, E-50830 Zaragoza, Spain; (J.C.); (E.S.); (A.M.S.-B.); (I.A.); (N.B.); (L.S.-B.); (C.B.G.)
| | | |
Collapse
|
6
|
Fontova P, van Merendonk LN, Vidal-Alabró A, Rigo-Bonnin R, Cerezo G, van Oevelen S, Bestard O, Melilli E, Montero N, Coloma A, Manonelles A, Torras J, Cruzado JM, Grinyó JM, Colom H, Lloberas N. The Effect of Intracellular Tacrolimus Exposure on Calcineurin Inhibition in Immediate- and Extended-Release Tacrolimus Formulations. Pharmaceutics 2023; 15:pharmaceutics15051481. [PMID: 37242723 DOI: 10.3390/pharmaceutics15051481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Despite intensive monitoring of whole blood tacrolimus concentrations, acute rejection after kidney transplantation occurs during tacrolimus therapy. Intracellular tacrolimus concentrations could better reflect exposure at the site of action and its pharmacodynamics (PD). Intracellular pharmacokinetic (PK) profile following different tacrolimus formulations (immediate-release (TAC-IR) and extended-release (TAC-LCP)) remains unclear. Therefore, the aim was to study intracellular tacrolimus PK of TAC-IR and TAC-LCP and its correlation with whole blood (WhB) PK and PD. A post-hoc analysis of a prospective, open-label, crossover investigator-driven clinical trial (NCT02961608) was performed. Intracellular and WhB tacrolimus 24 h time-concentration curves were measured in 23 stable kidney transplant recipients. PD analysis was evaluated measuring calcineurin activity (CNA) and simultaneous intracellular PK/PD modelling analysis was conducted. Higher dose-adjusted pre-dose intracellular concentrations (C0 and C24) and total exposure (AUC0-24) values were found for TAC-LCP than TAC-IR. Lower intracellular peak concentration (Cmax) was found after TAC-LCP. Correlations between C0, C24 and AUC0-24 were observed within both formulations. Intracellular kinetics seems to be limited by WhB disposition, in turn, limited by tacrolimus release/absorption processes from both formulations. The faster intracellular elimination after TAC-IR was translated into a more rapid recovery of CNA. An Emax model relating % inhibition and intracellular concentrations, including both formulations, showed an IC50, a concentration to achieve 50% CNA inhibition, of 43.9 pg/million cells.
Collapse
Affiliation(s)
- Pere Fontova
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Lisanne N van Merendonk
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Anna Vidal-Alabró
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Raül Rigo-Bonnin
- Biochemistry Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Gema Cerezo
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | | | - Oriol Bestard
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Edoardo Melilli
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Nuria Montero
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Ana Coloma
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Anna Manonelles
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Joan Torras
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Josep M Cruzado
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Josep M Grinyó
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Nuria Lloberas
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| |
Collapse
|
7
|
Zijp TR, Knobbe TJ, van Hateren K, Roggeveld J, Blokzijl H, Tji Gan C, Jl Bakker S, Jongedijk EM, Investigators T, Touw DJ. Expeditious quantification of plasma tacrolimus with liquid chromatography tandem mass spectrometry in solid organ transplantation. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123709. [PMID: 37060814 DOI: 10.1016/j.jchromb.2023.123709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
Traditionally, tacrolimus is assessed in whole blood samples, but this is suboptimal from the perspective that erythrocyte-bound tacrolimus is not a good representative of the active fraction. In this work, a straightforward and rapid method was developed for determination of plasma tacrolimus in solid organ transplant recipients, using liquid chromatography tandem mass spectrometry (LC-MS/MS) with heated electrospray ionisation. Sample preparation was performed through protein precipitation of 200 µl plasma with 500 µl stable isotopically labelled tacrolimus I.S. in methanol, where 20 µl was injected on the LC-MS/MS system. Separation was done using a chromatographic gradient on a C18 column (50 × 2.1 mm, 2.6 µm). The method was linear in the concentration range 0.05-5.00 µg/L, with within-run and between-run precision in the range 2-6 % and a run time of 1.5 min. Furthermore, the method was validated for selectivity, sensitivity, carry-over, accuracy and precision, process efficiency, recovery, matrix effect, and stability following EMA and FDA guidelines. Clinical validation was performed in 2333 samples from 1325 solid organ transplant recipients using tacrolimus (liver n = 312, kidney n = 1714, and lung n = 307), which had median plasma tacrolimus trough concentrations of 0.10 µg/L, 0.15 µg/L and 0.23 µg/L, respectively. This method is suitable for measurement of tacrolimus in plasma and will facilitate ongoing observational and prospective studies on the relationship of plasma tacrolimus concentrations with clinical outcomes.
Collapse
Affiliation(s)
- Tanja R Zijp
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Tim J Knobbe
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, Groningen, the Netherlands
| | - Kai van Hateren
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Jan Roggeveld
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Hans Blokzijl
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands
| | - C Tji Gan
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, the Netherlands
| | - Stephan Jl Bakker
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, Groningen, the Netherlands
| | - Erwin M Jongedijk
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - TransplantLines Investigators
- University Medical Center Groningen Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands; University of Groningen, Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, Groningen, the Netherlands.
| |
Collapse
|
8
|
Coste G, Chabanne C, Tron C, Lelong B, Verdier MC, Roussel M, Le Gall F, Turlin B, Desille-Dugast M, Flécher E, Laviolle B, Lemaitre F. Blood, Cellular, and Tissular Calcineurin Inhibitors Pharmacokinetic-Pharmacodynamic Relationship in Heart Transplant Recipients: The INTRACAR Study. Ther Drug Monit 2023; 45:229-235. [PMID: 36006706 DOI: 10.1097/ftd.0000000000001025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND After heart transplantation, calcineurin inhibitors (CNI) (cyclosporin A and tacrolimus) are key immunosuppressive drugs to prevent graft rejection. Whole-blood concentration (C blood )-guided therapeutic drug monitoring (TDM) is systematically performed to improve graft outcomes. However, some patients will still experience graft rejection and/or adverse events despite CNI C blood within the therapeutic range. Other pharmacokinetic parameters, such as the intragraft, or intracellular concentration at the CNI site of action could refine their TDM. Nonetheless, these remain to be explored. The objective of the INTRACAR study was to describe the relationship between whole blood, intragraft, and intracellular CNI concentrations as well as their efficacy in heart transplant recipients (HTR). METHODS In a cohort of HTR, protocol endomyocardial biopsies (EMB) were collected to assess rejection by anatomopathological analysis. Part of the EMB was used to measure the intragraft concentrations of CNI (C EMB ). C blood and the concentration inside peripheral blood mononuclear cells, (C PBMC ), a cellular fraction enriched with lymphocytes, were also monitored. Concentrations in the 3 matrices were compared between patients with and without biopsy-proven acute rejection (BPAR). RESULTS Thirty-four HTR were included, representing nearly 100 pharmacokinetic (PK) samples for each CNI. C blood , C EMB , and C PBMC correlated for both CNI. BPAR was observed in 74 biopsies (39.6%) from 26 patients (76.5%), all except one was of low grade. None of the PK parameters (C blood , C EMB , C PBMC , C EMB/blood , and C PBMC/blood ) was associated with BPAR. CONCLUSIONS In this cohort of well-immunosuppressed patients, no association was observed for any of the PK parameters, including C blood , with the occurrence of BPAR. However, a trend was noticed for the C EMB and C EMB/blood of cyclosporin A. Further studies in higher-risk patients may help optimize the use of C EMB and C PBMC for CNI TDM in HTR.
Collapse
Affiliation(s)
- Gwendal Coste
- Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S 1085, EHESP, Inserm, CHU Rennes
- INSERM, Centre d'Investigation Clinique
- Laboratoire de pharmacologie biologique, Centre Hospitalier Universitaire de Rennes
| | - Céline Chabanne
- Service de chirurgie cardio-thoracique et vasculaire, Centre Hospitalier Universitaire de Rennes
| | - Camille Tron
- Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S 1085, EHESP, Inserm, CHU Rennes
- INSERM, Centre d'Investigation Clinique
- Laboratoire de pharmacologie biologique, Centre Hospitalier Universitaire de Rennes
| | - Bernard Lelong
- Service de chirurgie cardio-thoracique et vasculaire, Centre Hospitalier Universitaire de Rennes
| | - Marie-Clémence Verdier
- Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S 1085, EHESP, Inserm, CHU Rennes
- INSERM, Centre d'Investigation Clinique
- Laboratoire de pharmacologie biologique, Centre Hospitalier Universitaire de Rennes
| | - Mikael Roussel
- Laboratoire d'hématologie, Centre Hospitalier Universitaire de Rennes
- Université de Rennes, Établissement Français du Sang (EFS) de Bretagne, Inserm, MICMAC-UMR_S1236
| | - François Le Gall
- Laboratoire d'anatomie et cytologie pathologiques, Centre Hospitalier Universitaire de Rennes
| | - Bruno Turlin
- Laboratoire d'anatomie et cytologie pathologiques, Centre Hospitalier Universitaire de Rennes
- Centre de Ressources Biologiques (CRB) Santé de Rennes BB-0033-00056, Centre Hospitalier Universitaire de Rennes
| | - Mireille Desille-Dugast
- Centre de Ressources Biologiques (CRB) Santé de Rennes BB-0033-00056, Centre Hospitalier Universitaire de Rennes
| | - Erwan Flécher
- INSERM, Centre d'Investigation Clinique
- Service de chirurgie cardio-thoracique et vasculaire, Centre Hospitalier Universitaire de Rennes
- Laboratoire Traitement du Signal et de l'Image (LTSI) unité mixte 1099 INSERM; and
- FHU SUPORT, Rennes, France
| | - Bruno Laviolle
- Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S 1085, EHESP, Inserm, CHU Rennes
- INSERM, Centre d'Investigation Clinique
- Laboratoire de pharmacologie biologique, Centre Hospitalier Universitaire de Rennes
- FHU SUPORT, Rennes, France
| | - Florian Lemaitre
- Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR S 1085, EHESP, Inserm, CHU Rennes
- INSERM, Centre d'Investigation Clinique
- Laboratoire de pharmacologie biologique, Centre Hospitalier Universitaire de Rennes
- FHU SUPORT, Rennes, France
| |
Collapse
|
9
|
Gong F, Hu H, Ouyang Y, Liao ZZ, Kong Y, Hu JF, He H, Zhou Y. Physiologically-based pharmacokinetic modeling-guided rational combination of tacrolimus and voriconazole in patients with different CYP3A5 and CYP2C19 alleles. Toxicol Appl Pharmacol 2023; 466:116475. [PMID: 36931438 DOI: 10.1016/j.taap.2023.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The drug-drug interactions (DDIs) between tacrolimus and voriconazole are highly variable among individuals. We aimed to develop a physiologically based pharmacokinetic (PBPK) model to predict the DDIs in people with different CYP3A5 and CYP2C19 alleles. First, pharmacokinetic data of humans receiving tacrolimus with or without voriconazole from the literature were used to construct and validate the PBPK model. Thereafter, we developed a model incorporating the metabolism of voriconazole mediated by CYP2C19 and the inhibitory effect of voriconazole on CYP3A4/5. Finally, the model was used to evaluate the dose adjustment of tacrolimus in people with different CYP3A5 and CYP2C19 alleles. When tacrolimus was administered alone (3 mg PO, single dose), the predicted AUC0-∞ of tacrolimus in CYP3A5 nonexpressers (19.22) was 3.5-fold higher than that in expressers (5.48). Following voriconazole (200 mg PO, bid) administration in human with different CYP2C19 genotypes, the AUC0-∞ of tacrolimus increased by 5.1- to 8.3-fold in CYP3A5 expressers and by 5.3- to 10.2-fold in CYP3A5 nonexpressers. The lower the gene expression level of CYP2C19 in the population, the higher the exposure to tacrolimus. When tacrolimus was combined with voriconazole (200 mg, bid; 400 mg, bid, on Day 1), the final model simulations suggested that the dose regimen of tacrolimus should be regulated to 0.15 mg/kg/day (qd) in CYP3A5 expressers with different CYP2C19 genotypes. For CYP3A5 nonexpressers, the dosing schedule of tacrolimus should be modified to 0.05 mg/kg/24 h for patients with 2C19 EM, 0.05 mg/kg/48 h for 2C19 IM and 0.05 mg/kg/72 h for 2C19 PM. In conclusion, a PBPK model with CYP3A5 and CYP2C19 polymorphisms was successfully established, providing more insights regarding the DDIs between tacrolimus and voriconazole to guide the clinical use of tacrolimus.
Collapse
Affiliation(s)
- Fei Gong
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Center for Molecular Diagnosis and Precision Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Huihui Hu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Ouyang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Zheng-Zheng Liao
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ying Kong
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jin-Fang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Ying Zhou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
10
|
Pharmacodynamic Monitoring of Ciclosporin and Tacrolimus: Insights From Nuclear Factor of Activated T-Cell-Regulated Gene Expression in Healthy Volunteers. Ther Drug Monit 2023; 45:87-94. [PMID: 36191295 DOI: 10.1097/ftd.0000000000001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Although therapeutic drug monitoring of calcineurin inhibitor (CNI) concentrations is performed routinely in clinical practice, an identical concentration may lead to different effects in different patients. Although the quantification of nuclear factor of activated T-cell-regulated gene expression (NFAT-RGE) is a promising method for measuring individual CNI effects, CNI pharmacodynamics are as of yet incompletely understood. METHODS CNI concentrations and NFAT-RGEs were quantified in 24 healthy volunteers receiving either ciclosporin or tacrolimus in 2 clinical trials. NFAT-RGE was measured using quantitative reverse transcription polymerase chain reaction tests of whole-blood samples. Pharmacokinetics and pharmacodynamics were analyzed using compartmental modeling and simulation. In addition, NFAT-RGE data from renal transplant patients were analyzed. RESULTS The average NFAT-RGE during a dose interval was reduced to approximately 50% with ciclosporin, considering circadian changes. The different effect-time course with ciclosporin and tacrolimus could be explained by differences in potency (IC 50 204 ± 41 versus 15.1 ± 3.2 mcg/L, P < 0.001) and pharmacokinetics. Residual NFAT-RGE at the time of maximum concentration (RGE tmax ) of 15% when using ciclosporin and of 30% when using tacrolimus was associated with similar average NFAT-RGEs during a dose interval. Renal transplant patients had similar but slightly stronger effects compared with healthy volunteers. CONCLUSIONS Ciclosporin and tacrolimus led to similar average suppression of NFAT-RGE in a dose interval, despite considerably different RGE tmax . Pharmacodynamic monitoring of average NFAT-RGE should be considered. When using NFAT-RGE at specific time points, the different effect-time courses and circadian changes of NFAT-RGEs should be considered.
Collapse
|
11
|
Zhang D, Ye Y, Hu X. A non-invasive piTreg-related gene signature for spontaneous tolerance in renal transplantation. Gene X 2023; 848:146901. [DOI: 10.1016/j.gene.2022.146901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022] Open
|
12
|
Lukanov T, Ivanova M, Yankova P, Al Hadra B, Mihaylova A, Genova M, Svinarov D, Naumova E. Impact of CYP3A7, CYP2D6 and ABCC2/ABCC3 polymorphisms on tacrolimus steady state concentrations in Bulgarian kidney transplant recipients. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2081517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Tsvetelin Lukanov
- Department of Clinical Immunology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Department of Clinical Immunology and Stem Cell Bank, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Milena Ivanova
- Department of Clinical Immunology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Petya Yankova
- Department of Clinical Immunology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Bushra Al Hadra
- Department of Clinical Immunology and Stem Cell Bank, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Anastasiya Mihaylova
- Department of Clinical Immunology and Stem Cell Bank, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Marianka Genova
- Department of Clinical Laboratory & Clinical Pharmacology, University Hospital Alexandrovska, Sofia, Bulgaria
- Department of Clinical Laboratory, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Dobrin Svinarov
- Department of Clinical Laboratory & Clinical Pharmacology, University Hospital Alexandrovska, Sofia, Bulgaria
- Department of Clinical Laboratory, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Elisaveta Naumova
- Department of Clinical Immunology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
13
|
Choi JS, Ko H, Kim HK, Chung C, Han A, Min SK, Ha J, Kang HG, Ha IS, Min S. Effects of tacrolimus intrapatient variability and CYP3A5 polymorphism on the outcomes of pediatric kidney transplantation. Pediatr Transplant 2022; 26:e14297. [PMID: 35466485 DOI: 10.1111/petr.14297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND The intrapatient variability (IPV) of tacrolimus (Tac) is associated with the long-term outcome of kidney transplantation. The CYP3A single-nucleotide polymorphism (SNP) may affect the IPV of Tac. We investigated the impact of IPV and genetic polymorphism in pediatric patients who received kidney transplantation. METHODS A total of 202 pediatric renal transplant recipients from 2000 to 2016 were analyzed retrospectively. The IPV was calculated between 6 and 12 months after surgery. Among these patients, CYP3A5 polymorphism was analyzed in 67 patients. RESULTS The group with high IPV had a significantly higher rate of de novo donor-specific human leukocyte antigen antibodies (dnDSA) development (35.7% vs. 16.7%, p = .003). The high IPV group also had a higher incidence of T-cell-mediated rejection (TCMR; p < .001). The high IPV had no significant influence on Epstein-Barr virus, cytomegalovirus, and BK virus viremia but was associated with the incidence of posttransplant lymphoproliferative disorders (p = .003). Overall, the graft survival rate was inferior in the high IPV group (p < .001). The CYP3A5 SNPs did not significantly affect the IPV of Tac. In the CYP3A5 expressor group, however, the IPV was significantly associated with the TCMR-free survival rate (p < .001). CONCLUSION The IPV of Tac had a significant impact on dnDSA development, occurrence of acute TCMR, and graft failure in pediatric patients who received renal transplantation. CYP3A5 expressors with high IPV of Tac showed worse outcomes, while the CYP3A5 polymorphism had no impact on IPV of Tac.
Collapse
Affiliation(s)
- Jin Sun Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyunmin Ko
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Kee Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chris Chung
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Ahram Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Kee Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Il Soo Ha
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Sangil Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Knops N, Ramazani Y, De Loor H, Goldschmeding R, Nguyen TQ, van den Heuvel LP, Levtchenko E, Kuypers DJ. Tacrolimus induces a pro-fibrotic response in donor-derived human proximal tubule cells dependent on common variants of the CYP3A5 and ABCB1 genes. Nephrol Dial Transplant 2022; 38:599-609. [PMID: 35945682 PMCID: PMC9976759 DOI: 10.1093/ndt/gfac237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Common genetic variants of the enzymes and efflux pump involved in tacrolimus disposition have been associated with calcineurin inhibitor nephrotoxicity, but their importance is unclear because of the multifactorial background of renal fibrosis. This study explores the pro-fibrotic response of tacrolimus exposure in relation to the differential capacity for tacrolimus metabolism in proximal tubule cells (PTCs) with a variable (pharmaco)genetic background. METHODS PTCs were obtained from protocol allograft biopsies with different combinations of CYP3A5 and ABCB1 variants and were incubated with tacrolimus within the concentration range found in vivo. Gene and protein expression, CYP3A5 and P-glycoprotein function, and tacrolimus metabolites were measured in PTC. Connective tissue growth factor (CTGF) expression was assessed in protocol biopsies of kidney allograft recipients. RESULTS PTCs produce CTGF in response to escalating tacrolimus exposure, which is approximately 2-fold higher in cells with the CYP3A5*1 and ABCB1 TT combination in vitro. Increasing tacrolimus exposure results in relative higher generation of the main tacrolimus metabolite {13-O-desmethyl tacrolimus [M1]} in cells with this same genetic background. Protocol biopsies show a larger increase in in vivo CTGF tissue expression over time in TT vs. CC/CT but was not affected by the CYP3A5 genotype. CONCLUSIONS Tacrolimus exposure induces a pro-fibrotic response in a PTC model in function of the donor pharmacogenetic background associated with tacrolimus metabolism. This finding provides a mechanistic insight into the nephrotoxicity associated with tacrolimus treatment and offers opportunities for a tailored immunosuppressive treatment.
Collapse
Affiliation(s)
| | | | - Henriëtte De Loor
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lambert P van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Growth and Regeneration, University of Leuven, Leuven, Belgium,Translational Metabolic Laboratory and Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, University Hospitals Leuven, Leuven, Belgium,Laboratory of Pediatric Nephrology, Department of Growth and Regeneration, University of Leuven, Leuven, Belgium
| | - Dirk J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Drug transporters are implicated in the diffusion of tacrolimus into the T lymphocyte in kidney and liver transplant recipients: Genetic, mRNA, protein expression, and functionality. Drug Metab Pharmacokinet 2022; 47:100473. [DOI: 10.1016/j.dmpk.2022.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
|
16
|
Wang XH, Shao K, An HM, Zhai XH, Zhou PJ, Chen B. The pharmacokinetics of tacrolimus in peripheral blood mononuclear cells and limited sampling strategy for estimation of exposure in renal transplant recipients. Eur J Clin Pharmacol 2022; 78:1261-1272. [PMID: 35536394 DOI: 10.1007/s00228-021-03215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/05/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE Intracellular exposure of tacrolimus (TAC) may be a better marker of therapeutic effect than whole blood exposure. We aimed to evaluate the influence of genetic polymorphism on the pharmacokinetics of TAC in peripheral blood mononuclear cells (PBMCs) and develop limited sampling strategy (LSS) models to estimate the area under the curve (AUC0-12h) in the PBMC of Chinese renal transplant patients. METHODS Ten blood samples of each of the 23 renal transplant patients were collected 0-12h after 14 (10-18) days of TAC administration. PBMCs were separated and quantified. The TAC level in PBMCs was determined, and pharmacokinetic parameters were estimated by noncompartmental study. The AUC0-12h of TAC in whole blood was estimated by Bayesian approach based on a population pharmacokinetic model established in 65 renal transplant patients. The influence of CYP3A5 and ABCB1 genotypes on exposure was estimated. By applying multiple stepwise linear regression analysis, LSS equations for TAC AUC0-12h in the PMBC of renal transplant patients were established, and the bias and precision of various equations were identified and compared. RESULTS We found a modest correlation between TAC exposure in whole blood and PBMC (r2 = 0.5260). Patients with the CYP3A5 6986GG genotype had a higher AUC0-12h in PBMCs than those with the 6986 AA or GA genotype (P = 0.026). Conversely, patients with the ABCB1 3435TT genotype had a higher AUC0-12h in PBMC than those with the 3435 CC and CT genotypes (P = 0.046). LSS models with 1-4 blood time points were established (r2 = 0.570-0.989). The best model for predicting TAC AUC0-12h was C2-C4-C6-C10 (r2 = 0.989). The model with C0.5-C6 (r2 = 0.849) can be used for outpatients who need monitoring to be performed in a short period. CONCLUSIONS The CYP3A5 and ABCB1 genotypes impact TAC exposure in PBMCs, which may further alter the effects of TAC. The LSS model consisting of 2-4 time points is an effective approach for estimating full TAC AUC0-12h in Chinese renal transplant patients. This approach may provide convenience and the possibility for clinical monitoring of TAC intracellular exposure.
Collapse
Affiliation(s)
- Xi-Han Wang
- Department of Pharmacy, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kun Shao
- Center for Organ Transplantation, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, People's Republic of China
| | - Hui-Min An
- Center for Organ Transplantation, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, People's Republic of China
| | - Xiao-Hui Zhai
- Department of Pharmacy, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Pei-Jun Zhou
- Center for Organ Transplantation, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, People's Republic of China.
| | - Bing Chen
- Department of Pharmacy, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Franken LG, Francke MI, Andrews LM, van Schaik RHN, Li Y, de Wit LEA, Baan CC, Hesselink DA, de Winter BCM. A Population Pharmacokinetic Model of Whole-Blood and Intracellular Tacrolimus in Kidney Transplant Recipients. Eur J Drug Metab Pharmacokinet 2022; 47:523-535. [PMID: 35442010 PMCID: PMC9232416 DOI: 10.1007/s13318-022-00767-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE The tacrolimus concentration within peripheral blood mononuclear cells may correlate better with clinical outcomes after transplantation compared to concentrations measured in whole blood. However, intracellular tacrolimus measurements are not easily implemented in clinical practice. The prediction of intracellular concentrations based on whole-blood concentrations would be a solution for this. Therefore, the aim of this study was to describe the relationship between intracellular and whole-blood tacrolimus concentrations in a population pharmacokinetic (popPK) model. METHODS Pharmacokinetic analysis was performed using non-linear mixed effects modelling software (NONMEM). The final model was evaluated using goodness-of-fit plots, visual predictive checks, and a bootstrap analysis. RESULTS A total of 590 tacrolimus concentrations from 184 kidney transplant recipients were included in the study. All tacrolimus concentrations were measured in the first three months after transplantation. The intracellular tacrolimus concentrations (n = 184) were best described with an effect compartment. The distribution into the effect compartment was described by the steady-state whole-blood to intracellular ratio (RWB:IC) and the intracellular distribution rate constant between the whole-blood and intracellular compartments. Lean body weight was negatively correlated [delta objective function value (ΔOFV) -8.395] and haematocrit was positively correlated (ΔOFV = - 6.752) with RWB:IC, and both lean body weight and haematocrit were included in the final model. CONCLUSION We were able to accurately describe intracellular tacrolimus concentrations using whole-blood concentrations, lean body weight, and haematocrit values in a popPK model. This model may be used in the future to more accurately predict clinical outcomes after transplantation and to identify patients at risk for under- and overexposure. Dutch National Trial Registry number NTR2226.
Collapse
Affiliation(s)
- Linda G Franken
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands. .,Rotterdam Clinical Pharmacometrics Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Louise M Andrews
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Yi Li
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lucia E A de Wit
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Rotterdam Clinical Pharmacometrics Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Francke MI, Andrews LM, Lan Le H, van de Velde D, Dieterich M, Udomkarnjananun S, Clahsen-van Groningen MC, Baan CC, van Gelder T, de Winter BCM, Hesselink DA. Monitoring intracellular tacrolimus concentrations and its relationship with rejection in the early phase after renal transplantation. Clin Biochem 2021; 101:9-15. [PMID: 34890583 DOI: 10.1016/j.clinbiochem.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION After kidney transplantation, rejection and drug-related toxicity occur despite tacrolimus whole-blood pre-dose concentrations ([Tac]blood) being within the target range. The tacrolimus concentration within peripheral blood mononuclear cells ([Tac]cells) might correlate better with clinical outcomes. The aim of this study was to investigate the correlation between [Tac]blood and [Tac]cells, the evolution of [Tac]cells and the [Tac]cells/[Tac]blood ratio, and to assess the relationship between tacrolimus concentrations and the occurrence of rejection. METHODS In this prospective study, samples for the measurement of [Tac]blood and [Tac]cells were collected on days 3 and 10 after kidney transplantation, and on the morning of a for-cause kidney transplant biopsy. Biopsies were reviewed according to the Banff 2019 update. RESULTS Eighty-three [Tac]cells samples were measured of 44 kidney transplant recipients. The correlation between [Tac]cells and [Tac]blood was poor (Pearson's r = 0.56 (day 3); r = 0.20 (day 10)). Both the dose-corrected [Tac]cells and the [Tac]cells/[Tac]blood ratio were not significantly different between days 3 and 10, and the median inter-occasion variability of the dose-corrected [Tac]cells and the [Tac]cells/[Tac]blood ratio were 19.4% and 23.4%, respectively (n = 24). Neither [Tac]cells, [Tac]blood, nor the [Tac]cells/[Tac]blood ratio were significantly different between patients with biopsy-proven acute rejection (n = 4) and patients with acute tubular necrosis (n = 4) or a cancelled biopsy (n = 9; p > 0.05). CONCLUSION Tacrolimus exposure and distribution appeared stable in the early phase after transplantation. [Tac]cells was not significantly associated with the occurrence of rejection. A possible explanation for these results might be related to the low number of patients included in this study and also due to the fact that PBMCs are not a specific enough matrix to monitor tacrolimus concentrations.
Collapse
Affiliation(s)
- Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Erasmus MC Transplant Institute, the Netherlands.
| | - Louise M Andrews
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Meander Medical Center, Amersfoort, the Netherlands
| | - Hoang Lan Le
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Daan van de Velde
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Suwasin Udomkarnjananun
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Erasmus MC Transplant Institute, the Netherlands; Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Marian C Clahsen-van Groningen
- Erasmus MC Transplant Institute, the Netherlands; Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Erasmus MC Transplant Institute, the Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Brenda C M de Winter
- Erasmus MC Transplant Institute, the Netherlands; Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Erasmus MC Transplant Institute, the Netherlands
| |
Collapse
|
19
|
De Nicolò A, Pinon M, Palermiti A, Nonnato A, Manca A, Mula J, Catalano S, Tandoi F, Romagnoli R, D'Avolio A, Calvo PL. Monitoring Tacrolimus Concentrations in Whole Blood and Peripheral Blood Mononuclear Cells: Inter- and Intra-Patient Variability in a Cohort of Pediatric Patients. Front Pharmacol 2021; 12:750433. [PMID: 34803692 PMCID: PMC8602893 DOI: 10.3389/fphar.2021.750433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tacrolimus (TAC) is a first-choice immunosuppressant for solid organ transplantation, characterized by high potential for drug-drug interactions, significant inter- and intra-patient variability, and narrow therapeutic index. Therapeutic drug monitoring (TDM) of TAC concentrations in whole blood (WB) is capable of reducing the incidence of adverse events. Since TAC acts within lymphocytes, its monitoring in peripheral blood mononuclear cells (PBMC) may represent a valid future alternative for TDM. Nevertheless, TAC intracellular concentrations and their variability are poorly described, particularly in the pediatric context. Therefore, our aim was describing TAC concentrations in WB and PBMC and their variability in a cohort of pediatric patients undergoing constant immunosuppressive maintenance therapy, after liver transplantation. TAC intra-PBMCs quantification was performed through a validated UHPLC–MS/MS assay over a period of 2–3 months. There were 27 patients included in this study. No significant TAC changes in intracellular concentrations were observed (p = 0.710), with a median percent change of −0.1% (IQR −22.4%–+46.9%) between timings: this intra-individual variability was similar to the one in WB, −2.9% (IQR −29.4–+42.1; p = 0.902). Among different patients, TAC weight-adjusted dose and age appeared to be significant predictors of TAC concentrations in WB and PBMC. Intra-individual seasonal variation of TAC concentrations in WB, but not in PBMC, have been observed. These data show that the intra-individual variability in TAC intracellular exposure is comparable to the one observed in WB. This opens the way for further studies aiming at the identification of therapeutic ranges for TAC intra-PBMC concentrations.
Collapse
Affiliation(s)
- Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Michele Pinon
- Pediatric Gastroenterology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Alice Palermiti
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonello Nonnato
- Clinical Biochemistry Unit, Department of Diagnostic Laboratory, A.O.U. Città della Salute e della Scienza Hospital, Turin, Italy
| | - Alessandra Manca
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jacopo Mula
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Catalano
- General Surgery, Liver Transplant Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Francesco Tandoi
- General Surgery, Liver Transplant Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Renato Romagnoli
- General Surgery, Liver Transplant Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Antonio D'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
20
|
Sallustio BC. Monitoring Intra-cellular Tacrolimus Concentrations in Solid Organ Transplantation: Use of Peripheral Blood Mononuclear Cells and Graft Biopsy Tissue. Front Pharmacol 2021; 12:733285. [PMID: 34764868 PMCID: PMC8576179 DOI: 10.3389/fphar.2021.733285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Tacrolimus is an essential immunosuppressant for the prevention of rejection in solid organ transplantation. Its low therapeutic index and high pharmacokinetic variability necessitates therapeutic drug monitoring (TDM) to individualise dose. However, rejection and toxicity still occur in transplant recipients with blood tacrolimus trough concentrations (C0) within the target ranges. Peripheral blood mononuclear cells (PBMC) have been investigated as surrogates for tacrolimus's site of action (lymphocytes) and measuring allograft tacrolimus concentrations has also been explored for predicting rejection or nephrotoxicity. There are relatively weak correlations between blood and PBMC or graft tacrolimus concentrations. Haematocrit is the only consistent significant (albeit weak) determinant of tacrolimus distribution between blood and PBMC in both liver and renal transplant recipients. In contrast, the role of ABCB1 pharmacogenetics is contradictory. With respect to distribution into allograft tissue, studies report no, or poor, correlations between blood and graft tacrolimus concentrations. Two studies observed no effect of donor ABCB1 or CYP3A5 pharmacogenetics on the relationship between blood and renal graft tacrolimus concentrations and only one group has reported an association between donor ABCB1 polymorphisms and hepatic graft tacrolimus concentrations. Several studies describe significant correlations between in vivo PBMC tacrolimus concentrations and ex vivo T-cell activation or calcineurin activity. Older studies provide evidence of a strong predictive value of PBMC C0 and allograft tacrolimus C0 (but not blood C0) with respect to rejection in liver transplant recipients administered tacrolimus with/without a steroid. However, these results have not been independently replicated in liver or other transplants using current triple maintenance immunosuppression. Only one study has reported a possible association between renal graft tacrolimus concentrations and acute tacrolimus nephrotoxicity. Thus, well-designed and powered prospective clinical studies are still required to determine whether measuring tacrolimus PBMC or graft concentrations offers a significant benefit compared to current TDM.
Collapse
Affiliation(s)
- Benedetta C Sallustio
- Department of Clinical Pharmacology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia.,Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
Radhakrishnan A, Kuppusamy G, Ponnusankar S, Mutalik S. Towards next-generation personalization of tacrolimus treatment: a review on advanced diagnostic and therapeutic approaches. Pharmacogenomics 2021; 22:1151-1175. [PMID: 34719935 DOI: 10.2217/pgs-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The benefit of personalized medicine is that it allows the customization of drug therapy - maximizing efficacy while avoiding side effects. Genetic polymorphisms are one of the major contributors to interindividual variability. Currently, the only gold standard for applying personalized medicine is dose titration. Because of technological advancements, converting genotypic data into an optimum dose has become easier than in earlier years. However, for many medications, determining a personalized dose may be difficult, leading to a trial-and-error method. On the other hand, the technologically oriented pharmaceutical industry has a plethora of smart drug delivery methods that are underutilized in customized medicine. This article elaborates the genetic polymorphisms of tacrolimus as case study, and extensively covers the diagnostic and therapeutic technologies which aid in the delivery of personalized tacrolimus treatment for better clinical outcomes, thereby providing a new strategy for implementing personalized medicine.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| |
Collapse
|
22
|
Casto AM, Seo S, Levine DM, Storer BE, Dong X, Hansen JA, Boeckh M, Martin PJ. Genetic variants associated with cytomegalovirus infection after allogeneic hematopoietic cell transplantation. Blood 2021; 138:1628-1636. [PMID: 34269803 PMCID: PMC8554648 DOI: 10.1182/blood.2021012153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/01/2021] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (CMV) reactivation is a frequent complication of allogeneic hematopoietic cell transplantation (HCT). Despite routine screening for CMV reactivation and early antiviral treatment, the rates of CMV-related complications after HCT remain high. Genetic variants in both the donor and recipient have been associated with the risk of CMV reactivation and disease after HCT, but these associations have not been validated, and their clinical importance remains unclear. In this study, we assessed 117 candidate variants previously associated with CMV-related phenotypes for association with CMV reactivation and disease in a cohort of 2169 CMV-seropositive HCT recipients. We also carried out a genome-wide association study (GWAS) for CMV reactivation and disease in the same cohort. Both analyses used a prespecified discovery and replication approach to control the risk of false-positive results. Among the 117 candidate variants, our analysis implicates only the donor ABCB1 rs1045642 genotype as a risk factor for CMV reactivation. This synonymous variant in P-glycoprotein may influence the risk of CMV reactivation by altering the efflux of cyclosporine and tacrolimus from donor lymphocytes. In the GWAS analysis, the donor CDC42EP3 rs11686168 genotype approached the significance threshold for association with CMV reactivation, although we could not identify a mechanism to explain this association. The results of this study suggest that most genomic variants previously associated with CMV phenotypes do not significantly alter the risk for CMV reactivation or disease after HCT.
Collapse
Affiliation(s)
- Amanda M Casto
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sachiko Seo
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | - David M Levine
- Department of Biostatistics, University of Washington, Seattle, WA; and
| | - Barry E Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Xinyuan Dong
- Department of Biostatistics, University of Washington, Seattle, WA; and
| | - John A Hansen
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Michael Boeckh
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Paul J Martin
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
23
|
Fontova P, Colom H, Rigo-Bonnin R, van Merendonk LN, Vidal-Alabró A, Montero N, Melilli E, Meneghini M, Manonelles A, Cruzado JM, Torras J, Grinyó JM, Bestard O, Lloberas N. Influence of the Circadian Timing System on Tacrolimus Pharmacokinetics and Pharmacodynamics After Kidney Transplantation. Front Pharmacol 2021; 12:636048. [PMID: 33815118 PMCID: PMC8010682 DOI: 10.3389/fphar.2021.636048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/05/2021] [Indexed: 01/06/2023] Open
Abstract
Introduction: Tacrolimus is the backbone immunosuppressant after solid organ transplantation. Tacrolimus has a narrow therapeutic window with large intra- and inter-patient pharmacokinetic variability leading to frequent over- and under-immunosuppression. While routine therapeutic drug monitoring (TDM) remains the standard of care, tacrolimus pharmacokinetic variability may be influenced by circadian rhythms. Our aim was to analyze tacrolimus pharmacokinetic/pharmacodynamic profiles on circadian rhythms comparing morning and night doses of a twice-daily tacrolimus formulation. Methods: This is a post-hoc analysis from a clinical trial to study the area under curve (AUC) and the area under effect (AUE) profiles of calcineurin inhibition after tacrolimus administration in twenty-five renal transplant patients. Over a period of 24 h, an intensive sampling (0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 12.5, 13, 13.5, 14, 15, 20, and 24 h) was carried out. Whole blood and intracellular tacrolimus concentrations and calcineurin activity were measured by UHPLC-MS/MS. Results: Whole blood and intracellular AUC12-24 h and Cmax achieved after tacrolimus night dose was significantly lower than after morning dose administration (AUC0-12 h) (p < 0.001 for both compartments). AUE0-12 h and AUE12-24 h were not statistically different after morning and night doses. Total tacrolimus daily exposure (AUC0-24 h), in whole blood and intracellular compartments, was over-estimated when assessed by doubling the morning AUC0-12 h data. Conclusion: The lower whole blood and intracellular tacrolimus concentrations after night dose might be influenced by a distinct circadian clock. This significantly lower tacrolimus exposure after night dose was not translated into a significant reduction of the pharmacodynamic effect. Our study may provide conceptual bases for better understanding the TDM of twice-daily tacrolimus formulation.
Collapse
Affiliation(s)
- Pere Fontova
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Raül Rigo-Bonnin
- Biochemistry Department, Bellvitge University Hospital, Universitari de Bellvitge, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain
| | - Lisanne N van Merendonk
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vidal-Alabró
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Nuria Montero
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Edoardo Melilli
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Meneghini
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Manonelles
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Josep M Cruzado
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Juan Torras
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Josep Maria Grinyó
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Oriol Bestard
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Nuria Lloberas
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17:369-396. [PMID: 33459081 DOI: 10.1080/17425255.2021.1876661] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interindividual differences in drug response are a frequent clinical challenge partly due to variation in pharmacokinetics. ATP-binding cassette (ABC) transporters are crucial determinants of drug disposition. They are subject of gene regulation and drug-interaction; however, it is still under debate to which extend genetic variants in these transporters contribute to interindividual variability of a wide range of drugs. AREAS COVERED This review discusses the current literature on the impact of genetic variants in ABCB1, ABCG2 as well as ABCC1, ABCC2, and ABCC3 on pharmacokinetics and drug response. The aim was to evaluate if results from recent studies would increase the evidence for potential clinically relevant pharmacogenetic effects. EXPERT OPINION Although enormous efforts have been made to investigate effects of ABC transporter genotypes on drug pharmacokinetics and response, the majority of studies showed only weak if any associations. Despite few unique results, studies mostly failed to confirm earlier findings or still remained inconsistent. The impact of genetic variants on drug bioavailability is only minor and other factors regulating the transporter expression and function seem to be more critical. In our opinion, the findings on the so far investigated genetic variants in ABC efflux transporters are not suitable as predictive biomarkers.
Collapse
Affiliation(s)
- Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
25
|
Early impact of donor CYP3A5 genotype and Graft-to-Recipient Weight Ratio on tacrolimus pharmacokinetics in pediatric liver transplant patients. Sci Rep 2021; 11:443. [PMID: 33432012 PMCID: PMC7801660 DOI: 10.1038/s41598-020-79574-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Tacrolimus (TAC) pharmacokinetics is influenced by the donor CYP3A5 genotype and the age of pediatric liver recipients. However, an optimization of a genotype-based algorithm for determining TAC starting is needed to earlier achieve stable target levels. As the graft itself is responsible for its metabolism, the Graft-to-Recipient Weight Ratio (GRWR) might play a role in TAC dose requirements. A single-center study was carried out in a cohort of 49 pediatric recipients to analyse the impact of patient and graft characteristics on TAC pharmacokinetics during the first 15 post-transplant days. Children < 2 years received grafts with a significantly higher GRWR (4.2%) than children between 2–8 (2.6%) and over 8 (2.7%). TAC concentration/weight-adjusted dose ratio was significantly lower in recipients from CYP3A5*1/*3 donors or with extra-large (GRWR > 5%) or large (GRWR 3–5%) grafts. The donor CYP3A5 genotype and GRWR were the only significant predictors of the TAC weight adjusted doses. Patients with a GRWR > 4% had a higher risk of acute rejection, observed in 20/49 (41%) patients. In conclusion, TAC starting dose could be guided according to the donor CYP3A5 genotype and GRWR, allowing for a quicker achievement of target concentrations and eventually reducing the risk of rejection.
Collapse
|
26
|
Francke MI, Hesselink DA, Li Y, Koch BCP, de Wit LEA, van Schaik RHN, Yang L, Baan CC, van Gelder T, de Winter BCM. Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients. Br J Clin Pharmacol 2020; 87:1918-1929. [PMID: 33025649 PMCID: PMC8056738 DOI: 10.1111/bcp.14585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
Aims Tacrolimus is a critical dose drug and to avoid under‐ and overexposure, therapeutic drug monitoring is standard practice. However, rejection and drug‐related toxicity occur despite whole‐blood tacrolimus pre‐dose concentrations ([Tac]blood) being on target. Monitoring tacrolimus concentrations at the target site (within peripheral blood mononuclear cells; [Tac]cells) may better correlate with drug‐efficacy. The aim of this study was to (1) investigate the relationship between [Tac]blood and [Tac]cells, (2) identify factors affecting the tacrolimus distribution in cells and whole‐blood, and (3) study the relationship between [Tac]cells and clinical outcomes after kidney transplantation. Methods A total of 175 renal transplant recipients were prospectively followed. [Tac]blood and [Tac]cells were determined at Months 3, 6 and 12 post‐transplantation. Patients were genotyped for ABCB1 1199G>A and 3435C>T, CYP3A4 15389C>T, and CYP3A5 6986G>A. Data on rejection and tacrolimus‐related nephrotoxicity and post‐transplant diabetes mellitus were collected. Results Correlations between [Tac]blood and [Tac]cells were moderate to poor (Spearman's r = 0.31; r = 0.41; r = 0.61 at Months 3, 6 and 12, respectively). The [Tac]cells/[Tac]blood ratio was stable over time in most patients (median intra‐patient variability 39.0%; range 3.5%–173.2%). Age, albumin and haematocrit correlated with the [Tac]cells/[Tac]blood ratio. CYP3A5 and CYP3A4 genotype combined affected both dose‐corrected [Tac]blood and [Tac]cells. ABCB1 was not significantly related to tacrolimus distribution. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes. Conclusions The correlation between [Tac]blood and [Tac]cells is poor. Age, albumin and haematocrit correlate with the [Tac]cells/[Tac]blood ratio, whereas genetic variation in ABCB1, CYP3A4 and CYP3A5 do not. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes.
Collapse
Affiliation(s)
- Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Yi Li
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lucia E A de Wit
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lin Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
27
|
Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, Elens L. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metab Toxicol 2020; 16:769-782. [PMID: 32721175 DOI: 10.1080/17425255.2020.1803277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In kidney transplantation, tacrolimus (TAC) is at the cornerstone of current immunosuppressive strategies. Though because of its narrow therapeutic index, it is critical to ensure that TAC levels are maintained within this sharp window through reactive adjustments. This would allow maximizing efficiency while limiting drug-associated toxicity. However, TAC high intra- and inter-patient pharmacokinetic (PK) variability makes it more laborious to accurately predict the appropriate dosage required for a given patient. AREAS COVERED This review summarizes the state-of-the-art knowledge regarding drug interactions, demographic and pharmacogenetics factors as predictors of TAC PK. We provide a scoring index for each association to grade its relevance and we present practical recommendations, when possible for clinical practice. EXPERT OPINION The management of TAC concentration in transplanted kidney patients is as critical as it is challenging. Recommendations based on rigorous scientific evidences are lacking as knowledge of potential predictors remains limited outside of DDIs. Awareness of these limitations should pave the way for studies looking at demographic and pharmacogenetic factors as well as gut microbiota composition in order to promote tailored treatment plans. Therapeutic approaches considering patients' clinical singularities may help allowing to maintain appropriate concentration of TAC.
Collapse
Affiliation(s)
- Alexandra L Degraeve
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Serge Moudio
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium.,Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Djamila Chaib Eddour
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Michel Mourad
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| |
Collapse
|
28
|
Francke MI, de Winter BC, Elens L, Lloberas N, Hesselink DA. The pharmacogenetics of tacrolimus and its implications for personalized therapy in kidney transplant recipients. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1776107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Marith I. Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Brenda C.M. de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laure Elens
- Louvain Drug Research Institute, Université Catholique De Louvain, Louvain, Belgium
| | - Nuria Lloberas
- Department of Nephrology, IDIBELL, Hospital Universitari Di Bellvitge, University of Barcelona, Barcelona, Spain
| | - Dennis A. Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Ling J, Dong LL, Yang XP, Qian Q, Jiang Y, Zou SL, Hu N. Effects of CYP3A5, ABCB1 and POR*28 polymorphisms on pharmacokinetics of tacrolimus in the early period after renal transplantation. Xenobiotica 2020; 50:1501-1509. [PMID: 32453653 DOI: 10.1080/00498254.2020.1774682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Ling
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu-Lu Dong
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu-Ping Yang
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qing Qian
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Jiang
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Su-Lan Zou
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Nan Hu
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
30
|
Zhang M, Tajima S, Shigematsu T, Fu R, Noguchi H, Kaku K, Tsuchimoto A, Okabe Y, Egashira N, Masuda S. Donor CYP3A5 Gene Polymorphism Alone Cannot Predict Tacrolimus Intrarenal Concentration in Renal Transplant Recipients. Int J Mol Sci 2020; 21:ijms21082976. [PMID: 32340188 PMCID: PMC7215698 DOI: 10.3390/ijms21082976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
CYP3A5 gene polymorphism in recipients plays an important role in tacrolimus blood pharmacokinetics after renal transplantation. Even though CYP3A5 protein is expressed in renal tubular cells, little is known about the influence on the tacrolimus intrarenal exposure and hence graft outcome. The aim of our study was to investigate how the tacrolimus intrarenal concentration (Ctissue) could be predicted based on donor CYP3A5 gene polymorphism in renal transplant recipients. A total of 52 Japanese renal transplant patients receiving tacrolimus were enrolled in this study. Seventy-four renal biopsy specimens were obtained at 3 months and 1 year after transplantation to determine the donor CYP3A5 polymorphism and measure the Ctissue by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The tacrolimus Ctissue ranged from 52 to 399 pg/mg tissue (n = 74) and was weak but significantly correlated with tacrolimus trough concentration (C0) at 3 months after transplantation (Spearman, r = 0.3560, p = 0.0096). No significant relationship was observed between the donor CYP3A5 gene polymorphism and Ctissue or Ctissue/C0. These data showed that the tacrolimus systemic level has an impact on tacrolimus renal accumulation after renal transplantation. However, donor CYP3A5 gene polymorphism alone cannot be used to predict tacrolimus intrarenal exposure. This study may be valuable for exploring tacrolimus renal metabolism and toxicology mechanism in renal transplant recipients.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
| | - Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Tomohiro Shigematsu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Rao Fu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
| | - Hiroshi Noguchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.N.); (K.K.); (Y.O.)
| | - Keizo Kaku
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.N.); (K.K.); (Y.O.)
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yasuhiro Okabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (H.N.); (K.K.); (Y.O.)
| | - Nobuaki Egashira
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.Z.); (T.S.); (R.F.); (N.E.)
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kita-kanemaru, Otawara 324-8501, Japan
- Correspondence: ; Tel.: +81-476-35-5600
| |
Collapse
|
31
|
Tron C, Woillard JB, Houssel-Debry P, David V, Jezequel C, Rayar M, Balakirouchenane D, Blanchet B, Debord J, Petitcollin A, Roussel M, Verdier MC, Bellissant E, Lemaitre F. Pharmacogenetic-Whole blood and intracellular pharmacokinetic-Pharmacodynamic (PG-PK2-PD) relationship of tacrolimus in liver transplant recipients. PLoS One 2020; 15:e0230195. [PMID: 32163483 PMCID: PMC7067455 DOI: 10.1371/journal.pone.0230195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Tacrolimus (TAC) is the cornerstone of immunosuppressive therapy in liver transplantation. This study aimed at elucidating the interplay between pharmacogenetic determinants of TAC whole blood and intracellular exposures as well as the pharmacokinetic-pharmacodynamic relationship of TAC in both compartments. Complete pharmacokinetic profiles (Predose, and 20 min, 40 min, 1h, 2h, 3h, 4h, 6h, 8h, 12h post drug intake) of twice daily TAC in whole blood and peripheral blood mononuclear cells (PBMC) were collected in 32 liver transplanted patients in the first ten days post transplantation. A non-parametric population pharmacokinetic model was applied to explore TAC pharmacokinetics in blood and PBMC. Concurrently, calcineurin activity was measured in PBMC. Influence of donor and recipient genetic polymorphisms of ABCB1, CYP3A4 and CYP3A5 on TAC exposure was assessed. Recipient ABCB1 polymorphisms 1199G>A could influence TAC whole blood and intracellular exposure (p<0.05). No association was found between CYP3A4 or CYP3A5 genotypes and TAC whole blood or intracellular concentrations. Finally, intra-PBMC calcineurin activity appeared incompletely inhibited by TAC and less than 50% of patients were expected to achieve intracellular IC50 concentration (100 pg/millions of cells) at therapeutic whole blood concentration (i.e.: 4–10 ng/mL). Together, these data suggest that personalized medicine regarding TAC therapy might be optimized by ABCB1 pharmacogenetic biomarkers and by monitoring intracellular concentration whereas the relationship between intracellular TAC exposure and pharmacodynamics biomarkers more specific than calcineurin activity should be further investigated.
Collapse
Affiliation(s)
- Camille Tron
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
- * E-mail:
| | - Jean-Baptiste Woillard
- Department of Pharmacology and Toxicology, Limoges University Hospital, Limoges, France
- INSERM, UMR 1248, Limoges, France
- Limoges University, Limoges, France
| | - Pauline Houssel-Debry
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
- Hepato-Biliary and Digestive Surgery Unit, Rennes University Hospital, Rennes, France
| | - Véronique David
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France
- CNRS, UMR6290, IGDR, Rennes, France
| | - Caroline Jezequel
- Hepato-Biliary and Digestive Surgery Unit, Rennes University Hospital, Rennes, France
| | - Michel Rayar
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
- Hepato-Biliary and Digestive Surgery Unit, Rennes University Hospital, Rennes, France
| | - David Balakirouchenane
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pharmacokinetics and Pharmacochemistry Department, Cochin Hospital, Paris, France
| | - Benoit Blanchet
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pharmacokinetics and Pharmacochemistry Department, Cochin Hospital, Paris, France
- CNRS, UMR8638, Faculty of Pharmacy, Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France
| | - Jean Debord
- Department of Pharmacology and Toxicology, Limoges University Hospital, Limoges, France
- INSERM, UMR 1248, Limoges, France
| | | | - Mickaël Roussel
- Haematology Laboratory, Rennes University Hospital, Rennes, France
| | - Marie-Clémence Verdier
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
| | - Eric Bellissant
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
| | - Florian Lemaitre
- Rennes 1 University, Rennes University Hospital, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
- INSERM, CIC 1414 Clinical Investigation Center, Rennes, France
| |
Collapse
|
32
|
Tacrolimus Concentration in Saliva of Kidney Transplant Recipients: Factors Influencing the Relationship with Whole Blood Concentrations. Clin Pharmacokinet 2019; 57:1199-1210. [PMID: 29330784 DOI: 10.1007/s40262-017-0626-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The objective of this study was to examine the association between tacrolimus concentration in oral fluids and in whole blood and to investigate the various factors that influence this relationship. PATIENTS AND METHODS Forty-six adult kidney transplant recipients were included in the study. Study A (ten patients) included the collection of several paired oral fluid samples by passive drool over a 12-h post-dose period. Study B (36 patients) included the collection of oral fluids pre-dose and at 2 h after the tacrolimus dose under three conditions: un-stimulated, after stimulation with a tart candy, and after mouth rinsing. The tacrolimus concentration in oral fluids was measured by a specially developed sensitive and specific liquid chromatography mass spectrometry method. A salivary transferrin concentration of >1 mg/dL was used as a cut-off value for oral fluid blood contamination. RESULTS Rinsing the oral cavity before sampling proved to provide the most suitable sampling strategy giving a correlation coefficient value of 0.71 (p = 0.001) between the tacrolimus concentration in oral fluids and the tacrolimus concentration in whole blood at trough. Mean and 95% confidence interval of tacrolimus concentration in oral fluids at the pre-dose concentration for samples collected after mouth rinsing was 584 (436, 782) pg/mL. The ratio of the tacrolimus concentration in oral fluids to the tacrolimus concentration in whole blood (*100) was 11% (95% confidence interval 9-13) for all sampling times. Oral fluid pH or weight of a saliva sample did not influence the tacrolimus concentration in oral fluids. Tacrolimus distribution into oral fluids exhibited a delay with a pronounced counter-clockwise hysteresis with respect to the time after dose. A multivariate analysis of variance revealed that the tacrolimus concentration in oral fluids is related to the tacrolimus concentration in whole blood and tacrolimus plasma-binding proteins including albumin and cholesterol. CONCLUSION An optimal sampling strategy for the determination of the tacrolimus concentration in oral fluids was established. Measuring the tacrolimus concentration in oral fluids appears to be a feasible and non-invasive method for predicting the concentration of tacrolimus in whole blood.
Collapse
|
33
|
Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit 2019; 41:261-307. [DOI: 10.1097/ftd.0000000000000640] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, Lemaitre F, Marquet P, Seger C, Shipkova M, Vinks A, Wallemacq P, Wieland E, Woillard JB, Barten MJ, Budde K, Colom H, Dieterlen MT, Elens L, Johnson-Davis KL, Kunicki PK, MacPhee I, Masuda S, Mathew BS, Millán O, Mizuno T, Moes DJAR, Monchaud C, Noceti O, Pawinski T, Picard N, van Schaik R, Sommerer C, Vethe NT, de Winter B, Christians U, Bergan S. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit 2019. [DOI: 10.1097/ftd.0000000000000640
expr 845143713 + 809233716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
35
|
Effect of tacrolimus dispositional genetics on acute rejection in the first 2 weeks and estimated glomerular filtration rate in the first 3 months following kidney transplantation. Pharmacogenet Genomics 2019; 29:9-17. [DOI: 10.1097/fpc.0000000000000360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Woillard JB, Gatault P, Picard N, Arnion H, Anglicheau D, Marquet P. A donor and recipient candidate gene association study of allograft loss in renal transplant recipients receiving a tacrolimus-based regimen. Am J Transplant 2018; 18:2905-2913. [PMID: 29689130 DOI: 10.1111/ajt.14894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 01/25/2023]
Abstract
This work investigated, in two large cohorts of French renal transplants treated with tacrolimus, the influence of donor and recipient ABCB1, CYP3A4, and CYP3A5 genotypes on the risk of allograft loss. A discovery and a replication population of 330 and 369 adult renal transplant patients, each from a different transplantation center and all receiving a tacrolimus-based immunosuppressive regimen, were retrospectively genotyped. The influence of genetic factors and other known risk factors on allograft loss was investigated using multivariate Cox proportional hazard analyses. The existence of previous transplantations (per unit HR = 1.89 [1.10-3.26] P = .0216) and the donor ABCB1 c.1199GA/AA genotype (GA/AAvs GG: HR = 3.22 [1.14-9.09], P = .0288) were associated with an increased risk of allograft loss in the discovery cohort and with graft loss due to humoral rejection in the replication cohort (per unit HR = 2.26 [1.34-3.81], P = .00229; GA/AAvs GG HR = 3.42 [1.28-9.16], P = .0142). Genotyping the donor for the ABCB1 c.1199 G>A (exon 11, rs2229109) allele may be of interest before prescribing tacrolimus to the recipient, although this polymorphism is rather rare and its effect may be limited to certain mechanisms of graft loss.
Collapse
Affiliation(s)
- Jean-Baptiste Woillard
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Philippe Gatault
- CHRU Bretonneau, Service de néphrologie et Immunologie Clinique, Tours, France.,Université de Tours, Tours, France
| | - Nicolas Picard
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Hélène Arnion
- INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation, Adulte Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Pierre Marquet
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France.,INSERM, UMR 1248, Limoges, France.,University of Limoges, Limoges, France
| |
Collapse
|
37
|
Tron C, Lemaitre F, Verstuyft C, Petitcollin A, Verdier MC, Bellissant E. Pharmacogenetics of Membrane Transporters of Tacrolimus in Solid Organ Transplantation. Clin Pharmacokinet 2018; 58:593-613. [DOI: 10.1007/s40262-018-0717-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Campagne O, Mager DE, Tornatore KM. Population Pharmacokinetics of Tacrolimus in Transplant Recipients: What Did We Learn About Sources of Interindividual Variabilities? J Clin Pharmacol 2018; 59:309-325. [PMID: 30371942 DOI: 10.1002/jcph.1325] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/18/2018] [Indexed: 12/24/2022]
Abstract
Tacrolimus, a calcineurin inhibitor, is a common immunosuppressant prescribed after organ transplantation and has notable inter- and intrapatient pharmacokinetic variability. The sources of variability have been investigated using population pharmacokinetic modeling over the last 2 decades. This article provides an updated synopsis on published nonlinear mixed-effects analyses developed for tacrolimus in transplant recipients. The objectives were to establish a detailed overview of the current data and to investigate covariate relationships determined by the models. Sixty-three published analyses were reviewed, and data regarding the study design, modeling approach, and resulting findings were extracted and summarized. Most of the studies investigated tacrolimus pharmacokinetics in adult and pediatric renal and liver transplants after administration of the immediate-release formulation. Model structures largely depended on the study sampling strategy, with ∼50% of studies developing a 1-compartment model using trough concentrations and a 2-compartment model with delayed absorption from intensive sampling. The CYP3A5 genotype, as a covariate, consistently impacted tacrolimus clearance, and dosing adjustments were required to achieve similar drug exposure among patients. Numerous covariates were identified as sources of interindividual variability on tacrolimus pharmacokinetics with limited consistency across these studies, which may be the result of the study designs. Additional analyses are required to further evaluate the potential impact of these covariates and the clinical implementation of these models to guide tacrolimus dosing recommendations. This article may be useful for guiding the design of future population pharmacokinetic studies and provides recommendations for the selection of an existing optimal model to individualize tacrolimus therapy.
Collapse
Affiliation(s)
- Olivia Campagne
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.,Faculty of Pharmacy, Universités Paris Descartes-Paris Diderot, Paris, France
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Kathleen M Tornatore
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
39
|
Yu M, Liu M, Zhang W, Ming Y. Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. Curr Drug Metab 2018; 19:513-522. [PMID: 29380698 PMCID: PMC6182932 DOI: 10.2174/1389200219666180129151948] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 01/10/2023]
Abstract
Background: Tacrolimus (Tac, or FK506), a calcineurin inhibitor (CNI), is the first-line immu-nosuppressant which consists of the footstone as immunosuppressive regimens in kidney transplantation. However, the drug toxicity and the significant differences of pharmacokinetics (PK) and pharmacodynam-ics (PD) among individuals are hidden troubles for clinical application. Recently, emerging evidences of Tac pharmacogenetics (PG) regarding drug absorption, metabolism, disposition, excretion and response are discovered for better understanding of this drug. Method: We reviewed the published articles regarding the Tac PG and its effects on PK and PD in kidney transplantation. In addition, we summarized information on polygenic algorithms. Results: The polymorphism of genes encoding metabolic enzymes and transporters related to Tac were largely investigated, but the results were inconsistent. In addition to CYP3A4, CYP3A5 and P-gp (also known as ABCB1), single nucleotide polymorphisms (SNPs) might also affect the PK and PD parameters of Tac. Conclusion: The correlation between Tac PK, PD and PG is very complex. Although many factors need to be verified, it is envisaged that thorough understanding of PG may assist clinicians to predict the optimal starting dosage, help adjust the maintenance regimen, as well as identify high risk patients for adverse ef-fects or drug inefficacy
Collapse
Affiliation(s)
- Meng Yu
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mouze Liu
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Wei Zhang
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Yingzi Ming
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
40
|
Tron C, Allard M, Petitcollin A, Ferrand-Sorre MJ, Verdier MC, Querzerho-Raguideau J, Blanchet B, Le Priol J, Roussel M, Deugnier Y, Bellissant E, Lemaitre F. Tacrolimus diffusion across the peripheral mononuclear blood cell membrane: impact of drug transporters. Fundam Clin Pharmacol 2018; 33:113-121. [PMID: 30203853 DOI: 10.1111/fcp.12412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/05/2018] [Accepted: 09/06/2018] [Indexed: 01/17/2023]
Abstract
Measuring tacrolimus (TAC) concentration in peripheral blood mononuclear cells (PBMCs) could better reflect the drug effect on its target (calcineurin (CaN) in lymphocytes) than whole blood concentrations. Mechanisms influencing TAC diffusion into PBMC are not well characterized. This work aimed at describing, ex vivo, TAC diffusion kinetics into PBMC and investigating the contribution of membrane transporters to regulate TAC intracellular concentration as well as the impact on CaN activity. PBMCs were incubated with TAC for 5 min to 4 h and under several experimental conditions: 37 °C (physiological conditions), 4 °C (inhibition of influx and efflux active transport), 37 °C + transporter inhibitors (verapamil, carvedilol, and probenecid and bromosulfophthalein, respectively, inhibitors of P-gp, OAT, and OATP). TAC concentration and CaN activity were measured in PBMC using liquid chromatography coupled with mass spectrometry. TAC intra-PBMC concentration was maximal after 1 h of incubation. Mean TAC PMBC concentrations were significantly lower in samples incubated at 4 °C compared to the 37 °C groups. Addition of verapamil slightly increased TAC accumulation in PBMC while other inhibitors had no effect. A significant correlation was found between TAC intra-PBMC concentration and the level of inhibition of CaN. Using an ex vivo cellular model, these results suggest that P-gp is involved in the drug efflux from PBMC while influx active transporters likely to regulate TAC intra-PBMC disposition remain to be identified. TAC concentration in PBMC is correlated with its pharmacodynamic effect. Then, TAC intra-PBMC concentration appears to be a promising biomarker to refine TAC therapeutic drug monitoring.
Collapse
Affiliation(s)
- Camille Tron
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Pharmacoepidemiology, Drug Information Centre, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Marie Allard
- Pharmacokinetics and pharmacochemistry Department, Assistance Publique des Hôpitaux de Paris (AP-HP), Cochin Hospital, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Antoine Petitcollin
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Pharmacoepidemiology, Drug Information Centre, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Marie-José Ferrand-Sorre
- Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Marie-Clémence Verdier
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Pharmacoepidemiology, Drug Information Centre, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Julie Querzerho-Raguideau
- Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Benoit Blanchet
- Pharmacokinetics and pharmacochemistry Department, Assistance Publique des Hôpitaux de Paris (AP-HP), Cochin Hospital, 27 rue du Faubourg Saint Jacques, 75014, Paris, France.,Faculty of Pharmacy, UMR8638 CNRS, University Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Jérôme Le Priol
- Haematology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Mickael Roussel
- Haematology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Yves Deugnier
- Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Liver diseases department, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Eric Bellissant
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Pharmacoepidemiology, Drug Information Centre, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Florian Lemaitre
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Pharmacoepidemiology, Drug Information Centre, Rennes University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,Faculty of Medicine, Laboratory of Experimental and Clinical Pharmacology, Rennes 1 University, 2 avenue du professeur Léon Bernard - CS 34317, 35043, Rennes, France.,Inserm, CIC-P 1414, Clinical Investigation Centre, 2 rue Henri Le Guilloux, 35033, Rennes, France
| |
Collapse
|
41
|
Longitudinal Study of Tacrolimus in Lymphocytes During the First Year After Kidney Transplantation. Ther Drug Monit 2018; 40:558-566. [DOI: 10.1097/ftd.0000000000000539] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Yang L, de Winter BCM, van Schaik RHN, Xie RX, Li Y, Andrews LM, Shuker N, Bahmany S, Koch B, van Gelder T, Hesselink DA. CYP3A5 and ABCB1 polymorphisms in living donors do not impact clinical outcome after kidney transplantation. Pharmacogenomics 2018; 19:895-903. [PMID: 29991328 DOI: 10.2217/pgs-2018-0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: To investigate the association between donor CYP3A5 and ABCB1 polymorphisms and tacrolimus (Tac)-induced nephrotoxicity and renal function in kidney transplant recipients. Methods: The CYP3A5 6986A>G and ABCB1 3435C>T polymorphisms were determined in 237 recipients and donors. Results: There was no significant association between Tac-related nephrotoxicity and donor CYP3A5 and ABCB1 genotype. The donor ABCB1 3435C>T polymorphism was associated with estimated glomerular filtration rate on day 7 and month 1. The combined donor–recipient ABCB1 genotype (3435C>T polymorphism) was significantly related with estimated glomerular filtration rate on day 3 and 7 in univariate analysis. However, these differences were no longer statistically significant in multivariate analysis. Conclusion: A genetic analysis of ABCB1 and CYP3A5 of kidney transplant donors is not helpful to improve renal transplant outcomes.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, PR China
| | - Brenda CM de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ron HN van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rui-Xiang Xie
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, PR China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, PR China
| | - Louise M Andrews
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nauras Shuker
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Soma Bahmany
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Birgit Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Nephrology & Transplantation, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology & Transplantation, Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Campagne O, Mager DE, Brazeau D, Venuto RC, Tornatore KM. Tacrolimus Population Pharmacokinetics and Multiple CYP3A5 Genotypes in Black and White Renal Transplant Recipients. J Clin Pharmacol 2018; 58:1184-1195. [PMID: 29775201 DOI: 10.1002/jcph.1118] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/13/2018] [Indexed: 01/08/2023]
Abstract
Tacrolimus exhibits inter-patient pharmacokinetic variability attributed to CYP3A5 isoenzymes and the efflux transporter, P-glycoprotein. Most black renal transplant recipients require higher tacrolimus doses compared to whites to achieve similar troughs when race-adjusted recommendations are used. An established guideline provides tacrolimus genotype dosing recommendations based on CYP3A5*1(W/T) and loss of protein function variants: CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272), CYP3A5*7 (rs41303343) and may provide more comprehensive race-adjusted dosing recommendations. Our objective was to develop a tacrolimus population pharmacokinetic model evaluating demographic, clinical, and genomic factors in stable black and white renal transplant recipients. A secondary objective investigated race-based tacrolimus regimens and genotype-specific dosing. Sixty-seven recipients receiving oral tacrolimus and mycophenolic acid ≥6 months completed a 12-hour pharmacokinetic study. CYP3A5*3,*6,*7 and ABCB1 1236C>T, 2677G>T/A, 3435C>T polymorphisms were characterized. Patients were classified as extensive, intermediate, and poor metabolizers using a novel CYP3A5*3*6*7 metabolic composite. Modeling and simulation was performed with computer software (NONMEM 7.3, ICON Development Solutions; Ellicott City, Maryland). A 2-compartment model with first-order elimination and absorption with lag time best described the data. The CYP3A5*3*6*7 metabolic composite was significantly associated with tacrolimus clearance (P value < .05), which was faster in extensive (mean: 45.0 L/hr) and intermediate (29.5 L/hr) metabolizers than poor metabolizers (19.8 L/hr). Simulations support CYP3A5*3*6*7 genotype-based tacrolimus dosing to enhance general race-adjusted regimens, with dose increases of 1.5-fold and 2-fold, respectively, in intermediate and extensive metabolizers for comparable exposures to poor metabolizers. This model offers a novel approach to determine tacrolimus dosing adjustments that maintain comparable therapeutic exposure between black and white recipients with different CYP3A5 genotypes.
Collapse
Affiliation(s)
- Olivia Campagne
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.,Faculty of Pharmacy, Universités Paris Descartes-Paris Diderot, Paris, France
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Daniel Brazeau
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| | - Rocco C Venuto
- Erie County Medical Center, Division of Nephrology, Department of Medicine, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kathleen M Tornatore
- Erie County Medical Center, Division of Nephrology, Department of Medicine, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
44
|
Hu R, Barratt DT, Coller JK, Sallustio BC, Somogyi AA. CYP3A5*3
and ABCB1
61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation. Basic Clin Pharmacol Toxicol 2018; 123:320-326. [DOI: 10.1111/bcpt.13016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Hu
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
| | - Daniel T. Barratt
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
| | - Janet K. Coller
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
| | - Benedetta C. Sallustio
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
- Department of Pharmacology; Queen Elizabeth Hospital; Adelaide SA Australia
| | - Andrew A. Somogyi
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
- Department of Clinical Pharmacology; Royal Adelaide Hospital; Adelaide SA Australia
| |
Collapse
|
45
|
Andreu F, Colom H, Elens L, van Gelder T, van Schaik RHN, Hesselink DA, Bestard O, Torras J, Cruzado JM, Grinyó JM, Lloberas N. A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach. Clin Pharmacokinet 2018; 56:963-975. [PMID: 28050888 DOI: 10.1007/s40262-016-0491-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in the CYP3A5 and CYP3A4 genes have been reported to be an important cause of variability in the pharmacokinetics of tacrolimus in renal transplant patients. The aim of this study was to merge all of the new genetic information available with tacrolimus pharmacokinetics to generate a more robust population model with data from renal transplant recipients. METHODS Tacrolimus exposure data from 304 renal transplant recipients were collected throughout the first year after transplantation and were simultaneously analyzed with a population pharmacokinetic approach using NONMEM® version 7.2. RESULTS The tacrolimus whole-blood concentration versus time data were best described by a two-open-compartment model with inter-occasion variability assigned to plasma clearance. The following factors led to the final model, which significantly decreased the minimum objective function value (p < 0.001): a new genotype cluster variable combining the CYP3A5*3 and CYP3A4*22 SNPs defined as extensive, intermediate, and poor metabolizers; the standardization of tacrolimus whole blood concentrations to a hematocrit value of 45%; and age included as patients <63 years versus patients ≥63 years. External validation confirmed the prediction ability of the model with median bias and precision values of 1.17 ng/mL (95% confidence interval [CI] -3.68 to 4.50) and 1.64 ng/mL (95% CI 0.11-5.50), respectively. Simulations showed that, for a given age and hematocrit at the same fixed dose, extensive metabolizers required the highest doses followed by intermediate metabolizers and then poor metabolizers. CONCLUSIONS Tacrolimus disposition in renal transplant recipients was described using a new population pharmacokinetic model that included the CYP3A5*3 and CYP3A4*22 genotype, age, and hematocrit.
Collapse
Affiliation(s)
- Franc Andreu
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.,Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Laure Elens
- Department of Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ronald H N van Schaik
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Oriol Bestard
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Torras
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Cruzado
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Grinyó
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Nuria Lloberas
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
46
|
UPLC–MS/MS assay validation for tacrolimus quantitative determination in peripheral blood T CD4+ and B CD19+ lymphocytes. J Pharm Biomed Anal 2018; 152:306-314. [DOI: 10.1016/j.jpba.2018.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 11/20/2022]
|
47
|
Meng HY, Luo ZH, Hu B, Jin WL, Yan CK, Li ZB, Xue YY, Liu Y, Luo YE, Xu LQ, Yang H. SNPs affecting the clinical outcomes of regularly used immunosuppressants. Pharmacogenomics 2018. [PMID: 29517418 DOI: 10.2217/pgs-2017-0182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that genomic diversity may play a key role in different clinical outcomes, and the importance of SNPs is becoming increasingly clear. In this article, we summarize the bioactivity of SNPs that may affect the sensitivity to or possibility of drug reactions that occur among the signaling pathways of regularly used immunosuppressants, such as glucocorticoids, azathioprine, tacrolimus, mycophenolate mofetil, cyclophosphamide and methotrexate. The development of bioinformatics, including machine learning models, has enabled prediction of the proper immunosuppressant dosage with minimal adverse drug reactions for patients after organ transplantation or for those with autoimmune diseases. This article provides a theoretical basis for the personalized use of immunosuppressants in the future.
Collapse
Affiliation(s)
- Huan-Yu Meng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Bo Hu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Wan-Lin Jin
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Cheng-Kai Yan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Zhi-Bin Li
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yuan-Yuan Xue
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yu Liu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yi-En Luo
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Li-Qun Xu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| |
Collapse
|
48
|
Elens L, Haufroid V. Genotype-based tacrolimus dosing guidelines: with or without CYP3A4*22? Pharmacogenomics 2017; 18:1473-1480. [DOI: 10.2217/pgs-2017-0131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: To test the relevance of revisiting the genotype classification based on CYP3A5*3 solely by incorporating CYP3A4*22 information. Methods: Discriminant analysis of principal component was performed to evaluate the relevance of either the CYP3A (CYP3A5 + CYP3A4 genotypes) or CYP3A5*3 classification variables. This analysis was based on a linear combination of noncompartmental pharmacokinetics parameters. Results: Discriminant analysis of principal component gave better results with CYP3A compared with CYP3A5*3 clustering. The centroid means of the pharmacokinetics variables were significantly different with CYP3A genotype clustering (p = 0.04) but not with CYP3A5*3 solely (p = 0.06). Canonical plots reveal a better delimitation of clusters with CYP3A genotype compared with CYP3A5*3 and the reciever operating characteristic curves confirm this better discriminative power. Conclusion: We provide strong arguments of incorporating CYP3A4*22 genotype in practice to fine-tune the existing Clinical Phamacogenetics Implementation Consortium guidelines in the Caucasian population.
Collapse
Affiliation(s)
- Laure Elens
- Department of Integrated PharmacoMetrics, PharmacoGenomics & PharmacoKinetics, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Louvain Centre for Toxicology & Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology & Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Clinical Chemistry, Cliniques Universitaires St Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
49
|
Andrews LM, Li Y, De Winter BCM, Shi YY, Baan CC, Van Gelder T, Hesselink DA. Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients. Expert Opin Drug Metab Toxicol 2017; 13:1225-1236. [PMID: 29084469 DOI: 10.1080/17425255.2017.1395413] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Tacrolimus (Tac) is the cornerstone of immunosuppressive therapy after solid organ transplantation and will probably remain so. Excluding belatacept, no new immunosuppressive drugs were registered for the prevention of acute rejection during the last decade. For several immunosuppressive drugs, clinical development halted because they weren't sufficiently effective or more toxic. Areas covered: Current methods of monitoring Tac treatment, focusing on traditional therapeutic drug monitoring (TDM), controversies surrounding TDM, novel matrices, pharmacogenetic and pharmacodynamic monitoring are discussed. Expert opinion: Due to a narrow therapeutic index and large interpatient pharmacokinetic variability, TDM has been implemented for individualization of Tac dose to maintain drug efficacy and minimize the consequences of overexposure. The relationship between predose concentrations and the occurrence of rejection or toxicity is controversial. Acute cellular rejection also occurs when the Tac concentration is within the target range, suggesting that Tac whole blood concentrations don't necessarily correlate with pharmacological effect. Intracellular Tac, the unbound fraction of Tac or pharmacodynamic monitoring could be better biomarkers/tools for adequate Tac exposure - research into this has been promising. Traditional TDM, perhaps following pre-emptive genotyping for Tac-metabolizing enzymes, must suffice for a few years before these strategies can be implemented in clinical practice.
Collapse
Affiliation(s)
- Louise M Andrews
- a Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Yi Li
- a Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands.,b Department of Laboratory Medicine , West China Hospital of Sichuan University , Chengdu , China
| | - Brenda C M De Winter
- a Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Yun-Ying Shi
- c Department of Nephrology , West China Hospital of Sichuan University , Chengdu , China
| | - Carla C Baan
- d Department of Internal Medicine , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Teun Van Gelder
- a Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands.,d Department of Internal Medicine , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - Dennis A Hesselink
- d Department of Internal Medicine , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| |
Collapse
|
50
|
High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. Transplantation 2017; 101:e273-e279. [DOI: 10.1097/tp.0000000000001796] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|