1
|
Nimbalkar S, Guo X, Colón A, Jackson M, Akanda N, Patel A, Grillo M, Hickman JJ. Development of a functional human induced pluripotent stem cell-derived nociceptor MEA system as a pain model for analgesic drug testing. Front Cell Dev Biol 2023; 11:1011145. [PMID: 36936691 PMCID: PMC10014464 DOI: 10.3389/fcell.2023.1011145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The control of severe or chronic pain has relied heavily on opioids and opioid abuse and addiction have recently become a major global health crisis. Therefore, it is imperative to develop new pain therapeutics which have comparable efficacy for pain suppression but lack of the harmful effects of opioids. Due to the nature of pain, any in vivo experiment is undesired even in animals. Recent developments in stem cell technology has enabled the differentiation of nociceptors from human induced pluripotent stem cells. This study sought to establish an in vitro functional induced pluripotent stem cells-derived nociceptor culture system integrated with microelectrode arrays for nociceptive drug testing. Nociceptors were differentiated from induced pluripotent stem cells utilizing a modified protocol and a medium was designed to ensure prolonged and stable nociceptor culture. These neurons expressed nociceptor markers as characterized by immunocytochemistry and responded to the exogenous toxin capsaicin and the endogenous neural modulator ATP, as demonstrated with patch clamp electrophysiology. These cells were also integrated with microelectrode arrays for analgesic drug testing to demonstrate their utilization in the preclinical drug screening process. The neural activity was induced by ATP to mimic clinically relevant pathological pain and then the analgesics Lidocaine and the opioid DAMGO were tested individually and both induced immediate silencing of the nociceptive activity. This human-based functional nociceptive system provides a valuable platform for investigating pathological pain and for evaluating effective analgesics in the search of opioid substitutes.
Collapse
Affiliation(s)
- Siddharth Nimbalkar
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | - Xiufang Guo
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | - Alisha Colón
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | | | - Nesar Akanda
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | - Aakash Patel
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | - Marcella Grillo
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | - James J. Hickman
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
- Hesperos Inc., Orlando, FL, United States
- *Correspondence: James J. Hickman,
| |
Collapse
|
2
|
Dong CR, Zhang WJ, Luo HL. Association between P2X3 receptors and neuropathic pain: As a potential therapeutic target for therapy. Biomed Pharmacother 2022; 150:113029. [PMID: 35489283 DOI: 10.1016/j.biopha.2022.113029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022] Open
Abstract
Neuropathic pain is a common clinical symptom of various diseases, and it seriously affects the physical and mental health of patients. Owing to the complex pathological mechanism of neuropathic pain, clinical treatment of pain is challenging. Therefore, there is growing interest among researchers to explore potential therapeutic strategies for neuropathic pain. A large number of studies have shown that development of neuropathic pain is related to nerve conduction and related signaling molecules. P2X3 receptors (P2X3R) are ATP-dependent ion channels that participate in the transmission of neural information and related signaling pathways, sensitize the central nervous system, and play a key role in the development of neuropathic pain. In this paper, we summarized the structure and biological characteristics of the P2X3R gene and discussed the role of P2X3R in the nervous system. Moreover, we outlined the related pathological mechanisms of pain and described the relationship between P2X3R and chronic pain to provide valuable information for development of novel treatment strategies for pain.
Collapse
Affiliation(s)
- Cai-Rong Dong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| | - Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China.
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| |
Collapse
|
3
|
Ford AP, Dillon MP, Kitt MM, Gever JR. The discovery and development of gefapixant. Auton Neurosci 2021; 235:102859. [PMID: 34403981 DOI: 10.1016/j.autneu.2021.102859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Gefapixant is the approved generic name for a compound also known as MK-7264, and prior to that AF-219 and RO-4926219. It is the first-in-class clinically developed antagonist for the P2X3 subtype of trimeric ionotropic purinergic receptors, a family of ATP-gated excitatory ion channels, showing nanomolar potency for the human P2X3 homotrimeric channel and essentially no activity at related channels devoid of P2X3 subunits. As the first P2X3 antagonist to have progressed into clinical studies it has now progressed to the point of successful completion of Phase 3 investigations for the treatment of cough, and the NDA application is under review with US FDA for treatment of refractory chronic cough or unexplained chronic cough. The molecule was discovered in the laboratories of Roche Pharmaceuticals in Palo Alto, California, but clinical development then continued with the formation of Afferent Pharmaceuticals for the purpose of identifying the optimal therapeutic indication for this novel mechanism and establishing a clinical plan for development in the optimal patient populations selected. Geoff Burnstock was a close collaborator and advisor to the P2X3 program for close to two decades of discovery and development. Progression of gefapixant through later stage clinical studies has been conducted by the research laboratories of Merck & Co., Inc., Kenilworth, NJ, USA (MRL; following acquisition of Afferent in 2016), who may commercialize the product once authorization has been granted by regulatory authorities.
Collapse
Affiliation(s)
- Anthony P Ford
- CuraSen Therapeutics, 930 Brittan Avenue, Suite 306, San Carlos, CA 94070, USA.
| | - Michael P Dillon
- Ideaya Biosciences, 7000 Shoreline Court, Suite 350, South San Francisco, CA 94080, USA
| | - Michael M Kitt
- Axalbion LTD., C/O Medicines Evaluation Unit, The Langley Building, Southmoor Road, Wythenshawe, M23 9QZ Manchester, UK
| | - Joel R Gever
- CuraSen Therapeutics, 930 Brittan Avenue, Suite 306, San Carlos, CA 94070, USA
| |
Collapse
|
4
|
Suleimanova A, Talanov M, van den Maagdenberg AMJM, Giniatullin R. Deciphering in silico the Role of Mutated Na V 1.1 Sodium Channels in Enhancing Trigeminal Nociception in Familial Hemiplegic Migraine Type 3. Front Cell Neurosci 2021; 15:644047. [PMID: 34135733 PMCID: PMC8200561 DOI: 10.3389/fncel.2021.644047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Familial hemiplegic migraine type 3 (FHM3) is caused by gain-of-function mutations in the SCN1A gene that encodes the α1 subunit of voltage-gated NaV1.1 sodium channels. The high level of expression of NaV1.1 channels in peripheral trigeminal neurons may lead to abnormal nociceptive signaling thus contributing to migraine pain. NaV1.1 dysfunction is relevant also for other neurological disorders, foremost epilepsy and stroke that are comorbid with migraine. Here we used computer modeling to test the functional role of FHM3-mutated NaV1.1 channels in mechanisms of trigeminal pain. The activation of Aδ-fibers was studied for two algogens, ATP and 5-HT, operating through P2X3 and 5-HT3 receptors, respectively, at trigeminal nerve terminals. In WT Aδ-fibers of meningeal afferents, NaV1.1 channels efficiently participate in spike generation induced by ATP and 5-HT supported by NaV1.6 channels. Of the various FHM3 mutations tested, the L263V missense mutation, with a longer activation state and lower activation voltage, resulted in the most pronounced spiking activity. In contrast, mutations that result in a loss of NaV1.1 function largely reduced firing of trigeminal nerve fibers. The combined activation of P2X3 and 5-HT3 receptors and branching of nerve fibers resulted in very prolonged and high-frequency spiking activity in the mutants compared to WT. We identified, in silico, key determinants of long-lasting nociceptive activity in FHM3-mutated Aδ-fibers that naturally express P2X3 and 5-HT3 receptors and suggest mutant-specific correction options. Modeled trigeminal nerve firing was significantly higher for FHM3 mutations, compared to WT, suggesting that pronounced nociceptive signaling may contribute to migraine pain.
Collapse
Affiliation(s)
- Alina Suleimanova
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Max Talanov
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
5
|
Zou L, Gong Y, Liu S, Liang S. Natural compounds acting at P2 receptors alleviate peripheral neuropathy. Brain Res Bull 2018; 151:125-131. [PMID: 30599217 DOI: 10.1016/j.brainresbull.2018.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/29/2022]
Abstract
Neuropathic pain is generally resistant to currently available treatments, and it is often a consequence of nerve injury due to surgery, diabetes or infection. Myocardial ischemic nociceptive signaling increases the sympathoexcitatory reflex to aggravate myocardial injury. Elucidation of the pathogenetic factors might provide a target for optimal treatment. Abundant evidence in the literature suggests that P2X and P2Y receptors play important roles in signal transmission. Traditional Chinese medicines, such as emodin, puerarin and resveratrol, antagonize nociceptive transmission mediated by purinergic 2 (P2) receptors in primary afferent neurons. This review summarizes recently published data on P2 receptor-mediated neuropathic pain and myocardial ischemia in dorsal root ganglia (DRG), superior cervical ganglia (SCG) and stellate ganglia (SG), with a special focus on the beneficial role of natural compounds.
Collapse
Affiliation(s)
- Lifang Zou
- Neuropharmacological Labratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, Peoples Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yingxin Gong
- Undergraduate student of the First Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuangmei Liu
- Neuropharmacological Labratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, Peoples Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Neuropharmacological Labratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, Peoples Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
6
|
Ginnetti AT, Paone DV, Stauffer SR, Potteiger CM, Shaw AW, Deng J, Mulhearn JJ, Nguyen DN, Segerdell C, Anquandah J, Calamari A, Cheng G, Leitl MD, Liang A, Moore E, Panigel J, Urban M, Wang J, Fillgrove K, Tang C, Cook S, Kane S, Salvatore CA, Graham SL, Burgey CS. Identification of second-generation P2X3 antagonists for treatment of pain. Bioorg Med Chem Lett 2018; 28:1392-1396. [PMID: 29548573 DOI: 10.1016/j.bmcl.2018.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 11/15/2022]
Abstract
A second-generation small molecule P2X3 receptor antagonist has been developed. The lead optimization strategy to address shortcomings of the first-generation preclinical lead compound is described herein. These studies were directed towards the identification and amelioration of preclinical hepatobiliary findings, reducing potential for drug-drug interactions, and decreasing the projected human dose of the first-generation lead.
Collapse
Affiliation(s)
- Anthony T Ginnetti
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA.
| | - Daniel V Paone
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Shaun R Stauffer
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Craig M Potteiger
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Anthony W Shaw
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - James Deng
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - James J Mulhearn
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Diem N Nguyen
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Carolyn Segerdell
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Juliana Anquandah
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Amy Calamari
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Gong Cheng
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Michael D Leitl
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Annie Liang
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Eric Moore
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Jacqueline Panigel
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Mark Urban
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Jixin Wang
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Kerry Fillgrove
- Department of Drug Metabolism, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Cuyue Tang
- Department of Drug Metabolism, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Sean Cook
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Stefanie Kane
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | | | - Samuel L Graham
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Christopher S Burgey
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| |
Collapse
|
7
|
Schytz HW, Hargreaves R, Ashina M. Challenges in developing drugs for primary headaches. Prog Neurobiol 2017; 152:70-88. [DOI: 10.1016/j.pneurobio.2015.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022]
|
8
|
Szántó G, Makó A, Vágó I, Hergert T, Bata I, Farkas B, Kolok S, Vastag M. New P2X3 receptor antagonists. Part 2: Identification and SAR of quinazolinones. Bioorg Med Chem Lett 2016; 26:3905-12. [PMID: 27426300 DOI: 10.1016/j.bmcl.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
Numerous potent P2X3 antagonists have been discovered and the therapeutic potential of P2X3 antagonism already comprises proof-of-concept data obtained in clinical trials with the most advanced compound. We have lately reported the discovery and optimization of thia-triaza-tricycle compounds with potent P2X3 antagonistic properties. This Letter describes the SAR of a back-up series containing a 4-oxo-quinazoline central ring. The discovery of the highly potent compounds 51 is presented.
Collapse
Affiliation(s)
- Gábor Szántó
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - Attila Makó
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - István Vágó
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - Tamás Hergert
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - Imre Bata
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - Bence Farkas
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - Sándor Kolok
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - Mónika Vastag
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| |
Collapse
|
9
|
Szántó G, Makó A, Bata I, Farkas B, Kolok S, Vastag M, Cselenyák A. New P2X3 receptor antagonists. Part 1: Discovery and optimization of tricyclic compounds. Bioorg Med Chem Lett 2016; 26:3896-904. [PMID: 27423478 DOI: 10.1016/j.bmcl.2016.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 01/12/2023]
Abstract
Purinergic P2X3 receptors are trimeric ligand-gated ion channels whose antagonism is an appealing yet challenging and not fully validated drug development idea. With the aim of identification of an orally active, potent human P2X3 receptor antagonist compound that can penetrate the central nervous system, the compound collection of Gedeon Richter was screened. A hit series of tricyclic compounds was subjected to a rapid, two-step optimization process focusing on increasing potency, improving metabolic stability and CNS penetrability. Attempts resulted in compound 65, a potential tool compound for testing P2X3 inhibitory effects in vivo.
Collapse
Affiliation(s)
- Gábor Szántó
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - Attila Makó
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - Imre Bata
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - Bence Farkas
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - Sándor Kolok
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | - Mónika Vastag
- Gedeon Richter Plc, Budapest 10, PO Box 27, H-1475, Hungary
| | | |
Collapse
|
10
|
Zhu H, Yu Y, Zheng L, Wang L, Li C, Yu J, Wei J, Wang C, Zhang J, Xu S, Wei X, Cui W, Wang Q, Chen X. Chronic inflammatory pain upregulates expression of P2Y2 receptor in small-diameter sensory neurons. Metab Brain Dis 2015; 30:1349-58. [PMID: 26062804 DOI: 10.1007/s11011-015-9695-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/01/2015] [Indexed: 11/28/2022]
Abstract
Roles of ionotropic purinergic (P2X) receptors in chronic pain have been intensively investigated. However, the contribution of metabotropic purinergic (P2Y) receptors to pathological pain is controversial. In the present study, using single cell RT-PCR (reverse transcription-polymerase chain reaction) and single cell nested-PCR techniques, we examined the expression of P2X(2), P2X(3), P2Y(1) and P2Y(2) mRNA transcripts in retrogradely labeled cutaneous sensory neurons from mouse lumber dorsal root ganglia (DRGs) following peripheral inflammation. The percentage of cutaneous sensory neurons expressing P2Y(2) mRNA transcripts increased after complete Freund's adjuvant (CFA) treatment. Particularly, the P2Y(2) mRNA transcripts were more frequently detected in small-diameter cutaneous neurons from CFA-treated mice than those from control mice. Coexpression of P2Y(2) and P2X (P2X(2) or P2X(3)) mRNAs was more frequently observed in cutaneous sensory neurons from CFA-treated mice relative to controls. Pain behavioral tests showed that the blockade of P2Y receptors by suramin attenuated mechanical allodynia evoked either by CFA or uridine triphosphate (UTP), an endogenous P2Y(2) and P2Y(4) agonist. These results suggest that chronic inflammatory pain enhances expression of P2Y(2) receptor in peripheral sensory neurons that innervate the injured tissue and the activation of P2Y receptors contributes to mechanical allodynia following inflammation.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/psychology
- Behavior, Animal
- Chronic Pain/etiology
- Chronic Pain/metabolism
- Chronic Pain/psychology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Hyperalgesia/chemically induced
- Hyperalgesia/metabolism
- Hyperalgesia/psychology
- Inflammation/complications
- Inflammation/metabolism
- Inflammation/psychology
- Mice
- Mice, Inbred ICR
- Nociception
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Purinergic P2Y/biosynthesis
- Receptors, Purinergic P2Y/genetics
- Receptors, Purinergic P2Y2/biosynthesis
- Receptors, Purinergic P2Y2/genetics
- Sensory Receptor Cells/metabolism
- Sensory Receptor Cells/pathology
- Skin/innervation
- Up-Regulation
Collapse
Affiliation(s)
- Huiqin Zhu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yi Yu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Lingyan Zheng
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Lu Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Chenli Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jiangyuan Yu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jing Wei
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Junfang Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Shujun Xu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xiaofei Wei
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Qinwen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xiaowei Chen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
11
|
Xiong W, Qiu SY, Xu LY, Zhang CP, Yi Y, Wu Q, Huang LP, Liu SM, Wu B, Peng LC, Song MM, Gao Y, Liang SD. Effects of intermedin on dorsal root ganglia in the transmission of neuropathic pain in chronic constriction injury rats. Clin Exp Pharmacol Physiol 2015; 42:780-7. [DOI: 10.1111/1440-1681.12416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Xiong
- The Affiliated Stomatological Hospital of Nanchang University; Nanchang China
| | - Shu-yi Qiu
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Ling-yun Xu
- Department of Stomatology; The First People's Hospital of Fuzhou; Fuzhou Jiangxi Province China
| | - Chun-ping Zhang
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Yun Yi
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Qin Wu
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Li-ping Huang
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Shuang-mei Liu
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Bing Wu
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Li-chao Peng
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Miao-miao Song
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Yun Gao
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Shang-dong Liang
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| |
Collapse
|
12
|
The purinergic system and glial cells: emerging costars in nociception. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495789. [PMID: 25276794 PMCID: PMC4168030 DOI: 10.1155/2014/495789] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/08/2014] [Indexed: 12/23/2022]
Abstract
It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states.
Collapse
|