1
|
Suarez-Kurtz G. Pharmacogenetic Testing in Admixed Populations: Frequency of the Association for Molecular Pathology Pharmacogenomics Working Group Tier 1 Variant Alleles in Brazilians. J Mol Diagn 2025:S1525-1578(25)00018-2. [PMID: 39863018 DOI: 10.1016/j.jmoldx.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
This article examines the frequency distribution of tier 1 pharmacogenetic variants of the Association for Molecular Pathology Pharmacogenomics Working Group Recommendations in two large (>1000 individuals) cohorts of the admixed Brazilian population, and in patients from the Brazilian Public Health System enrolled in pharmacogenetic trials. Three tier 1 variants, all in DPYD, were consistently absent, which may justify their noninclusion in genotyping panels for Brazilians; 13 variants had frequency ≤1.0%, and the remaining 21 variants ranged in frequency from 1.2% (NUDT15∗3) to 76.4% (CYP3A5∗3). The frequency of some CYP2C9, CYP2D6, CYP3A4, and VKORC1 variants differed significantly across the three major race/color categories of the Brazilian Census (White, Brown, and Black), as a consequence of different proportions of individual European and African ancestry. However, it is recommended that selection of variants for inclusion in pharmacogenetic testing panels and implementation of pharmacogenetic-informed dosing guidelines for Brazilians should not be determined by race/color categories. Native Americans (0.4% of the Brazilian population), virtually absent from the study cohorts, display wide interethnic diversity in frequency of some tier 1 variants (eg, NUDT15∗3 and TPMT∗3A) and/or differ markedly from non-Indigenous people in frequency of some variant alleles (eg, CYP2C19∗17). Collectively, the data support the notion that population diversity must be taken into account on the design and implementation of pharmacogenetic testing panels.
Collapse
Affiliation(s)
- Guilherme Suarez-Kurtz
- Clinical Research and Technological Development Division, Brazilian National Cancer Institute, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Kurtz P, Elias ABR, Suarez-Kurtz G. Influence of CYP2C9 phenotypes on phenytoin plasma concentration in neurosurgical Brazilian patients. Pharmacogenet Genomics 2024; 34:285-290. [PMID: 39356102 DOI: 10.1097/fpc.0000000000000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
AIMS To investigate the association of CYP2C9 metabolic phenotypes with phenytoin plasma concentration ([PTH]) in neurosurgical patients from the Brazilian Public Health System. METHODS Patients (n = 170) were treated with phenytoin (300 mg/day) perioperatively as prophylaxis for postoperative seizures. Two to 10 days after surgery, a blood sample was collected for quantification of [PTH] and genotyping of CYP2C9*2 and *3 alleles. CYP2C9 metabolic phenotypes, NM (normal), IM (intermediate), and PM (poor) metabolizer, were inferred from CYP2C9 diplotypes. Linear regression modeling was applied to identify predictors of [PTH]. RESULTS Wide (22-fold) interindividual variation in [PTH] was observed (2.2-47.5 mg/l). [PTH] associated significantly (Kruskal-Wallis P < 0.005) with CYP2C9 phenotypes and there was a significant trend (Jonckheere-Terpstra test, P < 0.0001) for [PTH] increase in the order NM < IM < PM. [PTH] was within the target therapeutic range (10-20 mg/l) in 34.7% of patients, while 39.4% and 25.9% had [PTH] below and above the range, respectively. CYP2C9 phenotypes associated significantly (chi-square P = 0.004) with the distribution of patients in [PHT] therapeutic categories and the Cramér's V test pointed to moderate magnitude of the effect of CYP2C9 phenotypes (V = 0.211). CONCLUSION Diplotype-predicted CYP2C9 metabolic phenotypes are associated significantly with [PTH] in neurosurgical Brazilian patients receiving phenytoin for postsurgery seizure prophylaxis. [PHT] increased progressively in the phenotype order NM < IM < PM, and all PM patients had [PHT] above the target therapeutic range, consistent with the CPIC guideline 'strong' recommendation for phenytoin dosing adjustments in PMs.
Collapse
Affiliation(s)
- Pedro Kurtz
- Instituto Estadual do Cérebro Paulo Niemeyer
| | - Anna Beatriz Ribeiro Elias
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Guilherme Suarez-Kurtz
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Asiimwe IG, Blockman M, Cavallari LH, Cohen K, Cupido C, Dandara C, Davis BH, Jacobson B, Johnson JA, Lamorde M, Limdi NA, Morgan J, Mouton JP, Muyambo S, Nakagaayi D, Ndadza A, Okello E, Perera MA, Schapkaitz E, Sekaggya-Wiltshire C, Semakula JR, Tatz G, Waitt C, Yang G, Zhang EJ, Jorgensen AL, Pirmohamed M. Meta-analysis of genome-wide association studies of stable warfarin dose in patients of African ancestry. Blood Adv 2024; 8:5248-5261. [PMID: 39163621 PMCID: PMC11493193 DOI: 10.1182/bloodadvances.2024014227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
ABSTRACT Warfarin dose requirements are highly variable because of clinical and genetic factors. Although genetic variants influencing warfarin dose have been identified in European and East Asian populations, more work is needed to identify African-specific genetic variants to help optimize warfarin dosing. We performed genome-wide association studies (GWASs) in 4 African cohorts from Uganda, South Africa, and Zimbabwe, totaling 989 warfarin-treated participants who reached stable dose and had international normalized ratios within therapeutic ranges. We also included 2 African American cohorts recruited by the International Warfarin Pharmacogenetics Consortium (n = 316) and the University of Alabama at Birmingham (n = 199). After the GWAS, we performed standard error-weighted meta-analyses and then conducted stepwise conditional analyses to account for known loci in chromosomes 10 and 16. The genome-wide significance threshold was set at P < 5 × 10-8. The meta-analysis, comprising 1504 participants, identified 242 significant SNPs across 3 genomic loci, with 99.6% of these located within known loci on chromosomes 10 (top SNP: rs58800757, P = 4.27 × 10-13) and 16 (top SNP: rs9925964, P = 9.97 × 10-16). Adjustment for the VKORC1 SNP -1639G>A revealed an additional locus on chromosome 2 (top SNPs rs116057875/rs115254730/rs115240773, P = 3.64 × 10-8), implicating the MALL gene, that could indirectly influence warfarin response through interactions with caveolin-1. In conclusion, we reaffirmed the importance of CYP2C9 and VKORC1 in influencing warfarin dose requirements, and identified a new locus (MALL), that still requires direct evidence of biological plausibility.
Collapse
Affiliation(s)
- Innocent G. Asiimwe
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marc Blockman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida College of Pharmacy, Gainesville, FL
| | - Karen Cohen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Clint Cupido
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Victoria Hospital Internal Medicine Research Initiative, Victoria Hospital Wynberg, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Pharmacogenomics and Drug Metabolism Research Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Brittney H. Davis
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL
| | - Barry Jacobson
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie A. Johnson
- Division of Pharmaceutics and Pharmacology, Center for Clinical and Translational Science, College of Medicine, The Ohio State University, Columbus, OH
| | - Mohammed Lamorde
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Nita A. Limdi
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL
| | - Jennie Morgan
- Metro Health Services, Western Cape Department of Health and Wellness, Cape Town, South Africa
- Division of Family Medicine, Department of Family, Community and Emergency Care, University of Cape Town, Cape Town, South Africa
| | - Johannes P. Mouton
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sarudzai Muyambo
- Department of Biological Sciences and Ecology, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Doreen Nakagaayi
- Department of Adult Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - Arinao Ndadza
- Division of Human Genetics, Department of Pathology, Pharmacogenomics and Drug Metabolism Research Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emmy Okello
- Department of Adult Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - Minoli A. Perera
- Department of Pharmacology, Center for Pharmacogenomics, Northwestern University, Chicago, IL
| | - Elise Schapkaitz
- Department of Molecular Medicine and Hematology, Charlotte Maxeke Johannesburg Academic Hospital National Health Laboratory System Complex and University of Witwatersrand, Johannesburg, South Africa
| | | | - Jerome R. Semakula
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gayle Tatz
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Catriona Waitt
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Northwestern University, Chicago, IL
- Genetics Group, Center for Applied Bioinfomatics, St. Jude Children's Research Hospital, Memphis, TN
| | - Eunice J. Zhang
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrea L. Jorgensen
- Department of Health Data Science, Institute of Population Health Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Delabays B, Trajanoska K, Walonoski J, Mooser V. Cardiovascular Pharmacogenetics: From Discovery of Genetic Association to Clinical Adoption of Derived Test. Pharmacol Rev 2024; 76:791-827. [PMID: 39122647 DOI: 10.1124/pharmrev.123.000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024] Open
Abstract
Recent breakthroughs in human genetics and in information technologies have markedly expanded our understanding at the molecular level of the response to drugs, i.e., pharmacogenetics (PGx), across therapy areas. This review is restricted to PGx for cardiovascular (CV) drugs. First, we examined the PGx information in the labels approved by regulatory agencies in Europe, Japan, and North America and related recommendations from expert panels. Out of 221 marketed CV drugs, 36 had PGx information in their labels approved by one or more agencies. The level of annotations and recommendations varied markedly between agencies and expert panels. Clopidogrel is the only CV drug with consistent PGx recommendation (i.e., "actionable"). This situation prompted us to dissect the steps from discovery of a PGx association to clinical translation. We found 101 genome-wide association studies that investigated the response to CV drugs or drug classes. These studies reported significant associations for 48 PGx traits mapping to 306 genes. Six of these 306 genes are mentioned in the corresponding PGx labels or recommendations for CV drugs. Genomic analyses also highlighted the wide between-population differences in risk allele frequencies and the individual load of actionable PGx variants. Given the high attrition rate and the long road to clinical translation, additional work is warranted to identify and validate PGx variants for more CV drugs across diverse populations and to demonstrate the utility of PGx testing. To that end, pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond. SIGNIFICANCE STATEMENT: Despite spectacular breakthroughs in human molecular genetics and information technologies, consistent evidence supporting PGx testing in the cardiovascular area is limited to a few drugs. Additional work is warranted to discover and validate new PGx markers and demonstrate their utility. Pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond.
Collapse
Affiliation(s)
- Benoît Delabays
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Joshua Walonoski
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| |
Collapse
|
5
|
Lu X, van der Meer TP, Kamali Z, van Faassen M, Kema IP, van Beek AP, Xu X, Huo X, Ani A, Nolte IM, Wolffenbuttel BHR, van Vliet-Ostaptchouk JV, Snieder H. A genome-wide association study of 24-hour urinary excretion of endocrine disrupting chemicals. ENVIRONMENT INTERNATIONAL 2024; 183:108396. [PMID: 38150807 DOI: 10.1016/j.envint.2023.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Ubiquitous exposure to environmental endocrine disrupting chemicals (EDCs) instigates a major public health problem, but much remains unknown on the inter-individual differences in metabolism and excretion of EDCs. To examine this we performed a two-stage genome-wide association study (GWAS) for 24-hour urinary excretions of four parabens, two bisphenols, and nine phthalate metabolites. Results showed five genome-wide significant (p-value < 5x10-8) and replicated single nucleotide polymorphisms (SNPs) representing four independent signals that associated with mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP). Three of the four signals were located on chromosome 10 in a locus harboring the cytochrome P450 (CYP) genes CYP2C9, CYP2C58P, and CYP2C19 (rs117529685, pMECPP = 5.38x10-25; rs117033379, pMECPP = 1.96x10-19; rs4918798, pMECPP = 4.01x10-71; rs7895726, pMEHHP = 1.37x10-15, r2 with rs4918798 = 0.93). The other signal was on chromosome 6 close to the solute carrier (SLC) genes SLC17A1, SLC17A3, SLC17A4, and SCGN (rs1359232, pMECPP = 7.6x10-16). These four SNPs explained a substantial part (8.3 % - 9.2 %) of the variance in MECPP in the replication cohort. Bioinformatics analyses supported a likely causal role of CYP2C9 and SLC17A1 in metabolism and excretion of MECPP and MEHHP. Our results provide biological insights into mechanisms of phthalate metabolism and excretion with a likely causal role for CYP2C9 and SLC17A1.
Collapse
Affiliation(s)
- Xueling Lu
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Guangdong, China
| | - Thomas P van der Meer
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 510632, Guangdong, China
| | - Alireza Ani
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
6
|
Kim JS, Lee S, Yee J, Park K, Jang EJ, Chang BC, Gwak HS. Novel Gene Polymorphisms for Stable Warfarin Dose in a Korean Population: Genome-Wide Association Study. Biomedicines 2023; 11:2308. [PMID: 37626805 PMCID: PMC10452379 DOI: 10.3390/biomedicines11082308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Warfarin has a narrow therapeutic window and high intra- and inter-individual variability. Considering that many published papers on genotype-guided dosing are derived from European populations, the aim of this study was to investigate novel genetic variants associated with the variability of stable warfarin dose in the Korean population with cardiac valve replacement, using the GWAS approach. This retrospective cohort study was performed from January 1982 to December 2020 at the Severance Cardiovascular Hospital of Yonsei University College of Medicine. GWAS was performed to identify associations between genotypes and the warfarin maintenance dose, by comparing the allele frequency of genetic variants between individuals. Then, the extent of genetic and non-genetic factors on the dose variability was determined by multivariable regression analysis. The study enrolled 214 participants, and the most robust signal cluster was detected on chromosome 16 around VKORC1. Followed by VKORC1, three novel variants (NKX2-6 rs310279, FRAS1 rs4386623, and FAM201A rs1890109) showed an association with stable warfarin dose requirement in univariate analysis. The algorithm was constructed by using multivariable analysis that includes genetic and non-genetic factors, and it could explain 58.5% of the variations in stable warfarin doses. In this variability, VKORC1 rs9934438 and FRAS1 rs4386623 accounted for 33.0% and 9.9%, respectively. This GWAS analysis identified the fact that three novel variants (NKX2-6 rs310279, FRAS1 rs4386623, and FAM201A rs1890109) were associated with stable warfarin doses. Additional research is necessary to validate the results and establish personalized treatment strategies for the Korean population.
Collapse
Affiliation(s)
- Jung Sun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| | - Sak Lee
- Department of Thoracic and Cardiovascular Surgery, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jeong Yee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| | - Kyemyung Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea;
| | - Eun Jeong Jang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| | - Byung Chul Chang
- Department of Thoracic and Cardiovascular Surgery, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Thoracic and Cardiovascular Surgery, Bundang CHA Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Hye Sun Gwak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (J.S.K.); (J.Y.); (E.J.J.)
| |
Collapse
|
7
|
Steiner HE, Carrion KC, Giles JB, Lima AR, Yee K, Sun X, Cavallari LH, Perera MA, Duconge J, Karnes JH. Local Ancestry-Informed Candidate Pathway Analysis of Warfarin Stable Dose in Latino Populations. Clin Pharmacol Ther 2023; 113:680-691. [PMID: 36321873 PMCID: PMC9957812 DOI: 10.1002/cpt.2787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Accuracy of warfarin dose prediction algorithms may be improved by including data from diverse populations in genetic studies of dose variability. Here, we surveyed single nucleotide polymorphisms in vitamin K-related genetic pathways for association with warfarin dose requirements in two admixed Latino populations in standard-principal component adjusted and contemporary-local ancestry adjusted regression models. A total of five variants from vitamin K-related genes/pathways were associated with warfarin dose in both cohorts (P < 0.0125) in standard models. Local ancestry-adjusted analysis unveiled 35 associated variants with absolute effects ranging from β = 9.04 ( ±2.23) to 39.18 ( ±10.89) per ancestral allele in the discovery cohort and β = 6.47 (± 2.02) to 17.82 (± 6.83) in the replication cohort. Importantly, we demonstrate the technical validity of the Tractor model in cohorts with admixed ancestry from three founder populations and bring attention to the technical hurdles obstructing the inclusion of diverse, especially admixed, populations in pharmacogenomic research.
Collapse
Affiliation(s)
- Heidi E Steiner
- Data Science Institute, University of Arizona, Tucson, Arizona, USA
- Department of Pharmacy Practice and Science, University of Arizona R. Ken Coit College of Pharmacy, Tucson, Arizona, USA
| | - Kelvin Carrasquillo Carrion
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Jason B Giles
- Department of Pharmacy Practice and Science, University of Arizona R. Ken Coit College of Pharmacy, Tucson, Arizona, USA
| | - Abiel Roche Lima
- Research Centers in Minority Institutions (RCMI) Program, Center for Collaborative Research in Health Disparities (CCRHD), Academic Affairs Deanship, University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Kevin Yee
- Banner University Medical Center-Tucson, Tucson, Arizona, USA
| | - Xiaoxiao Sun
- Department of Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Larisa H Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Minoli A Perera
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jorge Duconge
- Department of Pharmaceutical Sciences, University of Puerto Rico School of Pharmacy, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Jason H Karnes
- Department of Pharmacy Practice and Science, University of Arizona R. Ken Coit College of Pharmacy, Tucson, Arizona, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Targeted next-generation sequencing of genes involved in Warfarin Pharmacodynamics and pharmacokinetics pathways using the Saudi Warfarin Pharmacogenetic study (SWAP). THE PHARMACOGENOMICS JOURNAL 2023:10.1038/s41397-023-00300-3. [PMID: 36739459 DOI: 10.1038/s41397-023-00300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 02/06/2023]
Abstract
BACKGROUND Warfarin is an oral anticoagulant commonly used for treatment and prophylaxis against thromboembolic events. Warfarins's narrow therapeutic index window is one of the main challenges in clinical practice; thus, it requires frequent monitoring and dose adjustment to maintain patients' therapeutic range. Warfarin dose variation and response are attributed to several inter-and intra-individuals factors, including genetic variants in enzymes involved in warfarin pharmacokinetics (PK) and pharmacodynamics (PD) pathways. Thus, we aim to utilize the next-generation sequencing (NGS) approach to identify rare and common genetic variants that might be associated with warfarin responsiveness. METHOD AND RESULTS A predesigned NGS panel that included 16 genes involved in Warfarin PK/PD pathways was used to sequence 786 patients from the Saudi Warfarin Pharmacogenetic Cohort (SWAP). Identified variants were annotated using several annotation tools to identify the pathogenicity and allele frequencies of these variants. We conducted variants-level association tests with warfarin dose. We identified 710 variants within the sequenced genes; 19% were novel variants, with the vast majority being scarce variants. The genetic association tests showed that VKORC1 (rs9923231, and rs61742245), CYP2C9 (rs98332238, rs9332172, rs1057910, rs9332230, rs1799853, rs1057911, and rs9332119), CYP2C19 (rs28399511, and rs3758581), and CYP2C8 (rs11572080 and rs10509681) were significantly associated with warfarin weekly dose. Our model included genetics, and non-genetic factors explained 40.1% of warfarin dose variation. CONCLUSION The study identifies novel variants associated with warfarin dose in the Saudi population. These variants are more likely to be population-specific variants, suggesting that population-specific studies should be conducted before adopting a universal warfarin genotype-guided dosing algorithm.
Collapse
|
9
|
Gallego-Fabrega C, Muiño E, Cárcel-Márquez J, Llucià-Carol L, Lledós M, Martín-Campos JM, Cullell N, Fernández-Cadenas I. Genome-Wide Studies in Ischaemic Stroke: Are Genetics Only Useful for Finding Genes? Int J Mol Sci 2022; 23:6840. [PMID: 35743317 PMCID: PMC9224543 DOI: 10.3390/ijms23126840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Ischaemic stroke is a complex disease with some degree of heritability. This means that heritability factors, such as genetics, could be risk factors for ischaemic stroke. The era of genome-wide studies has revealed some of these heritable risk factors, although the data generated by these studies may also be useful in other disciplines. Analysis of these data can be used to understand the biological mechanisms associated with stroke risk and stroke outcome, to determine the causality between stroke and other diseases without the need for expensive clinical trials, or to find potential drug targets with higher success rates than other strategies. In this review we will discuss several of the most relevant studies regarding the genetics of ischaemic stroke and the potential use of the data generated.
Collapse
Affiliation(s)
- Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
- Institute for Biomedical Research of Barcelona (IIBB), National Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Miquel Lledós
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Jesús M. Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
- Stroke Pharmacogenomics and Genetics Group, Fundació MútuaTerrassa per la Docència i la Recerca, 08221 Terrassa, Spain
| |
Collapse
|
10
|
Asiimwe IG, Pirmohamed M. Ethnic Diversity and Warfarin Pharmacogenomics. Front Pharmacol 2022; 13:866058. [PMID: 35444556 PMCID: PMC9014219 DOI: 10.3389/fphar.2022.866058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/23/2022] Open
Abstract
Warfarin has remained the most commonly prescribed vitamin K oral anticoagulant worldwide since its approval in 1954. Dosing challenges including having a narrow therapeutic window and a wide interpatient variability in dosing requirements have contributed to making it the most studied drug in terms of genotype-phenotype relationships. However, most of these studies have been conducted in Whites or Asians which means the current pharmacogenomics evidence-base does not reflect ethnic diversity. Due to differences in minor allele frequencies of key genetic variants, studies conducted in Whites/Asians may not be applicable to underrepresented populations such as Blacks, Hispanics/Latinos, American Indians/Alaska Natives and Native Hawaiians/other Pacific Islanders. This may exacerbate health inequalities when Whites/Asians have better anticoagulation profiles due to the existence of validated pharmacogenomic dosing algorithms which fail to perform similarly in the underrepresented populations. To examine the extent to which individual races/ethnicities are represented in the existing body of pharmacogenomic evidence, we review evidence pertaining to published pharmacogenomic dosing algorithms, including clinical utility studies, cost-effectiveness studies and clinical implementation guidelines that have been published in the warfarin field.
Collapse
Affiliation(s)
- Innocent G Asiimwe
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
El Rouby N, Shahin MH, Bader L, Khalifa SI, Elewa H. Genomewide association analysis of warfarin dose requirements in Middle Eastern and North African populations. Clin Transl Sci 2022; 15:558-566. [PMID: 34729928 PMCID: PMC8841446 DOI: 10.1111/cts.13176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022] Open
Abstract
To date, there has been no genomewide association study (GWAS) from the Middle East and North African (MENA) region to identify genetic variants associated with warfarin dose variability using this approach. In this study, we aimed to conduct the first GWAS of warfarin dose requirements in patients from the MENA region. A total of 132 Qatari (discovery) and 50 Egyptians (replication) were genotyped using Illumina Multi-Ethnic Global BeadChip Array. A GWAS was performed on log-transformed weekly warfarin dose in the studied population, adjusting for clinical characteristics and ancestry. The genomewide signals from the discovery cohort were tested in the Egyptian cohort. A GWAS meta-analysis, including the Qatari and Egyptian cohorts, was also performed and the output from this analysis was used in a gene-based analysis. The discovery analysis in Qatari identified five genomewide single-nucleotide polymorphisms (SNPs) in chromosome 16. These signals were replicated in the Egyptian cohort. Combining the two data through a GWAS meta-analysis strengthened the association in chromosome 16 with VKORC1 rs9934438 being the lead genomewide signal (β = -0.17, 6 × 10-15 ). Other SNPs were identified in chromosome 10 at a p value less than 1 × 10-5 . The genetic variants within VKORC1 rs9934438 and CYP2C9 rs4086116 explained 39% and 27% of the variability in the weekly warfarin dose requirement in the Qatari and Egyptians, respectively. This is the first GWAS of warfarin dose variability in the MENA region. It confirms the importance of VKORC1 and CYP2C9 variants in warfarin dose variability among patients from the MENA region.
Collapse
Affiliation(s)
- Nihal El Rouby
- Department of Pharmacy Practice and Administrative SciencesJames L. Winkle College of PharmacyUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Loulia Bader
- College of PharmacyBiomedical and Pharmaceutical Research UnitQU HealthQatar UniversityDohaQatar
| | | | - Hazem Elewa
- College of PharmacyBiomedical and Pharmaceutical Research UnitQU HealthQatar UniversityDohaQatar
| |
Collapse
|
12
|
Hirata TDC, Dagli-Hernandez C, Genvigir FDV, Lauschke VM, Zhou Y, Hirata MH, Hirata RDC. Cardiovascular Pharmacogenomics: An Update on Clinical Studies of Antithrombotic Drugs in Brazilian Patients. Mol Diagn Ther 2021; 25:735-755. [PMID: 34357562 DOI: 10.1007/s40291-021-00549-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Anticoagulant and antiplatelet drugs effectively prevent thrombotic events in patients with cardiovascular diseases, ischemic stroke, peripheral vascular diseases, and other thromboembolic diseases. However, genetic and non-genetic factors affect the response to antithrombotic therapy and can increase the risk of adverse events. This narrative review discusses pharmacogenomic studies on antithrombotic drugs commonly prescribed in Brazil. Multiple Brazilian studies assessed the impact of pharmacokinetic (PK) and pharmacodynamic (PD) gene variants on warfarin response. The reduced function alleles CYP2C9*2 and CYP2C9*3, and VKORC1 rs9923231 (c.-1639G>A) are associated with increased sensitivity to warfarin and a low dose requirement to prevent bleeding episodes, whereas CYP4F2 rs2108622 (p.Val433Met) carriers have higher dose requirements (warfarin resistance). These deleterious variants and non-genetic factors (age, gender, body weight, co-administered drugs, food interactions, and others) account for up to 63% of the warfarin dose variability. Few pharmacogenomics studies have explored antiplatelet drugs in Brazilian cohorts, finding associations between CYP2C19*2, PON1 rs662 and ABCC3 rs757421 genotypes and platelet responsiveness or clopidogrel PK in subjects with coronary artery disease (CAD) or acute coronary syndrome (ACS), whereas ITGB3 contributes to aspirin PK but not platelet responsiveness in diabetic patients. Brazilian guidelines on anticoagulants and antiplatelets recommend the use of a platelet aggregation test or genotyping only in selected cases of ACS subjects without ST-segment elevation taking clopidogrel, and also suggest CYP2C9 and VKORC1 genotyping before starting warfarin therapy to assess the risk of bleeding episodes or warfarin resistance.
Collapse
Affiliation(s)
- Thiago Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Fabiana Dalla Vecchia Genvigir
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Volker Martin Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Solna, Sweden.,Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Solna, Sweden
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
13
|
McInnes G, Yee SW, Pershad Y, Altman RB. Genomewide Association Studies in Pharmacogenomics. Clin Pharmacol Ther 2021; 110:637-648. [PMID: 34185318 PMCID: PMC8376796 DOI: 10.1002/cpt.2349] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
The increasing availability of genotype data linked with information about drug-response phenotypes has enabled genomewide association studies (GWAS) that uncover genetic determinants of drug response. GWAS have discovered associations between genetic variants and both drug efficacy and adverse drug reactions. Despite these successes, the design of GWAS in pharmacogenomics (PGx) faces unique challenges. In this review, we analyze the last decade of GWAS in PGx. We review trends in publications over time, including the drugs and drug classes studied and the clinical phenotypes used. Several data sharing consortia have contributed substantially to the PGx GWAS literature. We anticipate increased focus on biobanks and highlight phenotypes that would best enable future PGx discoveries.
Collapse
Affiliation(s)
- Gregory McInnes
- Biomedical Informatics Training Program, Stanford University, Stanford, California, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California, USA
| | - Yash Pershad
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Departments of Genetics, Medicine, Biomedical Data Science, Stanford, California, USA
| |
Collapse
|
14
|
Debortoli G, de Araujo GS, Fortes-Lima C, Parra EJ, Suarez-Kurtz G. Identification of ancestry proportions in admixed groups across the Americas using clinical pharmacogenomic SNP panels. Sci Rep 2021; 11:1007. [PMID: 33441860 PMCID: PMC7806998 DOI: 10.1038/s41598-020-80389-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/14/2020] [Indexed: 11/09/2022] Open
Abstract
We evaluated the performance of three PGx panels to estimate biogeographical ancestry: the DMET panel, and the VIP and Preemptive PGx panels described in the literature. Our analysis indicate that the three panels capture quite well the individual variation in admixture proportions observed in recently admixed populations throughout the Americas, with the Preemptive PGx and DMET panels performing better than the VIP panel. We show that these panels provide reliable information about biogeographic ancestry and can be used to guide the implementation of PGx clinical decision-support (CDS) tools. We also report that using these panels it is possible to control for the effects of population stratification in association studies in recently admixed populations, as exemplified with a warfarin dosing GWA study in a sample from Brazil.
Collapse
Affiliation(s)
- Guilherme Debortoli
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | | | - Cesar Fortes-Lima
- Sub-Department of Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada.
| | - Guilherme Suarez-Kurtz
- Instituto Nacional de Câncer and Rede Nacional de Farmacogenética, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Pharmacogenomics implications of population diversity in Latin America: TPMT and NUDT15 polymorphisms and thiopurine dosing. Pharmacogenet Genomics 2020; 30:1-4. [DOI: 10.1097/fpc.0000000000000388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Large-Scale Whole-Genome Sequencing of Three Diverse Asian Populations in Singapore. Cell 2019; 179:736-749.e15. [DOI: 10.1016/j.cell.2019.09.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/24/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
|
17
|
Kampouraki E, Kamali F. Pharmacogenetics of anticoagulants used for stroke prevention in patients with atrial fibrillation. Expert Opin Drug Metab Toxicol 2019; 15:449-458. [PMID: 31120800 DOI: 10.1080/17425255.2019.1623878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: The inclusion of pharmacogenetics alongside clinical information in anticoagulant therapy offers the opportunity for a tailored approach to treatment according to individual patient characteristics. Areas covered: Literature was searched using PubMed database, focusing on pharmacogenetics of oral anticoagulants. Original research articles and review articles in English language were included in the literature reviewed. This article includes all information available for the genetic cause of inter-individual variability in anticoagulation response to oral anticoagulant drugs. The pharmacogenetics of VKAs and NOACs are described in detail. Expert opinion: There have been numerous studies focusing on the pharmacogenetics of VKAs, particularly warfarin. Current evidence suggests that known genetic and clinical factors explain a large proportion of the inter-individual variability in response to warfarin. Pharmacogenetic-based algorithms have been validated to determine their clinical utility with equivocal results. To date, only a limited number of mostly small studies on the pharmacogenetics of NOACs exists. The latter have highlighted genetic polymorphisms in specific genes that may affect clinical outcomes. Further evaluations of these polymorphisms are needed before firm conclusions can be drawn about the significance of pharmacogenetics on NOAC therapy.
Collapse
Affiliation(s)
- Emmanouela Kampouraki
- a Institute of Cellular Medicine within Faculty of Medical Sciences , Newcastle University , Newcastle upon Tyne , UK
| | - Farhad Kamali
- b Newcastle upon Tyne Hospitals, NHS Foundation Trust , Newcastle upon Tyne , UK
| |
Collapse
|
18
|
Li X, Li D, Wu JC, Liu ZQ, Zhou HH, Yin JY. Precision dosing of warfarin: open questions and strategies. THE PHARMACOGENOMICS JOURNAL 2019; 19:219-229. [PMID: 30745565 DOI: 10.1038/s41397-019-0083-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/17/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
Abstract
Warfarin has a very narrow therapeutic window and obvious interindividual variability in its effects, with many factors contributing to the body's response. Algorithms incorporating multiple genetic, environment and clinical factors have been established to select a precision dose for each patient. A number of randomized controlled trials (RCTs) were conducted to explore whether patients could benefit from these algorithms; however, the results were inconsistent. Some questions remain to be resolved. Recently, new genetic and non-genetic factors have been discovered to contribute to variability in optimal warfarin doses. The results of further RCTs have been unveiled, and guidelines for pharmacogenetically guided warfarin dosing have been updated. Based on these most recent advancements, we summarize some open questions in this field and try to propose possible strategies to resolve them.
Collapse
Affiliation(s)
- Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China
| | - Dan Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China
| | - Ji-Chu Wu
- Department of Cardiovascular, Central Hospital of Shaoyang, Shaoyang, 422000, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China. .,Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, 410078, P. R. China.
| |
Collapse
|
19
|
Rodrigues-Soares F, Suarez-Kurtz G. Pharmacogenomics research and clinical implementation in Brazil. Basic Clin Pharmacol Toxicol 2019; 124:538-549. [PMID: 30589990 DOI: 10.1111/bcpt.13196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
We searched PubMed entries and the Lattes database of Brazilian Pharmacogenetics Network investigators, for pharmacogenetic/genomic (PGx) studies in the Brazilian population, focusing on the drugs and genes included in the Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. Warfarin was the most extensively studied drug in a PGx context: a genomewide association study targeting warfarin stable dose identified significant signals in VKORC1 and CYP2C9, several PGx dosing algorithms were developed based on these and other genes, and the implications of population admixture on extrapolation of dosing recommendations in the CPIC guidelines were examined. A study in renal transplanted patients disclosed association of CYP3A5*6 and CYP3A5*7 with tacrolimus dosing, which led to addition of these variants to CYP3A5*3 in the CPIC tacrolimus guideline. Studies verified predisposition of HIV-positive carriers of UGT1A1*28 to severe atazanavir-induced hyperbilirubinaemia, intolerance to 5-fluorouracyl in gastrointestinal cancer patients with deleterious DPYD variants, failure of HCV-infected carriers of IFNL3 rs12979860 to obtain a sustained viral response to PEG-IFN-α, and hypersensitivity reactions to abacavir in HIV-positive carriers of HLA-B*57:01. No prospective analyses of drug therapy outcomes or cost-effectiveness assessments of PGx-guided therapy were found. In conclusion, the limited adoption of PGx-informed drug prescription in Brazil reflects combination of recognized barriers to PGx implementation worldwide plus factors specific to the Brazilian population. The latter include rarity/absence of genetic variants on which international PGx guidelines are based (eg HLA-B*15.02 for phenytoin and carbamazepine) and the caveat of extrapolating to the admixed Brazilian population, guidelines based on categorical variables, such as continental ancestry (eg warfarin guidelines), "race" or ethnicity.
Collapse
|
20
|
|
21
|
Cullell N, Carrera C, Muiño E, Torres N, Krupinski J, Fernandez-Cadenas I. Pharmacogenetic studies with oral anticoagulants. Genome-wide association studies in vitamin K antagonist and direct oral anticoagulants. Oncotarget 2018; 9:29238-29258. [PMID: 30018749 PMCID: PMC6044386 DOI: 10.18632/oncotarget.25579] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/28/2018] [Indexed: 12/17/2022] Open
Abstract
Oral anticoagulants (OAs) are the recommended drugs to prevent cardiovascular events and recurrence in patients with atrial fibrillation (AF) and cardioembolic stroke. We conducted a literature search to review the current state of OAs pharmacogenomics, focusing on Genome Wide Association Studies (GWAs) in patients treated with vitamin K antagonists (VKAs) and direct oral anticoagulants (DOACs). VKAs: Warfarin, acenocoumarol, fluindione and phenprocoumon have long been used, but their interindividual variability and narrow therapeutic/safety ratio makes their dosage difficult. GWAs have been useful in finding genetic variants associated with VKAs response. The main genes involved in VKAs pharmacogenetics are: VKORC1, CYP2C19 and CYP4F2. Variants in these genes have been included in pharmacogenetic algorithms to predict the VKAs dose individually in each patient depending on their genotype and clinical variables. DOACs: Dabigatran, apixaban, rivaroxaban and edoxaban have been approved for patients with AF. They have stable pharmacokinetics and do not require routine blood checks, thus avoiding most of the drawbacks of VKAs. Except for a GWAs performed in patients treated with dabigatran, there is no Genome Wide pharmacogenomics data for DOACs. Pharmacogenomics could be useful to predict the better clinical response and avoid adverse events in patients treated with anticoagulants, identifying the most appropriate anticoagulant drug for each patient. Current pharmacogenomics data show that the polymorphisms affecting VKAs or DOACs are different, concluding that personalized medicine based on pharmacogenomics could be possible. However, more studies are required to implement personalized medicine in clinical practice with OA and based on pharmacogenetics of DOACs.
Collapse
Affiliation(s)
- Natalia Cullell
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Caty Carrera
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain.,Neurovascular Research Laboratory, Institut de Recerca, Universitat Autònoma de Barcelona, Hospital Vall d'Hebron, Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Nuria Torres
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Jerzy Krupinski
- Servicio de Neurología, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain.,School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Israel Fernandez-Cadenas
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain.,Stroke Pharmacogenomics and Genetics, Institut de Recer ca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
22
|
Duconge J, Ruaño G. Preventing the exacerbation of health disparities by iatrogenic pharmacogenomic applications: lessons from warfarin. Pharmacogenomics 2018; 19:875-881. [PMID: 29898627 DOI: 10.2217/pgs-2018-0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jorge Duconge
- Pharmaceutical Sciences Department, School of Pharmacy, University of Puerto Rico Medical Sciences Campus, PO Box 365067, San Juan, PR 00936, USA
| | - Gualberto Ruaño
- Institute of Living at Hartford Hospital, Hartford, CT 06102, USA
| |
Collapse
|
23
|
Allyn-Feuer A, Ade A, Luzum JA, Higgins GA, Athey BD. The pharmacoepigenomics informatics pipeline defines a pathway of novel and known warfarin pharmacogenomics variants. Pharmacogenomics 2018; 19:413-434. [PMID: 29400612 PMCID: PMC6021929 DOI: 10.2217/pgs-2017-0186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
AIM 'Pharmacoepigenomics' methods informed by omics datasets and pre-existing knowledge have yielded discoveries in neuropsychiatric pharmacogenomics. Now we evaluate the generality of these methods by discovering an extended warfarin pharmacogenomics pathway. MATERIALS & METHODS We developed the pharmacoepigenomics informatics pipeline, a scalable multi-omics variant screening pipeline for pharmacogenomics, and conducted an experiment in the genomics of warfarin. RESULTS We discovered known and novel pharmacogenomics variants and genes, both coding and regulatory, for warfarin response, including adverse events. Such genes and variants cluster in a warfarin response pathway consolidating known and novel warfarin response variants and genes. CONCLUSION These results can inform a new warfarin test. The pharmacoepigenomics informatics pipeline may be able to discover new pharmacogenomics markers in other drug-disease systems.
Collapse
Affiliation(s)
- Ari Allyn-Feuer
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alex Ade
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gerald A Higgins
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian D Athey
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Institute for Data Science, University of Michigan Office of Research, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Suarez-Kurtz G, Parra EJ. Population Diversity in Pharmacogenetics: A Latin American Perspective. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:133-154. [PMID: 29801573 DOI: 10.1016/bs.apha.2018.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pharmacogenetics/pharmacogenomics (PGx) relies on human genetic diversity. In this review we initially examine the PGx implications of human demographic history and genetic diversity, and highlight results from recent studies on the worldwide distribution of common and rare variants in pharmacogenes. The abundance of rare variants implies that a substantial effort will be required to identify their putative functional effects and to develop reliable algorithms for PGx-guided prescription. Furthermore, variants in all pharmacogenes relevant to a drug treatment must be considered. This implies a shift of the current paradigm of PGx-informed prescription based on genotyping a few common variants in selected genes toward comprehensive sequencing approaches. The following sections deal with the impact of population admixture on PGx diversity focusing on Latin America, where a kaleidoscopic combination of individual proportions of Native American, European, and sub-Saharan African ancestries prevails. We illustrate this diversity by contrasting Brazil and Mexico, the two most populous countries in Latin America, and show that population average admixture proportions are not predictive of the corresponding proportions at the individual level. As a consequence of admixture, the genetic differentiation of common pharmacogenetic variants in Latin Americans is much attenuated in comparison to their most relevant ancestral populations. Finally, we review data for tacrolimus and warfarin to illustrate the opportunities and challenges presented by Latin American populations for PGx studies and clinical implementation.
Collapse
Affiliation(s)
- Guilherme Suarez-Kurtz
- Instituto Nacional de Câncer and Rede Nacional de Farmacogenética, Rio de Janeiro, Brazil.
| | - Esteban J Parra
- University of Toronto at Mississauga, Mississauga, ON, Canada
| |
Collapse
|
25
|
Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J Pers Med 2017; 8:E1. [PMID: 29283396 PMCID: PMC5872075 DOI: 10.3390/jpm8010001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
CYP2C9 is the most abundant CYP2C subfamily enzyme in human liver and the most important contributor from this subfamily to drug metabolism. Polymorphisms resulting in decreased enzyme activity are common in the CYP2C9 gene and this, combined with narrow therapeutic indices for several key drug substrates, results in some important issues relating to drug safety and efficacy. CYP2C9 substrate selectivity is detailed and, based on crystal structures for the enzyme, we describe how CYP2C9 catalyzes these reactions. Factors relevant to clinical response to CYP2C9 substrates including inhibition, induction and genetic polymorphism are discussed in detail. In particular, we consider the issue of ethnic variation in pattern and frequency of genetic polymorphisms and clinical implications. Warfarin is the most well studied CYP2C9 substrate; recent work on use of dosing algorithms that include CYP2C9 genotype to improve patient safety during initiation of warfarin dosing are reviewed and prospects for their clinical implementation considered. Finally, we discuss a novel approach to cataloging the functional capabilities of rare 'variants of uncertain significance', which are increasingly detected as more exome and genome sequencing of diverse populations is conducted.
Collapse
Affiliation(s)
- Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Douglas M Fowler
- Department of Genome Sciences and Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University School of Medicine, Adelaide 5042, Australia.
| |
Collapse
|
26
|
Cai LL, Huang WQ, Su ZY, Ye HM, Wang LS, Wu Y, Zhang ZY, Zhang W, Tzeng CM. Identification of two novel genes SLC15A2 and SLCO1B3 associated with maintenance dose variability of warfarin in a Chinese population. Sci Rep 2017; 7:17379. [PMID: 29234073 PMCID: PMC5727167 DOI: 10.1038/s41598-017-17731-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/29/2017] [Indexed: 01/12/2023] Open
Abstract
Warfarin is a commonly prescribed and effective oral anticoagulant. Genetic polymorphisms associated with warfarin metabolism and sensitivity have been implicated in the wide inter-individual dose variation that is observed. Several algorithms integrating patients’ clinical characteristics and genetic polymorphism information have been explored to predict warfarin dose. However, most of these algorithms could explain only over half of the variation in a warfarin maintenance dose, suggesting that additional genetic factors may exist and need to be identified. Here, a drug absorption, distribution, metabolism and excretion (ADME) Core Panel Kit-based pharmacogenetic study was performed to screen for warfarin dose-associated SNP sites in Han-Chinese population patients taking warfarin therapy, and the screen was followed by pyrosequencing-based validation. Finally, we confirmed that the common variant rs9923231 in VKORC1 and two novel genes, SLC15A2 (rs1143671 and rs1143672) and SLCO1B3 (rs4149117 and rs7311358), are associated with the warfarin maintenance dose. As has been shown for those carriers with the variant rs9923231 in VKORC1, it was suggested that those subjects with homozygous minor alleles in those four SNPs should take a lower warfarin dose than those carrying the wild type alleles. Together with the established predictor rs9923231 in VKORC1, those four novel variants on SLC15A2 and SLCO1B3 should be considered as useful biomarkers for warfarin dose adjustment in clinical practice in Han-Chinese populations.
Collapse
Affiliation(s)
- Liang-Liang Cai
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Sheng, China
| | - Wen-Qing Huang
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Sheng, China
| | - Zhi-Ying Su
- Clinical Research Laboratory, Xiamen's Maternal and Child Health Hospital, Teaching Hospital of Xiamen University, Xiamen, Fujian Sheng, China
| | - Hui-Ming Ye
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Sheng, China.,Clinical Research Laboratory, Xiamen's Maternal and Child Health Hospital, Teaching Hospital of Xiamen University, Xiamen, Fujian Sheng, China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan Sheng, China
| | - Yuan Wu
- Department of cardiac surgery, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Sheng, China
| | - Zhong-Ying Zhang
- Department of Clinical laboratory, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Sheng, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan Sheng, China.
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Sheng, China.
| |
Collapse
|
27
|
Abstract
Pharmacogenomics (PGx), a substantial component of "personalized medicine", seeks to understand each individual's genetic composition to optimize drug therapy -- maximizing beneficial drug response, while minimizing adverse drug reactions (ADRs). Drug responses are highly variable because innumerable factors contribute to ultimate phenotypic outcomes. Recent genome-wide PGx studies have provided some insight into genetic basis of variability in drug response. These can be grouped into three categories. [a] Monogenic (Mendelian) traits include early examples mostly of inherited disorders, and some severe (idiosyncratic) ADRs typically influenced by single rare coding variants. [b] Predominantly oligogenic traits represent variation largely influenced by a small number of major pharmacokinetic or pharmacodynamic genes. [c] Complex PGx traits resemble most multifactorial quantitative traits -- influenced by numerous small-effect variants, together with epigenetic effects and environmental factors. Prediction of monogenic drug responses is relatively simple, involving detection of underlying mutations; due to rarity of these events and incomplete penetrance, however, prospective tests based on genotype will have high false-positive rates, plus pharmacoeconomics will require justification. Prediction of predominantly oligogenic traits is slowly improving. Although a substantial fraction of variation can be explained by limited numbers of large-effect genetic variants, uncertainty in successful predictions and overall cost-benefit ratios will make such tests elusive for everyday clinical use. Prediction of complex PGx traits is almost impossible in the foreseeable future. Genome-wide association studies of large cohorts will continue to discover relevant genetic variants; however, these small-effect variants, combined, explain only a small fraction of phenotypic variance -- thus having limited predictive power and clinical utility.
Collapse
Affiliation(s)
- Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, United States.
| | - Daniel W Nebert
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, United States; Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati School of Medicine, Cincinnati, OH 45267-0056, United States.
| |
Collapse
|
28
|
O'connor CT, Kiernan TJ, Yan BP. The genetic basis of antiplatelet and anticoagulant therapy: A pharmacogenetic review of newer antiplatelets (clopidogrel, prasugrel and ticagrelor) and anticoagulants (dabigatran, rivaroxaban, apixaban and edoxaban). Expert Opin Drug Metab Toxicol 2017; 13:725-739. [PMID: 28571507 DOI: 10.1080/17425255.2017.1338274] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The study of pharmacogenomics presents the possibility of individualised optimisation of drug therapy tailored to each patients' unique physiological traits. Both antiplatelet and anticoagulant drugs play a key role in the management of cardiovascular disease. Despite their importance, there is a substantial volume of literature to suggest marked person-to-person variability in their effect. Areas covered: This article reviews the data available for the genetic cause for this inter-patient variability of antiplatelet and anticoagulant drugs. The genetic basis for traditional antiplatelets (i.e. aspirin) is compared with the newly available antiplatelet medicines (clopidogrel, prasugrel and ticagrelor). Similarly, the pharmacogenetics of warfarin is compared with the newer direct oral anticoagulants (DOACs) in detail. Expert Opinion: We identify strengths and weaknesses in the research thus far; including shortcomings in trial design and a review of newer analytical techniques. The direction of this research and its real-world implications are discussed.
Collapse
Affiliation(s)
- Cormac T O'connor
- a Cardiology Department , University Hospital Limerick , Limerick , Ireland
| | - Thomas J Kiernan
- a Cardiology Department , University Hospital Limerick , Limerick , Ireland
| | - Bryan P Yan
- b Division of Cardiology, Department of Medicine and Therapeutics , The Chinese University of Hong Kong, Prince of Wales Hospital , Hong Kong SAR , China
| |
Collapse
|
29
|
Claudio-Campos K, Labastida A, Ramos A, Gaedigk A, Renta-Torres J, Padilla D, Rivera-Miranda G, Scott SA, Ruaño G, Cadilla CL, Duconge-Soler J. Warfarin Anticoagulation Therapy in Caribbean Hispanics of Puerto Rico: A Candidate Gene Association Study. Front Pharmacol 2017; 8:347. [PMID: 28638342 PMCID: PMC5461284 DOI: 10.3389/fphar.2017.00347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Existing algorithms account for ~50% of observed variance in warfarin dose requirements after including common polymorphisms. However, they do not perform as well in populations other than Caucasians, in part because some ethno-specific genetic variants are overlooked. The objective of the present study was to identify genetic polymorphisms that can explain variability in warfarin dose requirements among Caribbean Hispanics of Puerto Rico. Next-Generation Sequencing of candidate genes CYP2C9 and VKORC1 and genotyping by DMET® Plus Assay of cardiovascular patients were performed. We also aimed at characterizing the genomic structure and admixture pattern of this study cohort. Our study used the Extreme Discordant Phenotype approach to perform a case-control association analysis. The CYP2C9 variant rs2860905, which was found in all the major haplotypes occurring in the Puerto Rican population, showed stronger association with warfarin sensitivity (<4 mg/day) than common variants CYP2C9*2 and CYP2C9*3. Although, CYP2C9*2 and CYP2C9*3 are separately contained within two of the haplotypes, 10 subjects with the sensitive phenotype were carriers of only the CYP2C9 rs2860905 variant. Other polymorphisms in CES2 and ABCB1 were found to be associated with warfarin resistance. Incorporation of rs2860905 in a regression model (R2 = 0.63, MSE = 0.37) that also includes additional genetics (i.e., VKORC1-1639 G>A; CYP2C9 rs1856908; ABCB1 c.IVS9-44A>G/ rs10276036; CES2 c.269-965A>G/ rs4783745) and non-genetic factors (i.e., hypertension, diabetes and age) showed better prediction of warfarin dose requirements than CYP2C9*2 and CYP2C9*3 combined (partial R2 = 0.132 vs. 0.023 and 0.007, respectively, p < 0.001). The genetic background of Puerto Ricans in the study cohort showed a tri-hybrid admixture pattern, with a slightly higher than expected contribution of Native American ancestry (25%). The genomic diversity of Puerto Ricans is highlighted by the presence of four different major haplotype blocks in the CYP2C9 locus. Although, our findings need further replication, this study contributes to the field by identifying novel genetic variants that increase predictability of stable warfarin dosing among Caribbean Hispanics.
Collapse
Affiliation(s)
- Karla Claudio-Campos
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto RicoSan Juan, PR, United States
| | - Aurora Labastida
- Independent Researcher, Primera Cerrada de Camino al Amalillo 4Mexico City, Mexico
| | - Alga Ramos
- Miami VA Healthcare System, Health System Administration Pharmacy, Clinical ServicesMiami, FL, United States
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas CityKansas City, MO, United States
| | - Jessicca Renta-Torres
- Department of Biochemistry, School of Medicine, University of Puerto RicoSan Juan, PR, United States
| | - Dariana Padilla
- Department of Biology, University of Puerto Rico at Rio PiedrasSan Juan, PR, United States
| | - Giselle Rivera-Miranda
- Veterans Affairs Caribbean Healthcare Systems, Pharmacy ServiceSan Juan, PR, United States
| | - Stuart A. Scott
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized MedicineNew York, NY, United States
| | | | - Carmen L. Cadilla
- Department of Biochemistry, School of Medicine, University of Puerto RicoSan Juan, PR, United States
| | - Jorge Duconge-Soler
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto RicoSan Juan, PR, United States
| |
Collapse
|
30
|
Hernandez W, Gamazon ER, Aquino-Michaels K, Smithberger E, O'Brien TJ, Harralson AF, Tuck M, Barbour A, Cavallari LH, Perera MA. Integrated analysis of genetic variation and gene expression reveals novel variant for increased warfarin dose requirement in African Americans. J Thromb Haemost 2017; 15:735-743. [PMID: 28135054 PMCID: PMC5862636 DOI: 10.1111/jth.13639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 11/26/2022]
Abstract
Essentials Genetic variants controlling gene regulation have not been explored in pharmacogenomics. We tested liver expression quantitative trait loci for association with warfarin dose response. A novel predictor for increased warfarin dose response in African Americans was identified. Precision medicine must take into account population-specific variation in gene regulation. SUMMARY Background Warfarin is commonly used to control and prevent thromboembolic disorders. However, because of warfarin's complex dose-requirement relationship, safe and effective use is challenging. Pharmacogenomics-guided warfarin dosing algorithms that include the well-established VKORC1 and CYP2C9 polymorphisms explain only a small proportion of inter-individual variability in African Americans (AAs). Objectives We aimed to assess whether transcriptomic analyses could be used to identify regulatory variants associated with warfarin dose response in AAs. Patients/Methods We identified a total of 56 expression quantitative trait loci (eQTLs) for CYP2C9, VKORC1 and CALU derived from human livers and evaluated their association with warfarin dose response in two independent AA warfarin patient cohorts. Results We found that rs4889606, a strong cis-eQTL for VKORC1 (log10 Bayes Factor = 12.02), is significantly associated with increased warfarin daily dose requirement (β = 1.1; 95% confidence interval [CI] 0.46 to 1.8) in the discovery cohort (n = 305) and in the replication cohort (β = 1.04; 95% CI 0.33 -1.7; n = 141) after conditioning on relevant covariates and the VKORC1 -1639G>A (rs9923231) variant. Inclusion of rs4889606 genotypes, along with CYP2C9 alleles, rs9923231 genotypes and clinical variables, explained 31% of the inter-patient variability in warfarin dose requirement. We demonstrate different linkage disequilibrium patterns in the region encompassing rs4889606 and rs9923231 between AAs and European Americans, which may explain the increased dose requirement found in AAs. Conclusion Our approach of interrogating eQTLs identified in liver has revealed a novel predictor of warfarin dose response in AAs. Our work highlights the utility of leveraging information from regulatory variants mapped in the liver to uncover novel variants associated with drug response and the importance of population-specific research.
Collapse
Affiliation(s)
- W Hernandez
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - E R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - K Aquino-Michaels
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - E Smithberger
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - T J O'Brien
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - A F Harralson
- Department of Medicine, George Washington University, Washington, DC, USA
- Bernard J. Dunn School of Pharmacy, Shenandoah University, Winchester, VA, USA
| | - M Tuck
- Veterans Affairs Medical Center, Washington, DC, USA
| | - A Barbour
- Department of Medicine, George Washington University, Washington, DC, USA
| | - L H Cavallari
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - M A Perera
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
31
|
Admixture mapping in two Mexican samples identifies significant associations of locus ancestry with triglyceride levels in the BUD13/ZNF259/APOA5 region and fine mapping points to rs964184 as the main driver of the association signal. PLoS One 2017; 12:e0172880. [PMID: 28245265 PMCID: PMC5330487 DOI: 10.1371/journal.pone.0172880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/11/2017] [Indexed: 11/29/2022] Open
Abstract
We carried out an admixture mapping study of lipid traits in two samples from Mexico City. Native American locus ancestry was significantly associated with triglyceride levels in a broad region of chromosome 11 overlapping the BUD13, ZNF259 and APOA5 genes. In our fine-mapping analysis of this region using dense genome-wide data, rs964184 is the only marker included in the 99% credible set of SNPs, providing strong support for rs964184 as the causal variant within this region. The frequency of the allele associated with increased triglyceride concentrations (rs964184-G) is between 30–40% higher in Native American populations from Mexico than in European populations. The evidence currently available for this variant indicates that it may be exerting its effect through three potential mechanisms: 1) modification of enhancer activity, 2) regulation of the expression of several genes in cis and/or trans, or 3) modification of the methylation patterns of the promoter of the APOA5 gene.
Collapse
|