1
|
Rzepecka IK, Tysarowski A, Konopka B, Dansonka-Mieszkowska A, Kupryjanczyk J. High Frequency of PIK3R1 Alterations in Ovarian Cancers: Clinicopathological and Molecular Associations. Cancers (Basel) 2025; 17:269. [PMID: 39858051 PMCID: PMC11764438 DOI: 10.3390/cancers17020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The phosphoinositide 3-kinase (PI3K) pathway is activated in multiple cancers. However, the significance of PIK3R1 encoding the PI3K regulatory subunit, an inhibitor of the PI3K catalytic subunit encoded by PIK3CA, in ovarian cancer development is largely unknown. METHODS Here, we investigated PIK3R1 genomic alterations and gene expression by direct sequencing and qPCR methods in 197 ovarian cancers. The results were correlated with clinicopathological and molecular variables and patient outcomes. RESULTS In addition to mutations (3.5%) and allelic losses (28.4%), we observed a very high frequency of decreased PIK3R1 mRNA levels in ovarian carcinomas (95.8%). Tumors with PIK3R1 mutations mostly represented low-stage cancers of endometrioid and clear-cell type. Tumors with PIK3R1 deletion and underexpression shared similar phenotypes of high-grade carcinomas (p = 0.003 and p = 0.025, respectively). Allelic loss was also associated with advanced stages (p = 0.003) and high-grade serous histotypes (p = 0.004). The PIK3R1 copy number correlated with mRNA levels (p = 0.009). PIK3R1 mutations coexisted with PTEN mutations (p = 0.041), whereas PIK3R1 deletion and underexpression were linked to PIK3CA amplification (p = 0.038 and p = 0.033, respectively). Low PIK3R1 expression diminished the probability of a complete response (OR 0.07, p = 0.03) in patients treated with platinum-based regimens. CONCLUSIONS PIK3R1 alterations may contribute to the development of ovarian cancers with different malignant potential and molecular changes. The high frequency of PIK3R1 aberrations suggests their importance in PI3K pathway deregulation, and they may potentially serve as an alternative to PIK3CA markers for therapy with these pathway inhibitors.
Collapse
Affiliation(s)
- Iwona K. Rzepecka
- Cancer Molecular and Genetic Diagnostics Department, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.T.); (B.K.); (A.D.-M.)
| | - Andrzej Tysarowski
- Cancer Molecular and Genetic Diagnostics Department, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.T.); (B.K.); (A.D.-M.)
| | - Bozena Konopka
- Cancer Molecular and Genetic Diagnostics Department, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.T.); (B.K.); (A.D.-M.)
| | - Agnieszka Dansonka-Mieszkowska
- Cancer Molecular and Genetic Diagnostics Department, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.T.); (B.K.); (A.D.-M.)
| | - Jolanta Kupryjanczyk
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
2
|
Sheng Z, Beck P, Gabby M, Habte-Mariam S, Mitkos K. Molecular Basis of Oncogenic PI3K Proteins. Cancers (Basel) 2024; 17:77. [PMID: 39796708 PMCID: PMC11720314 DOI: 10.3390/cancers17010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The dysregulation of phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in driving neoplastic transformation by promoting uncontrolled cell survival and proliferation. This oncogenic activity is primarily caused by mutations that are frequently found in PI3K genes and constitutively activate the PI3K signaling pathway. However, tumorigenesis can also arise from nonmutated PI3K proteins adopting unique active conformations, further complicating the understanding of PI3K-driven cancers. Recent structural studies have illuminated the functional divergence among highly homologous PI3K proteins, revealing how subtle structural alterations significantly impact their activity and contribute to tumorigenesis. In this review, we summarize current knowledge of Class I PI3K proteins and aim to unravel the complex mechanism underlying their oncogenic traits. These insights will not only enhance our understanding of PI3K-mediated oncogenesis but also pave the way for the design of novel PI3K-based therapies to combat cancers driven by this signaling pathway.
Collapse
Affiliation(s)
- Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Faculty of Health Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Patrick Beck
- Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maegan Gabby
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | | | - Katherine Mitkos
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| |
Collapse
|
3
|
Li TT, Bai HY, Zhang JH, Kang XH, Qu YQ. Identification and Validation of Aging Related Genes Signature in Chronic Obstructive Pulmonary Disease. COPD 2024; 21:2379811. [PMID: 39138958 DOI: 10.1080/15412555.2024.2379811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE Chronic Obstructive Pulmonary Disease (COPD) is regarded as an accelerated aging disease. Aging-related genes in COPD are still poorly understood. METHOD Data set GSE76925 was obtained from the Gene Expression Omnibus (GEO) database. The "limma" package identified the differentially expressed genes. The weighted gene co-expression network analysis (WGCNA) constructes co-expression modules and detect COPD-related modules. The least absolute shrinkage and selection operator (LASSO) and the support vector machine recursive feature elimination (SVM-RFE) algorithms were chosen to identify the hub genes and the diagnostic ability. Three external datasets were used to identify differences in the expression of hub genes. Real-time reverse transcription polymerase chain reaction (RT-qPCR) was used to verify the expression of hub genes. RESULT We identified 15 differentially expressed genes associated with aging (ARDEGs). The SVM-RFE and LASSO algorithms pinpointed four potential diagnostic biomarkers. Analysis of external datasets confirmed significant differences in PIK3R1 expression. RT-qPCR results indicated decreased expression of hub genes. The ROC curve demonstrated that PIK3R1 exhibited strong diagnostic capability for COPD. CONCLUSION We identified 15 differentially expressed genes associated with aging. Among them, PIK3R1 showed differences in external data sets and RT-qPCR results. Therefore, PIK3R1 may play an essential role in regulating aging involved in COPD.
Collapse
Affiliation(s)
- Tian-Tian Li
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Hong-Yan Bai
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Hong Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-He Kang
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Abrego-Guandique DM, Galmés S, García-Rodríguez A, Cannataro R, Caroleo MC, Ribot J, Bonet ML, Cione E. β-Carotene Impacts the Liver MicroRNA Profile in a Sex-Specific Manner in Mouse Offspring of Western Diet-Fed Mothers: Results from Microarray Analysis by Direct Hybridization. Int J Mol Sci 2024; 25:12899. [PMID: 39684610 DOI: 10.3390/ijms252312899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Maternal unbalanced diets cause adverse metabolic programming and affect the offspring's liver microRNA (miRNA) profile. The liver is a site of β-carotene (BC) metabolism and a target of BC action. We studied the interaction of maternal Western diet (WD) and early-life BC supplementation on the epigenetic remodeling of offspring's liver microRNAs. Mouse offspring of WD-fed mothers were given a daily placebo (controls) or BC during suckling. Biometric parameters and liver miRNAome by microarray hybridization were analyzed in newly weaned animals. BC sex-dependently impacted the liver triacylglycerol content. The liver miRNAome was also differently affected in male and female offspring, with no overlap in differentially expressed (DE) miRNAs between sexes and more impact in females. Bioinformatic analysis of DE miRNA predicted target genes revealed enrichment in biological processes/pathways related to metabolic processes, regulation of developmental growth and circadian rhythm, liver homeostasis and metabolism, insulin resistance, and neurodegeneration, among others, with differences between sexes. Fifty-five percent of the overlapping target genes in both sexes identified were targeted by DE miRNAs changed in opposite directions in males and females. The results identify sex-dependent responses of the liver miRNA expression profile to BC supplementation during suckling and may sustain further investigations regarding the long-term impact of early postnatal life BC supplementation on top of an unbalanced maternal diet.
Collapse
Affiliation(s)
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adrián García-Rodríguez
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Erika Cione
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
5
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Shukla M, Sarkar RR. Differential cellular communication in tumor immune microenvironment during early and advanced stages of lung adenocarcinoma. Mol Genet Genomics 2024; 299:100. [PMID: 39460829 DOI: 10.1007/s00438-024-02193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Heterogeneous behavior of each cell type and their cross-talks in tumor immune microenvironment (TIME) refers to tumor immunological heterogeneity that emerges during tumor progression and represents formidable challenges for effective anti-tumor immune response and promotes drug resistance. To comprehensively elucidate the heterogeneous behavior of individual cell types and their interactions across different stages of tumor development at system level, a computational framework was devised that integrates cell specific data from single-cell RNASeq into networks illustrating interactions among signaling and metabolic response genes within and between cells in TIME. This study identified stage specific novel markers which remodel the cross-talks, thereby facilitating immune stimulation. Particularly, multicellular knockout of metabolic gene APOE (Apolipoprotein E in mast cell, myeloid cell and fibroblast) combined with signaling gene CAV1 (Caveolin1 in endothelial and epithelial cells) resulted in the activation of T-cell mediated signaling pathways. Additionally, this knockout also initiated intervention of cytotoxic gene regulations during tumor immune cell interactions at the early stage of Lung Adenocarcinoma (LUAD). Furthermore, a unique interaction motif from multiple cells emerged significant in regulating the overall immune response at the advanced stage of LUAD. Most significantly, FCER1G (Fc Fragment of IgE Receptor Ig) was identified as the common regulator in activating the anti-tumor immune response at both stages. Predicted markers exhibited significant association with patient overall survival in patient specific dataset. This study uncovers the significance of signaling and metabolic interplay within TIME and discovers important targets to enhance anti-tumor immune response at each stage of tumor development.
Collapse
Affiliation(s)
- Mudita Shukla
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Jang B, Yoon D, Lee JY, Kim J, Hong J, Koo H, Sa JK. Integrative multi-omics characterization reveals sex differences in glioblastoma. Biol Sex Differ 2024; 15:23. [PMID: 38491408 PMCID: PMC10943869 DOI: 10.1186/s13293-024-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults, with limited treatment modalities and poor prognosis. Recent studies have highlighted the importance of considering sex differences in cancer incidence, prognosis, molecular disparities, and treatment outcomes across various tumor types, including colorectal adenocarcinoma, lung adenocarcinoma, and GBM. METHODS We performed comprehensive analyses of large-scale multi-omics data (genomic, transcriptomic, and proteomic data) from TCGA, GLASS, and CPTAC to investigate the genetic and molecular determinants that contribute to the unique clinical properties of male and female GBM patients. RESULTS Our results revealed several key differences, including enrichments of MGMT promoter methylation, which correlated with increased overall and post-recurrence survival and improved response to chemotherapy in female patients. Moreover, female GBM exhibited a higher degree of genomic instability, including aneuploidy and tumor mutational burden. Integrative proteomic and phosphor-proteomic characterization uncovered sex-specific protein abundance and phosphorylation activities, including EGFR activation in males and SPP1 hyperphosphorylation in female patients. Lastly, the identified sex-specific biomarkers demonstrated prognostic significance, suggesting their potential as therapeutic targets. CONCLUSIONS Collectively, our study provides unprecedented insights into the fundamental modulators of tumor progression and clinical outcomes between male and female GBM patients and facilitates sex-specific treatment interventions. Highlights Female GBM patients were characterized by increased MGMT promoter methylation and favorable clinical outcomes compared to male patients. Female GBMs exhibited higher levels of genomic instability, including aneuploidy and TMB. Each sex-specific GBM is characterized by unique pathway dysregulations and molecular subtypes. EGFR activation is prevalent in male patients, while female patients are marked by SPP1 hyperphosphorylation.
Collapse
Affiliation(s)
- Byunghyun Jang
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Dayoung Yoon
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Ji Yoon Lee
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jiwon Kim
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jisoo Hong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Harim Koo
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea
- Department of Clinical Research, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Jason K Sa
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
8
|
Inoue F, Sone K, Kumegawa K, Hachijo R, Suzuki E, Tanimoto S, Tsuboyama N, Kato K, Toyohara Y, Takahashi Y, Kusakabe M, Kukita A, Honjoh H, Nishijima A, Taguchi A, Miyamoto Y, Tanikawa M, Iriyama T, Mori M, Wada-Hiraike O, Oda K, Suzuki H, Maruyama R, Osuga Y. Inhibition of protein arginine methyltransferase 6 activates interferon signaling and induces the apoptosis of endometrial cancer cells via histone modification. Int J Oncol 2024; 64:32. [PMID: 38299254 PMCID: PMC10836505 DOI: 10.3892/ijo.2024.5620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 10/10/2023] [Indexed: 02/02/2024] Open
Abstract
Histone modification, a major epigenetic mechanism regulating gene expression through chromatin remodeling, introduces dynamic changes in chromatin architecture. Protein arginine methyltransferase 6 (PRMT6) is overexpressed in various types of cancer, including prostate, lung and endometrial cancer (EC). Epigenome regulates the expression of endogenous retrovirus (ERV), which activates interferon signaling related to cancer. The antitumor effects of PRMT6 inhibition and the role of PRMT6 in EC were investigated, using epigenome multi‑omics analysis, including an assay for chromatin immunoprecipitation sequencing (ChIP‑seq) and RNA sequencing (RNA‑seq). The expression of PRMT6 in EC was analyzed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and immunohistochemistry (IHC). The prognostic impact of PRMT6 expression was evaluated using IHC. The effects of PRMT6‑knockdown (KD) were investigated using cell viability and apoptosis assays, as well as its effects on the epigenome, using ChIP‑seq of H3K27ac antibodies and RNA‑seq. Finally, the downstream targets identified by multi‑omics analysis were evaluated. PRMT6 was overexpressed in EC and associated with a poor prognosis. PRMT6‑KD induced histone hypomethylation, while suppressing cell growth and apoptosis. ChIP‑seq revealed that PRMT6 regulated genomic regions related to interferons and apoptosis through histone modifications. The RNA‑seq data demonstrated altered interferon‑related pathways and increased expression of tumor suppressor genes, including NK6 homeobox 1 and phosphoinositide‑3‑kinase regulatory subunit 1, following PRMT6‑KD. RT‑qPCR revealed that eight ERV genes which activated interferon signaling were upregulated by PRMT6‑KD. The data of the present study suggested that PRMT6 inhibition induced apoptosis through interferon signaling activated by ERV. PRMT6 regulated tumor suppressor genes and may be a novel therapeutic target, to the best of our knowledge, in EC.
Collapse
Affiliation(s)
- Futaba Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Ryuta Hachijo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eri Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Saki Tanimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Natsumi Tsuboyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kosuke Kato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yu Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Misako Kusakabe
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Asako Kukita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Harunori Honjoh
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Akira Nishijima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mayuyo Mori
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
9
|
Tsay A, Wang JC. The Role of PIK3R1 in Metabolic Function and Insulin Sensitivity. Int J Mol Sci 2023; 24:12665. [PMID: 37628845 PMCID: PMC10454413 DOI: 10.3390/ijms241612665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
PIK3R1 (also known as p85α) is a regulatory subunit of phosphoinositide 3-kinases (PI3Ks). PI3K, a heterodimer of a regulatory subunit and a catalytic subunit, phosphorylates phosphatidylinositol into secondary signaling molecules involved in regulating metabolic homeostasis. PI3K converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3), which recruits protein kinase AKT to the inner leaflet of the cell membrane to be activated and to participate in various metabolic functions. PIK3R1 stabilizes and inhibits p110 catalytic activity and serves as an adaptor to interact with insulin receptor substrate (IRS) proteins and growth factor receptors. Thus, mutations in PIK3R1 or altered expression of PIK3R1 could modulate the activity of PI3K and result in significant metabolic outcomes. Interestingly, recent studies also found PI3K-independent functions of PIK3R1. Overall, in this article, we will provide an updated review of the metabolic functions of PIK3R1 that includes studies of PIK3R1 in various metabolic tissues using animal models, the mechanisms modulating PIK3R1 activity, and studies on the mutations of human PIK3R1 gene.
Collapse
Affiliation(s)
- Ariel Tsay
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA;
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jen-Chywan Wang
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA;
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Bardwell AJ, Paul M, Yoneda KC, Andrade-Ludeña MD, Nguyen OT, Fruman DA, Bardwell L. The WW domain of IQGAP1 binds directly to the p110α catalytic subunit of PI 3-kinase. Biochem J 2023; 480:BCJ20220493. [PMID: 37145016 PMCID: PMC10625650 DOI: 10.1042/bcj20220493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/06/2023]
Abstract
IQGAP1 is a multi-domain cancer-associated protein that serves as a scaffold protein for multiple signaling pathways. Numerous binding partners have been found for the calponin homology, IQ and GAP-related domains in IQGAP1. Identification of a binding partner for its WW domain has proven elusive, however, even though a cell-penetrating peptide derived from this domain has marked anti-tumor activity. Here, using in vitro binding assays with human proteins and co-precipitation from human cells, we show that the WW domain of human IQGAP1 binds directly to the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K). In contrast, the WW domain does not bind to ERK1/2, MEK1/2, or the p85α regulatory subunit of PI3K when p85α is expressed alone. However, the WW domain is able to bind to the p110α/p85α heterodimer when both subunits are co-expressed, as well as to the mutationally activated p110α/p65α heterodimer. We present a model of the structure of the IQGAP1 WW domain, and experimentally identify key residues in the hydrophobic core and beta strands of the WW domain that are required for binding to p110α. These findings contribute to a more precise understanding of IQGAP1-mediated scaffolding, and of how IQGAP1-derived therapeutic peptides might inhibit tumorigenesis.
Collapse
Affiliation(s)
- A. Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - Madhuri Paul
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Kiku C. Yoneda
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | | | - Oanh T. Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| |
Collapse
|
11
|
Tharin Z, Richard C, Derangère V, Ilie A, Arnould L, Ghiringhelli F, Boidot R, Ladoire S. PIK3CA and PIK3R1 tumor mutational landscape in a pan-cancer patient cohort and its association with pathway activation and treatment efficacy. Sci Rep 2023; 13:4467. [PMID: 36934165 PMCID: PMC10024711 DOI: 10.1038/s41598-023-31593-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
There is little data concerning the implications of PIK3CA mutations outside of the known hotspots described in ER+/HER2- metastatic breast cancer (mBC). Similarly, PIK3R1 mutations could also lead to activation of PI3K pathway, but are poorly described. We determined the incidence and type of all somatic PIK3CA and PIK3R1 mutations by whole exome sequencing (WES) in a pan-cancer cohort of 1200 patients. Activation of the PI3K pathway was studied using phospho-AKT immunohistochemistry. Associations between PIK3CA/PIK3R1 mutations and response to chemotherapy were studied in mBC cases. We found 141 patients (11.8%) with a PIK3CA and/or PIK3R1 mutation across 20 different cancer types. The main cancer subtype was mBC (45.4%). Eighty-four mutations (62.2%) occurred in the three described hotspots; 51 mutations occurred outside of these hotspots. In total, 78.4% were considered activating or probably activating. Among PIK3R1 mutations, 20% were loss of function mutations, leading to a constitutional activation of the pathway. Phospho-AKT quantification in tumor samples was in favor of activation of the PI3K pathway in the majority of mutated tumors, regardless of mutation type. In ER+/HER2- mBC, first line chemotherapy efficacy was similar for PIK3CA-mutated and PIK3CA-WT tumors, whereas in triple negative mBC, chemotherapy appeared to be more effective in PIK3CA-WT tumors. In this large, real-life pan-cancer patient cohort, our results indicate that PIK3CA/PIK3R1 mutations are widely spread, and plead in favour of evaluating the efficacy of PI3K inhibitors outside of ER+/HER2- mBC and outside of hotspot mutations.
Collapse
Affiliation(s)
- Zoé Tharin
- Department of Medical Oncology, Centre Georges François Leclerc-UNICANCER, 1 Rue du Professeur Marion, 21000, Dijon, France
| | - Corentin Richard
- Department of Pathology and Tumor Biology, Centre Georges François Leclerc, Dijon, France
| | - Valentin Derangère
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Alis Ilie
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Laurent Arnould
- Department of Pathology and Tumor Biology, Centre Georges François Leclerc, Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges François Leclerc-UNICANCER, 1 Rue du Professeur Marion, 21000, Dijon, France
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Romain Boidot
- Department of Pathology and Tumor Biology, Centre Georges François Leclerc, Dijon, France
- ICMUB UMR CNRS 6302, Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Centre Georges François Leclerc-UNICANCER, 1 Rue du Professeur Marion, 21000, Dijon, France.
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France.
- University of Burgundy-Franche Comté, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France.
| |
Collapse
|
12
|
Ma C, Gu Y, Liu C, Tang X, Yu J, Li D, Liu J. Anti-cervical cancer effects of Compound Yangshe granule through the PI3K/AKT pathway based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115820. [PMID: 36220511 DOI: 10.1016/j.jep.2022.115820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Yangshe granule is a characteristic Chinese preparation against cervical cancer used at Fudan University Shanghai Cancer Center, and it consists of Hedyotis Diffusae Herba, Solani Lyrati Herba, Rubiae Radix et Rhizoma, Echinopsis Radix, Angelicae Sinensis Radix, Codonopsis Radix and Atractylodis Macrocephalae Rhizoma. AIM OF THE STUDY The objective of the current study was to investigate the preclinical efficacy of compound Yangshe granule against cervical cancer and elucidate the underlying mechanisms. MATERIALS AND METHODS Antitumor effect of the preparation was investigated in U14 cells in vitro and subcutaneous xenograft mice in vivo. The underlying mechanisms were investigated by through network pharmacological analysis and identified by in vitro study. The components of compound Yangshe granule were collected from the Traditional Chinese Medicine Systems Pharmacology database, and the corresponding targets were predicted by the SwissTargetPrediction database. The targets involved in cervical cancer were collected from the GeneCards, Online Mendelian Inheritance in Man and DrugBank databases. A protein‒protein interaction network was constructed by using the String platform. The drug-disease-target network was plotted by Cytoscape software. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses were performed to investigate hub targets. RESULTS After treatment with 0.5-10 mg/mL compound Yangshe granule, the survival rates of U14 cells gradually declined to 53.32% for 24 h, 23.62% for 48 h, and 12.81% for 72 h. The apoptosis rates of U14 cells gradually increased to 15.52% for 24 h, 23.87% for 48 h, and 65.01% for 72 h after treatment with 2-10 mg/mL compound Yangshe granule. After oral administration of compound Yangshe granule by xenograft mice, the tumor inhibition rates reached 52.27%, 74.62%, and 82.70% in the low, middle, and high dose groups, respectively. According to the network pharmacological analysis, quercetin, luteolin and naringenin were the most bioactive ingredients of the preparation. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that compound Yangshe granule may combat cervical cancer through the PI3K/AKT pathway. CONCLUSION In summary, network pharmacology combined with biological experiments demonstrated that the main bioactive components including quercetin, luteolin and naringenin could inhibit the tumor growth by regulating the PI3K/AKT pathway and Bcl-2 family. Thus, compound Yangshe granule may be a promising adjuvant therapy for cervical cancer.
Collapse
Affiliation(s)
- Chao Ma
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chang Liu
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianchao Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
13
|
Sirico M, D’Angelo A, Gianni C, Casadei C, Merloni F, De Giorgi U. Current State and Future Challenges for PI3K Inhibitors in Cancer Therapy. Cancers (Basel) 2023; 15:703. [PMID: 36765661 PMCID: PMC9913212 DOI: 10.3390/cancers15030703] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The phosphoinositide 3 kinase (PI3K)-protein kinase B (PKB/AKT)-mammalian target of the rapamycin (mTOR) axis is a key signal transduction system that links oncogenes and multiple receptor classes which are involved in many essential cellular functions. Aberrant PI3K signalling is one of the most commonly mutated pathways in cancer. Consequently, more than 40 compounds targeting key components of this signalling network have been tested in clinical trials among various types of cancer. As the oncogenic activation of the PI3K/AKT/mTOR pathway often occurs alongside mutations in other signalling networks, combination therapy should be considered. In this review, we highlight recent advances in the knowledge of the PI3K pathway and discuss the current state and future challenges of targeting this pathway in clinical practice.
Collapse
Affiliation(s)
- Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alberto D’Angelo
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
- Department of Oncology, Royal United Hospital, Bath BA1 3NG, UK
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
14
|
Zaman R, Islam RA, Chowdhury EH. Evolving therapeutic proteins to precisely kill cancer cells. J Control Release 2022; 351:779-804. [DOI: 10.1016/j.jconrel.2022.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
15
|
Choudhury AD. PTEN-PI3K pathway alterations in advanced prostate cancer and clinical implications. Prostate 2022; 82 Suppl 1:S60-S72. [PMID: 35657152 DOI: 10.1002/pros.24372] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/21/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite significant advances in molecular characterization and therapeutic targeting of advanced prostate cancer, it remains the second most common cause of cancer death in men in the United States. The PI3K (Phosphatidylinositol 3-kinase)/AKT (AKT serine/threonine kinase)/mTOR (mammalian target of rapamycin) signaling pathway is commonly altered in prostate cancer, most frequently through loss of the PTEN (Phosphatase and Tensin Homolog) tumor suppressor, and is critical for cancer cell proliferation, migration, and survival. METHODS This study summarizes signaling through the PTEN/PI3K pathway, alterations in pathway components commonly seen in advanced prostate cancer, and results of clinical trials of pathway inhibitors reported to date with a focus on more recently reported studies. It also reviews rationale for combination approaches currently under study, including with taxanes, immune checkpoint inhibitors and poly (ADP-ribose) polymerase inhibitors, and discusses future directions in biomarker testing and therapeutic targeting of this pathway. RESULTS Clinical trials studying pharmacologic inhibitors of PI3K, AKT or mTOR kinases have demonstrated modest activity of specific agents, with several trials of pathway inhibitors currently in progress. A key challenge is the importance of PI3K/AKT/mTOR signaling in noncancerous tissues, leading to predictable but often severe toxicities at therapeutic doses. RESULTS Further advances in selective pharmacologic inhibition of the PI3K/AKT/mTOR pathway in tumors, development of rational combinations, and appropriate biomarker selection to identify the appropriate tumor- and patient-specific vulnerabilities will be required to optimize clinical benefit from therapeutic targeting of this pathway.
Collapse
Affiliation(s)
- Atish D Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Hu Y, Wang L, Zhong M, Zhao W, Wang Y, Song J, Zhang Y. Comprehensive profiling and characterization of cellular microRNAs in response to coxsackievirus A10 infection in bronchial epithelial cells. Virol J 2022; 19:120. [PMID: 35864512 PMCID: PMC9302563 DOI: 10.1186/s12985-022-01852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Coxsackievirus A10 (CV-A10), the causative agent of hand, foot, and mouth disease (HFMD), caused a series of outbreaks in recent years and often leads to neurological impairment, but a clear understanding of the disease pathogenesis and host response remains elusive. Cellular microRNAs (miRNAs), a large family of non-coding RNA molecules, have been reported to be key regulators in viral pathogenesis and virus-host interactions. However, the role of host cellular miRNAs defensing against CV-A10 infection is still obscure. To address this issue, we systematically analyzed miRNA expression profiles in CV-A10-infected 16HBE cells by high-throughput sequencing methods in this study. It allowed us to successfully identify 312 and 278 miRNAs with differential expression at 12 h and 24 h post-CV-A10 infection, respectively. Among these, 4 miRNAs and their target genes were analyzed by RT-qPCR, which confirmed the sequencing data. Gene target prediction and enrichment analysis revealed that the predicted targets of these miRNAs were significantly enriched in numerous cellular processes, especially in regulation of basic physical process, host immune response and neurological impairment. And the integrated network was built to further indicate the regulatory roles of miRNAs in host-CV-A10 interactions. Consequently, our findings could provide a beneficial basis for further studies on the regulatory roles of miRNAs relevant to the host immune responses and neuropathogenesis caused by CV-A10 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lan Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Mingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Zhao
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yujue Wang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China. .,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
17
|
Rahiminejad S, Maurya MR, Mukund K, Subramaniam S. Modular and mechanistic changes across stages of colorectal cancer. BMC Cancer 2022; 22:436. [PMID: 35448980 PMCID: PMC9022252 DOI: 10.1186/s12885-022-09479-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND While mechanisms contributing to the progression and metastasis of colorectal cancer (CRC) are well studied, cancer stage-specific mechanisms have been less comprehensively explored. This is the focus of this manuscript. METHODS Using previously published data for CRC (Gene Expression Omnibus ID GSE21510), we identified differentially expressed genes (DEGs) across four stages of the disease. We then generated unweighted and weighted correlation networks for each of the stages. Communities within these networks were detected using the Louvain algorithm and topologically and functionally compared across stages using the normalized mutual information (NMI) metric and pathway enrichment analysis, respectively. We also used Short Time-series Expression Miner (STEM) algorithm to detect potential biomarkers having a role in CRC. RESULTS Sixteen Thousand Sixty Two DEGs were identified between various stages (p-value ≤ 0.05). Comparing communities of different stages revealed that neighboring stages were more similar to each other than non-neighboring stages, at both topological and functional levels. A functional analysis of 24 cancer-related pathways indicated that several signaling pathways were enriched across all stages. However, the stage-unique networks were distinctly enriched only for a subset of these 24 pathways (e.g., MAPK signaling pathway in stages I-III and Notch signaling pathway in stages III and IV). We identified potential biomarkers, including HOXB8 and WNT2 with increasing, and MTUS1 and SFRP2 with decreasing trends from stages I to IV. Extracting subnetworks of 10 cancer-relevant genes and their interacting first neighbors (162 genes in total) revealed that the connectivity patterns for these genes were different across stages. For example, BRAF and CDK4, members of the Ser/Thr kinase, up-regulated in cancer, displayed changing connectivity patterns from stages I to IV. CONCLUSIONS Here, we report molecular and modular networks for various stages of CRC, providing a pseudo-temporal view of the mechanistic changes associated with the disease. Our analysis highlighted similarities at both functional and topological levels, across stages. We further identified stage-specific mechanisms and biomarkers potentially contributing to the progression of CRC.
Collapse
Affiliation(s)
- Sara Rahiminejad
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Mano R Maurya
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Kavitha Mukund
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Pan-cancer analysis on the role of PIK3R1 and PIK3R2 in human tumors. Sci Rep 2022; 12:5924. [PMID: 35395865 PMCID: PMC8993854 DOI: 10.1038/s41598-022-09889-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1) is believed to function as a tumor suppressor, while Phosphoinositide-3-Kinase Regulatory Subunit 2 (PIK3R2) as a tumor driver. However, there is no systematic pan-cancer analysis of them. The pan-cancer study comprehensively investigated the gene expression, genetic alteration, DNA methylation, and prognostic significance of PIK3R1 and PIK3R2 in 33 different tumors based on the TIMER, GEPIA, UALCAN, HPA, cBioPortal, and Kaplan-Meier Plotter database. The results indicated that PIK3R1 is lowly expressed in most tumors while PIK3R2 is highly expressed in most tumors, and abnormal gene expression may be related to promoter methylation. Moreover, not only mutations, downregulation of PIK3R1 and upregulation of PIK3R2 were found to be detrimental to the survival of most cancer patients as well. Furthermore, the expression of both PIK3R1 and PIK3R2 was associated with the level of immune infiltration in multiple tumors, such as breast invasive carcinoma. Our study conducted a comparatively comprehensive analysis of the role of PIK3R1 and PIK3R2 in a variety of cancers, contributing to further study of their potential mechanisms in cancer occurrence and progression. Our findings suggested that PIK3R1 and PIK3R2 could serve as prognostic markers for several cancers.
Collapse
|
19
|
Wang K, Hu Y, Xu L, Zhao S, Song C, Sun S, Li X, Li M. A novel mutant PIK3R1 EY451delinsD breast cancer patient resistant to HER2-targeted therapy treated with everolimus: a case report. Mol Biol Rep 2022; 49:6155-6160. [PMID: 35384625 DOI: 10.1007/s11033-022-07407-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Resistance to HER2-targeted therapy is a critical issue in breast cancer that must be addressed immediately. PIK3R1 mutations are more common in Chinese breast cancer patients (17%, 25/147, Fudan University Shanghai Cancer Center FUSCC vs. 1.8%, 87/4602, TCGA all breast cancer studies). However, very limited information is available on the relationship between PIK3R1 mutation status and resistance to HER2-targeted therapies in patients with HER2-positive breast cancer. CASE REPORT We present a case of a HER2-positive advanced breast cancer patient with the PIK3R1EY451delinsD mutation who developed resistance to HER2-targeted therapy and had a better response to everolimus combined with trastuzumab and carboplatin. CONCLUSIONS To the best of our knowledge, this is the first study to show that the PIK3R1EY451delinsD mutation confers resistance to anti-HER2 therapy in breast cancer and that combining with everolimus treatment may overcome this resistance mechanism. We hypothesize that the PIK3R1EY451delinsD mutation is associated with the resistance to anti-HER2 therapy, and that this mutation merits further investigation as a clinical biomarker and therapeutic target.
Collapse
Affiliation(s)
- Kainan Wang
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Ye Hu
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Lingzhi Xu
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Shanshan Zhao
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Chen Song
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Siwen Sun
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Xuelu Li
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China.
| | - Man Li
- Department of Oncology & Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China.
| |
Collapse
|
20
|
Reckoning apigenin and kaempferol as a potential multi-targeted inhibitor of EGFR/HER2-MEK pathway of metastatic colorectal cancer identified using rigorous computational workflow. Mol Divers 2022; 26:3337-3356. [PMID: 35147860 DOI: 10.1007/s11030-022-10396-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Abstract
In the past two decades, the treatment of metastatic colorectal cancer (mCRC) has been revolutionized as multiple cytotoxic, biological, and targeted drugs are being approved. Unfortunately, tumors treated with single targeted agents or therapeutics usually develop resistance. According to pathway-oriented screens, mCRC cells evade EGFR inhibition by HER2 amplification and/or activating Kras-MEK downstream signaling. Therefore, treating mCRC patients with dual EGFR/HER2 inhibitors, MEK inhibitors, or the combination of the two drugs envisaged to prevent the resistance development which eventually improves the overall survival rate. In the present study, we aimed to screen potential phytochemical lead compounds that could multi-target EGFR, HER2, and MEK1 (Mitogen-activated protein kinase kinase) using a computer-aided drug design approach that includes molecular docking, endpoint binding free energy calculation using MM-GBSA, ADMET, and molecular dynamics (MD) simulations. Docking studies revealed that, unlike all other ligands, apigenin and kaempferol exhibit the highest docking score against all three targets. Details of ADMET analysis, MM/GBSA, and MD simulations helped us to conclusively determine apigenin and kaempferol as potentially an inhibitor of EGFR, HER2, and MEK1 apigenin and kaempferol against mCRC at a systemic level. Additionally, both apigenin and kaempferol elicited antiangiogenic properties in a dose-dependent manner. Collectively, these findings provide the rationale for drug development aimed at preventing CRC rather than intercepting resistance.
Collapse
|
21
|
Cancer-associated mutations in the p85α N-terminal SH2 domain activate a spectrum of receptor tyrosine kinases. Proc Natl Acad Sci U S A 2021; 118:2101751118. [PMID: 34507989 PMCID: PMC8449365 DOI: 10.1073/pnas.2101751118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositide 3-kinase activation typically occurs following stimulation by upstream receptor tyrosine kinases (RTKs), which alleviate p110α inhibition by p85α. p85α and p110α driver mutations have been reported to activate p110α by disrupting the inhibitory interface between p85α and p110α. This study revealed that driver mutations in the p85α N-terminal SH2 domain can enhance p110α activity by inducing the activation of multiple RTKs. Furthermore, combination treatment with RTK and AKT inhibitors provides synergistic therapeutic efficacy. This previously uncharacterized oncogenic mechanism presents the exploitable vulnerability of a class of p85α mutant tumors. The phosphoinositide 3-kinase regulatory subunit p85α is a key regulator of kinase signaling and is frequently mutated in cancers. In the present study, we showed that in addition to weakening the inhibitory interaction between p85α and p110α, a group of driver mutations in the p85α N-terminal SH2 domain activated EGFR, HER2, HER3, c-Met, and IGF-1R in a p110α-independent manner. Cancer cells expressing these mutations exhibited the activation of p110α and the AKT pathway. Interestingly, the activation of EGFR, HER2, and c-Met was attributed to the ability of driver mutations to inhibit HER3 ubiquitination and degradation. The resulting increase in HER3 protein levels promoted its heterodimerization with EGFR, HER2, and c-Met, as well as the allosteric activation of these dimerized partners; however, HER3 silencing abolished this transactivation. Accordingly, inhibitors of either AKT or the HER family reduced the oncogenicity of driver mutations. The combination of these inhibitors resulted in marked synergy. Taken together, our findings provide mechanistic insights and suggest therapeutic strategies targeting a class of recurrent p85α mutations.
Collapse
|
22
|
Li Y, Wang Y, Zhang W, Wang X, Chen L, Wang S. BKM120 sensitizes BRCA-proficient triple negative breast cancer cells to olaparib through regulating FOXM1 and Exo1 expression. Sci Rep 2021; 11:4774. [PMID: 33637776 PMCID: PMC7910492 DOI: 10.1038/s41598-021-82990-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors offer a significant clinical benefit for triple-negative breast cancers (TNBCs) with BRCA1/2 mutation. However, the narrow clinical indication limits the development of PARP inhibitors. Phosphoinositide 3-kinase (PI3K) inhibition sensitizes BRCA-proficient TNBC to PARP inhibition, which broadens the indication of PARP inhibitors. Previously researches have reported that PI3K inhibition induced the defect of homologous recombination (HR) mediated repair by downregulating the expression of BRCA1/2 and Rad51. However, the mechanism for their synergistic effects in the treatment of TNBC is still unclear. Herein, we focused on DNA damage, DNA single-strand breaks (SSBs) repair and DNA double-strand breaks (DSBs) repair three aspects to investigate the mechanism of dual PI3K and PARP inhibition in DNA damage response. We found that dual PI3K and PARP inhibition with BKM120 and olaparib significantly reduced the proliferation of BRCA-proficient TNBC cell lines MDA-MB-231 and MDA231-LM2. BKM120 increased cellular ROS to cause DNA oxidative damage. Olaparib resulted in concomitant gain of PARP1, forkhead box M1 (FOXM1) and Exonuclease 1 (Exo1) while inhibited the activity of PARP. BKM120 downregulated the expression of PARP1 and PARP2 to assist olaparib in blocking PARP mediated repair of DNA SSBs. Meanwhile, BKM120 inhibited the expression of BRAC1/2 and Rad51/52 to block HR mediated repair through the PI3K/Akt/NFκB/c-Myc signaling pathway and PI3K/Akt/ FOXM1/Exo1 signaling pathway. BKM120 induced HR deficiency expanded the application of olaparib to HR proficient TNBCs. Our findings proved that PI3K inhibition impaired the repair of both DNA SSBs and DNA DSBs. FOXM1 and Exo1 are novel therapeutic targets that serves important roles in DNA damage response.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yuantao Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Wanpeng Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Lu Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Shuping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| |
Collapse
|
23
|
Mendenhall MA, Liu S, Portley MK, O'Mard D, Fattah R, Szabo R, Bugge TH, Khillan JS, Leppla SH, Moayeri M. Anthrax lethal factor cleaves regulatory subunits of phosphoinositide-3 kinase to contribute to toxin lethality. Nat Microbiol 2020; 5:1464-1471. [PMID: 32895527 PMCID: PMC11540063 DOI: 10.1038/s41564-020-0782-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/28/2020] [Indexed: 11/08/2022]
Abstract
Anthrax lethal toxin (LT), produced by Bacillus anthracis, comprises a receptor-binding moiety, protective antigen and the lethal factor (LF) protease1,2. Although LF is known to cleave mitogen-activated protein kinase kinases (MEKs/MKKs) and some variants of the NLRP1 inflammasome sensor, targeting of these pathways does not explain the lethality of anthrax toxin1,2. Here we report that the regulatory subunits of phosphoinositide-3 kinase (PI3K)-p85α (PIK3R1) and p85β (PIK3R2)3,4-are substrates of LF. Cleavage of these proteins in a proline-rich region between their N-terminal Src homology and Bcr homology domains disrupts homodimer formation and impacts PI3K signalling. Mice carrying a mutated p85α that cannot be cleaved by LF show a greater resistance to anthrax toxin challenge. The LF(W271A) mutant cleaves p85α with lower efficiency and is non-toxic to mice but can regain lethality when combined with PI3K pathway inhibitors. We provide evidence that LF targets two signalling pathways that are essential for growth and metabolism and that the disabling of both pathways is likely necessary for lethal anthrax infection.
Collapse
Affiliation(s)
- Megan A Mendenhall
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shihui Liu
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Makayla K Portley
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle O'Mard
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rasem Fattah
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Jaspal S Khillan
- Mouse Genetics and Gene Modification Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Mäkelä R, Arjonen A, Suryo Rahmanto A, Härmä V, Lehtiö J, Kuopio T, Helleday T, Sangfelt O, Kononen J, Rantala JK. Ex vivo assessment of targeted therapies in a rare metastatic epithelial-myoepithelial carcinoma. Neoplasia 2020; 22:390-398. [PMID: 32645560 PMCID: PMC7341452 DOI: 10.1016/j.neo.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Epithelial-myoepithelial carcinoma (EMC) is a rare subtype of salivary gland neoplasms. Since the initial description of the cancer, just over 300 cases have been reported. EMCs occupy a biphasic cellular differentiation-state defined by the constitution of two cell types representing epithelial and myoepithelial lineages, yet the functional consequence of the differentiation-state heterogeneity with respect to therapy resistance of the tumors remains unclear. The reported local recurrence rate of the cases is approximately 30%, and while distant metastases are rare, a significant fraction of these cases are reported to receive no survival benefit from radio- or chemotherapy given in addition to surgery. Moreover, no targeted therapies have been reported for these neoplasms. We report here the first use and application of ex vivo drug screening together with next generation sequencing to assess targeted treatment strategies for a rare metastatic epithelial-myoepithelial carcinoma. Results of the ex vivo drug screen demonstrate significant differential therapeutic sensitivity between the epithelial and myoepithelial intra-tumor cell lineages suggesting that differentiation-state heterogeneity within epithelial-myoepithelial carcinomas may present an outlet to partial therapeutic responses to targeted therapies including MEK and mTOR inhibitors. These results suggest that the intra-tumor lineage composition of EMC could be an important factor to be assessed when novel treatments are being evaluated for management of metastatic EMC.
Collapse
Affiliation(s)
| | | | | | - Ville Härmä
- Misvik Biology Oy, Turku, Finland; University of Sheffield, Department of Oncology and Metabolism, South Yorkshire, Sheffield, UK.
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | - Teijo Kuopio
- Central Finland Health Care District, Jyväskylä Medical Centre, Jyväskylä, Finland.
| | - Thomas Helleday
- University of Sheffield, Department of Oncology and Metabolism, South Yorkshire, Sheffield, UK
| | - Olle Sangfelt
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden.
| | - Juha Kononen
- Central Finland Health Care District, Jyväskylä Medical Centre, Jyväskylä, Finland; Docrates Hospital, Helsinki, Finland.
| | - Juha K Rantala
- Misvik Biology Oy, Turku, Finland; University of Sheffield, Department of Oncology and Metabolism, South Yorkshire, Sheffield, UK.
| |
Collapse
|
25
|
Cui C, Yang J, Li X, Liu D, Fu L, Wang X. Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer 2020; 19:58. [PMID: 32171304 PMCID: PMC7071709 DOI: 10.1186/s12943-020-01180-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs), one type of non-coding RNA, were initially misinterpreted as nonfunctional products of pre-mRNA mis-splicing. Currently, circRNAs have been proven to manipulate the functions of diverse molecules, including non-coding RNAs, mRNAs, DNAs and proteins, to regulate cell activities in physiology and pathology. Accumulating evidence indicates that circRNAs play critical roles in tumor genesis, development, and sensitivity to radiation and chemotherapy. Radiotherapy and chemotherapy are two primary types of intervention for most cancers, but their therapeutic efficacies are usually retarded by intrinsic and acquired resistance. Thus, it is urgent to develop new strategies to improve therapeutic responses. To achieve this, clarification of the underlying mechanisms affecting therapeutic responses in cancer is needed. This review summarizes recent progress and mechanisms of circRNAs in cancer resistance to radiation and chemotherapy, and it discusses the limitations of available knowledge and potential future directions.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jianbo Yang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
26
|
Precision Medicine Tumor Boards: Clinical Applicability of Personalized Treatment Concepts in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12030548. [PMID: 32120793 PMCID: PMC7139570 DOI: 10.3390/cancers12030548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Treating cancer according to its molecular alterations (i.e., targeted treatment, TT) is the goal of precision medicine tumor boards (PTBs). Their clinical applicability has been evaluated for ovarian cancer patients in this analysis. Methods: All consecutive ovarian cancer patients discussed in a PTB at the Medical University of Vienna, Austria, from April 2015 to April 2019 were included (n = 44). Results: In 38/44 (86%) cases, at least one mutation, deletion or amplification was detected. The most frequently altered genes were p53 (64%), PI3K pathway (18%), KRAS (14%), BRCA1 (11%) and BRCA2 (2%). In 31 patients (70%) a TT was recommended. A total of 12/31 patients (39%) received the recommended therapy. Median time from indication for PTB to TT start was 65 days (15–216). Median time to treatment failure was 2.7 months (0.2–13.2). Clinical benefit rate (CBR) was 42%. Reasons for treatment discontinuation were disease progression (42%), poor performance status (PS > 2; 25%), death (17%) or treatment related side effects (8%). In 61% the TT was not administered—mainly due to PS > 2. Conclusion: Even though a TT recommendation can be derived frequently, clinical applicability remains limited due to poor patients’ general condition after exploitation of standard treatment. However, we observed antitumor activity in a substantial number of heavily pretreated patients.
Collapse
|
27
|
D’Ambrosio C, Erriquez J, Arigoni M, Capellero S, Mittica G, Ghisoni E, Borella F, Katsaros D, Privitera S, Ribotta M, Maldi E, Di Nardo G, Berrino E, Venesio T, Ponzone R, Vaira M, Hall D, Jimenez-Linan M, Paterson AL, Calogero RA, Brenton JD, Valabrega G, Di Renzo MF, Olivero M. PIK3R1W624R Is an Actionable Mutation in High Grade Serous Ovarian Carcinoma. Cells 2020; 9:E442. [PMID: 32075097 PMCID: PMC7072782 DOI: 10.3390/cells9020442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Identifying cancer drivers and actionable mutations is critical for precision oncology. In epithelial ovarian cancer (EOC) the majority of mutations lack biological or clinical validation. We fully characterized 43 lines of Patient-Derived Xenografts (PDXs) and performed copy number analysis and whole exome sequencing of 12 lines derived from naïve, high grade EOCs. Pyrosequencing allowed quantifying mutations in the source tumours. Drug response was assayed on PDX Derived Tumour Cells (PDTCs) and in vivo on PDXs. We identified a PIK3R1W624R variant in PDXs from a high grade serous EOC. Allele frequencies of PIK3R1W624R in all the passaged PDXs and in samples of the source tumour suggested that it was truncal and thus possibly a driver mutation. After inconclusive results in silico analyses, PDTCs and PDXs allowed the showing actionability of PIK3R1W624R and addiction of PIK3R1W624R carrying cells to inhibitors of the PI3K/AKT/mTOR pathway. It is noteworthy that PIK3R1 encodes the p85α regulatory subunit of PI3K, that is very rarely mutated in EOC. The PIK3R1W624R mutation is located in the cSH2 domain of the p85α that has never been involved in oncogenesis. These data show that patient-derived models are irreplaceable in their role of unveiling unpredicted driver and actionable variants in advanced ovarian cancer.
Collapse
Affiliation(s)
- Concetta D’Ambrosio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Jessica Erriquez
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.A.); (R.A.C.)
| | - Sonia Capellero
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Gloria Mittica
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Eleonora Ghisoni
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Fulvio Borella
- Città della Salute e della Scienza, 10126 Torino, Italy; (F.B.); (D.K.); (S.P.); (M.R.)
| | - Dionyssios Katsaros
- Città della Salute e della Scienza, 10126 Torino, Italy; (F.B.); (D.K.); (S.P.); (M.R.)
| | - Silvana Privitera
- Città della Salute e della Scienza, 10126 Torino, Italy; (F.B.); (D.K.); (S.P.); (M.R.)
| | - Marisa Ribotta
- Città della Salute e della Scienza, 10126 Torino, Italy; (F.B.); (D.K.); (S.P.); (M.R.)
| | - Elena Maldi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, 10125 Torino, Italy;
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Tiziana Venesio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Riccardo Ponzone
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Marco Vaira
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
| | - Douglas Hall
- University of Cambridge, Cambridge CB2 0XZ, UK; (D.H.); (M.J.-L.); (A.L.P.); (J.D.B.)
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK
| | | | - Anna L. Paterson
- University of Cambridge, Cambridge CB2 0XZ, UK; (D.H.); (M.J.-L.); (A.L.P.); (J.D.B.)
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Raffaele A. Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.A.); (R.A.C.)
| | - James D. Brenton
- University of Cambridge, Cambridge CB2 0XZ, UK; (D.H.); (M.J.-L.); (A.L.P.); (J.D.B.)
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Giorgio Valabrega
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Maria Flavia Di Renzo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Martina Olivero
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy; (C.D.); (J.E.); (S.C.); (G.M.); (E.G.); (E.M.); (E.B.); (T.V.); (R.P.); (M.V.); (G.V.); (M.O.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| |
Collapse
|
28
|
Sudhan DR, Guerrero-Zotano A, Won H, González Ericsson P, Servetto A, Huerta-Rosario M, Ye D, Lee KM, Formisano L, Guo Y, Liu Q, Kinch LN, Red Brewer M, Dugger T, Koch J, Wick MJ, Cutler RE, Lalani AS, Bryce R, Auerbach A, Hanker AB, Arteaga CL. Hyperactivation of TORC1 Drives Resistance to the Pan-HER Tyrosine Kinase Inhibitor Neratinib in HER2-Mutant Cancers. Cancer Cell 2020; 37:183-199.e5. [PMID: 31978326 PMCID: PMC7301608 DOI: 10.1016/j.ccell.2019.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/30/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
We developed neratinib-resistant HER2-mutant cancer cells by gradual dose escalation. RNA sequencing identified TORC1 signaling as an actionable mechanism of drug resistance. Primary and acquired neratinib resistance in HER2-mutant breast cancer patient-derived xenografts (PDXs) was also associated with TORC1 hyperactivity. Genetic suppression of RAPTOR or RHEB ablated P-S6 and restored sensitivity to the tyrosine kinase inhibitor. The combination of the TORC1 inhibitor everolimus and neratinib potently arrested the growth of neratinib-resistant xenografts and organoids established from neratinib-resistant PDXs. RNA and whole-exome sequencing revealed RAS-mediated TORC1 activation in a subset of neratinib-resistant models. DNA sequencing of HER2-mutant tumors clinically refractory to neratinib, as well as circulating tumor DNA profiling of patients who progressed on neratinib, showed enrichment of genomic alterations that converge to activate the mTOR pathway.
Collapse
Affiliation(s)
- Dhivya R Sudhan
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Helen Won
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alberto Servetto
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mariela Huerta-Rosario
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dan Ye
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyung-Min Lee
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luigi Formisano
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Guo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Monica Red Brewer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Teresa Dugger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Koch
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | - Ariella B Hanker
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Carlos L Arteaga
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Leveraging protein dynamics to identify cancer mutational hotspots using 3D structures. Proc Natl Acad Sci U S A 2019; 116:18962-18970. [PMID: 31462496 PMCID: PMC6754584 DOI: 10.1073/pnas.1901156116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Large-scale exome sequencing of tumors has enabled the identification of cancer drivers using recurrence-based approaches. Some of these methods also employ 3D protein structures to identify mutational hotspots in cancer-associated genes. In determining such mutational clusters in structures, existing approaches overlook protein dynamics, despite its essential role in protein function. We present a framework to identify cancer driver genes using a dynamics-based search of mutational hotspot communities. Mutations are mapped to protein structures, which are partitioned into distinct residue communities. These communities are identified in a framework where residue-residue contact edges are weighted by correlated motions (as inferred by dynamics-based models). We then search for signals of positive selection among these residue communities to identify putative driver genes, while applying our method to the TCGA (The Cancer Genome Atlas) PanCancer Atlas missense mutation catalog. Overall, we predict 1 or more mutational hotspots within the resolved structures of proteins encoded by 434 genes. These genes were enriched among biological processes associated with tumor progression. Additionally, a comparison between our approach and existing cancer hotspot detection methods using structural data suggests that including protein dynamics significantly increases the sensitivity of driver detection.
Collapse
|
30
|
Several genotypes, one phenotype: PIK3CA/AKT1 mutation-negative hidradenoma papilliferum show genetic lesions in other components of the signalling network. Pathology 2019; 51:362-368. [PMID: 31010589 DOI: 10.1016/j.pathol.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/06/2018] [Accepted: 01/23/2019] [Indexed: 12/24/2022]
Abstract
About 60-70% of hidradenoma papilliferum (HP), a benign tumour of the anogenital region, were recently described to harbour mutations in major driver genes of the PI3K/AKT/MAPK-signalling pathways. However, the underlying genetic defects of the non-mutant cases are still unknown. Using a 409 gene panel, we employed targeted next generation sequencing to investigate the mutational landscape in a cohort of seven PI3K/AKT-negative cases and five cases with known hotspot mutations in either PIK3CA or AKT1. In total, we identified 29 mutations in 22 of 409 genes. The four cases with PIK3CA hotspot mutations carried no or only few additional mutations. The AKT1 hotspot mutated case harboured additional mutations in four genes (SYNE1, ADAMTS20, EP400 and CASC5). At least two of these genes are involved in or contribute to the PI3K/AKT-pathway. In the seven non-hotspot mutated cases we observed 18 mutations. Each case carried at least one mutation in a gene contributing to or involved in PI3K/AKT-signalling. Affected genes were PIK3CA (n=1, non-hotspot mutation), PIK3R1 (n=3), SYNE1, AR, IL6ST, PDGFRB, KMT2C, AR, BTK, DST, KAT6A, BRD3, RNF213, USP9X, ADGRB3, MAGI1, and IL7R (each gene mutated once). The identified PIK3CA and PIK3R1 mutations lead to constitutive activated PI3K/AKT-signalling. In conclusion, we demonstrate the genetic basis of HP in all cases. Our data suggest that tumourigenic alterations in the PI3K/AKT-pathway are indispensable in HP and establish a homogenous morphomolecular entity with a functionally converging and selecting tumourigenic mechanism.
Collapse
|
31
|
Huang X, Li Z, Zhang Q, Wang W, Li B, Wang L, Xu Z, Zeng A, Zhang X, Zhang X, He Z, Li Q, Sun G, Wang S, Li Q, Wang L, Zhang L, Xu H, Xu Z. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer 2019; 18:71. [PMID: 30927924 PMCID: PMC6441201 DOI: 10.1186/s12943-019-0969-3] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/21/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cisplatin (CDDP) treatment is one of the most predominant chemotherapeutic strategies for patients with gastric cancer (GC). A better understanding of the mechanisms of CDDP resistance can greatly improve therapeutic efficacy in patients with GC. Circular RNAs (circRNAs) are a class of noncoding RNAs whose functions are related to the pathogenesis of cancer, but, in CDDP resistance of GC remains unknown. METHODS circAKT3 (hsa_circ_0000199, a circRNA originating from exons 8, 9, 10, and 11 of the AKT3 gene) was identified by RNA sequencing and verified by quantitative reverse transcription PCR. The role of circAKT3 in CDDP resistance in GC was assessed both in vitro and in vivo. Luciferase reporter assay, biotin-coupled RNA pull-down and fluorescence in situ hybridization (FISH) were conducted to evaluate the interaction between circAKT3 and miR-198. Functional experiments were measured by western blotting, a cytotoxicity assay, clonogenic assay and flow cytometry. RESULTS The expression of circAKT3 was higher in CDDP-resistant GC tissues and cells than in CDDP-sensitive samples. The upregulation of circAKT3 in GC patients receiving CDDP therapy was significantly associated with aggressive characteristics and was an independent risk factor for disease-free survival (DFS). Our data indicated that circAKT3 promotes DNA damage repair and inhibits the apoptosis of GC cells in vivo and in vitro. Mechanistically, we verified that circAKT3 could promote PIK3R1 expression by sponging miR-198. CONCLUSIONS circAKT3 plays an important role in the resistance of GC to CDDP. Thus, our results highlight the potential of circAKT3 as a therapeutic target for GC patients receiving CDDP therapy.
Collapse
Affiliation(s)
- Xiaoxu Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China.,Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Qiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Zhipeng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Xuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Qiang Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Qing Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu province, China.
| |
Collapse
|
32
|
Luo P, Li Y, Tian LP, Wu FX. Enhancing the prediction of disease–gene associations with multimodal deep learning. Bioinformatics 2019; 35:3735-3742. [DOI: 10.1093/bioinformatics/btz155] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Motivation
Computationally predicting disease genes helps scientists optimize the in-depth experimental validation and accelerates the identification of real disease-associated genes. Modern high-throughput technologies have generated a vast amount of omics data, and integrating them is expected to improve the accuracy of computational prediction. As an integrative model, multimodal deep belief net (DBN) can capture cross-modality features from heterogeneous datasets to model a complex system. Studies have shown its power in image classification and tumor subtype prediction. However, multimodal DBN has not been used in predicting disease–gene associations.
Results
In this study, we propose a method to predict disease–gene associations by multimodal DBN (dgMDL). Specifically, latent representations of protein-protein interaction networks and gene ontology terms are first learned by two DBNs independently. Then, a joint DBN is used to learn cross-modality representations from the two sub-models by taking the concatenation of their obtained latent representations as the multimodal input. Finally, disease–gene associations are predicted with the learned cross-modality representations. The proposed method is compared with two state-of-the-art algorithms in terms of 5-fold cross-validation on a set of curated disease–gene associations. dgMDL achieves an AUC of 0.969 which is superior to the competing algorithms. Further analysis of the top-10 unknown disease–gene pairs also demonstrates the ability of dgMDL in predicting new disease–gene associations.
Availability and implementation
Prediction results and a reference implementation of dgMDL in Python is available on https://github.com/luoping1004/dgMDL.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ping Luo
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Yuanyuan Li
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan, China
| | - Li-Ping Tian
- School of Information, Beijing Wuzi University, Beijing, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
33
|
Current Coverage of the mTOR Pathway by Next-Generation Sequencing Oncology Panels. Int J Mol Sci 2019; 20:ijms20030690. [PMID: 30764584 PMCID: PMC6387057 DOI: 10.3390/ijms20030690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mTOR pathway is in the process of establishing itself as a key access-point of novel oncological drugs and targeted therapies. This is also reflected by the growing number of mTOR pathway genes included in commercially available next-generation sequencing (NGS) oncology panels. This review summarizes the portfolio of medium sized diagnostic, as well as research destined NGS panels and their coverage of the mTOR pathway, including 16 DNA-based panels and the current gene list of Foundation One as a major reference entity. In addition, we give an overview of interesting, mTOR-associated somatic mutations that are not yet incorporated. Especially eukaryotic translation initiation factors (eIFs), a group of mTOR downstream proteins, are on the rise as far as diagnostics and drug targeting in precision medicine are concerned. This review aims to raise awareness for the true coverage of NGS panels, which should be valuable in selecting the ideal platform for diagnostics and research.
Collapse
|
34
|
Marshall JDS, Whitecross DE, Mellor P, Anderson DH. Impact of p85α Alterations in Cancer. Biomolecules 2019; 9:biom9010029. [PMID: 30650664 PMCID: PMC6359268 DOI: 10.3390/biom9010029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway plays a central role in the regulation of cell signaling, proliferation, survival, migration and vesicle trafficking in normal cells and is frequently deregulated in many cancers. The p85α protein is the most characterized regulatory subunit of the class IA PI3Ks, best known for its regulation of the p110-PI3K catalytic subunit. In this review, we will discuss the impact of p85α mutations or alterations in expression levels on the proteins p85α is known to bind and regulate. We will focus on alterations within the N-terminal half of p85α that primarily regulate Rab5 and some members of the Rho-family of GTPases, as well as those that regulate PTEN (phosphatase and tensin homologue deleted on chromosome 10), the enzyme that directly counteracts PI3K signaling. We highlight recent data, mapping the interaction surfaces of the PTEN⁻p85α breakpoint cluster region homology (BH) domain, which sheds new light on key residues in both proteins. As a multifunctional protein that binds and regulates many different proteins, p85α mutations at different sites have different impacts in cancer and would necessarily require distinct treatment strategies to be effective.
Collapse
Affiliation(s)
- Jeremy D S Marshall
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Dielle E Whitecross
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Paul Mellor
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Deborah H Anderson
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
35
|
Sinkala M, Mulder N, Martin DP. Integrative landscape of dysregulated signaling pathways of clinically distinct pancreatic cancer subtypes. Oncotarget 2018; 9:29123-29139. [PMID: 30018740 PMCID: PMC6044387 DOI: 10.18632/oncotarget.25632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022] Open
Abstract
Despite modern therapeutic advances, the survival prospects of pancreatic cancer patients have remained poor. Besides being highly metastatic, pancreatic cancer is challenging to treat because it is caused by a heterogeneous array of somatic mutations that impact a variety of signaling pathways and cellular regulatory systems. Here we use publicly available transcriptomic, copy number alteration and mutation profiling datasets from pancreatic cancer patients together with data on disease outcomes to show that the three major pancreatic cancer subtypes each display distinctive aberrations in cell signaling and metabolic pathways. Importantly, patients afflicted with these different pancreatic cancer subtypes also exhibit distinctive survival profiles. Within these patients, we find that dysregulation of the phosphoinositide 3-kinase and mitogen-activated protein kinase pathways, and p53 mediated disruptions of cell cycle processes are apparently drivers of disease. Further, we identify for the first time the molecular perturbations of signalling networks that are likely the primary causes of oncogenesis in each of the three pancreatic cancer subtypes.
Collapse
Affiliation(s)
- Musalula Sinkala
- University of Cape Town, School of Health Sciences, Department of Integrative Biomedical Sciences, Computational Biology Division, Observatory, 7925, South Africa
| | - Nicola Mulder
- University of Cape Town, School of Health Sciences, Department of Integrative Biomedical Sciences, Computational Biology Division, Observatory, 7925, South Africa
| | - Darren Patrick Martin
- University of Cape Town, School of Health Sciences, Department of Integrative Biomedical Sciences, Computational Biology Division, Observatory, 7925, South Africa
| |
Collapse
|
36
|
Dirican E, Akkiprik M. Phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog as therapeutic targets in breast cancer. Tumour Biol 2017; 39:1010428317695529. [PMID: 28351303 DOI: 10.1177/1010428317695529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women in Turkey and worldwide. It is considered a heterogeneous disease and has different subtypes. Moreover, breast cancer has different molecular characteristics, behaviors, and responses to treatment. Advances in the understanding of the molecular mechanisms implicated in breast cancer progression have led to the identification of many potential therapeutic gene targets, such as Breast Cancer 1/2, phosphatidylinositol 3-kinase catalytic subunit alpha, and tumor protein 53. The aim of this review is to summarize the roles of phosphatidylinositol 3-kinase regulatory subunit 1 (alpha) (alias p85α) and phosphatase and tensin homolog in breast cancer progression and the molecular mechanisms involved. Phosphatase and tensin homolog is a tumor suppressor gene and protein. Phosphatase and tensin homolog antagonizes the phosphatidylinositol 3-kinase/AKT signaling pathway that plays a key role in cell growth, differentiation, and survival. Loss of phosphatase and tensin homolog expression, detected in about 20%-30% of cases, is known to be one of the most common tumor changes leading to phosphatidylinositol 3-kinase pathway activation in breast cancer. Instead, the regulatory subunit p85α is a significant component of the phosphatidylinositol 3-kinase pathway, and it has been proposed that a reduction in p85α protein would lead to decreased negative regulation of phosphatidylinositol 3-kinase and hyperactivation of the phosphatidylinositol 3-kinase pathway. Phosphatidylinositol 3-kinase regulatory subunit 1 protein has also been reported to be a positive regulator of phosphatase and tensin homolog via the stabilization of this protein. A functional genetic alteration of phosphatidylinositol 3-kinase regulatory subunit 1 that results in reduced p85α protein expression and increased insulin receptor substrate 1 binding would lead to enhanced phosphatidylinositol 3-kinase signaling and hence cancer development. Phosphatidylinositol 3-kinase regulatory subunit 1 underexpression was observed in 61.8% of breast cancer samples. Therefore, expression/alternations of phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog genes have crucial roles for breast cancer progression. This review will summarize the biological roles of phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog in breast cancer, with an emphasis on recent findings and the potential of phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog as a therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Ebubekir Dirican
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mustafa Akkiprik
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
37
|
Rohban MH, Singh S, Wu X, Berthet JB, Bray MA, Shrestha Y, Varelas X, Boehm JS, Carpenter AE. Systematic morphological profiling of human gene and allele function via Cell Painting. eLife 2017; 6. [PMID: 28315521 PMCID: PMC5386591 DOI: 10.7554/elife.24060] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
We hypothesized that human genes and disease-associated alleles might be systematically functionally annotated using morphological profiling of cDNA constructs, via a microscopy-based Cell Painting assay. Indeed, 50% of the 220 tested genes yielded detectable morphological profiles, which grouped into biologically meaningful gene clusters consistent with known functional annotation (e.g., the RAS-RAF-MEK-ERK cascade). We used novel subpopulation-based visualization methods to interpret the morphological changes for specific clusters. This unbiased morphologic map of gene function revealed TRAF2/c-REL negative regulation of YAP1/WWTR1-responsive pathways. We confirmed this discovery of functional connectivity between the NF-κB pathway and Hippo pathway effectors at the transcriptional level, thereby expanding knowledge of these two signaling pathways that critically regulate tumor initiation and progression. We make the images and raw data publicly available, providing an initial morphological map of major biological pathways for future study. DOI:http://dx.doi.org/10.7554/eLife.24060.001 Many human diseases are caused by particular changes, called mutations, in patients’ DNA. A genome is the complete DNA set of an organism, which contains all the information to build the body and keep it working. This information is stored as a code made up of four chemicals called bases. Humans have about 30,000 genes built from DNA, which contain specific sequences of bases. Genome sequencing can determine the exact order of these bases, and has revealed a long list of mutations in genes that could cause particular diseases. However, over 30% of genes in the human body do not have a known role. Genes can serve multiple roles, some of which are not yet discovered, and even when a gene’s purpose is known, the impact of each particular mutation in a given gene is largely uncatalogued. Therefore, new methods need to be developed to identify the biological roles of both normal and abnormal gene sequences. For hundreds of years, biologists have used microscopy to study how living cells work. Rohban et al. have now asked whether modern software that extracts data from microscopy images could create a fingerprint-like profile of a cell that would reflect how its genes affect its role and appearance. While some genes do not necessarily carry a code with instructions of what a cell should look like, they can indirectly modify the structure of the cell. The resulting changes in the shape of the cell can then be captured in images. The idea was that two cells with matching profiles would indicate that their combinations of genes had matching biological roles too. Rohban et al. tested their approach with human cells grown in the laboratory. In each sample of cells, they ‘turned on’ one of a few hundred relatively well-known human genes, some of which were known to have similar roles. The cells were then stained via a technique called ‘Cell Painting’ to reveal eight specific components of each cell, including its DNA and its surface membrane. The stained cells were imaged under a microscope and the resulting microscopy images analyzed to create a profile of each type of cell. Rohban et al. confirmed that turning on genes known to perform similar biological roles lead to similar-looking cells. The analysis also revealed a previously unknown interaction between two major pathways in the cell that control how cancer starts and develops. In the future, this approach could predict the biological roles of less-understood genes by looking for profiles that match those of well-known genes. Applying this strategy to every human gene, and mutations in genes that are linked to diseases, could help to answer many mysteries about how genes build the human body and keep it working. DOI:http://dx.doi.org/10.7554/eLife.24060.002
Collapse
Affiliation(s)
| | - Shantanu Singh
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Xiaoyun Wu
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Julia B Berthet
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | | | | | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, United States
| | | |
Collapse
|
38
|
Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma. PLoS One 2016; 11:e0169232. [PMID: 28033431 PMCID: PMC5199101 DOI: 10.1371/journal.pone.0169232] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC) are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies.
Collapse
|