1
|
Gao Y, Ma J. The impact of CYP3A5, NR1I2, and POR polymorphisms on tacrolimus dose-adjusted concentration and clinical outcomes in adult allogeneic hematopoietic stem cell transplantation. Xenobiotica 2025:1-20. [PMID: 39754510 DOI: 10.1080/00498254.2024.2448967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
1. Polymorphisms in genes related to drug-metabolizing genes may affect tacrolimus exposure. This study aimed to assess the influence of CYP3A5, NR1I2, and POR polymorphisms on tacrolimus pharmacokinetics and outcomes in allogeneic hematopoietic stem cell transplantation (HSCT).2. 46 adult patients receiving oral tacrolimus at an initial dose of 0.03mg/kg/day for acute graft versus host disease (GVHD) prophylaxis after allogeneic HSCT were enrolled in this retrospective study. Genetic polymorphisms were detected in relation to concentration/dose (C/D) ratios of tacrolimus and the incidence of acute GVHD and acute kidney injury (AKI).3. The CYP3A5 *3/*3 genotype and co-administration of voriconazole were significantly associated with increased C/D ratios of tacrolimus (P < 0.05). NR1I2 8055CC present a significant higher tacrolimus C/D ratio compared with carriers of 8055CT and 8055TT genotypes in allogeneic HSCT recipients with the CYP3A5*1 allele (P = 0.033). Younger age and recipients with the CYP3A5*1 allele were significantly associated with higher incidence of II-IV acute GVHD post-transplantation.4. CYP3A5*3, NR1I2 8055 C > T, and concomitant use of voriconazole are important determinants affecting tacrolimus pharmacokinetics. Moreover, CYP3A5*1 allele and younger age are independent risk factors for II-IV acute GVHD in HSCT recipients.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Hussaini SA, Waziri B, Dickens C, Duarte R. Pharmacogenetics of Calcineurin inhibitors in kidney transplant recipients: the African gap. A narrative review. Pharmacogenomics 2024; 25:329-341. [PMID: 39109483 PMCID: PMC11404701 DOI: 10.1080/14622416.2024.2370761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Calcineurin inhibitors (CNIs) are the mainstay of immunosuppression in kidney transplantation. Interpatient variability in the disposition of calcineurin inhibitors is a well-researched phenomenon and has a well-established genetic contribution. There is great diversity in the makeup of African genomes, but very little is known about the pharmacogenetics of CNIs and transplant outcomes. This review focuses on genetic variants of calcineurin inhibitors' metabolizing enzymes (CYP3A4, CYP3A5), related molecules (POR, PPARA) and membrane transporters involved in the metabolism of calcineurin inhibitors. Given the genetic diversity across the African continent, it is imperative to generate pharmacogenetic data, especially in the era of personalized medicine and emphasizes the need for studies specific to African populations. The study of allelic variants in populations where they have greater frequencies will help answer questions regarding their impact. We aim to fill the knowledge gaps by reviewing existing research and highlighting areas where African research can contribute.
Collapse
Affiliation(s)
- Sadiq Aliyu Hussaini
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
- Department of Pharmacology, Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Bala Waziri
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
| | - Caroline Dickens
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raquel Duarte
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
El-Serafi I, Steele S. Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics. Adv Pharmacol Pharm Sci 2024; 2024:4862706. [PMID: 38966316 PMCID: PMC11223907 DOI: 10.1155/2024/4862706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cyclophosphamide (Cy) is a prodrug that is mainly bioactivated by cytochrome P450 (CYP) 2B6 enzyme. Several other enzymes are also involved in its bioactivation and affect its kinetics. Previous studies have shown the effect of the enzymes' genetic polymorphisms on Cy kinetics and its clinical outcome. These results were controversial primarily because of the involvement of several interacting enzymes in the Cy metabolic pathway, which can also be affected by several clinical factors as well as other drug interactions. In this review article, we present the effect of CYP2B6 polymorphisms on Cy kinetics since it is the main bioactivating enzyme, as well as discussing all previously reported enzymes and clinical factors that can alter Cy efficacy. Additionally, we present explanations for key Cy side effects related to the nature and site of its bioactivation. Finally, we discuss the role of busulphan in conditioning regimens in the Cy metabolic pathway as a clinical example of drug-drug interactions involving several enzymes. By the end of this article, our aim is to have provided a comprehensive summary of Cy pharmacogenomics and the effect on its kinetics. The utility of these findings in the development of new strategies for Cy personalized patient dose adjustment will aid in the future optimization of patient specific Cy dosages and ultimately in improving clinical outcomes. In conclusion, CYP2B6 and several other enzyme polymorphisms can alter Cy kinetics and consequently the clinical outcomes. However, the precise quantification of Cy kinetics in any individual patient is complex as it is clearly under multifactorial genetic control. Additionally, other clinical factors such as the patient's age, diagnosis, concomitant medications, and clinical status should also be considered.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Basic Medical Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
- Department of Hand Surgery, and Plastic Surgery and BurnsLinköping University Hospital, Linkoöping, Sweden
| | - Sinclair Steele
- Pathological Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
| |
Collapse
|
4
|
Ebid AHI, Ismail DA, Lotfy NM, Mahmoud MA, El-Sharkawy M. Effect of CYP3A4*22, CYP3A5*3 and POR*28 genetic polymorphisms on calcineurin inhibitors dose requirements in early phase renal transplant patients. Pharmacogenet Genomics 2024; 34:43-52. [PMID: 38050720 DOI: 10.1097/fpc.0000000000000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
OBJECTIVE This study aimed to investigate the combined effect of CYP3A5*3, CYP3A4*22, and POR*28 genetic polymorphisms on tacrolimus and cyclosporine dose requirements. METHODS One hundred thirty renal transplant patients placed on either tacrolimus or cyclosporine were recruited, where the effect of CYP3A5*3, CYP3A4*22, and POR*28 genetic polymorphisms on their dose requirements were studied at days 14, 30, and 90 post-transplantations. RESULTS The POR*28 allele frequency in the studied population was 29.61%. The tacrolimus dose-adjusted trough concentration ratio (C0/D) was significantly lower in the fast metabolizers group ( CYP3A5*1/POR*28(CT/TT ) carriers) than in the poor metabolizers group ( CYP3A5*3/*3/CYP3A4*22 carriers) throughout the study (14, 30, and 90 days) ( P = 0.001, <0.001, and 0.003, respectively). Meanwhile, there was no significant effect of this gene combination on cyclosporine C0/D. CONCLUSION Combining the CYP3A5*3, POR*28 , and CYP3A4*22 genotypes can have a significant effect on early tacrolimus dose requirements determination and adjustments. However, it does not have such influence on cyclosporine dose requirements.
Collapse
Affiliation(s)
| | - Dina A Ismail
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University
| | - Neama M Lotfy
- Department of Technology of Medical Laboratory, Faculty of Applied Health Sciences Technology, Badr University
| | - Mohamed A Mahmoud
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University
| | - Magdy El-Sharkawy
- Department of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Demirbugen Oz M, Ozdemir F, Tok KC, Dural E, Kir Y, Ulusoy M, Gumustas M, Baskak B, Suzen HS. The potential role of por*28 and cyp1a2*f genetic variations and lifestyle factors on clozapine and n-desmethyl clozapine plasma levels in schizophrenia patients. Expert Opin Drug Metab Toxicol 2023. [PMID: 37269349 DOI: 10.1080/17425255.2023.2221849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Despite its advantages over other antipsychotics, for treatment-resistant schizophrenia, clinical use of Clozapine (CLZ) is challenging by its narrow therapeutic index and potentially life-threatening dose-related adverse effects. RESEARCH DESIGN AND METHODS As the potential role in CLZ metabolism is assigned to CYP1A2 enzyme and consequently Cytochrome P450 oxidoreductase (POR) their genetic variations might help to determine CLZ levels in schizophrenia patients. For this purpose, 112 schizophrenia patients receiving CLZ were included in the current study. Plasma CLZ and N-desmethylclozapine (DCLZ) levels were analyzed by using HPLC and genetic variations were identified with the PCR-RFLP method. RESULTS The patients' CYP1A2 and POR genotypes seemed to not affect plasma CLZ and DCLZ levels whereas in the subgroup analysis, POR × 28 genotype significantly influenced simple and adjusted plasma CLZ and DLCZ levels concerning smoking habit and caffeine consumption. CONCLUSIONS The findings of the present study highlight the importance of both genetic and non-genetic factors (smoking and caffeine consumption) for the individualization of the CLZ treatment. In addition to that, it suggests that the added utility of not only the CLZ metabolizing enzymes but also POR, which is crucial for proper CYP activity, to guide CLZ dosing might be useful for clinical decision-making.
Collapse
Affiliation(s)
- Merve Demirbugen Oz
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara University, Ankara, Turkey
| | - Fezile Ozdemir
- Dr Fazil Kucuk Faculty of Medicine, Eastern Mediterranean University, North, Cyprus, Turkey
| | - Kenan Can Tok
- Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara University, Ankara, Turkey
| | - Emrah Dural
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yagmur Kir
- Bursa Acibadem Hospital, Department of Psychiatry, Bursa, Turkey
| | - Muge Ulusoy
- School of Medicine, Department of Psychiatry, Ankara University, Ankara, Turkey
| | - Mehmet Gumustas
- Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara University, Ankara, Turkey
| | - Bora Baskak
- School of Medicine, Department of Psychiatry, Ankara University, Ankara, Turkey
| | - H Sinan Suzen
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Impact of single-nucleotide polymorphisms on tacrolimus pharmacokinetics in liver transplant patients after switching to once-daily dosing. Hepatol Int 2023; 17:262-270. [PMID: 35972639 DOI: 10.1007/s12072-022-10401-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The effects of multidrug resistance-1 (MDR1), ABCC2, and P450 oxidoreductase (POR)*28 gene polymorphisms on tacrolimus metabolism following a switch to once-daily dosing have not been elucidated. We investigated the effects of recipient and donor CYP3A5, MDR1, ABCC2, and POR*28 polymorphisms on tacrolimus pharmacokinetics following a switch to once-daily tacrolimus dosing. METHODS Eighty-seven liver transplant recipients who were switched from twice- to once-daily tacrolimus dosing following living-donor liver transplantation and 81 matched donors were genotyped for CYP3A5, MDR1 (1236C>T, 2677G>T/A, and 3435C>T), ABCC2 (-24C>T, 1249G>A, and 3972C>T), and POR*28. Tacrolimus dose-adjusted trough levels (C0/dose) before and after the switch were determined and calculated based on past medical records. Recipients were divided into two groups, one group constituted of 38 patients with a C0/dose decrease of less than 30% following conversion (group 1) and the other constituted of 49 patients with a C0/dose decrease of ≥ 30% (group 2). RESULTS CYP3A5 *1/*3 and *3/*3 were more frequent in recipients in group 1 (60.5% vs. 36.8%), while CYP3A5 *1/*1 was more frequent in group 2 (59.2% vs. 32.7%) (p = 0.016). The proportions of donor ABCC2 1249G>A genotypes AA and AG were higher in group 2 than in group 1 (20.4% vs. 5.3%; p = 0.042). CONCLUSION Recipient CYP3A5 polymorphism and donor ABCC2 1249G>A polymorphism affected tacrolimus pharmacokinetics following the switch to once-daily dosing. Dose adjustment to maintain therapeutic tacrolimus levels following the switch to once-daily dosing should be considered based on polymorphisms in both the recipient and donor.
Collapse
|
7
|
Booyse RP, Twesigomwe D, Hazelhurst S. Characterization of POR haplotype distribution in African populations and comparison with other global populations. Pharmacogenomics 2022; 23:771-782. [PMID: 36043428 PMCID: PMC9531186 DOI: 10.2217/pgs-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background & aim: POR is an enzyme that mediates electron transfer to enable the drug-metabolizing activity of CYP450 proteins. However, POR has been understudied in pharmacogenomics despite this vital role. This study aimed to characterize the genetic variation in POR across African populations and to compare the star allele (haplotype) distribution with that in other global populations. Materials & methods: POR star alleles were called from whole-genome sequencing data using the StellarPGx pipeline. Results: In addition to the common POR*1 and *28 (defined by rs1057868), five novel rare haplotypes were computationally inferred. No significant frequency differences were observed among the majority of African populations. However, POR*28 was observed at a higher frequency in individuals of non-African ancestry. Conclusion: This study highlights the distribution of POR alleles in Africa and across global populations with a view toward informing future precision medicine implementation.
Collapse
Affiliation(s)
- Ross P Booyse
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Twesigomwe
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Gao Y, Ma J. Cytochrome P450 oxidoreductase variant A503V contributes to the increased CYP3A5 activity with tacrolimus in vitro. Expert Opin Drug Metab Toxicol 2022; 18:529-535. [PMID: 35946839 DOI: 10.1080/17425255.2022.2112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Tacrolimus is a calcineurin inhibitor with a strong efficacy in prevention of graft rejection after transplantation. It is well known that cytochrome P450 3A5 (CYP3A5) has a high metabolic capacity for tacrolimus, and mutations in human cytochrome P450 oxidoreductase (POR) cause altered CYP3A5 activity. Recently, clinical studies have revealed that POR*28 contributes enhanced tacrolimus clearance in CYP3A5 expressers. A503V is an amino acid sequence variant encoded by POR*28. In this study, we first evaluated the impact of A503V on CYP3A5 activity with tacrolimus as the substrate in vitro. RESEARCH DESIGN & METHODS Wild-type (WT) and A503V POR, with WT CYP3A5 were expressed in recombinant HepG2 cells and reconstituted proteins. Michaelis constant (Km) and maximum velocity (Vmax) of CYP3A5 with tacrolimus as substrates were determined, and catalytic efficiency is expressed as Vmax/Km. RESULTS WT and A503V POR both down-regulated the CYP3A5 mRNA expression, and WT POR rather than A503V down-regulated the protein expression of CYP3A5 in recombinant HepG2 cells. Compared with WT POR, A503V increased metabolism of tacrolimus by CYP3A5 in both cellular and protein level. CONCLUSION A503V can affect CYP3A5-catalyzed tacrolimus metabolism in vitro, which suggests that A503V has the potential to serve as a biomarker for tacrolimus treatment in transplantation recipients.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Ma
- Department of Pharmacy, Medical center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
9
|
Use of Pharmacogenetics to Optimize Immunosuppressant Therapy in Kidney-Transplanted Patients. Biomedicines 2022; 10:biomedicines10081798. [PMID: 35892699 PMCID: PMC9332547 DOI: 10.3390/biomedicines10081798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/17/2022] Open
Abstract
Immunosuppressant drugs (ISDs) are routinely used in clinical practice to maintain organ transplant survival. However, these drugs are characterized by a restricted therapeutic index, a high inter- and intra-individual pharmacokinetic variability, and a series of severe adverse effects. In particular, genetic factors have been estimated to play a role in this variability because of polymorphisms regarding genes encoding for enzymes and transporters involved in the ISDs pharmacokinetic. Several studies showed important correlations between genetic polymorphisms and ISDs blood levels in transplanted patients; therefore, this review aims to summarize the pharmacogenetics of approved ISDs. We used PubMed database to search papers on pharmacogenetics of ISDs in adults or pediatric patients of any gender and ethnicity receiving immunosuppressive therapy after kidney transplantation. We utilized as search term: “cyclosporine or tacrolimus or mycophenolic acid or sirolimus or everolimus and polymorphism and transplant”. Our data showed that polymorphisms in CYP3A5, CYP3A4, ABCB1, and UGT1A9 genes could modify the pharmacokinetics of immunosuppressants, suggesting that patient genotyping could be a helpful strategy to select the ideal ISDs dose for each patient.
Collapse
|
10
|
Zhai Q, van der Lee M, van Gelder T, Swen JJ. Why We Need to Take a Closer Look at Genetic Contributions to CYP3A Activity. Front Pharmacol 2022; 13:912618. [PMID: 35784699 PMCID: PMC9243486 DOI: 10.3389/fphar.2022.912618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450 3A (CYP3A) subfamily enzymes are involved in the metabolism of 40% of drugs in clinical use. Twin studies have indicated that 66% of the variability in CYP3A4 activity is hereditary. Yet, the complexity of the CYP3A locus and the lack of distinct drug metabolizer phenotypes has limited the identification and clinical application of CYP3A genetic variants compared to other Cytochrome P450 enzymes. In recent years evidence has emerged indicating that a substantial part of the missing heritability is caused by low frequency genetic variation. In this review, we outline the current pharmacogenomics knowledge of CYP3A activity and discuss potential future directions to improve our genetic knowledge and ability to explain CYP3A variability.
Collapse
|
11
|
Everton JBF, Patrício FJB, Faria MS, Ferreira TCA, Filho NS, Silva GEB, Romão EA, Magalhães M. Impact of POR*28 Variant on Tacrolimus Pharmacokinetics in Kidney Transplant Patients with Different CYP3A5 Genotypes. Curr Drug Metab 2022; 23:233-241. [PMID: 35578867 DOI: 10.2174/1389200223666220516094226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The introduction of tacrolimus (TAC) in clinical practice was essential to the establishment of transplantation as therapy for patients with chronic renal disease. However, the higher interindividual variation of TAC metabolism has been an important limiting factor for its clinical use. Although the relationship between CYP3A5 polymorphisms and TAC pharmacokinetics (PK) is well established, the effects of other genetic variants on TAC metabolism, such as POR*28, still remain uncertain. OBJECTIVE To evaluate the impact of POR variants on TAC PK in renal transplant patients with different CYP3A5 genotypes (expressers and non-expressers). METHODS A total of 115 patients were included in this study. Genomic DNA was isolated from peripheral blood, and the real-time PCR technique was used to analyze the polymorphism POR rs1057868; C>T. RESULTS During the initial post-transplant period, variant allele carriers (*1/*28 and *28/*28) showed a lower TAC dose requirement than POR wild homozygotes (*1/*1). Regarding the influence of the different polymorphisms of POR within the CYP3A5 expresser and non-expresser groups, no differences were observed in any of the PK parameters analyzed during 12 months after transplantation. CONCLUSION In the studied population, the variant allelic POR*28 was significantly associated with lower TAC dose requirements and higher Co/D ratio in the first-month post-transplant. However, the effects of this polymorphism on the CYP3A5 enzyme activity were not observed.
Collapse
Affiliation(s)
- Janaina B F Everton
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil.,Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís, Brazil
| | - Fernando J B Patrício
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Manuel S Faria
- linical Research Center of the University Hospital of the Federal University of Maranhão (CEPEC/HUUFMA/EBSERH), São Luís, Brazil
| | - Teresa C A Ferreira
- Kidney Transplant Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Natalino Salgado Filho
- Nephrology Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Gyl E B Silva
- Pathology Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Elen A Romão
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Magalhães
- Research and Extension Nucleus (NUPE), UNDB University Center, São Luís, Brazil
| |
Collapse
|
12
|
Lee DH, Lee H, Yoon HY, Yee J, Gwak HS. Association of P450 Oxidoreductase Gene Polymorphism with Tacrolimus Pharmacokinetics in Renal Transplant Recipients: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14020261. [PMID: 35213993 PMCID: PMC8877595 DOI: 10.3390/pharmaceutics14020261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
There are conflicting results regarding the effect of the P450 oxidoreductase (POR) *28 genotype on the tacrolimus (TAC) pharmacokinetics (PKs) during the early post-transplantation period in adult renal transplant recipients. Thus, we characterized the impact of POR*28 on TAC PKs. We conducted a systematic review on the association between POR*28 and PKs of TAC in adult renal transplant recipients. Structured searches were conducted using PubMed, Web of Science, and Embase. TAC standardized trough concentration (ng/mL per mg/kg) data were extracted. Mean differences (MD) and their corresponding 95% confidence intervals (CIs) were used to identify the differences between the POR*28 genotype and PKs of TAC. The subgroup analysis was conducted according to CYP3A5 expression status. Six studies (n = 1061) were included. TAC standardized trough concentrations were significantly lower in recipients with the POR*28 allele compared to recipients with POR*1/*1 (MD: 8.30 ng/mL per mg/kg; 95% CI: 1.93, 14.67; p = 0.01). In the subgroup analysis, TAC standardized trough concentrations were lower for subjects who were POR*28 carriers than those who were POR*1/*1 in CYP3A5 expressers (MD: 20.21 ng/mL per mg/kg; 95% CI: 16.85, 23.56; p < 0.00001). No significant difference between POR*28 carriers and POR*1/*1 was found in the CYP3A5 non-expressers. The results of our meta-analysis demonstrated a definite correlation between the POR*28 genotype and PKs of TAC. Patients carrying the POR*28 allele may require a higher dose of TAC to achieve target levels compared to those with POR*1/*1, especially in CYP3A5 expressers.
Collapse
Affiliation(s)
- Da-Hoon Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (D.-H.L.); (H.-Y.Y.)
| | - Hana Lee
- Graduate School of Clinical Biohealth, Ewha Womans University, Seoul 03760, Korea;
| | - Ha-Young Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (D.-H.L.); (H.-Y.Y.)
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (D.-H.L.); (H.-Y.Y.)
- Correspondence: (J.Y.); (H.-S.G.); Tel.: +82-2-3277-3052 (J.Y.); +82-2-3277-4376 (H.-S.G.)
| | - Hye-Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (D.-H.L.); (H.-Y.Y.)
- Correspondence: (J.Y.); (H.-S.G.); Tel.: +82-2-3277-3052 (J.Y.); +82-2-3277-4376 (H.-S.G.)
| |
Collapse
|
13
|
Contreras-Castillo S, Plaza A, Stojanova J, Navarro G, Carmona R, Corvalán F, Cerpa L, Sandoval C, Muñoz D, Leiva M, Castañeda LE, Farias N, Alvarez C, Llull G, Mezzano S, Ardiles L, Varela N, Rodríguez MS, Flores C, Cayún JP, Krall P, Quiñones LA. Effect of CYP3A4, CYP3A5, MDR1 and POR Genetic Polymorphisms in Immunosuppressive Treatment in Chilean Kidney Transplanted Patients. Front Pharmacol 2021; 12:674117. [PMID: 34938174 PMCID: PMC8685429 DOI: 10.3389/fphar.2021.674117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/08/2021] [Indexed: 12/04/2022] Open
Abstract
Cyclosporine (CsA) and tacrolimus (TAC) are immunosuppressant drugs characterized by a narrow therapeutic range and high pharmacokinetic variability. The effect of polymorphisms in genes related to the metabolism and transport of these drugs, namely CYP3A4, CYP3A5, MDR1 and POR genes, has been evaluated in diverse populations. However, the impact of these polymorphisms on drug disposition is not well established in Latin American populations. Using TaqMan® probes, we determined the allelic frequency of seven variants in CYP3A4, CYP3A5, MDR1 and POR in 139 Chilean renal transplant recipients, of which 89 were treated with CsA and 50 with TAC. We tested associations between variants and trough and/or 2-hour concentrations, normalized by dose (C0/D and C2/D) at specific time points post-transplant. We found that CYP3A5*3/*3 carriers required lower doses of TAC. In TAC treated patients, most CYP3A5*3/*3 carriers presented higher C0/D and a high proportion of patients with C0 levels outside the therapeutic range relative to other genotypes. These results reinforce the value of considering CYP3A5 genotypes alongside therapeutic drug monitoring for TAC treated Chilean kidney recipients.
Collapse
Affiliation(s)
- Stephania Contreras-Castillo
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Anita Plaza
- Laboratory of Nephrology, Universidad Austral de Chile, Valdivia, Chile
| | - Jana Stojanova
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Valparaíso, Chile.,Department of Clinical Pharmacology and Toxicology, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Gustavo Navarro
- Laboratory of Nephrology, Universidad Austral de Chile, Valdivia, Chile
| | - Rodolfo Carmona
- Laboratory of Nephrology, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Corvalán
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Leslie Cerpa
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Christopher Sandoval
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Daniel Muñoz
- Pharmacy Institute, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Marina Leiva
- Laboratory of Nephrology, Universidad Austral de Chile, Valdivia, Chile
| | - Luis E Castañeda
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nayaret Farias
- Transplantation Unit, San Juan de Dios Hospital, Santiago, Chile
| | - Carolina Alvarez
- Transplantation Unit, San Juan de Dios Hospital, Santiago, Chile
| | - Gabriel Llull
- Transplantation Unit, San Juan de Dios Hospital, Santiago, Chile
| | - Sergio Mezzano
- Laboratory of Nephrology, Universidad Austral de Chile, Valdivia, Chile
| | - Leopoldo Ardiles
- Laboratory of Nephrology, Universidad Austral de Chile, Valdivia, Chile
| | - Nelson Varela
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | | | - Claudio Flores
- Laboratory of Nephrology, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Pablo Cayún
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Paola Krall
- Laboratory of Nephrology, Universidad Austral de Chile, Valdivia, Chile.,Departament of Pediatrics and Child Surgery, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| |
Collapse
|
14
|
Cheli S, Fusi M, De Silvestri A, Bonini I, Clementi E, Cattaneo D, Montrasio C, Baldelli S. In linezolid underexposure, pharmacogenetics matters: The role of CYP3A5. Biomed Pharmacother 2021; 139:111631. [PMID: 33940510 DOI: 10.1016/j.biopha.2021.111631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The exposure to linezolid is characterized by a large inter-individual variability; age, renal dysfunction and body weight explain this variability only to a limited extent and a considerable portion of it remains unexplained; therefore, we decided to investigate the role of individual genetic background focusing in particular on the risk of linezolid underexposure. 191 patients in therapy with linezolid at the standard dose of 600 mg twice daily were considered. Linezolid plasma concentration was determined at the steady state and classified as "below", "within" or "above" reference range. Genetic polymorphisms for ATP Binding Cassette Subfamily B Member 1 (ABCB1), Cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A5, and Cytochrome P450 Oxidoreductase (POR) were investigated. Age significantly correlated with drug exposure, and patients CYP3A5 expressers (GA and AA) were found at high risk to be underexposed to the drug when treated at standard dose. This association was confirmed even after correction with age. No association was found with ABCB1 polymorphism. Our data suggest that CYP3A5 polymorphisms might significantly affect linezolid disposition, putting patients at higher risk to be underexposed, while P-glycoprotein polymorphism seem not to play any role.
Collapse
Affiliation(s)
- Stefania Cheli
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Marta Fusi
- Clinical Pharmacology Unit, CNR Institute of Neuroscience, Dept Biomedical and Clinical Sciences, L. Sacco University Hospital, Università di Milano, 20157 Milano, Italy
| | - Annalisa De Silvestri
- Clinical Epidemiology and Biometry Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Igor Bonini
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Emilio Clementi
- Clinical Pharmacology Unit, CNR Institute of Neuroscience, Dept Biomedical and Clinical Sciences, L. Sacco University Hospital, Università di Milano, 20157 Milano, Italy; Scientific Institute IRCCS Eugenio Medea, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy.
| |
Collapse
|
15
|
Francke MI, Andrews LM, Le HL, van de Wetering J, Clahsen-van Groningen MC, van Gelder T, van Schaik RHN, van der Holt B, de Winter BCM, Hesselink DA. Avoiding Tacrolimus Underexposure and Overexposure with a Dosing Algorithm for Renal Transplant Recipients: A Single Arm Prospective Intervention Trial. Clin Pharmacol Ther 2021; 110:169-178. [PMID: 33452682 PMCID: PMC8359222 DOI: 10.1002/cpt.2163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Bodyweight‐based tacrolimus dosing followed by therapeutic drug monitoring is standard clinical care after renal transplantation. However, after transplantation, a meager 38% of patients are on target at first steady‐state and it can take up to 3 weeks to reach the target tacrolimus predose concentration (C0). Tacrolimus underexposure and overexposure is associated with an increased risk of rejection and drug‐related toxicity, respectively. To minimize subtherapeutic and supratherapeutic tacrolimus exposure in the immediate post‐transplant phase, a previously developed dosing algorithm to predict an individual’s tacrolimus starting dose was tested prospectively. In this single‐arm, prospective, therapeutic intervention trial, 60 de novo kidney transplant recipients received a tacrolimus starting dose based on a dosing algorithm instead of a standard, bodyweight‐based dose. The algorithm included cytochrome P450 (CYP)3A4 and CYP3A5 genotype, body surface area, and age as covariates. The target tacrolimus C0, measured for the first time at day 3, was 7.5–12.5 ng/mL. Between February 23, 2019, and July 7, 2020, 60 patients were included. One patient was excluded because of a protocol violation. On day 3 post‐transplantation, 34 of 59 patients (58%, 90% CI 47–68%) had a tacrolimus C0 within the therapeutic range. Markedly subtherapeutic (< 5.0 ng/mL) and supratherapeutic (> 20 ng/mL) tacrolimus concentrations were observed in 7% and 3% of the patients, respectively. Biopsy‐proven acute rejection occurred in three patients (5%). In conclusion, algorithm‐based tacrolimus dosing leads to the achievement of the tacrolimus target C0 in as many as 58% of the patients on day 3 after kidney transplantation.
Collapse
Affiliation(s)
- Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Rotterdam Transplant Group, Rotterdam, The Netherlands.,Netherlands Institute for Health Sciences, Rotterdam, The Netherlands
| | - Louise M Andrews
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Meander Medical Center, Amersfoort, The Netherlands
| | - Hoang Lan Le
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jacqueline van de Wetering
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Rotterdam Transplant Group, Rotterdam, The Netherlands
| | - Marian C Clahsen-van Groningen
- Rotterdam Transplant Group, Rotterdam, The Netherlands.,Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bronno van der Holt
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Rotterdam Transplant Group, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Rotterdam Transplant Group, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Francke MI, Hesselink DA, Li Y, Koch BCP, de Wit LEA, van Schaik RHN, Yang L, Baan CC, van Gelder T, de Winter BCM. Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients. Br J Clin Pharmacol 2020; 87:1918-1929. [PMID: 33025649 PMCID: PMC8056738 DOI: 10.1111/bcp.14585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
Aims Tacrolimus is a critical dose drug and to avoid under‐ and overexposure, therapeutic drug monitoring is standard practice. However, rejection and drug‐related toxicity occur despite whole‐blood tacrolimus pre‐dose concentrations ([Tac]blood) being on target. Monitoring tacrolimus concentrations at the target site (within peripheral blood mononuclear cells; [Tac]cells) may better correlate with drug‐efficacy. The aim of this study was to (1) investigate the relationship between [Tac]blood and [Tac]cells, (2) identify factors affecting the tacrolimus distribution in cells and whole‐blood, and (3) study the relationship between [Tac]cells and clinical outcomes after kidney transplantation. Methods A total of 175 renal transplant recipients were prospectively followed. [Tac]blood and [Tac]cells were determined at Months 3, 6 and 12 post‐transplantation. Patients were genotyped for ABCB1 1199G>A and 3435C>T, CYP3A4 15389C>T, and CYP3A5 6986G>A. Data on rejection and tacrolimus‐related nephrotoxicity and post‐transplant diabetes mellitus were collected. Results Correlations between [Tac]blood and [Tac]cells were moderate to poor (Spearman's r = 0.31; r = 0.41; r = 0.61 at Months 3, 6 and 12, respectively). The [Tac]cells/[Tac]blood ratio was stable over time in most patients (median intra‐patient variability 39.0%; range 3.5%–173.2%). Age, albumin and haematocrit correlated with the [Tac]cells/[Tac]blood ratio. CYP3A5 and CYP3A4 genotype combined affected both dose‐corrected [Tac]blood and [Tac]cells. ABCB1 was not significantly related to tacrolimus distribution. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes. Conclusions The correlation between [Tac]blood and [Tac]cells is poor. Age, albumin and haematocrit correlate with the [Tac]cells/[Tac]blood ratio, whereas genetic variation in ABCB1, CYP3A4 and CYP3A5 do not. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes.
Collapse
Affiliation(s)
- Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Yi Li
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lucia E A de Wit
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lin Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
17
|
Genvigir FDV, Campos-Salazar AB, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Doi SDQ, Cerda A, Hirata MH, Herrero MJ, Aliño SF, Hirata RDC. CYP3A5*3 and CYP2C8*3 variants influence exposure and clinical outcomes of tacrolimus-based therapy. Pharmacogenomics 2020; 21:7-21. [PMID: 31849280 DOI: 10.2217/pgs-2019-0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The influence of variants in pharmacokinetics-related genes on long-term exposure to tacrolimus (TAC)-based therapy and clinical outcomes was investigated. Patients & methods: Brazilian kidney recipients were treated with TAC combined with everolimus (n = 178) or mycophenolate sodium (n = 97). The variants in CYP2C8, CYP2J2, CYP3A4, CYP3A5, POR, ABCB1, ABCC2, ABCG2, SLCO1B1 and SLCO2B1 were analyzed. Main results: CYP3A5*3/*3 genotype influenced increase in TAC concentration from week 1 to month 6 post-transplantation (p < 0.05). The living donor and CYP2C8*3 variant were associated with reduced risk for delayed graft function (OR = 0.07; 95% CI = 0.03-0.18 and OR = 0.45; 95% CI = 0.20-0.99, respectively, p < 0.05). Conclusion: The CYP3A5*3 variant is associated with increased early exposure to TAC. Living donor and CYP2C8*3 variant seem to be protective factors for delayed graft function in kidney recipients.
Collapse
Affiliation(s)
- Fabiana Dalla Vecchia Genvigir
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Antony Brayan Campos-Salazar
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Bioinformatics & Pharmacogenetics Laboratory, METOSMOD Research Group, School of Pharmacy & Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Sonia de Quateli Doi
- Nephrology Research Laboratory, School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Mario Hiroyuki Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - María José Herrero
- Department of Pharmacology, University of Valencia. Pharmacogenetics, Instituto Investigación Sanitaria y Hospital La Fe, Valencia, Spain
| | - Salvador Francisco Aliño
- Department of Pharmacology, University of Valencia. Pharmacogenetics, Instituto Investigación Sanitaria y Hospital La Fe, Valencia, Spain
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, Elens L. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metab Toxicol 2020; 16:769-782. [PMID: 32721175 DOI: 10.1080/17425255.2020.1803277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In kidney transplantation, tacrolimus (TAC) is at the cornerstone of current immunosuppressive strategies. Though because of its narrow therapeutic index, it is critical to ensure that TAC levels are maintained within this sharp window through reactive adjustments. This would allow maximizing efficiency while limiting drug-associated toxicity. However, TAC high intra- and inter-patient pharmacokinetic (PK) variability makes it more laborious to accurately predict the appropriate dosage required for a given patient. AREAS COVERED This review summarizes the state-of-the-art knowledge regarding drug interactions, demographic and pharmacogenetics factors as predictors of TAC PK. We provide a scoring index for each association to grade its relevance and we present practical recommendations, when possible for clinical practice. EXPERT OPINION The management of TAC concentration in transplanted kidney patients is as critical as it is challenging. Recommendations based on rigorous scientific evidences are lacking as knowledge of potential predictors remains limited outside of DDIs. Awareness of these limitations should pave the way for studies looking at demographic and pharmacogenetic factors as well as gut microbiota composition in order to promote tailored treatment plans. Therapeutic approaches considering patients' clinical singularities may help allowing to maintain appropriate concentration of TAC.
Collapse
Affiliation(s)
- Alexandra L Degraeve
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Serge Moudio
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium.,Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Djamila Chaib Eddour
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Michel Mourad
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| |
Collapse
|
19
|
Ling J, Dong LL, Yang XP, Qian Q, Jiang Y, Zou SL, Hu N. Effects of CYP3A5, ABCB1 and POR*28 polymorphisms on pharmacokinetics of tacrolimus in the early period after renal transplantation. Xenobiotica 2020; 50:1501-1509. [PMID: 32453653 DOI: 10.1080/00498254.2020.1774682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Ling
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu-Lu Dong
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu-Ping Yang
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qing Qian
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Jiang
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Su-Lan Zou
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Nan Hu
- Department of Pharmacy, the First People’s Hospital of Changzhou, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
20
|
Patel JN, Hamadeh IS. Pharmacogenetics and tacrolimus administration in stem cell transplantation. Pharmacogenomics 2020; 21:419-426. [PMID: 32308133 DOI: 10.2217/pgs-2019-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tacrolimus is the gold standard immunosuppressant administered in solid organ and stem cell transplantation to avoid graft rejection post-transplant. Despite its widespread use, there is a large variation in response to therapy, likely due to high inter-individual pharmacokinetic variability. Therapeutic drug monitoring is employed to improve clinical response and reduce toxicity. There is substantial evidence that pharmacogenetics influences drug exposure and response. CYP3A5 genotype significantly impacts oral tacrolimus concentrations and response after solid organ transplantation. There are fewer studies in stem cell transplantation and with intravenous tacrolimus dosing. This report highlights recent evidence suggesting genes such as CYP3A4 and ABCB1 play a larger role after intravenous dosing compared with CYP3A5, and the role for novel genes on tacrolimus outcomes.
Collapse
Affiliation(s)
- Jai N Patel
- Department of Cancer Pharmacology, Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| | - Issam S Hamadeh
- Department of Cancer Pharmacology, Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| |
Collapse
|
21
|
Ozdemir F, Dural E, Baskak NS, Kır Y, Baskak B, Suzen HS. The Association of CYP2D6*4 and POR*28 Polymorphisms on Mirtazapine Plasma Level in Subjects with Major Depressive Disorder and Anxiety Disorders. Comb Chem High Throughput Screen 2020; 23:1032-1040. [PMID: 32238137 DOI: 10.2174/1386207323666200402081512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVE The plasma level of mirtazapine (MIR) varies between individuals primarily depending on the differences in metabolism during pharmacotherapy. CYP2D6 takes the role as a major enzyme in MIR metabolism and POR enzyme donates an electron to CYP2D6 for its activity. Single nucleotide polymorphisms in the genes encoding pharmacokinetic enzymes may cause changes in enzyme activity, leading to differences in metabolism of the drug. Our aim was to assess the influence of CYP2D6*4 and POR*28 polymorphisms on MIR plasma levels in Turkish psychiatric patients. MATERIALS AND METHODS The association between genetic variations and plasma level of MIR was investigated on 54 patients. CYP2D6*4 and POR*28 polymorphisms were analysed using Polymerase Chain Reaction- Restriction Fragment Length Polymorphism (PCR-RFLP) and plasma MIR levels were measured using HPLC. RESULTS Allele frequencies of CYP2D6*4 and POR*28 were 0.11 and 0.39, respectively in the study population. The results showed that CYP2D6*4 allele carriers have higher C/D MIR levels while POR*28 allele carriers have lower C/D MIR levels. Combined genotype analyses also revealed that individuals with CYP2D6*1/*1 - POR*28/*28 genotype have a statistically lower C/D MIR level (0.95 ng/ml/dose) when compared with individuals with CYP2D6*1/*1 - POR*1/*1 genotype (1.52 ng/ml/dose). CONCLUSION Our results indicate that CYP2D6*4 and POR*28 polymorphisms may have a potential in the explanation of differences in plasma levels in MIR treated psychiatric patients. A combination of these variations may be beneficial in increasing drug response and decreasing adverse drug reactions in MIR psychopharmacotherapy.
Collapse
Affiliation(s)
- Fezile Ozdemir
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ankara University, Ankara, Turkey
| | - Emrah Dural
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Nilay Sedes Baskak
- Department of Psychiatry, Yıldırım Beyazıt University Yenimahalle Research and Training Hospital, Ankara, Turkey
| | - Yağmur Kır
- Department of Psychiatry, School of Medicine, Ankara University, Ankara, Turkey
| | - Bora Baskak
- Department of Psychiatry, School of Medicine, Ankara University, Ankara, Turkey
| | - Halt S Suzen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
22
|
Nakamura T, Fukuda M, Matsukane R, Suetsugu K, Harada N, Yoshizumi T, Egashira N, Mori M, Masuda S. Influence of POR*28 Polymorphisms on CYP3A5*3-Associated Variations in Tacrolimus Blood Levels at an Early Stage after Liver Transplantation. Int J Mol Sci 2020; 21:ijms21072287. [PMID: 32225074 PMCID: PMC7178010 DOI: 10.3390/ijms21072287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
It is well known that the CYP3A5*3 polymorphism is an important marker that correlates with the tacrolimus dose requirement after organ transplantation. Recently, it has been revealed that the POR*28 polymorphism affects the pharmacokinetics of tacrolimus in renal transplant patients. In this study, we examined whether POR*28 as well as CYP3A5*3 polymorphism in Japanese recipients and donors would be another biomarker for the variation of tacrolimus blood levels in the recipients during the first month after living-donor liver transplantation. We enrolled 65 patients treated with tacrolimus, who underwent liver transplantation between July 2016 and January 2019. Genomic DNA was extracted from whole-blood samples, and genotyping was performed to examine the presence of CYP3A5*3 and POR*28 polymorphisms in the recipients and donors. The CYP3A5*3/*3 genotype (defective CYP3A5) of the recipient (standard partial regression coefficient [median C/D ratio of CYP3A5 expressor vs. CYP3A5 non-expressor, p value]: Pod 1–7, β= −0.389 [1.76 vs. 2.73, p < 0.001]; Pod 8–14, β = −0.345 [2.03 vs. 2.83, p < 0.001]; Pod 15–21, β= −0.417 [1.75 vs. 2.94, p < 0.001]; Pod 22–28, β = −0.627 [1.55 vs. 2.90, p < 0.001]) rather than donor (Pod 1–7, β = n/a [1.88 vs. 2.76]; Pod 8–14, β = n/a [1.99 vs. 2.93]; Pod 15–21, β = −0.175 [1.91 vs. 2.94, p = 0.004]; Pod 22–28, β = n/a [1.61 vs. 2.67]) significantly contributed to the increase in the concentration/dose (C/D) ratio of tacrolimus for at least one month after surgery. We found that the tacrolimus C/D ratio significantly decreased from the third week after transplantation when the recipient carried both CYP3A5*1 (functional CYP3A5) and POR*28 (n = 19 [29.2%], median C/D ratio [inter quartile range] = 1.58 [1.39–2.17]), compared with that in the recipients carrying CYP3A5*1 and POR*1/*1 (n = 8 [12.3%], median C/D ratio [inter quartile range] = 2.23 [2.05–3.06]) (p < 0.001). In conclusion, to our knowledge, this is the first report suggesting that the POR*28 polymorphism is another biomarker for the tacrolimus oral dosage after liver transplantation in patients carrying CYP3A5*1 rather than CYP3A5*3/*3.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Clinical Pharmacology and Biopharmaceutics, The Pharmaceutical College, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Mio Fukuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Ryosuke Matsukane
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Kimitaka Suetsugu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan
- Correspondence: ; Tel.: +81-476-28-1401
| |
Collapse
|
23
|
Han JM, Yee J, Chung JE, Lee KE, Park K, Gwak HS. Effects of cytochrome P450 oxidoreductase genotypes on the pharmacokinetics of amlodipine in healthy Korean subjects. Mol Genet Genomic Med 2020; 8:e1201. [PMID: 32134573 PMCID: PMC7216797 DOI: 10.1002/mgg3.1201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the effects of P450 oxidoreductase (POR) genetic polymorphisms on the pharmacokinetic parameters of amlodipine. METHODS After a single 10-mg dose of amlodipine administration, 25 healthy male subjects completed genotyping for 12 single nucleotide polymorphisms (SNPs) of the POR genes, cytochrome P450 (CYP)3A4 g.25343G>A (CYP3A4*1G), and CYP3A5 g.12083G>A (CYP3A5*3). Stratified analysis and in silico analysis to predict the possible effects of given variants on splicing were performed. RESULTS The maximum blood concentration (Cmax ) of amlodipine in carriers of g.57332T>C and g.56551G>A SNPs of the POR gene was statistically significantly different. In addition, T-allele carriers of g.57332T>C had a 21% higher Cmax than those with the CC genotype (p = .007). Subjects who carried the wild-type g.56551G>A allele also had a 1.12-fold significantly higher Cmax than subjects with mutant-type homozygous carriers (p = .033). In stratified analyses, g.57332T>C was significantly associated with a 1.3-fold increase in Cmax value in T-allele carriers compared with subjects with the CC genotype in CYP3A4 and CYP3A5 expressers. POR g.57332T>C increased the score above the threshold in both ESEfinder 3.0 and HSF 3.1. CONCLUSION This study identified a novel SNP of the POR gene, which affected amlodipine metabolism and may reduce interindividual variation in responses to amlodipine.
Collapse
Affiliation(s)
- Ji Min Han
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jee Eun Chung
- College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Kyung Eun Lee
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Kyungsoo Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Ming Z, Yongqiang Z, Zijin Z, Yan X, Di C, Xiaoxin T. Severe and prolonged cyclophosphamide-induced hepatotoxicity in a breast cancer patient carrying a CYP2B6*7 variant. Pharmacogenomics 2019; 20:1119-1124. [PMID: 31686598 DOI: 10.2217/pgs-2019-0093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As a widely used alkylating agent, cyclophosphamide often leads to various toxicities. Severe hepatotoxicity has been rarely reported in breast cancer patients receiving chemotherapy containing cyclophosphamide. Differences in cyclophosphamide metabolism may contribute to variability in adverse events of patients. Here, we report on a case of a 68-year-old Chinese female with breast cancer who experienced severe and prolonged hepatotoxicity induced by cyclophosphamide. Pharmacogenetic tests showed that she was a carrier of CYP2B6*7 allele and this is the first case of a CYP2B6*7 variant in the Han Chinese population so far reported. In addition, the patient was also a carrier of an ALDH3A1*2 variant potentially contributing to the occurrence of hepatotoxicity. CYP2B6 and ALDH3A1 genotyping may play a role in guiding cyclophosphamide therapy.
Collapse
Affiliation(s)
- Zhao Ming
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing 100730, PR China
| | - Zhang Yongqiang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing 100730, PR China
| | - Zhang Zijin
- Department of Oncology, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing 100730, PR China
| | - Xu Yan
- Department of Oncology, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing 100730, PR China
| | - Chen Di
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing 100730, PR China
| | - Tian Xiaoxin
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing 100730, PR China
| |
Collapse
|
25
|
Ozdemir F, Oz MD, Suzen HS. A Novel PCR-RFLP Method for Detection of POR*28 Polymorphism and its Genotype/Allele Frequencies in a Turkish Population. Curr Drug Metab 2019; 20:845-851. [PMID: 31518218 DOI: 10.2174/1389200220666190913121052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Accepted: 09/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Cytochrome P450 (CYP) enzymes are involved in the metabolism of many endogenous and exogenous substances. They need electrons for their activity. CYP mediated oxidation reactions require cytochrome oxidoreductase (POR) as an electron donor. A common genetic variation identified in the coding region of POR gene (POR*28) leads to an alteration in POR activity by causing amino acid change. The current study aimed to determine the allele and genotype frequencies of POR*28 in a healthy Turkish population by using a novel genotyping assay. METHODS A novel PCR-RFLP assay was developed for the detection of POR*28 (rs1057868) polymorphism and the obtained frequencies were compared with the data established in various ethnic groups. RESULTS Genotypic analysis revealed that of 209 healthy, unrelated individuals tested for POR*28 polymorphism, 55.5% of the studied subjects were homozygous for the CC genotype, 34.9% were heterozygous for the CT genotype and 9.6% were homozygous for the TT genotype. The allele frequencies were 0.73 (C) and 0.27 (T). The present results were in accordance with the Hardy- Weinberg equilibrium. The distribution of POR*28 allele varies between populations. The frequency of the T allele among members of the Turkish population was similar to frequencies in Caucasian populations but was lower than in Japanese and Chinese populations. CONCLUSIONS In this study, a novel method was developed, which could be applied easily in every laboratory for the genotyping of POR *28 polymorphism. The developed genotyping method and documented allele frequencies may have potential in understanding and predicting the variations in drug response/adverse reactions in pharmacotherapy and susceptibility to diseases in POR-mediated metabolism reactions.
Collapse
Affiliation(s)
- Fezile Ozdemir
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ankara University, Ankara, 06590, Turkey
| | - Merve Demirbugen Oz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Ankara, 06560, Turkey
| | - Hilat S Suzen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Ankara, 06560, Turkey
| |
Collapse
|
26
|
Prediction models for voriconazole pharmacokinetics based on pharmacogenetics: AN exploratory study in a Spanish population. Int J Antimicrob Agents 2019; 54:463-470. [PMID: 31279853 DOI: 10.1016/j.ijantimicag.2019.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023]
Abstract
Individualisation of the therapeutic strategy for the oral antifungal agent voriconazole (VCZ) is extremely important for treatment optimisation. To date, regulatory agencies include CYP2C19 as the only major pharmacogenetic (PGx) biomarker in their dosing guidelines; however, the effect of other genes might be important for VCZ dosing prediction. We developed an exploratory PGx study to identify new biomarkers related to VCZ pharmacokinetics. We first designed a 'clinical practice VCZ-AUC prediction model' based on CYP2C19 to be used as a reference model in this study. We then designed a multifactorial polygenic prediction model and found that genetic variability in FMO3, NR1I2, POR, CYP2C9 and CYP3A4 partially contributes to VCZ total area under the concentration-time curve (AUC0-∞) interindividual variability, and its inclusion in VCZ AUC0-∞ prediction algorithms improves model precision. To our knowledge, there are no PGx studies specifically relating POR, FMO3 and NR1I2 polymorphisms to VCZ pharmacokinetic variability. Further research is needed in order to test the model proposed here.
Collapse
|
27
|
Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit 2019; 41:261-307. [DOI: 10.1097/ftd.0000000000000640] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, Lemaitre F, Marquet P, Seger C, Shipkova M, Vinks A, Wallemacq P, Wieland E, Woillard JB, Barten MJ, Budde K, Colom H, Dieterlen MT, Elens L, Johnson-Davis KL, Kunicki PK, MacPhee I, Masuda S, Mathew BS, Millán O, Mizuno T, Moes DJAR, Monchaud C, Noceti O, Pawinski T, Picard N, van Schaik R, Sommerer C, Vethe NT, de Winter B, Christians U, Bergan S. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit 2019. [DOI: 10.1097/ftd.0000000000000640
expr 845143713 + 809233716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
29
|
Impact of CYP3A5, POR, and CYP2C19 Polymorphisms on Trough Concentration to Dose Ratio of Tacrolimus in Allogeneic Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2019; 20:ijms20102413. [PMID: 31096684 PMCID: PMC6566597 DOI: 10.3390/ijms20102413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
Single nucleotide polymorphisms in drug-metabolizing genes may affect tacrolimus pharmacokinetics. Here, we investigated the influence of genotypes of CYP3A5, CYP2C19, and POR on the concentration/dose (C/D) ratio of tacrolimus and episodes of acute graft-versus-host disease (GVHD) in Japanese recipients of allogeneic hematopoietic stem cell transplantation (HSCT). Thirty-six patients receiving the first HSCT using tacrolimus-based GVHD prophylaxis were enrolled with written informed consent. During continuous intravenous infusion, HSCT recipients carrying the CYP3A5*1 allele, particularly those with at least one POR*28 allele, had a significantly lower tacrolimus C/D ratio throughout all three post-HSCT weeks compared to that in recipients with POR*1/*1 (p < 0.05). The CYP3A5*3/*3 genotype and the concomitant use of voriconazole were independent predictors of an increased tacrolimus C/D ratio during the switch from continuous intravenous infusion to oral administration (p < 0.05). In recipients receiving concomitant administration of voriconazole, our results suggest an impact of not only CYP3A5 and CYP2C19 genotypes, but also plasma voriconazole concentration. Although switching from intravenous to oral administration at a ratio of 1:5 was seemingly appropriate in recipients with CYP3A5*1, a lower conversion ratio (1:2-3) was appropriate in recipients with CYP3A5*3/*3. Our results suggest that CYP3A5, POR, and CYP2C19 polymorphisms are useful biomarkers for individualized dosage adjustment of tacrolimus in HSCT recipients.
Collapse
|
30
|
Pasternak AL, Kidwell KM, Dempsey JM, Gersch CL, Pesch A, Sun Y, Rae JM, Hertz DL, Park JM. Impact of CYP3A5 phenotype on tacrolimus concentrations after sublingual and oral administration in lung transplant. Pharmacogenomics 2019; 20:421-432. [PMID: 30983501 DOI: 10.2217/pgs-2019-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: This study evaluated the impact of CYP3A5 genotype and other patient characteristics on sublingual (SL) tacrolimus exposure and compared the relationship with oral administration. Patients & methods: Tacrolimus concentrations were retrospectively collected for adult lung transplant recipients, who were genotyped for CYP3A5*3, CYP3A4*22, CYP3A7*1C, and POR*28. Regression analyses were performed to determine covariates that impacted the SL and oral tacrolimus concentration/dose ratios. Results: An interaction of CYP3A5 genotype and CYP3A inhibitor increased the SL concentration/dose, while cystic fibrosis decreased the SL concentration/dose. The oral concentration/dose was independently associated with these covariates and was increased by serum creatinine and number of tacrolimus doses. Conclusion: This study suggests personalized dosing strategies for tacrolimus likely need to consider characteristics beyond CYP3A5 genotype.
Collapse
Affiliation(s)
- Amy L Pasternak
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Jacqueline M Dempsey
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrea Pesch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yihan Sun
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Jeong M Park
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Huang K, Liao X, Han C, Wang X, Yu T, Yang C, Liu X, Yu L, Chen Z, Qin W, Zhu G, Su H, Liu Z, Zeng X, Zhou X, Lu S, Huang J, Liang Y, Liu Z, Deng J, Ye X, Peng T. Genetic variants and Expression of Cytochrome p450 Oxidoreductase Predict Postoperative Survival in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. J Cancer 2019; 10:1453-1465. [PMID: 31031855 PMCID: PMC6485213 DOI: 10.7150/jca.28919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/14/2018] [Indexed: 01/27/2023] Open
Abstract
Our current study investigates the prognostic values of genetic variants and mRNA expression of cytochrome p450 oxidoreductase (POR) in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). A total of 19 candidate single nucleotide polymorphisms (SNPs) located in the exons of POR were genotyped using Sanger sequencing from 476 HBV-related HCC patients who underwent hepatectomy between 2003 and 2013. The mRNA expression of POR in 212 patients with HBV-related HCC was obtained from GSE14520 dataset. Survival analysis was performed to investigate the association of POR variants and mRNA expression with overall survival (OS) and recurrence-free survival (RFS). Nomograms were used to predict the prognosis of HBV-related HCC patients. Gene set enrichment analysis (GSEA) was used to investigate the mechanism of POR in HBV-related HCC prognosis. The polymorphism POR-rs1057868 was significantly associated with HBV-related HCC OS (CT/TT vs. CC, hazard ratio [HR] = 0.69, 95% confidence interval [CI] = [0.54, 0.88], P = 0.003), but not significantly associated with RFS (CT/TT vs. CC, P = 0.378). POR mRNA expression was also significantly associated with HBV-related HCC OS (high vs. low, HR = 0.61, 95% CI = [0.38, 0.97], P = 0.036), but not significantly associated with the RFS (high vs. low, P = 0.201). Two nomograms were developed to predict the HBV-related HCC OS. Furthermore, GSEA suggests that multiple gene sets were significantly enriched in liver cancer survival and recurrence, as well as POR-related target therapy in the liver. In conclusion, our study suggests that POR-rs1057868 and mRNA expression may serve as a potential postoperative prognosis biomarker in HBV-related HCC.
Collapse
Affiliation(s)
- Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, People's Republic of China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Zhiwei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sicong Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jianlv Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhengtao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, People's Republic of China.,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Jianlong Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, 537000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
32
|
Abdullahi ST, Olagunju A, Soyinka JO, Bolarinwa RA, Olarewaju OJ, Bakare-Odunola MT, Owen A, Khoo S. Pharmacogenetics of artemether-lumefantrine influence on nevirapine disposition: Clinically significant drug-drug interaction? Br J Clin Pharmacol 2019; 85:540-550. [PMID: 30471138 DOI: 10.1111/bcp.13821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS In this study the influence of first-line antimalarial drug artemether-lumefantrine on the pharmacokinetics of the antiretroviral drug nevirapine was investigated in the context of selected single nucleotide polymorphisms (SNPs) in a cohort of adult HIV-infected Nigerian patients. METHODS This was a two-period, single sequence crossover study. In stage 1, 150 HIV-infected patients receiving nevirapine-based antiretroviral regimens were enrolled and genotyped for seven SNPs. Sparse pharmacokinetic sampling was conducted to identify SNPs independently associated with nevirapine plasma concentration. Patients were categorized as poor, intermediate and extensive metabolizers based on the numbers of alleles of significantly associated SNPs. Intensive sampling was conducted in selected patients from each group. In stage 2, patients received standard artemether-lumefantrine treatment with nevirapine, and intensive pharmacokinetic sampling was conducted on day 3. RESULTS No clinically significant changes were observed in key nevirapine pharmacokinetic parameters, the 90% confidence interval for the measured changes falling completely within the 0.80-1.25 no-effect boundaries. However, the number of patients with trough plasma nevirapine concentration below the 3400 ng ml-1 minimum effective concentration increased from 10% without artemether-lumefantrine (all extensive metabolizers) to 21% with artemether-lumefantrine (14% extensive, 4% intermediate, and 3% poor metabolizers). CONCLUSIONS This approach highlights additional increase in the already existing risk of suboptimal trough plasma concentration, especially in extensive metabolizers when nevirapine is co-administered with artemether-lumefantrine.
Collapse
Affiliation(s)
- Sa'ad T Abdullahi
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria.,Department of Pharmaceutical and Medicinal Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Adeniyi Olagunju
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria.,Department of Molecular and Clinical Pharmacology, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Julius O Soyinka
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rahman A Bolarinwa
- Department of Haematology, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - Olusola J Olarewaju
- Department of Haematology, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - Moji T Bakare-Odunola
- Department of Pharmaceutical and Medicinal Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| |
Collapse
|
33
|
Clinical aspects of tacrolimus use in paediatric renal transplant recipients. Pediatr Nephrol 2019; 34:31-43. [PMID: 29479631 DOI: 10.1007/s00467-018-3892-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/30/2022]
Abstract
The calcineurin inhibitor tacrolimus, cornerstone of most immunosuppressive regimens, is a drug with a narrow therapeutic window: underexposure can lead to allograft rejection and overexposure can result in an increased incidence of infections, toxicity and malignancies. Tacrolimus is metabolised in the liver and intestine by the cytochrome P450 3A (CYP3A) isoforms CYP3A4 and CYP3A5. This review focusses on the clinical aspects of tacrolimus pharmacodynamics, such as efficacy and toxicity. Factors affecting tacrolimus pharmacokinetics, including pharmacogenetics and the rationale for routine CYP3A5*1/*3 genotyping in prospective paediatric renal transplant recipients, are also reviewed. Therapeutic drug monitoring, including pre-dose concentrations and pharmacokinetic profiles with the available "reference values", are discussed. Factors contributing to high intra-patient variability in tacrolimus exposure and its impact on clinical outcome are also reviewed. Lastly, suggestions for future research and clinical perspectives are discussed.
Collapse
|
34
|
Identification of genetic variants associated with tacrolimus metabolism in kidney transplant recipients by extreme phenotype sampling and next generation sequencing. THE PHARMACOGENOMICS JOURNAL 2018; 19:375-389. [PMID: 30442921 PMCID: PMC6522337 DOI: 10.1038/s41397-018-0063-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
An extreme phenotype sampling (EPS) model with targeted next-generation sequencing (NGS) identified genetic variants associated with tacrolimus (Tac) metabolism in subjects from the Deterioration of Kidney Allograft Function (DeKAF) Genomics cohort which included 1,442 European Americans (EA) and 345 African Americans (AA). This study included 48 subjects separated into 4 groups of 12 (AA high, AA low, EA high, EA low). Groups were selected by the extreme phenotype of dose-normalized Tac trough concentrations after adjusting for common genetic variants and clinical factors. NGS spanned >3 Mb of 28 genes and identified 18,661 genetic variants (3,961 previously unknown). A group of 125 deleterious variants, by SIFT analysis, were associated with Tac troughs in EAs (burden test, p=0.008), CYB5R2 was associated with Tac troughs in AAs (SKAT, p=0.00079). In CYB5R2, rs61733057 (increased allele frequency in AAs) was predicted to disrupt protein function by SIFT and PolyPhen2 analysis. The variants merit further validation.
Collapse
|
35
|
Yu M, Liu M, Zhang W, Ming Y. Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. Curr Drug Metab 2018; 19:513-522. [PMID: 29380698 PMCID: PMC6182932 DOI: 10.2174/1389200219666180129151948] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 01/10/2023]
Abstract
Background: Tacrolimus (Tac, or FK506), a calcineurin inhibitor (CNI), is the first-line immu-nosuppressant which consists of the footstone as immunosuppressive regimens in kidney transplantation. However, the drug toxicity and the significant differences of pharmacokinetics (PK) and pharmacodynam-ics (PD) among individuals are hidden troubles for clinical application. Recently, emerging evidences of Tac pharmacogenetics (PG) regarding drug absorption, metabolism, disposition, excretion and response are discovered for better understanding of this drug. Method: We reviewed the published articles regarding the Tac PG and its effects on PK and PD in kidney transplantation. In addition, we summarized information on polygenic algorithms. Results: The polymorphism of genes encoding metabolic enzymes and transporters related to Tac were largely investigated, but the results were inconsistent. In addition to CYP3A4, CYP3A5 and P-gp (also known as ABCB1), single nucleotide polymorphisms (SNPs) might also affect the PK and PD parameters of Tac. Conclusion: The correlation between Tac PK, PD and PG is very complex. Although many factors need to be verified, it is envisaged that thorough understanding of PG may assist clinicians to predict the optimal starting dosage, help adjust the maintenance regimen, as well as identify high risk patients for adverse ef-fects or drug inefficacy
Collapse
Affiliation(s)
- Meng Yu
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mouze Liu
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Wei Zhang
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, China
| | - Yingzi Ming
- Transplantation center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
36
|
Si S, Wang Z, Yang H, Han Z, Tao J, Chen H, Wang K, Guo M, Tan R, Wei JF, Gu M. Impact of single nucleotide polymorphisms on P450 oxidoreductase and peroxisome proliferator-activated receptor alpha on tacrolimus pharmacokinetics in renal transplant recipients. THE PHARMACOGENOMICS JOURNAL 2018; 19:42-52. [PMID: 30323313 DOI: 10.1038/s41397-018-0061-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/12/2018] [Accepted: 09/27/2018] [Indexed: 11/09/2022]
Abstract
The P450 oxidoreductase (POR) and peroxisome proliferator-activated receptor alpha (PPARA) genes are associated with the activity of cytochrome P450 enzymes in vivo. We aimed to investigate the impact of single nucleotide polymorphisms (SNPs) in the POR and PPARA genes on the pharmacokinetics of tacrolimus (TAC) in renal transplant recipients. A total of 220 recipients were assessed and 105 recipients were included for final quantitative analysis. Blood samples were collected and DNA was extracted. Targeting sequencing based on next-generation sequencing was applied to detect the SNPs in the POR and PPARA genes. In addition, a systematic review and meta-analysis was performed to comprehensively evaluate the influence of POR and PPARA mutations on the TAC concentrations. A total of 81 SNPs were obtained. Three SNPs (POR*28, Chr7:75619677 and Chr7:75614288) were found to be significantly associated with the TAC pharmacokinetics at 3 months, 6 months, and more than 12 months. No significant association was observed in the combined effect analysis of CYP3A4*1G and CYP3A5*3 with three significant SNPs in the POR gene. Age, post-transplant duration, and the use of sirolimus were identified as the most important factors that influenced the TAC concentrations. A meta-analysis of four studies results and our cohort indicated that compared with recipients carrying the CT or TT genotypes, recipients carrying the CC genotypes of POR*28 showed significantly higher TAC concentrations. Our study suggested the positive influence of mutations in the POR gene on TAC exposure at 3 months after kidney transplantation.
Collapse
Affiliation(s)
- Shuhui Si
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China.,Research Division of Clinical Pharmacology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Zijie Wang
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Haiwei Yang
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Zhijian Han
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Jun Tao
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Hao Chen
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Ke Wang
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Miao Guo
- Research Division of Clinical Pharmacology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Ruoyun Tan
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Ji-Fu Wei
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China. .,Research Division of Clinical Pharmacology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China.
| | - Min Gu
- Department of Urology, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China.
| |
Collapse
|
37
|
Phupradit A, Vadcharavivad S, Ingsathit A, Kantachuvesiri S, Areepium N, Sra-Ium S, Auamnoy T, Sukasem C, Sumethkul V, Kitiyakara C. Impact of POR and CYP3A5 Polymorphisms on Trough Concentration to Dose Ratio of Tacrolimus in the Early Post-operative Period Following Kidney Transplantation. Ther Drug Monit 2018; 40:549-557. [PMID: 29878980 DOI: 10.1097/ftd.0000000000000542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Tacrolimus, a critical dose drug, is widely used in transplantation. Knowing the contribution of genetic factors, which significantly influence tacrolimus variability, is beneficial in the personalization of its starting dose. The significant impact of CYP3A5*3 polymorphisms on tacrolimus exposure has been reported. Conflicting results of the additional influence of POR*28 polymorphisms on tacrolimus pharmacokinetic interindividual variability have been observed among different populations. The objective of this study was to explore the interaction between POR*28 and CYP3A5*3 polymorphisms and their main effects on tacrolimus trough concentration to dose ratios on day 7 after kidney transplantation. METHODS Two hundred sixteen adult kidney transplant recipients participated in this retrospective study. All participants received a twice daily tacrolimus regimen. Blood samples and data were collected on day 7 after transplantation. A 2-way analysis of covariance was performed. Tested covariates were age, hemoglobin, serum albumin, and prednisolone dose. RESULTS A 2 × 2 analysis of covariance revealed that the interaction between CYP3A5 polymorphisms (CYP3A5 expresser and CYP3A5 nonexpresser) and POR polymorphisms (POR*28 carrier and POR*28 noncarrier) was not significant (F(1, 209) = 2.473, P = 0.117, (Equation is included in full-text article.)= 0.012). The predicted main effect of CYP3A5 and POR polymorphisms was significant (F(1, 209) = 105.565, P < 0.001, (Equation is included in full-text article.)= 0.336 and F(1, 209) = 4.007, P = 0.047, (Equation is included in full-text article.)= 0.019, respectively). Hemoglobin, age, and steroid dose influenced log C0/dose of tacrolimus (F(1, 209) = 20.612, P < 0.001, (Equation is included in full-text article.)= 0.090; F(1, 209) = 14.360, P < 0.001, (Equation is included in full-text article.)= 0.064; and F(1, 209) = 5.512, P = 0.020, (Equation is included in full-text article.)= 0.026, respectively). CONCLUSIONS After adjusting for the influences of hemoglobin, age, and prednisolone dose, significant impacts of the CYP3A5 and POR polymorphisms on tacrolimus exposure were found. The effect of POR*28 and CYP3A5*3 polymorphisms during the very early period after kidney transplantation is independent of each other.
Collapse
Affiliation(s)
- Annop Phupradit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Pharmacy Division, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Somratai Vadcharavivad
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Atiporn Ingsathit
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Surasak Kantachuvesiri
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nutthada Areepium
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Supasil Sra-Ium
- Pharmacy Division, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Titinun Auamnoy
- Faculty of Pharmaceutical Sciences, Burapha University, Chon Buri, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Vasant Sumethkul
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
38
|
Effect of Age and Allele Variants of CYP3A5, CYP3A4, and POR Genes on the Pharmacokinetics of Cyclosporin A in Pediatric Renal Transplant Recipients From Serbia. Ther Drug Monit 2018; 39:589-595. [PMID: 29135906 DOI: 10.1097/ftd.0000000000000442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The interindividual variability of cyclosporin A (CsA) pharmacokinetics might be explained by heterogeneity in the cytochrome P450 3A (CYP3A) subfamily. Altered CYP3A enzyme activity was associated with variant allele of P450 oxidoreductase gene (POR*28). The aim of this study was to assess the impact of age, CYP3A5*3, CYP3A4*22, and POR*28 alleles on CsA pharmacokinetics in pediatric renal transplant recipients. METHODS Renal transplant patients receiving CsA (n = 47) were genotyped for CYP3A5*3, CYP3A4*22, and POR*28. RESULTS CYP3A5 nonexpressers had higher overall dose-adjusted predose concentration (C0/dose; ng/mL per mg/kg) compared with expressers (31.48 ± 12.75 versus 22.44 ± 7.12, P = 0.01). CYP3A5 nonexpressers carrying POR*28 allele had a lower overall dose-adjusted concentration (C2/dose) than those with POR*1/*1 genotype (165.54 ± 70.40 versus 210.55 ± 79.98, P = 0.02), with age as covariate. Children aged 6 years and younger had a lower overall C0/dose (18.82 ± 4.72 versus 34.19 ± 11.89, P = 0.001) and C2/dose (106.75 ± 26.99 versus 209.20 ± 71.57, P < 0.001) compared with older children. Carriers of CYP3A5*3 allele aged ≤6 years required higher dose of CsA and achieved lower C0/dose and C2/dose, at most time points, than older carriers of this allele. Carriers of POR*28 allele aged ≤6 years required higher doses of CsA, whereas they achieved lower C0/dose and C2/dose, at most time points, in comparison to older carriers of this allele. The significant effect of age (P < 0.002) and CYP3A5 variation (P < 0.02) was shown for overall C0/dose, whereas age (P < 0.00001) and POR variation (P = 0.05) showed significant effect on C2/dose. Regression summary for overall C2/dose in patients aged 6 years younger showed a significant effect of both CYP3A5 and POR variations (P < 0.016). CONCLUSIONS Younger age, POR*28 allele, and CYP3A5*3 allele were associated with higher CsA dosing requirements and lower concentration/dose ratio. Pretransplant screening of relevant polymorphisms in accordance with age should be considered to adjust therapy.
Collapse
|
39
|
Lancia P, Adam de Beaumais T, Elie V, Garaix F, Fila M, Nobili F, Ranchin B, Testevuide P, Ulinski T, Zhao W, Deschênes G, Jacqz-Aigrain E. Pharmacogenetics of post-transplant diabetes mellitus in children with renal transplantation treated with tacrolimus. Pediatr Nephrol 2018; 33:1045-1055. [PMID: 29399716 DOI: 10.1007/s00467-017-3881-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Post-transplant diabetes mellitus (PTDM) is a major complication of immunosuppressive therapy, with many risk factors reported in adults with renal transplantation. The objective of this study was to investigate potential non-genetic and genetic risk factors of PTDM in children with renal transplantation treated with tacrolimus. METHODS A national database was screened for patients developing PTDM within 4 years following tacrolimus introduction. PTDM was defined as glucose disorder requiring anti-diabetic treatment. PTDM patients were matched to "non-PTDM" control transplanted children according to age, gender, and duration of post-transplant follow-up. Patients were genotyped for six selected genetic variants in POR*28 (rs1057868), PPARa (rs4253728), CYP3A5 (rs776746), VDR (rs2228570 and rs731236), and ABCB1 (rs1045642) genes, implicated in glucose homeostasis and tacrolimus disposition. RESULTS Among the 98 children with renal transplantation enrolled in this multicentre study, 18 developed PTDM. None of the clinical and biological parameters was significant between PTDM and control patients. Homozygous carriers of POR*28 or wild-type ABCB1 (rs1045642) gene variants were more frequent in PTDM than in control patients with differences close to significance (p = 0.114 and p = 0.066 respectively). A genetic score based on these variants demonstrated that POR*28/*28 and ABCB1 CC or CT genotype carriers were at a significantly higher risk of developing PTDM after renal transplantation. CONCLUSION Identification of PTDM risk factors should allow clinicians to allocate the best immunosuppressant for each patient with renal transplantation, and improve care for patients who are at a higher risk.
Collapse
Affiliation(s)
- Pauline Lancia
- Department of Pediatric Pharmacology and Pharmacogenetics, Robert Debré Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France
| | - Tiphaine Adam de Beaumais
- Department of Pediatric Pharmacology and Pharmacogenetics, Robert Debré Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France
| | - Valéry Elie
- Department of Pediatric Pharmacology and Pharmacogenetics, Robert Debré Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France
| | - Florentine Garaix
- Department of Pediatric Nephrology, CHU La Timone, APHM, 264 rue Saint Pierre, 13005, Marseille, France
| | - Marc Fila
- Department of Pediatric Nephrology, Arnaud de Villeneuve Hospital, 371 avenue du Doyen Gaston Giraud, 34090, Montpellier, France
| | - François Nobili
- Department of Pediatric Nephrology, Saint Jacques Hospital, 2 Place Saint Jacques, 25000, Besançon, France
| | - Bruno Ranchin
- Department of Pediatric Nephrology, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron, France
| | - Pascale Testevuide
- Department of Pediatric Nephrology, Territorial Hospital Center, Papeete, Polynésie Française, France
| | - Tim Ulinski
- Department of Pediatric Nephrology, Armand Trousseau Hospital, APHP, 26 rue du Dr Arnold Netter, 75012, Paris, France
| | - Wei Zhao
- Department of Pediatric Pharmacology and Pharmacogenetics, Robert Debré Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France.,Clinical Investigation Center CIC1426, INSERM, Robert Debré Hospital, 48 boulevard Serurier, 75019, Paris, France.,Paris Diderot University Sorbonne Paris Cité, Paris, France
| | - Georges Deschênes
- Department of Pediatric Nephrology, Robert Debré Hospital, APHP, 48 boulevard Serurier, 75019, Paris, France
| | - Evelyne Jacqz-Aigrain
- Department of Pediatric Pharmacology and Pharmacogenetics, Robert Debré Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France. .,Clinical Investigation Center CIC1426, INSERM, Robert Debré Hospital, 48 boulevard Serurier, 75019, Paris, France. .,Paris Diderot University Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
40
|
Zhang X, Lin G, Tan L, Li J. Current progress of tacrolimus dosing in solid organ transplant recipients: Pharmacogenetic considerations. Biomed Pharmacother 2018; 102:107-114. [DOI: 10.1016/j.biopha.2018.03.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
|
41
|
Hu R, Barratt DT, Coller JK, Sallustio BC, Somogyi AA. CYP3A5*3
and ABCB1
61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation. Basic Clin Pharmacol Toxicol 2018; 123:320-326. [DOI: 10.1111/bcpt.13016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Hu
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
| | - Daniel T. Barratt
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
| | - Janet K. Coller
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
| | - Benedetta C. Sallustio
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
- Department of Pharmacology; Queen Elizabeth Hospital; Adelaide SA Australia
| | - Andrew A. Somogyi
- Discipline of Pharmacology; Adelaide Medical School; University of Adelaide; Adelaide SA Australia
- Department of Clinical Pharmacology; Royal Adelaide Hospital; Adelaide SA Australia
| |
Collapse
|
42
|
Kuypers DRJ. “What do we know about tacrolimus pharmacogenetics in transplant recipients?”. Pharmacogenomics 2018; 19:593-597. [DOI: 10.2217/pgs-2018-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dirk RJ Kuypers
- Department of Nephrology & Renal Transplantation, University Hospitals Leuven, Brabant, Belgium
- Department of Microbiology & Immunology, University of Leuven, Brabant, Belgium
| |
Collapse
|
43
|
Pasternak AL, Zhang L, Hertz DL. CYP3A pharmacogenetic association with tacrolimus pharmacokinetics differs based on route of drug administration. Pharmacogenomics 2018; 19:563-576. [DOI: 10.2217/pgs-2018-0003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tacrolimus is prescribed to the majority of transplant recipients to prevent graft rejection, and although patients are maintained on oral administration, nonoral routes of administration are frequently used in the initial post-transplant period. CYP3A5 genotype is an established predictor of oral tacrolimus dose requirements, and clinical guideline recommendations exist for CYP3A5-guided dose selection. However, the association between CYP3A5 and nonoral tacrolimus administration is currently poorly understood, and differs from the oral tacrolimus relationship. In addition to CYP3A5, other pharmacogenes associated with CYP3A activity, including CYP3A4, CYP3A7 and POR have also been identified as predictors of tacrolimus exposure. This review will describe the current understanding of the relationship between these pharmacogenes and tacrolimus pharmacokinetics after oral and nonoral administration.
Collapse
Affiliation(s)
- Amy L Pasternak
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Lu Zhang
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Madsen MJ, Bergmann TK, Brøsen K, Thiesson HC. The Pharmacogenetics of Tacrolimus in Corticosteroid-Sparse Pediatric and Adult Kidney Transplant Recipients. Drugs R D 2018; 17:279-286. [PMID: 28229376 PMCID: PMC5427048 DOI: 10.1007/s40268-017-0177-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Tacrolimus is a calcineurin inhibitor used as an immunosuppressant drug in solid organ transplantation, and is mainly metabolized by cytochrome P450 (CYP) 3A4 and CYP3A5. Studies have shown an association between the CYP3A5 genotype and tacrolimus dose-adjusted trough concentrations. Variants in the genes PPARA, POR and CYP3A4 have recently been shown to influence tacrolimus metabolism. Furthermore, pharmacokinetic interaction between corticosteroid treatment and tacrolimus has been shown. In the present study, we investigated a potential association between CYP3A5*3, PPARA c.209-1003G>A, POR*28 and CYP3A4*22 and dose-adjusted tacrolimus trough concentrations in a primarily corticosteroid-free (>85%) population of Danish pediatric and adult kidney transplant recipients. Methods Seventy-two patients receiving treatment with oral tacrolimus were genotyped using real-time polymerase chain reaction and Primer-Probe Detection. Tacrolimus trough concentrations, corresponding doses and covariates were retrospectively collected from the patients’ medical charts. Results It was confirmed that CYP3A5*1 wild-type carriers had lower median dose-adjusted tacrolimus trough concentrations compared with noncarriers. Adults had 56 and 77% lower trough concentrations at 6 weeks (p = 0.0003) and 1 year, respectively (p < 0.0017), and, similarly, children had 65 and 39% lower median concentrations, with p values of 0.006 and 0.011, respectively. No association was found for PPARA c.209-1003G>A, POR*28, or CYP3A4*22. An association between the PPARA c.209-1003G>A genotype and an increased number of infections with cytomegalovirus (CMV) within the first year was identified (p < 0.05). Only 29% of trough concentrations measured between 2 and 12 weeks post-transplantation were on target. Conclusion This study shows that the known association of the CYP3A5 genotype with tacrolimus dose-adjusted trough concentrations has the same impact in a corticosteroid-sparse population. The association between PPARA variance and infections with CMV will need further investigation. Electronic supplementary material The online version of this article (doi:10.1007/s40268-017-0177-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mads Juul Madsen
- Department of Nephrology, Odense University Hospital, J B WinslowsVej 19, 5000, Odense C, Denmark
| | - Troels K Bergmann
- Department of Clinical Chemistry and Pharmacology, Odense University Hospital, Odense, Denmark.
- Hospital Pharmacy, Hospital of South West Denmark, Esbjerg, Denmark.
| | - Kim Brøsen
- Department of Clinical Pharmacology and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Helle Charlotte Thiesson
- Department of Nephrology, Odense University Hospital, J B WinslowsVej 19, 5000, Odense C, Denmark
| |
Collapse
|
45
|
Population Pharmacokinetics of Prednisolone in Relation to Clinical Outcome in Children With Nephrotic Syndrome. Ther Drug Monit 2017; 38:534-45. [PMID: 27120177 DOI: 10.1097/ftd.0000000000000308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The relapse frequency in children with nephrotic syndrome (NS) is highly variable despite standardized prednisolone treatment regimens. Existing evidence on the relationship between prednisolone pharmacokinetics (PK) and clinical response in children with NS is scarce and limited. The aim of this study was to develop a pediatric popPK model for prednisolone based on our previous model based on healthy adults using salivary measurements in children with NS and to correlate clinical outcome with between-subject variability in prednisolone exposure. METHODS The pharmacokinetics of prednisolone in a well-defined, prospective cohort consisting of 104 children with NS while in remission was determined. Pharmacokinetic parameters were analyzed in relation to relapse patterns and side effects. Noninvasive salivary prednisolone measurements were performed using a sparse sampling strategy. A population pharmacokinetic approach was used to derive individual estimates of apparent clearance (CL/F) and apparent volume of distribution (V/F) from the salivary concentration-time curve, followed by calculation of the area under the curve (AUC) of free prednisolone. The individual free serum prednisolone exposure from prednisolone in saliva was derived from the salivary concentration-time curves. Genetic polymorphisms of CYP3A4, CYP3A5, ABCB1, NR1L2, and POR were explored in relation to between-subject variability of CL/F. RESULTS Moderate interindividual variability was found for CL/F (CV, 44.7%). Unexplained random between-subject variability (eta) of CL/F was lower in patients carrying 1 or 2 ABCB1 3435C>T alleles compared to wild type: median -0.04 (interquartile range, -0.17 to 0.21) and 0.00 (-0.11 to 0.16) versus 0.17 (-0.08 to 0.47), P = 0.046. Exposure to free prednisolone was not associated with frequent relapses or adverse effects. CONCLUSIONS This study provides evidence for the possibility of prednisolone drug monitoring through salivary measurements and this may be of particular usefulness in pediatric patients. However, the observed variability in prednisolone exposure, in the therapeutic dose range studied, is not considered to be a major determinant of clinical outcome in children with NS.
Collapse
|
46
|
Elens L, Haufroid V. Genotype-based tacrolimus dosing guidelines: with or without CYP3A4*22? Pharmacogenomics 2017; 18:1473-1480. [DOI: 10.2217/pgs-2017-0131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: To test the relevance of revisiting the genotype classification based on CYP3A5*3 solely by incorporating CYP3A4*22 information. Methods: Discriminant analysis of principal component was performed to evaluate the relevance of either the CYP3A (CYP3A5 + CYP3A4 genotypes) or CYP3A5*3 classification variables. This analysis was based on a linear combination of noncompartmental pharmacokinetics parameters. Results: Discriminant analysis of principal component gave better results with CYP3A compared with CYP3A5*3 clustering. The centroid means of the pharmacokinetics variables were significantly different with CYP3A genotype clustering (p = 0.04) but not with CYP3A5*3 solely (p = 0.06). Canonical plots reveal a better delimitation of clusters with CYP3A genotype compared with CYP3A5*3 and the reciever operating characteristic curves confirm this better discriminative power. Conclusion: We provide strong arguments of incorporating CYP3A4*22 genotype in practice to fine-tune the existing Clinical Phamacogenetics Implementation Consortium guidelines in the Caucasian population.
Collapse
Affiliation(s)
- Laure Elens
- Department of Integrated PharmacoMetrics, PharmacoGenomics & PharmacoKinetics, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Louvain Centre for Toxicology & Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology & Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Clinical Chemistry, Cliniques Universitaires St Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
47
|
Polymorphisms in cytochrome P450 oxidoreductase and its effect on drug metabolism and efficacy. Pharmacogenet Genomics 2017; 27:337-346. [DOI: 10.1097/fpc.0000000000000297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Tong HY, Borobia AM, Martínez Ávila JC, Lubomirov R, Muñoz M, Blanco Bañares MJ, Hernández R, Fernández Capitán C, Ramírez E, Frías J, Carcas AJ. Influence of two variants of CYP450 oxidoreductase on the stable dose of acenocoumarol in a Spanish population. Pharmacogenomics 2017; 18:797-805. [PMID: 28592191 DOI: 10.2217/pgs-2017-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIM To evaluate the influence of two variants of P450 oxidoreductase (POR), rs2868177 and POR*28, on the stable dosage of acenocoumarol. PATIENTS & METHODS For this observational, cross-sectional study, patients were undergone stable anticoagulant treatment with acenocoumarol. Univariate and multiple regression analyses were performed to assess the influence of POR polymorphisms. RESULTS About 340 patients were enrolled. Multiple regression had a coefficient of determination (R2) of 51.5% and an Akaike information criterion of 234.22. The inclusion of POR*28 polymorphisms increased the R2 to 52.0% and reduced the Akaike information criteria to 230.58. The POR*28 heterozygote showed statistical significance in the algorithm. CONCLUSION The POR*28 heterozygote appears to be associated with the stable dose of acenocoumarol, but its clinical contribution to the prediction of the dosing of this drug is minimal.
Collapse
Affiliation(s)
- Hoi Y Tong
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | | | - Rubin Lubomirov
- Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | - Mario Muñoz
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | | | - Rafael Hernández
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | | | - Elena Ramírez
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | - Jesús Frías
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | - Antonio J Carcas
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| |
Collapse
|
49
|
Pharmacogénétique des immunosuppresseurs : état des connaissances et des pratiques – recommandations du Réseau national de pharmacogénétique (RNPGx). Therapie 2017; 72:269-284. [DOI: 10.1016/j.therap.2016.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
|
50
|
Pharmacogenetics of posttransplant diabetes mellitus. THE PHARMACOGENOMICS JOURNAL 2017; 17:209-221. [DOI: 10.1038/tpj.2017.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/04/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
|